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Regular, small-scale textures are the norm in nature and technology

Freeze-dried Butterfly wing scales                Bird feather                  Hydraulic filter
hydrogel foam

Mosquito                                                
wing surface

Polysterene
membrane 
for water 
purification

Pufferfish spines (Tian et al., ACS Omega, 2021)
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Middle layer of surgical mask is key to stopping virus particles 
(D. Verma, nanoscience.com, 2021)
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Common feature: repeated patterns, eventually with a hierarchy of scales

Question: can we model the presence of such regularly microstructured 
surfaces by an effective boundary condition?
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Common feature: repeated patterns, eventually with a hierarchy of scales

Question: can we model the presence of such regularly microstructured 
surfaces by an effective boundary condition?

Three prototype problems:

- Rough wall (eventually superhydrophobic)
- Thin membrane
- Porous layer
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porous medium

Navier slip condition (1823) Beavers-Joseph-Saffman

𝑈𝑠 = λ อ
𝜕𝑈1
𝜕 ො𝑥2

𝑤𝑎𝑙𝑙

𝑈𝑠

ො𝑥1

ො𝑥2 𝑈1

Darcy’s law unjustified for 
thin membranes.

Zampogna & Gallaire (2020)

^
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Classical result: Beavers & Joseph, JFM 1967
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Classical result: Saffman, Stud. Appl. Math. 1971



UNIVERSITY OF GENOA

MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

Classical result: Saffman, Stud. Appl. Math. 1971
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Classical result: Saffman, Stud. Appl. Math. 1971
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Asymptotic homogenization approach

(Mei & Vernescu, Homogenization Methods for 
Multiscale Mechanics, 2010)
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+ Macroscopic, outer domain

Near wall, inner domain=

ϵ = Τ𝑙 𝐿 ≪ 1
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Dimensionless, normalized equations in each subdomain
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The approach followed can also be employed to study 
conditions near a fracture in a porous medium, the problem of 
the “interface” between two porous media of different 
porosity/microstructure or the condition at a solid, 
impermeable boundary.

All of these problems have 
been treated by Valdés-Parada
& Lasseux (Phys. Fluids 2021) 
by the method of volume 
averaging,  in the frame of 
the one-domain approach.
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𝑥2 → −∞, 𝑋2 → 0− 𝑥2 → −∞ Darcy

𝑥2 → +∞, 𝑋2 → 0+

Dimensionless matching conditions:
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𝜎𝑖2
= = −𝑃=𝛿𝑖2+ 

𝜕𝑈𝑖
=

𝜕𝑥2
+

𝜕𝑈2
=
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Equations for the free-fluid/porous case

𝑥2 = ൗ𝑋2
𝜖
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+

𝑋2
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𝑋2
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𝑋2
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𝑋2

(order 0 and order 1
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𝑋2 = 𝜖 𝑥2
MATCHING CONDITIONS

𝑈𝑖
+ = ϵ 𝑢𝑖

(0)
+ 𝜖𝑢𝑖

(1)
+ …

−𝑝 0 𝛿𝑖2 +
𝜕𝑢𝑖

0

𝜕𝑥2
+
𝜕𝑢2

0

𝜕𝑥𝑖
= Σ𝑖2

+

−𝑝(1)𝛿𝑖2 +
𝜕𝑢𝑖

(1)

𝜕𝑥2
+
𝜕𝑢2

(1)

𝜕𝑥𝑖
= −

𝜕𝑢𝑖
(0)

𝜕𝑋2
+
𝜕𝑢2

(0)

𝜕𝑋𝑖

@ 𝑥2 → +∞
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Linearity permits to express the order 0 solution as

with 𝑢𝑖𝑗
† and 𝑝𝑗

† function of only microscopic independent

variables.

A Stokes system for the ‘dagger’ variables ensues, to be solved 
in a periodic (along 𝑥1 and 𝑥3) elementary cell subject to

𝑢𝑖
(0)

= 𝑢𝑖𝑗
† Σ𝑗2

+

𝑝
(0)

= 𝑝𝑗
† Σ𝑗2

+ + K

−𝑝𝑗
†𝛿𝑖2 +

𝜕𝑢𝑖𝑗
†

𝜕𝑥2
+
𝜕𝑢2𝑗

†

𝜕𝑥𝑖
= 𝛿𝑖𝑗 when 𝑥2 → +∞

plus 1-periodicity when 𝑥2 → −∞.
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−𝑝(1)𝛿𝑖2 +
𝜕𝑢𝑖

(1)

𝜕𝑥2
+
𝜕𝑢2

(1)

𝜕𝑥𝑖
= − 𝑢𝑖𝑗

† 𝜕Σ𝑗2
+

𝜕𝑋𝑘
𝛿𝑘2 + 𝑢2𝑗

† 𝜕Σ𝑗2
+

𝜕𝑋𝑘
𝛿𝑖𝑘

The order 1 condition at 𝑥2 → ∞ becomes

so that, on account of linearity, the couple 𝑢𝑖
(1)
, 𝑝(1) has the 

form:

𝑢𝑖
(1)

= 𝑢𝑖𝑗𝑘
∗

𝜕Σ𝑗2
+

𝜕𝑋𝑘

𝑝(1) = 𝑝𝑗𝑘
∗
𝜕Σ𝑗2

+

𝜕𝑋𝑘
+ 𝐾
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The ‘star’ variables satisfy the forced Stokes system

with the condition at 𝑥2 → ∞:

−𝑝𝑗𝑘
∗ 𝛿𝑖2 +

𝜕𝑢𝑖𝑗𝑘
∗

𝜕𝑥2
+
𝜕𝑢2𝑗𝑘

∗

𝜕𝑥𝑖
= −𝑢𝑖𝑗

† 𝛿𝑘2 − 𝑢2𝑗
† 𝛿𝑖𝑘

𝜕𝑢𝑖𝑗𝑘
∗

𝜕𝑥𝑖
= −𝑢𝑘𝑗

†

−
𝜕𝑝𝑗𝑘

∗

𝜕𝑥𝑖
+
𝜕2𝑢𝑖𝑗𝑘

∗

𝜕𝑥𝑙
2 = −𝑝𝑗

†𝛿𝑖𝑘 − 2
𝜕𝑢𝑖𝑗

†

𝜕𝑥𝑘
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Once the ‘dagger’ and the ‘star’ systems are solved for,         
the macroscopic solution at  𝑋2 = 𝜖 𝑦∞ is

𝑈𝑖
+ = ϵ 𝑢𝑖𝑗

† Σ𝑗2
+ + 𝜖 𝑢𝑖𝑗𝑘

∗
𝜕Σ𝑗2

+

𝜕𝑋𝑘
+ 𝒪(𝜖3)

The variable 𝑢𝑖𝑗
† evaluated at 𝑥2 = 𝑦∞ is a Navier slip   

tensor; the variable 𝑢𝑖𝑗𝑘
∗ is a rank-3 permeability tensor,   

and it includes an interface permeability effect.

Solutions can be pursued also at order 𝜖3 and higher
(Bottaro & Naqvi, Meccanica 2020)
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Porous medium: cylinders aligned along 𝑥3, porosity  𝜃 = 0.5

𝑢11
† 𝑢21

† 𝑢222
∗
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Sufficiently far from the axis’ origin in 𝑥2 = 0, results are 
independent of 𝑥1 and 𝑥3, and the non-trivial solutions of 
interest are:

𝑢11
† = 𝜆𝑥 + 𝑥2 𝑢33

† = 𝜆𝑧 + 𝑥2

𝑢222
∗ = 𝐾𝑦𝑦

𝑢121
∗ = − 𝑢211

∗ = 𝐾𝑥𝑦
𝑖𝑡𝑓

+ 𝜆𝑥𝑥2 +
1

2
𝑥2
2

𝑢323
∗ = − 𝑢233

∗ = 𝐾𝑧𝑦
𝑖𝑡𝑓

+ 𝜆𝑧𝑥2 +
1

2
𝑥2
2
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Transferring the interface condition from 𝑋2 = 𝜖𝑦∞ to 𝑋2 = 0: 

ቚ𝑈1
+

𝑋2=0
= 𝜖𝜆𝑥 ቚΣ12

+

𝑋2=0
+ 𝜖2𝐾𝑥𝑦

𝑖𝑡𝑓
อ

𝜕Σ22
+

𝜕𝑋1
𝑋2=0

+ 𝒪(𝜖3)

ቚ𝑈3
+

𝑋2=0
= 𝜖𝜆𝑧 ቚΣ32

+

𝑋2=0
+ 𝜖2𝐾𝑧𝑦

𝑖𝑡𝑓
อ

𝜕Σ22
+

𝜕𝑋3
𝑋2=0

+ 𝒪(𝜖3)

ቚ𝑈2
+

𝑋2=0
= − 𝜖2𝐾𝑥𝑦

𝑖𝑡𝑓
อ

𝜕Σ12
+

𝜕𝑋1
𝑋2=0

− 𝜖2𝐾𝑧𝑦
𝑖𝑡𝑓

อ
𝜕Σ32

+

𝜕𝑋3
𝑋2=0

+ 𝜖2𝐾𝑦𝑦 อ
𝜕Σ22

+

𝜕𝑋2
𝑋2=0

+ 𝒪(𝜖3)



UNIVERSITY OF GENOA

MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

𝜃 𝜃

𝜃

𝜆𝑥

𝜆𝑧

𝐾𝑧𝑧

𝐾𝑥𝑥 = 𝐾𝑦𝑦

𝐾𝑧𝑦
𝑖𝑡𝑓

𝐾𝑥𝑦
𝑖𝑡𝑓Two different virtual origins, for 

longitudinal and tranverse flow
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In dimensional form the interface conditions reduce to

NO EMPIRICAL COEFFICIENTS!
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In dimensional form the interface conditions reduce to

These can be further modified using the balance of normal 
forces at the interface:

ቚƸ𝑝
0−

≈ ቚƸ𝑝
0+

− 2𝜇 ቤ
𝜕 ො𝑣

𝜕 ො𝑦
0+
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… yielding an extended set of Saffman’s conditions:

(which require, however, coupling with the solution for the 
pressure within the porous medium ...)
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These interface conditions have been extensively tested 
(Naqvi & Bottaro, Int. J. Multiphase Flow, 2021) including 
cases with significant infiltration within the porous medium.

𝜖 = 0.1, 𝜃 = 0.99
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More laborious test case: turbulent flow in a channel, with one 
permeable wall

Chu et al., Transp. Porous Media, 2021
Wang et al., JFM, 2021

𝑋

𝑌

1

0

100

𝜃 = 0.5
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𝑅𝑒𝜏 ≈ 200 based on boundary layer thickness and friction velocity

𝜖 = 0.4 𝑙 = 0.4 𝐿 𝑙+ =
𝑙 𝑢𝜏

𝜈
= 0.4 𝑅𝑒𝜏 ≈ 80 (probably too large for 

modeling via an effective boundary condition!)

(Chu et al., 2021)
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Chavarin et al. (JFM 2021) have shown that anisotropic permeable 
substrates can hamper the near-wall turbulent cycle, leading to 
drag reduction, in a manner similar to that of riblets, producing an 
offset between the virtual origin felt by the mean flow and that by 
the turbulent fluctuations.
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Chavarin et al. (JFM 2021) have shown that anisotropic permeable 
substrates can hamper the near-wall turbulent cycle, leading to 
drag reduction, in a manner similar to that of riblets, producing an 
offset between the virtual origin felt by the mean flow and that by 
the turbulent fluctuations.

Porous medium: longitudinal cylinders (with driving pressure 
gradient along the same direction).



UNIVERSITY OF GENOA

MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

Chavarin et al. (JFM 2021) have shown that anisotropic permeable 
substrates can hamper the near-wall turbulent cycle, leading to 
drag reduction, in a manner similar to that of riblets, producing an 
offset between the virtual origin felt by the mean flow and that by 
the turbulent fluctuations.

Porous medium: longitudinal cylinders along 𝑋3 (with driving 

This mimics riblets, with the added 
effect of transpiration through the
pores. For riblets, to leading order, 
the skin friction coefficient is reduced
proportionally to 

(Bechert & Hage, WIT Trans., 2006
Luchini et al., JFM 1991)

𝜆𝑧 − 𝜆𝑥

𝑈

𝑙 𝑙

𝑙+
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𝐶𝑓
𝐶𝑓0

≈ 1 −
∆𝜆 +

(2𝐶𝑓0 )
−0.5+(2𝑘)−1

Luchini, 1996

𝐶𝑓

𝐶𝑓0

∆𝜆 + Alinovi & Bottaro, PRF, 2018
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DNS results for different arrangements of solid
cylindrical inclusions within the porous layer

𝑈+

𝑌+



UNIVERSITY OF GENOA

MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

𝑌/𝐿
𝑌/𝐿

𝑌/𝐿𝑌/𝐿



Velocity u

𝑥

𝑧

𝑧-aligned
cylinders
𝜖 = 0.2

𝑥-aligned
cylinders
𝜖 = 0.1

Isolines of 𝑈 at 𝑦+ = 20
Channel of dimensions 2𝜋 × 2 × 𝜋 (∆𝑥+ = 9.5, ∆𝑦𝑤𝑎𝑙𝑙

+ = 0.28, ∆𝑧+ = 6.3)
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For the same driving pressure gradient (𝜃 = 0.5) we have

∆ ሶ𝑉

ሶ𝑉𝑠𝑚𝑜𝑜𝑡ℎ

𝜖

longitudinal
cylinders

transverse cylinders

𝜖𝑚𝑎𝑥 ≈ 0.1 𝑙𝑚𝑎𝑥 ≈ 0.1 𝐿 𝑙𝑚𝑎𝑥
+ =

𝑙𝑚𝑎𝑥 𝑢𝜏
𝜈

= 0.1 𝑅𝑒𝜏 ≈ 20
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Optimal anisotropic porous layers can be designed
(quickly) by employing effective conditions.

Drawback: should maintain 𝑙+ = 𝒪 10
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If the wall is impermeable the conditions at a rough wall are 
recovered:

(Bottaro, JFM 2019; Lacis et al., JFM 2020; Bottaro & Naqvi, 
Meccanica, 2020)  
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Bottaro, JFM 2019
Lacis et al., JFM 2020
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CONCLUSIONS

‘Microscopic’, repeated features can be treated via multiple 
scale homogenization, yielding effective conditions at the 
interface which permit to avoid the numerical resolution of   
very small scale details.  This would allow
the rapid modeling of geometrical micro-
features, to identify, e.g., the most
efficient drag-reducing textures, or the 
most suitable structure of a porous
membrane, etc.

M.C. Escher, Angels and Demons, 1960


