MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

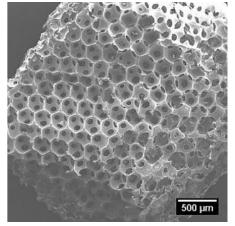
Alessandro Bottaro

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

Sarish B. Naqvi Essam Nabil Ahmed Lorenzo Buda

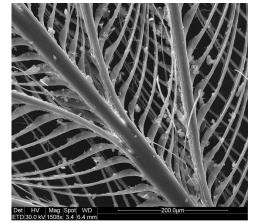
MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

Regular, small-scale textures are the norm in nature and technology



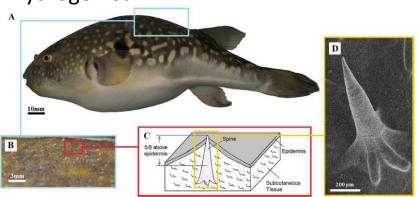
Freeze-dried hydrogel foam

Butterfly wing scales

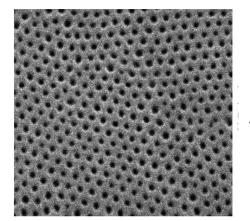


Bird feather

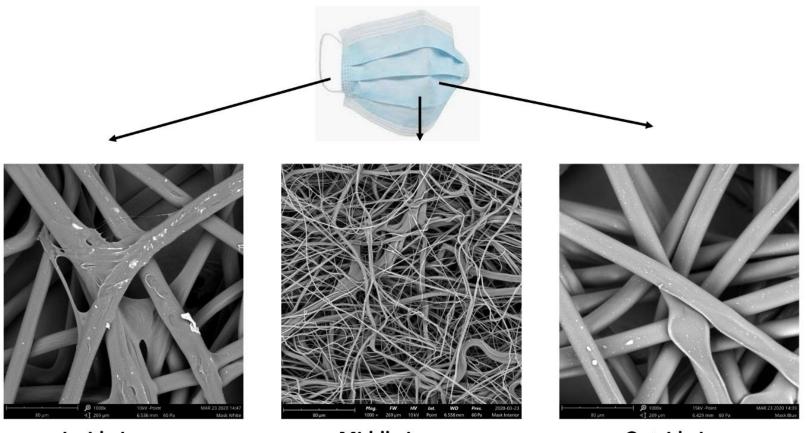
Hydraulic filter



Pufferfish spines (Tian et al., ACS Omega, 2021)



Polysterene membrane for water purification



Inside Layer

Middle Layer

Outside Layer

Middle layer of surgical mask is key to stopping virus particles (D. Verma, *nanoscience.com*, 2021)

Common feature: repeated patterns, eventually with a hierarchy of scales

Question: can we model the presence of such regularly microstructured surfaces by an effective boundary condition?

Common feature: repeated patterns, eventually with a hierarchy of scales

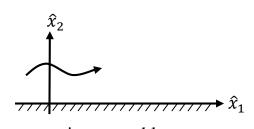
Question: can we model the presence of such regularly microstructured surfaces by an effective boundary condition?

Three prototype problems:

- Rough wall (eventually superhydrophobic)
- Thin membrane
- Porous layer

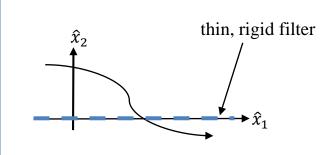
DICCA DIPARTIMENTO Università di **Genova** DI INGEGNERIA CIVILE, CHIMICA **E AMBIENTALE**

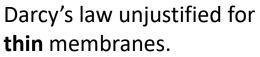
MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

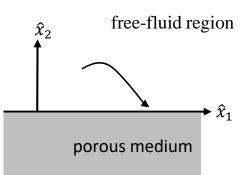


impermeable, rough wall

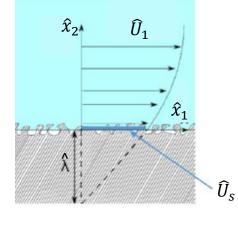
Navier slip condition (1823)

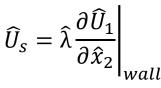


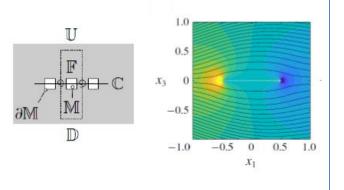




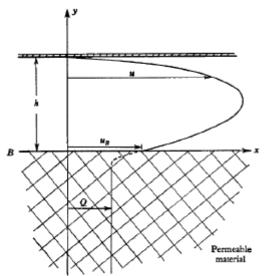
Beavers-Joseph-Saffman

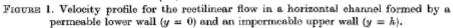






Classical result: Beavers & Joseph, JFM 1967



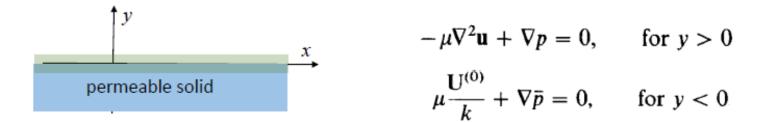


$$\left. \frac{du}{dy} \right|_{y=O_+} = \frac{\alpha}{\sqrt{k}} (u_B - Q) \qquad \qquad Q = -\frac{k}{\mu} \frac{dP}{dx}$$

with α a dimensionless function of the structural properties of the porous matrix

Block	$k(\text{in.}^2)$	a	Average pore size (in.)
Foametal A	$1.5 imes 10^{-5}$	0.78	0.016
Foametal B	$6 \cdot 1 \times 10^{-5}$	1.45	0.034
Foametal C	$12.7 imes10^{-5}$	$4 \cdot 0$	0.045
Aloxite	$1.0 imes10^{-6}$	0.1	0.013
Aloxite	2.48×10^{-6}	0.1	0.027

Classical result: Saffman, Stud. Appl. Math. 1971

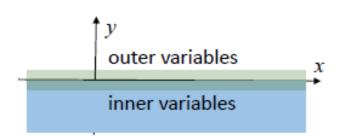


The velocity U in the *intermediate/boundary layer* must satisfy asymptotic matching conditions:

$$\lim_{y/k^{1/2}\to\infty} \mathbf{U} = \lim_{y\to 0^+} \mathbf{u}_{y}$$

$$\lim_{y/k^{1/2} \to -\infty} U = \lim_{y \to 0^{-}} U^{(0)},$$

Classical result: Saffman, Stud. Appl. Math. 1971



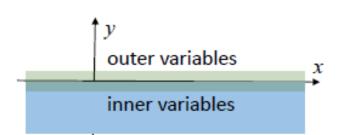
Using linearity and expanding intermediate layer variables in terms of delta function derivatives, Saffman finds the asymptotic expressions of the velocity in the outer layer as $y \rightarrow 0^+$:

$$u = \frac{k^{1/2}}{\alpha} \frac{\partial u}{\partial y} + O(k)$$
 on $y = 0$.

Classical result: Saffman, Stud. Appl. Math. 1971

RIA CIVILE, CHIMICA

DICCA DIPARTIMENTO



Universita

Using linearity and expanding intermediate layer variables in terms of delta function derivatives, Saffman finds the asymptotic expressions of the velocity in the outer layer as $y \rightarrow 0^+$:

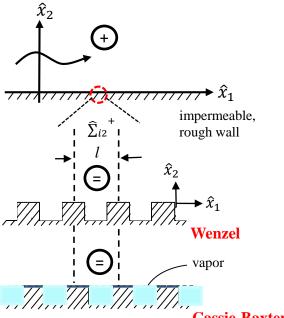
$$u = \frac{k^{1/2}}{\alpha} \frac{\partial u}{\partial y} + O(k)$$
 on $y = 0$.

The result by Saffman permits to find the outer flow solution without iterating between inner and outer domains. Elaborating upon Saffman's results it is possible to find the order k correction:

$$\hat{u} = -\frac{Bk}{\mu} \frac{\partial \hat{p}^{-}}{\partial \hat{x}} + \hat{\lambda} \frac{\partial \hat{u}}{\partial \hat{y}}$$
 on $y = 0$.

Asymptotic homogenization approach

(Mei & Vernescu, Homogenization Methods for Multiscale Mechanics, 2010)



Cassie-Baxter

Scales:

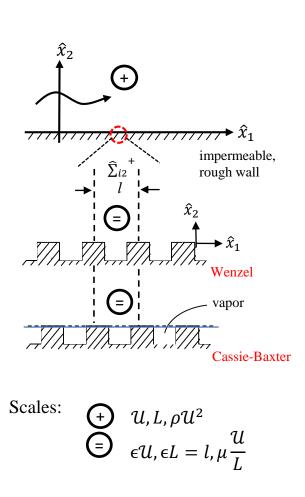
Macroscopic, outer domain

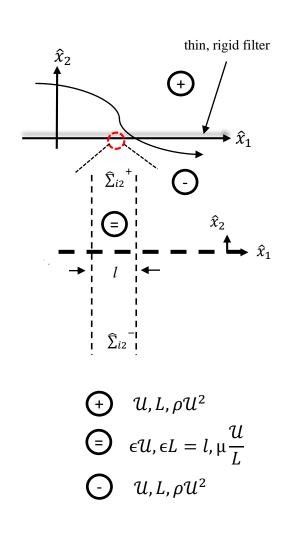
(+)

▣

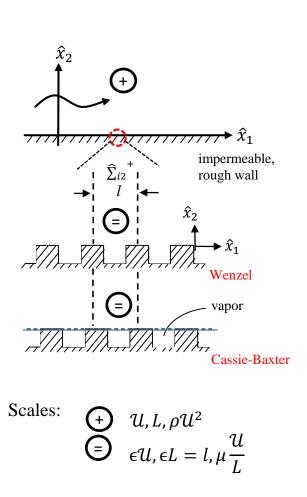
Near wall, inner domain

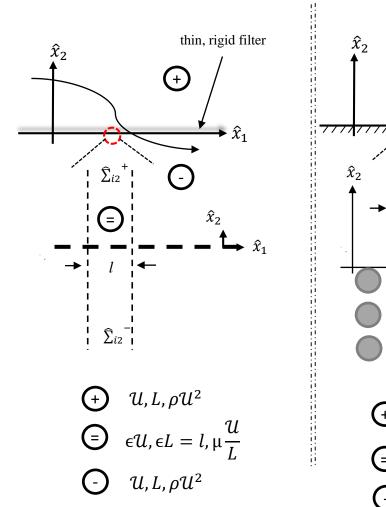
MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

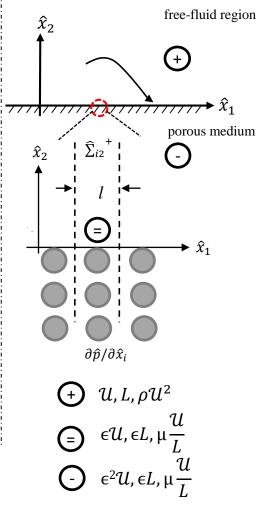




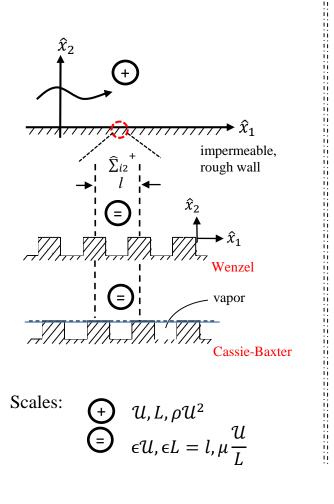
MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

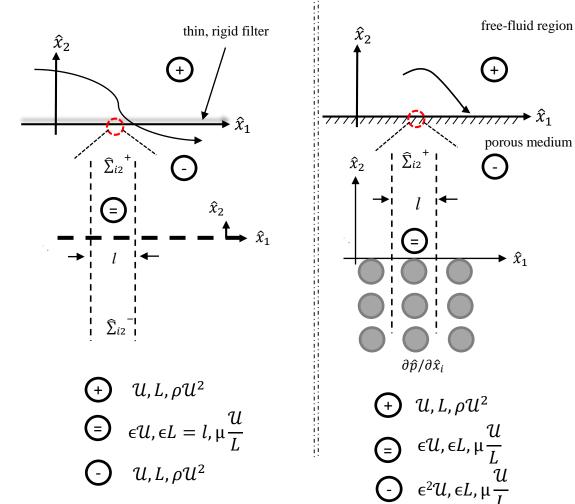






MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES





Dimensionless, normalized equations in each subdomain

The approach followed can also be employed to study conditions near a **fracture** in a porous medium, the problem of the "interface" between **two porous media** of different porosity/microstructure or the condition at a **solid**, **impermeable boundary**.

All of these problems have been treated by Valdés-Parada & Lasseux (*Phys. Fluids* 2021) by the method of *volume averaging*, in the frame of the **one-domain approach**.

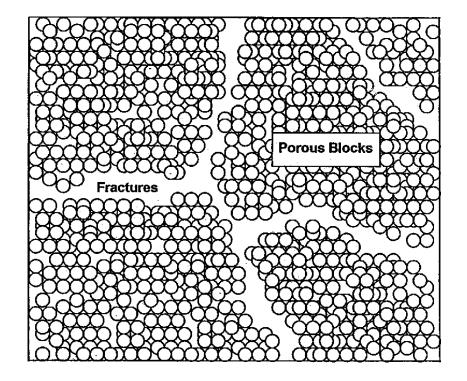
DICCA DIPARTIMENTO

E AMBIENTALE

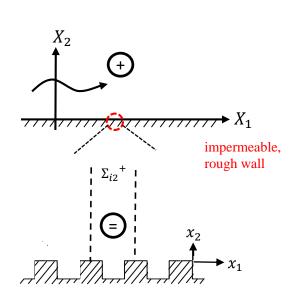
DI INGEGNERIA CIVILE. CHIMICA

Università

li Genova

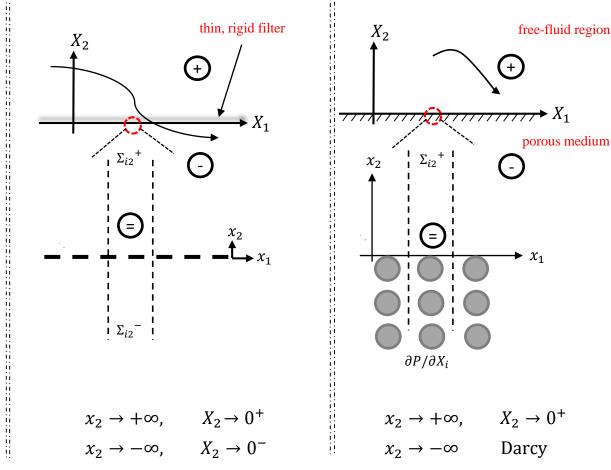


MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES



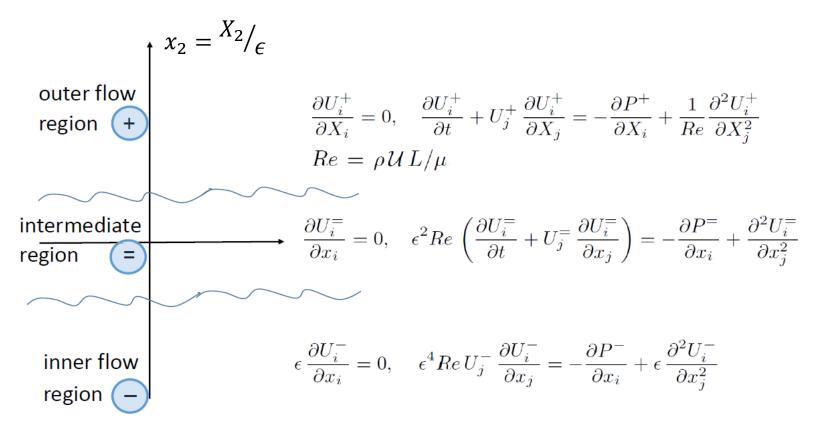
Dimensionless matching conditions:

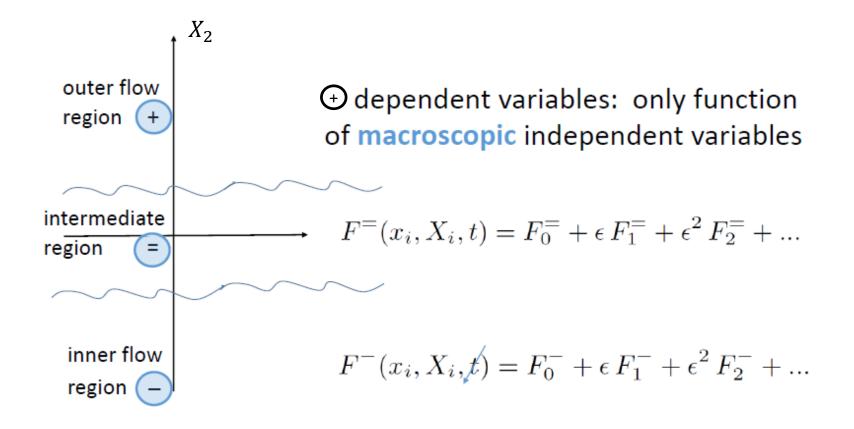
 $x_{2} \rightarrow +\infty, \quad X_{2} \rightarrow 0^{+}$ $\begin{bmatrix} U_{i}^{+} = \epsilon U_{i}^{=} \\ \sigma_{i2}^{=} = -P^{=} \delta_{i2} + \frac{\partial U_{i}^{=}}{\partial x_{2}} + \frac{\partial U_{2}^{=}}{\partial x_{i}} = \\ = \Sigma_{i2}^{+} = -Re P^{+} \delta_{i2} + \frac{\partial U_{i}^{+}}{\partial X_{2}} + \frac{\partial U_{2}^{+}}{\partial X_{i}} \end{bmatrix}$

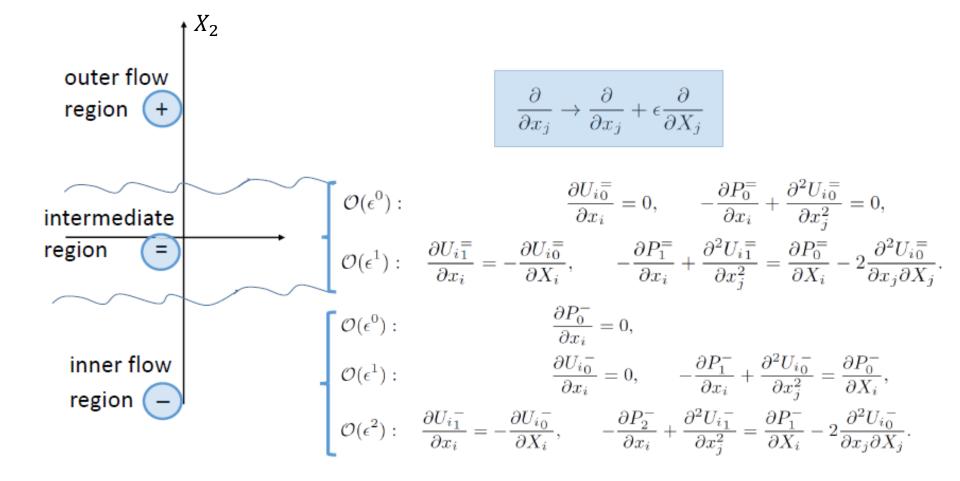


DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

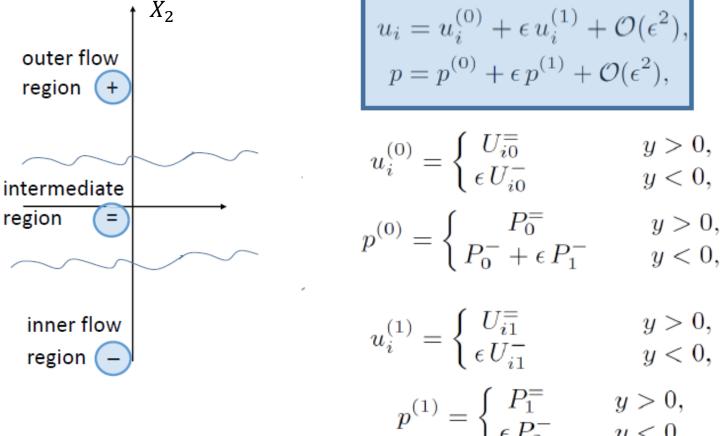
Università







COMPOSITE DESCRIPTION

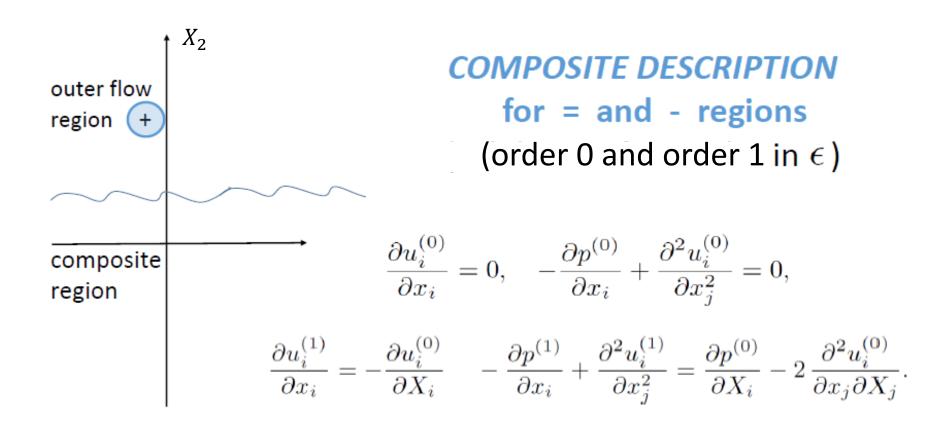


$$\begin{array}{ll}
U_{i1}^{=} & y > 0, \\
U_{i1}^{-} & y < 0, \\
P_{1}^{=} & y > 0, \\
\epsilon P_{2}^{-} & y < 0.
\end{array}$$

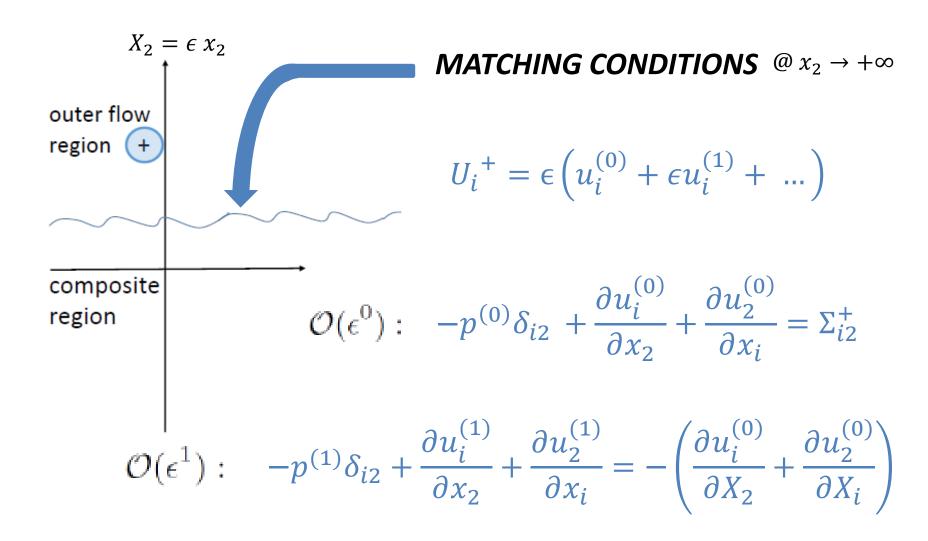
$$\epsilon P_2^- \qquad y > \epsilon P_2^-$$

DICCA DIPARTIMENTO Università DI INGEGNERIA CIVILE, CHIMICA di **Genova** E AMBIENTALE

MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES



MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES



Linearity permits to express the order 0 solution as

 $\begin{cases} u_{i}^{(0)} = u_{ij}^{\dagger} \Sigma_{j2}^{+} \\ p^{(0)} = p_{j}^{\dagger} \Sigma_{j2}^{+} + K \end{cases}$

with u_{ij}^{\dagger} and p_{j}^{\dagger} function of only **microscopic** independent variables.

A Stokes system for the 'dagger' variables ensues, to be solved in a **periodic** (along x_1 and x_3) **elementary cell** subject to

$$-p_j^{\dagger}\delta_{i2} + \frac{\partial u_{ij}^{\dagger}}{\partial x_2} + \frac{\partial u_{2j}^{\dagger}}{\partial x_i} = \delta_{ij} \quad \text{when} \quad x_2 \to +\infty$$

plus 1-periodicity when $x_2 \rightarrow -\infty$.

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA

The **order 1** condition at $x_2 \rightarrow \infty$ becomes

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

Università di **Genova**

$$-p^{(1)}\delta_{i2} + \frac{\partial u_i^{(1)}}{\partial x_2} + \frac{\partial u_2^{(1)}}{\partial x_i} = -\left(u_{ij}^{\dagger} \frac{\partial \Sigma_{j2}^{}}{\partial X_k} \delta_{k2} + u_{2j}^{\dagger} \frac{\partial \Sigma_{j2}^{}}{\partial X_k} \delta_{ik}\right)$$

so that, on account of linearity, the couple $\left(u_{i}^{(1)}, p^{(1)}\right)$ has the form:

$$\begin{cases}
 u_i^{(1)} = u_{ijk}^* \frac{\partial \Sigma_{j2}^+}{\partial X_k} \\
 p^{(1)} = p_{jk}^* \frac{\partial \Sigma_{j2}^+}{\partial X_k} + K
\end{cases}$$

The 'star' variables satisfy the forced Stokes system

$$\frac{\partial u_{ijk}^*}{\partial x_i} = -u_{kj}^{\dagger}$$
$$-\frac{\partial p_{jk}^*}{\partial x_i} + \frac{\partial^2 u_{ijk}^*}{\partial x_l^2} = -p_j^{\dagger} \delta_{ik} - 2 \frac{\partial u_{ij}^{\dagger}}{\partial x_k}$$

with the condition at $x_2 \rightarrow \infty$:

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA

E AMBIENTALE

Università di **Genova**

$$-p_{jk}^*\delta_{i2} + \frac{\partial u_{ijk}^*}{\partial x_2} + \frac{\partial u_{2jk}^*}{\partial x_i} = -u_{ij}^\dagger \delta_{k2} - u_{2j}^\dagger \delta_{ik}$$

Università di Genova BICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

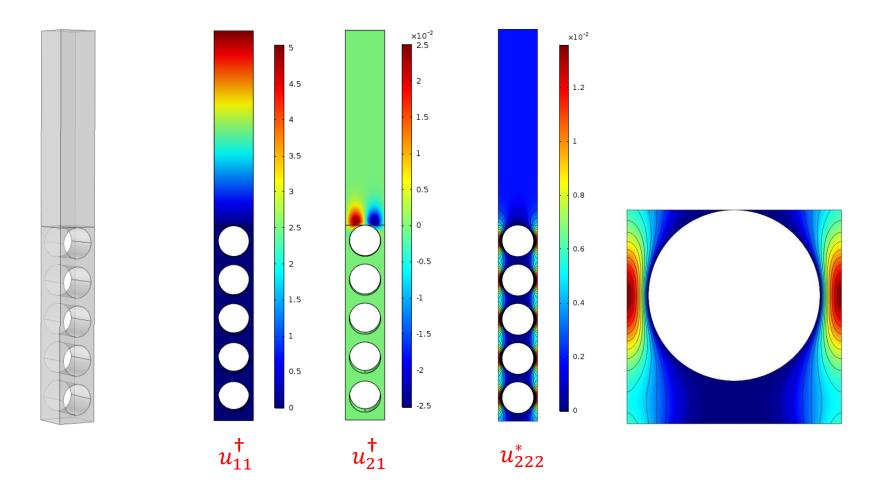
> Once the 'dagger' and the 'star' systems are solved for, the macroscopic solution at $X_2 = \epsilon y_{\infty}$ is

$$U_{i}^{+} = \epsilon \left(u_{ij}^{\dagger} \Sigma_{j2}^{+} + \epsilon \, u_{ijk}^{*} \frac{\partial \Sigma_{j2}^{+}}{\partial X_{k}} \right) + \mathcal{O}(\epsilon^{3})$$

The variable u_{ij}^{\dagger} evaluated at $x_2 = y_{\infty}$ is a **Navier slip tensor**; the variable u_{ijk}^{*} is a rank-3 **permeability tensor**, and it includes an *interface permeability* effect.

Solutions can be pursued also at order ϵ^3 and higher (Bottaro & Naqvi, *Meccanica* 2020)

Porous medium: cylinders aligned along x_3 , porosity $\theta = 0.5$



Università DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE

Sufficiently far from the axis' origin in $x_2 = 0$, results are independent of x_1 and x_3 , and the non-trivial solutions of interest are:

$$u_{11}^{\dagger} = \lambda_{x} + x_{2} \qquad u_{33}^{\dagger} = \lambda_{z} + x_{2}$$
$$u_{121}^{*} = -u_{211}^{*} = K_{xy}^{itf} + \lambda_{x}x_{2} + \frac{1}{2}x_{2}^{2}$$
$$u_{323}^{*} = -u_{233}^{*} = K_{zy}^{itf} + \lambda_{z}x_{2} + \frac{1}{2}x_{2}^{2}$$

 $u_{222}^* = K_{yy}$

Transferring the interface condition from $X_2 = \epsilon y_{\infty}$ to $X_2 = 0$:

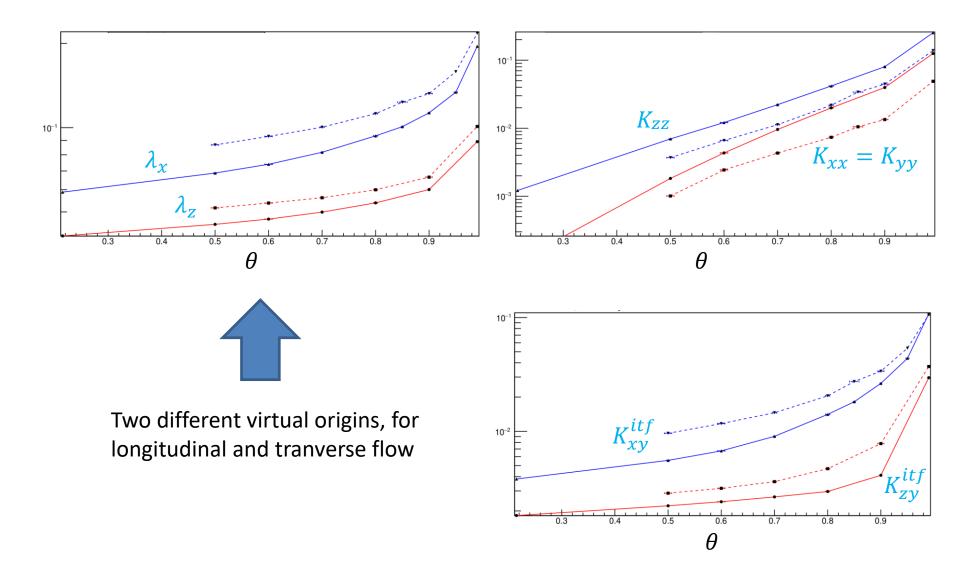
DICCA DIPARTIMENTO

E AMBIENTALE

DI INGEGNERIA CIVILE, CHIMICA

Università di Genova

$$\begin{aligned} U_1^+\Big|_{X_2=0} &= \epsilon \lambda_x \Sigma_{12}^+\Big|_{X_2=0} + \epsilon^2 K_{xy}^{itf} \frac{\partial \Sigma_{22}^+}{\partial X_1}\Big|_{X_2=0} + \mathcal{O}(\epsilon^3) \\ U_2^+\Big|_{X_2=0} &= -\epsilon^2 K_{xy}^{itf} \frac{\partial \Sigma_{12}^+}{\partial X_1}\Big|_{X_2=0} - \epsilon^2 K_{zy}^{itf} \frac{\partial \Sigma_{32}^+}{\partial X_3}\Big|_{X_2=0} \\ &+ \epsilon^2 K_{yy} \frac{\partial \Sigma_{22}^+}{\partial X_2}\Big|_{X_2=0} + \mathcal{O}(\epsilon^3) \end{aligned}$$
$$\begin{aligned} U_3^+\Big|_{X_2=0} &= \epsilon \lambda_z \Sigma_{32}^+\Big|_{X_2=0} + \epsilon^2 K_{zy}^{itf} \frac{\partial \Sigma_{22}^+}{\partial X_3}\Big|_{X_2=0} + \mathcal{O}(\epsilon^3) \end{aligned}$$



In dimensional form the interface conditions reduce to

DICCA DIPARTIMENTO

E AMBIENTALE

DI INGEGNERIA CIVILE, CHIMICA

Università di Genova

$$\hat{u}|_{0^{+}} \approx \hat{\lambda}_{x} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} + \frac{\hat{\mathcal{K}}_{xy}^{itf}}{\mu} \frac{\partial}{\partial \hat{x}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}}$$

$$\begin{split} \hat{v}|_{0^{+}} &\approx \frac{\hat{\mathcal{K}}_{yy}}{\mu} \frac{\partial}{\partial \hat{y}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \bigg|_{0^{+}} - \hat{\mathcal{K}}_{xy}^{itf} \frac{\partial}{\partial \hat{x}} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \bigg|_{0^{+}} - \hat{\mathcal{K}}_{zy}^{itf} \frac{\partial}{\partial \hat{z}} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \bigg|_{0^{+}} \\ \hat{w}|_{0^{+}} &\approx \hat{\lambda}_{z} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \bigg|_{0^{+}} + \frac{\hat{\mathcal{K}}_{zy}^{itf}}{\mu} \frac{\partial}{\partial \hat{z}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \bigg|_{0^{+}} \end{split}$$

NO EMPIRICAL COEFFICIENTS!

In dimensional form the interface conditions reduce to

PARTIMENTO

E AMBIENTALE

RIA CIVILE, CHIMICA

Università

$$\begin{split} \hat{u}|_{0^{+}} &\approx \hat{\lambda}_{x} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} + \frac{\mathcal{K}_{xy}^{itf}}{\mu} \frac{\partial}{\partial \hat{x}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}} \\ \hat{v}|_{0^{+}} &\approx \frac{\hat{\mathcal{K}}_{yy}}{\mu} \frac{\partial}{\partial \hat{y}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}} - \hat{\mathcal{K}}_{xy}^{itf} \frac{\partial}{\partial \hat{x}} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} - \hat{\mathcal{K}}_{zy}^{itf} \frac{\partial}{\partial \hat{z}} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \Big|_{0^{+}} \\ \hat{w}|_{0^{+}} &\approx \hat{\lambda}_{z} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \Big|_{0^{+}} + \frac{\hat{\mathcal{K}}_{zy}^{itf}}{\mu} \frac{\partial}{\partial \hat{z}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}} \end{split}$$

These can be further modified using the balance of normal forces at the interface:

$$\hat{p}\Big|_{0^{-}} \approx \hat{p}\Big|_{0^{+}} - 2\mu \frac{\partial \hat{v}}{\partial \hat{y}}\Big|_{0^{+}}$$

... yielding an extended set of Saffman's conditions:

DIPARTIMENTO

E AMBIENTALE

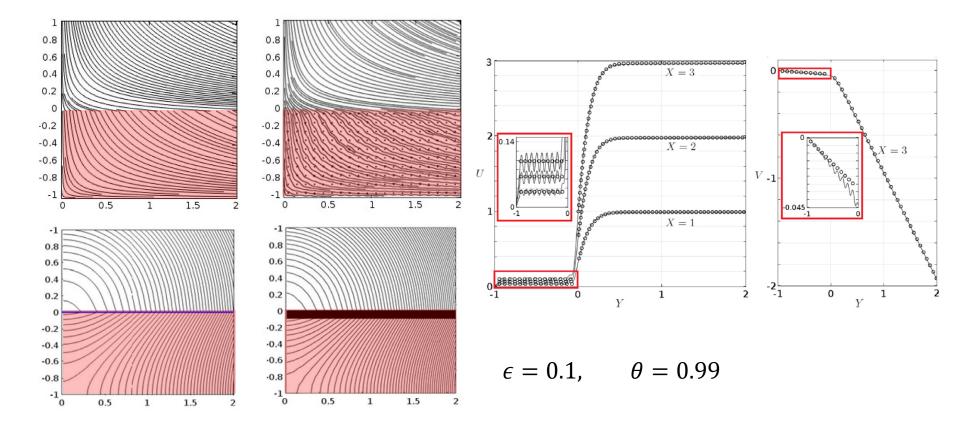
DI INGEGNERIA CIVILE, CHIMICA

Università

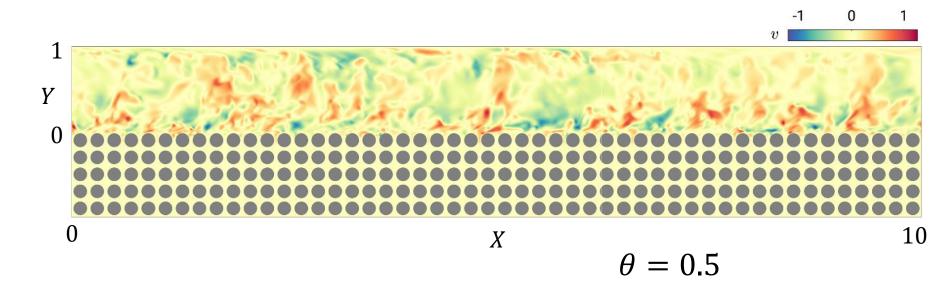
$$\begin{split} \hat{u}|_{0^{+}} &\approx \hat{\lambda}_{x} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} - \frac{\hat{\mathcal{K}}_{xy}^{itf}}{\mu} \frac{\partial \hat{p}}{\partial \hat{x}} \Big|_{0^{-}} \\ \hat{v}|_{0^{+}} &\approx -\frac{\hat{\mathcal{K}}_{yy}}{\mu} \frac{\partial \hat{p}}{\partial \hat{y}} \Big|_{0^{-}} - \hat{\mathcal{K}}_{xy}^{itf} \frac{\partial}{\partial \hat{x}} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} - \hat{\mathcal{K}}_{zy}^{itf} \frac{\partial}{\partial \hat{z}} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \Big|_{0^{+}} \\ \hat{w}|_{0^{+}} &\approx \hat{\lambda}_{z} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \Big|_{0^{+}} - \frac{\hat{\mathcal{K}}_{zy}^{itf}}{\mu} \frac{\partial \hat{p}}{\partial \hat{z}} \Big|_{0^{-}} \end{split}$$

(which require, however, coupling with the solution for the pressure within the porous medium ...)

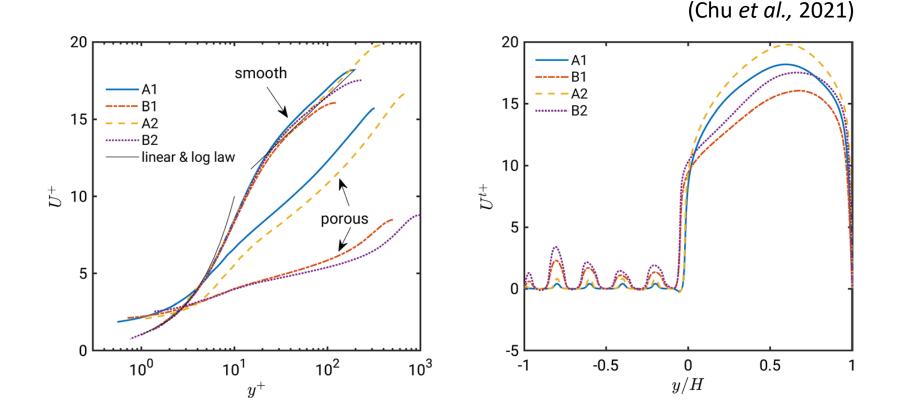
These interface conditions have been extensively tested (Naqvi & Bottaro, *Int. J. Multiphase Flow*, 2021) including cases with significant infiltration within the porous medium.



More laborious test case: turbulent flow in a channel, with one permeable wall



Chu et al., Transp. Porous Media, 2021 Wang et al., JFM, 2021



 $Re_{\tau} \approx 200$ based on boundary layer thickness and friction velocity

DICCA DIPARTIMENTO

E AMBIENTALE

Università di **Genova**

 $\epsilon = 0.4 \implies l = 0.4 L \implies l^+ = \frac{l u_\tau}{v} = 0.4 Re_\tau \approx 80$ (probably too large for modeling via an effective boundary condition!)

Chavarin *et al.* (*JFM* 2021) have shown that anisotropic permeable substrates can hamper the near-wall turbulent cycle, leading to drag reduction, in a manner similar to that of riblets, producing an offset between the virtual origin felt by the mean flow and that by the turbulent fluctuations.

IA CIVILE. CHIMICA

Università

Chavarin *et al.* (*JFM* 2021) have shown that anisotropic permeable substrates can hamper the near-wall turbulent cycle, leading to drag reduction, in a manner similar to that of riblets, producing an offset between the virtual origin felt by the mean flow and that by the turbulent fluctuations.

IA CIVILE. CHIMICA

Universit

Porous medium: **longitudinal cylinders** (with driving pressure gradient along the same direction).

Chavarin *et al.* (*JFM* 2021) have shown that anisotropic permeable substrates can hamper the near-wall turbulent cycle, leading to drag reduction, in a manner similar to that of riblets, producing an offset between the virtual origin felt by the mean flow and that by the turbulent fluctuations.

Porous medium: longitudinal cylinders

DICCA DIPARTIMENTO

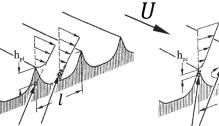
RIA CIVILE. CHIMICA

IIniversità

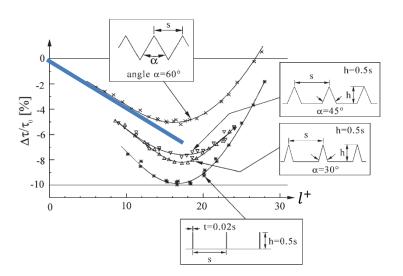
Genova

This mimics **riblets**, with the added effect of transpiration through the pores. For riblets, to leading order, the skin friction coefficient is reduced proportionally to $\lambda_z - \lambda_x$

(Bechert & Hage, WIT Trans., 2006 Luchini *et al., JFM* 1991)

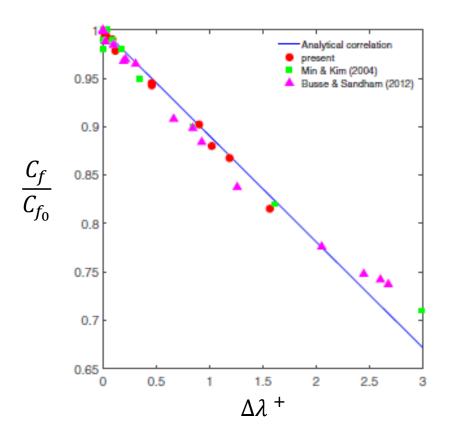


Virtual origin of longitudinal flow



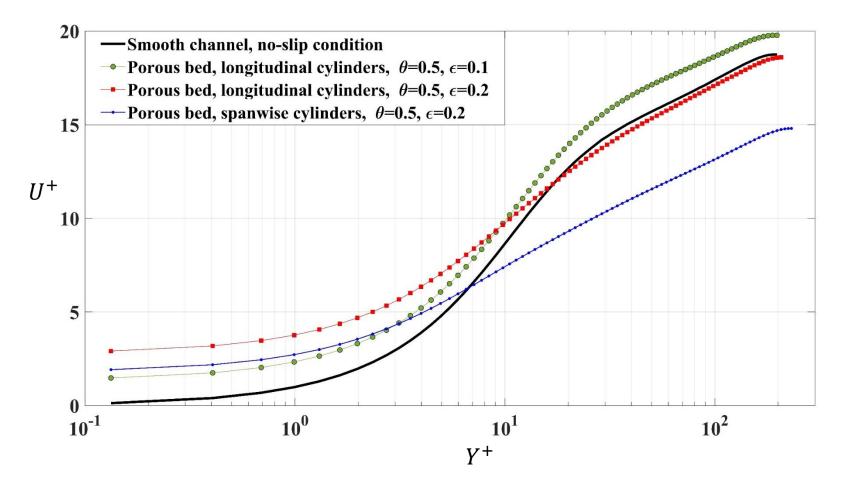
$$\frac{C_f}{C_{f_0}} \approx 1 - \frac{\Delta \lambda^+}{(2C_{f_0})^{-0.5} + (2k)^{-1}}$$

Luchini, 1996

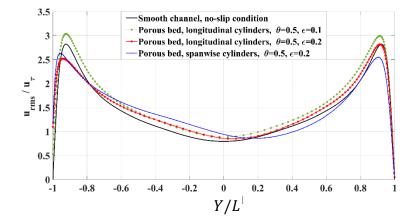


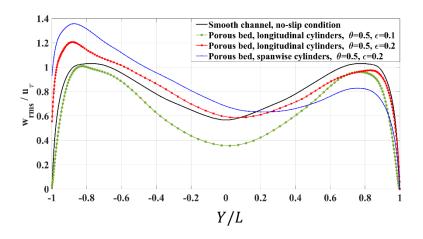
Alinovi & Bottaro, PRF, 2018

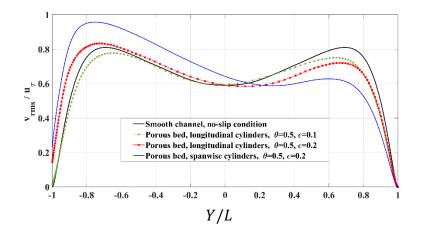
DNS results for different arrangements of solid cylindrical inclusions within the porous layer

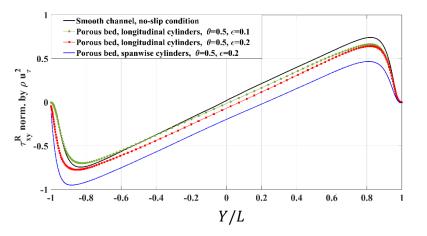


MODELING FLOWS OVER NATURAL OR ENGINEERED SURFACES

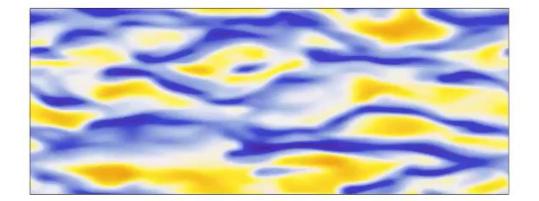




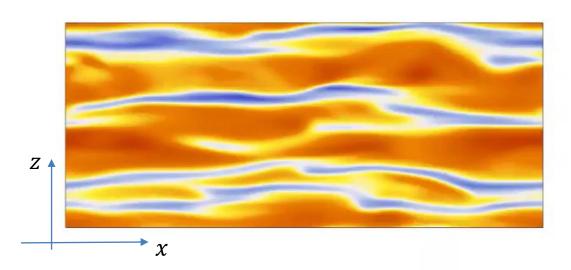




Isolines of U at $y^+ = 20$ Channel of dimensions $2\pi \times 2 \times \pi$ ($\Delta x^+ = 9.5$, $\Delta y^+_{wall} = 0.28$, $\Delta z^+ = 6.3$)



z-aligned cylinders $\epsilon = 0.2$



x-aligned cylinders $\epsilon = 0.1$

For the same driving pressure gradient ($\theta = 0.5$) we have

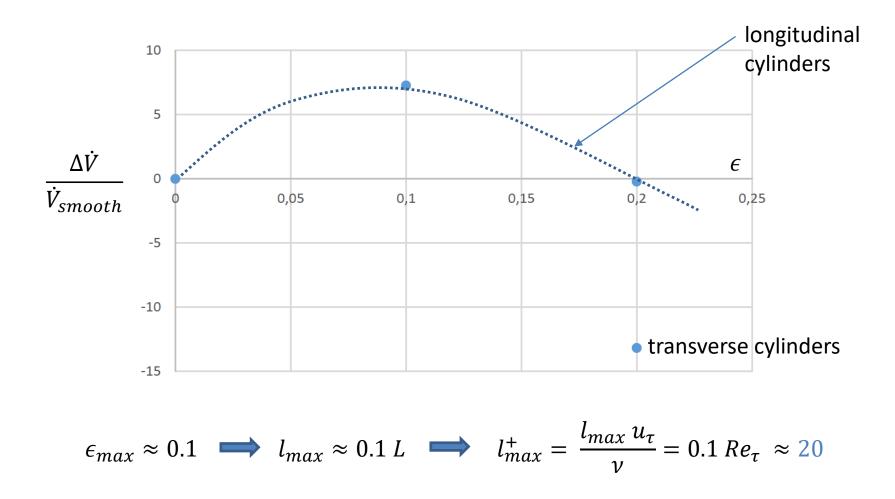
DICCA DIPARTIMENTO

E AMBIENTALE

DI INGEGNERIA CIVILE, CHIMICA

Università

di **Genova**



Optimal anisotropic porous layers can be designed (quickly) by employing effective conditions.

Drawback: should maintain $l^+ = \mathcal{O}(10)$

If the wall is impermeable the conditions at a rough wall are recovered:

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA

Università

di **Genova**

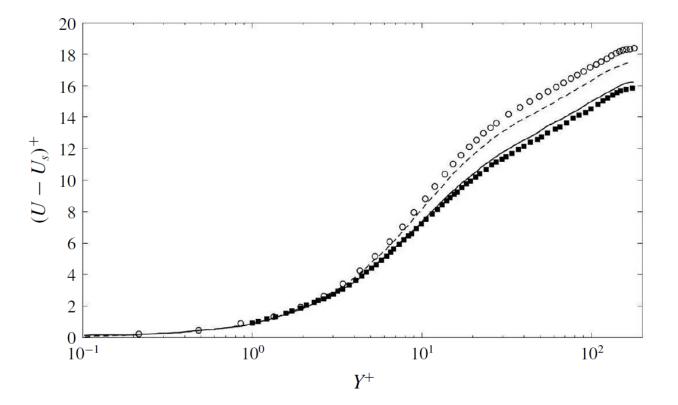
$$\hat{u}|_{0^{+}} \approx \hat{\lambda}_{x} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \Big|_{0^{+}} + \frac{\hat{\mathcal{K}}_{xy}^{itf}}{\mu} \frac{\partial}{\partial \hat{x}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}}$$

$$\hat{v}|_{0^{+}} \approx \frac{\hat{\mathcal{K}}_{yy}}{\mu} \frac{\partial}{\partial \hat{y}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \bigg|_{0^{+}} - \hat{\mathcal{K}}_{xy}^{itf} \frac{\partial}{\partial \hat{x}} \left(\frac{\partial \hat{u}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{x}} \right) \bigg|_{0^{+}} - \hat{\mathcal{K}}_{zy}^{itf} \frac{\partial}{\partial \hat{z}} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \bigg|_{0^{+}}$$

$$\hat{w}|_{0^{+}} \approx \hat{\lambda}_{z} \left(\frac{\partial \hat{w}}{\partial \hat{y}} + \frac{\partial \hat{v}}{\partial \hat{z}} \right) \Big|_{0^{+}} + \frac{\hat{\mathcal{K}}_{zy}^{itf}}{\mu} \frac{\partial}{\partial \hat{z}} \left(-\hat{p} + 2\mu \frac{\partial \hat{v}}{\partial \hat{y}} \right) \Big|_{0^{+}}$$

(Bottaro, JFM 2019; Lacis et al., JFM 2020; Bottaro & Naqvi, Meccanica, 2020)

Flow over natural or engineered surfaces



Bottaro, JFM 2019 Lacis et al., JFM 2020

CONCLUSIONS

DICCA DIPARTIMENTO

F AMBIENTALE

DI INGEGNERIA CIVILE. CHIMICA

Iniversità

'Microscopic', repeated features can be treated via **multiple scale homogenization**, yielding effective conditions at the *interface* which permit to avoid the numerical resolution of very small scale details. This would allow the rapid modeling of geometrical microfeatures, to identify, e.g., the most efficient drag-reducing textures, or the most suitable structure of a porous membrane, etc.

M.C. Escher, Angels and Demons, 1960