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2DICAT, Università di Genova, Via Montallegro 1, 16145 Genova, Italy

(Received 2 August 2008 and in revised form 16 February 2009)

The stability of the laminar flow in the narrow gap between infinitely long concentric
cylinders, the inner of which rotates, is examined for the case of compliant bounding
walls, modelled as thin cylindrical shells supported by rigid frames through arrays
of springs and dampers. Sufficiently soft walls have a destabilizing influence on the
axisymmetric Taylor vortices produced by the centrifugal force, although the effect is
limited to modes with large axial wavelengths. Due to the walls flexibility, hydroelastic
modes are generated. Complex modal exchanges are observed, as function of the wall
properties and the Reynolds number. For axisymmetric modes an asymptotic analysis
is conducted in the limit of small axial wavenumber, to show the correspondence
between such exchanges and singularities in the analytical solutions. While the
axisymmetric modes dominate the spectrum when the walls are rigid or very mildly
compliant, a critical non-zero azimuthal wavenumber exists for which the hydroelastic
modes become more unstable. Shorter azimuthal waves are favoured by increasing
spring stiffness.

1. Introduction
Studies on the effect of compliant walls on flow stability were inspired by Kramer’s

observation of swimming dolphins in the late 1950s (Kramer 1957, 1960a , b, 1965).
Kramer assumed that their high propulsive efficiency should be ascribed to the
compliance of their skin. He then carried out experiments in water by dragging a
torpedo covered with a compliant device conceived to mimic the dolphin’s skin and
achieved drag reduction of more than 50 % compared to the rigid case. A few years
later, the first theoretical work of Benjamin (1960, 1963) and Landahl (1962) focused
on the linear stability of the boundary layer on a compliant flat plate modelled as
a thin elastic membrane. For this configuration, simpler than Kramer’s experimental
one, the Tollmien–Schlichting (TS) waves, responsible for the mechanism of laminar-
to-turbulent transition, are stabilized for some compliant parameters. In return, as
compliant surfaces are wave-bearing media, new modes of instability can occur in the
flow, in addition to those of the rigid case. These wall-induced/hydroelastic modes can
influence the transition to turbulence and hinder the benefit of stabilizing TS waves.
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The most important of these surface modes are travelling-wave flutter (TWF) and
static divergence (SD), which are the incompressible analogue of classical aeroelastic
phenomena. They have been since extensively described in publications concerning
the flat-plate boundary layer or the plane channel case (see Carpenter, Davies &
Lucey 2000; Gad-El-Hak 2002, for instance) and will be only shortly described in this
section. TWF has been usually identified with a high-frequency streamwise-travelling
wave, when a critical flow speed, which increases with the wall stiffness, is exceeded (see
Carpenter & Garrad 1985; Yeo 1988; Carpenter & Morris 1990; Davies & Carpenter
1997a ,b; Lucey, Cafolla & Carpenter 1998). SD occurs in the form of very slowly
travelling or stationary waves of long wavelength and, as such, can have an effect
similar to that of surface roughness (Gad-el-Hak, Blackwelder & Riley 1984; Duncan,
Waxman & Tulin 1985; Carpenter & Garrad 1986; Gad-el-Hak 1986; Lucey &
Carpenter 1992; Yeo, Khoo & Zhao 1996; Lucey, Cafolla & Carpenter 1997a; Lucey
et al. 1997b, 1998). The outcome of the analytical studies cited above is that, if the
properties of the compliant walls are properly chosen, it is possible to stabilize the
TS waves without generating new instabilities.

These successful works were the starting point for renewed interest in compliant
walls in the scientific community: compliant coatings could provide a simple
passive control device for many engineering applications, possibly helpful for
laminar-to-turbulent transition delay, skin-friction drag reduction and flow-induced
noise reduction. However, for many years, all the experiments aiming at reproducing
Kramer’s results were unsuccessful (Bushnell, Hefner & Ash 1977) undermining his
conclusions, until Carpenter & Garrad (1985, 1986) rehabilitated his work. These
latter authors proposed for the first time a theoretical wall model able to reproduce
the complexity of Kramer’s experimental compliant device. This model consists of a
thin plate supported by a rigid foundation through springs and dampers. It was then
shown that Kramer’s compliant wall is theoretically able to delay transition. These
results were confirmed notably by Yeo (1988) and Sen & Arora (1988) (see also
Riley, Gad-El-Hak & Metcalfe 1988; Carpenter 1990). Finally, the stabilization of TS
waves by compliance was proven experimentally by Gaster (1987). The understanding
of the behaviour of TS waves was later deepened by considering the influence of
non-parallel effects in the boundary layer (Yeo, Khoo & Chong 1994), secondary
instability (Joslin & Morris 1992) and more generally nonlinearities (Ehrenstein &
Rossi 1996; Lucey et al. 1997a; Wiplier & Ehrenstein 2000).

The studies cited above focused on the case of plane walls. Other kinds of
configurations have been – less extensively – considered, where the transition scenario
is not necessarily dominated by TS instability. Cooper & Carpenter (1997a , b),
theoretically, and Colley et al. (1999, 2006), experimentally, considered the boundary
layer transition over a compliant rotating disk, showing that the cross-flow instability,
the culprit of transition, is stabilized by wall compliance. However, the second –
viscous – mode has a more complex behaviour: it is destabilized when the disc is
only slightly compliant, it is stabilized and finally disappears when the compliance
increases (see also Carpenter & Thomas 2007). Attention has also shifted to curved-
wall configurations where the flow is submitted to a centrifugal instability mechanism.
Yurchenko & Babenko (1987) observed that a porous rubber coating could delay
the amplification of Görtler longitudinal vortices developing over the concave wall
of a water channel. A very mild stabilizing effect was found when the large Görtler
number and spanwise wavenumber limits were taken (Denier & Hall 1991), but the
theory did not address the behaviour of hydroelastic modes. Guaus & Bottaro (2007)
have considered the instabilities of the flow in a curved compliant channel by adapting
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the plane spring-based model of Carpenter & Garrad (1985) for curved walls via thin
shell theory. In addition to instabilities similar to those observed in a plane channel
(Davies & Carpenter 1997a), the study has shown that the streamwise vortices pro-
duced in the channel by the centrifugal force are destabilized by sufficiently
compliant walls, in particular for spanwise wavelengths large enough. For even
larger wavelengths, a spanwise-periodic hydroelastic wave precedes the onset of the
streamwise vortex instability.

This brief overview shows the richness of the results obtained during the past
50 years on the interaction between a flow and a compliant wall. It also appears
that the influence of the compliant walls on the flow is very complex and highly
dependent on the configuration. As a consequence, for many common wall-bounded
configurations, the influence of compliant walls on the stability of the base motion is
still unknown. This is notably the case when the fluid is bounded by two infinitely
long coaxial cylinders and dragged by the rotation of one (or both) cylinder. The
configuration has important technological applications, for example in the paper
industry for the flow between two adjoining rollers in a printing press. As in the
curved-channel case, the Taylor–Couette flow is subjected to a centrifugal instability
mechanism promoting the appearance of contra-rotative toroidal vortices known
as Taylor vortices. This configuration has been widely studied when the walls are
rigid since the pioneering works of Mallock (1888, 1896), Couette (1890) and Taylor
(1923) a few years later. However, to the authors’ knowledge, only two studies have
briefly considered the compliant Taylor–Couette flow. The first study, presented at
two APS Meetings by Kempf & McHugh (1996, 1998), considers the linear stability
of axisymmetric modes in the narrow-gap approximation. Both cylinders rotate but
only the outer one is assumed to be elastic and governed by Navier’s equations.
In addition to the centrifugal instability, a hydroelastic mode is identified. For very
small speed ratios (ratio between the inner and outer cylinders velocities), the Taylor
modes are stabilized by the presence of the outer elastic layer while, for large speed
ratios, they are more unstable than those in the rigid-wall case. Moreover, the flow
is always unstable to the hydroelastic mode. The second study, by Koga and Nagata,
is briefly reported in the book by Carpenter & Pedley (2003). Also in this latter
work, both cylinders rotate and only the outer one is compliant, modelled along the
lines proposed by Carpenter & Garrad (1985). The linear stability analysis in the
narrow-gap approximation shows that compliance increases the range of parameters
for which the centrifugal instability is observed. Furthermore, for very compliant
walls, the flow instability is initiated by non-axisymmetric hydroelastic modes. These
results are interesting but can only be considered preliminary, since very few details
are provided. As will be shown here, the Taylor–Couette flow with compliant walls is
very complex and a detailed parametric investigation is in order.

The purpose of the present work is to consider the influence of compliance on
the stability of a Taylor–Couette configuration in the narrow-gap limit, when only
the inner cylinder rotates. In § 2, the formulation of the linear stability problem is
given, by using the same approach as adopted by Guaus & Bottaro (2007) for the
curved channel. This implies to separately model the behaviour of the flow and of the
compliant walls, then to couple them at the interface by suitable boundary conditions.
For the sake of clarity, the results have been divided depending on the invariance
broken by the perturbations. Sections 3 and 4 are dedicated to axisymmetric modes,
which are known to be the most unstable when the walls are rigid and § 5 is dedicated
to non-axisymmetric modes, a case which appears to be of particular interest when
the walls are soft. Summarising remarks are provided in § 6.
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Figure 1. Sketch of the configuration in the (x, y) plane.

2. Formulation and governing equations
2.1. Mean flow and perturbations

The growth of three-dimensional disturbances riding on top of a steady incompressible
base flow in the gap between co-axial differentially rotating infinite cylinders is
considered. The Newtonian fluid of kinematic viscosity ν and density ρ is set into
motion by the rotation of the inner cylinder at angular velocity Ω while the outer
cylinder is fixed (figure 1). The usual Taylor–Couette instability occurs because of an
unbalance between viscous and centrifugal forces. Here, since both walls can deform
under pressure forces, flow-induced surface waves can propagate and interact with
hydrodynamic waves.

A small curvature parameter γ = 2h/R is assumed, where 2h is the distance between
the walls when they are undeformed and R is the constant radius of curvature at
the gap centreline. Since γ is small, it is convenient to work with a set of ‘pseudo-
Cartesian’ dimensionless coordinates (x, y, z), defined from the cylindrical coordinates
(θ , r , ξ ), which read

x =
Rθ

h
=

2θ

γ
, y =

r − R

h
=

2(r − R)

γR
, z =

ξ

h
=

2ξ

γR
.

The azimuthal, radial and axial components of the velocity (Uθ, Ur, Uξ ) are written
in terms of the streamwise, normal and spanwise components (U, V, W ), respectively.
Here, velocity vector and pressure are made dimensionless with U ∗ = RΩ and ρU ∗2.
Each non-dimensional quantity Q̃ = (Ũ , Ṽ , W̃ , P̃ )T is decomposed into a mean steady
part Q(x, y) = (U, 0, 0, P )T and a fluctuation q(x, y, z, t)= (u, v, w, p)T.

The mean flow solution is obtained from the Navier–Stokes equations in cylindrical
coordinates and, after transformation into the pseudo-Cartesian system, it is found at
second order in γ that the azimuthal velocity distribution reads

U (y) =
1 − y

2
+

γ

2

(
− 3

4
+

y

2
+

y2

4

)
+

γ 2

16
y (1 − y2). (2.1)

The linearized mean velocity solution and all the following linearized equations
are truncated to second order in γ because the curvature effect appears as a term
proportional to γ 2 in the compliant shells model (see (2.5) in § 2.3).
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2.2. Linear stability equations

The equations of motion for the flow perturbation are obtained in two steps. First,
the Navier–Stokes equations written for the cylindrical variables (uθ , ur , uξ , p∗) are
linearized about the mean flow. Then, this set of equations is written in the (x, y, z)
coordinate system up to second order in γ , leading to

m1

∂u

∂x
+

∂v

∂y
+

∂w

∂z
+ m2v = 0,

ut + m1U
∂u

∂x
+ (U ′ + m2U )v = −m1

∂p

∂x
+

1

Re

(
L(u) + m3

∂v

∂x
− γ 2

4
u

)
,

vt + m1U
∂v

∂x
− 2m2Uu = −∂p

∂y
+

1

Re

(
L(v) − m3

∂u

∂x
− γ 2

4
v

)
,

wt + m1U
∂w

∂x
= −∂p

∂z
+

1

Re
L(w),

(2.2)

where the subscript t denotes derivative with respect to time. The metric functions
mi and the operator L are formulated in the Appendix. Strictly speaking, equations
given above are not O(γ 2) since terms like m1U or m2U contain terms proportional
to both γ 3 and γ 4, given (2.1). Terms of order γ 3 or γ 4 are henceforth neglected.
The non-dimensional parameter Re = ΩR h/ν is the Reynolds number. Although for
the Taylor–Couette problem it is customary to work by using the Taylor number Ta
(defined as Ta = 64 Ω2h4/ν2), we prefer here to maintain the Reynolds number as a
working parameter to assess the relevance of Taylor and hydroelastic modes in the
general case of three-dimensional disturbances. The Taylor number can then be easily
recovered from the relation Ta = 16 (γ Re)2.

Small three-dimensional space and time-periodic flow perturbations are considered
in the form

q(x, y, z, t) = q̂(y) exp[i(αx + βz) + σ t], (2.3)

where the real numbers α and β are, respectively, the azimuthal and axial wave-
numbers and σ = σr + iσi is a complex number. Its imaginary part is the frequency
and its real part σr is the growth rate of the wave. Due to the periodicity of the
configuration, the azimuthal wavenumber in the original cylindrical coordinate system
is an integer. However, the choice of an integer value in the pseudo-Cartesian system
would not guarantee an exactly periodic configuration (in the complete cylindrical
system), since small terms have been neglected. To make things simple, we choose a
dimensionless azimuthal wavenumber α proportional to an integer n via the relation
α = nγ/2 in the pseudo-Cartesian system, keeping in mind that conclusions for non-
integer values can be easily interpolated from the results provided. Introducing (2.3)
into (2.2) produces a generalized eigenvalue problem of the form Aq̂ = σBq̂, where
q̂ =(û v̂ ŵ p̂)T is the eigenvector.

2.3. Compliant wall model

The compliant walls are modelled as spring-backed cylindrical shells, following
the lead of Carpenter & Garrad (1985) for an isotropic thin compliant plate. A
sketch of the model is drawn in figure 2. The walls are composed of flexible thin
cylindrical shells supported by rigid frames through arrays of springs and dampers.
They are constrained to move only in the y normal direction and only under flow
pressure fluctuations, the contribution of the normal viscous stresses being negligible
(Ehrenstein & Rossi 1996). Asterisks in the following equation denote dimensional
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Figure 2. Isotropic surface-based model for a compliant shell.

quantities and η∗ is the normal displacement of each wall from its equilibrium posi-
tion. The equation of motion of each curved compliant surface can be obtained from
Love’s thin cylindrical shell theory (Timoshenko & Woinowsky-Krieger 1959)[(

m∗ ∂2

∂t∗2
+ d∗ ∂

∂t∗ + B∗∗
h

2 − T ∗∗
h + K∗

)
∗

h

2
+

E∗H

R2

∂4

∂z∗4

]
η∗ =

{
∗

h
2
p∗(h)

−∗
h
2
p∗(−h)

,

(2.4)

with ∗
h = ∂2/∂x∗2

+ ∂2/∂z∗2
. In this equation, m∗ is the plate mass per unit area, d∗

is the wall damping coefficient, B∗ =E∗H/[12(1 − ν̂2)] is the flexural rigidity of the
shell, with E∗ Young modulus, H shell thickness and ν̂ Poisson’s coefficient; K∗ is
the spring stiffness per unit width and T ∗ is the longitudinal tension per unit width.
The term on the right-hand side represents the normal stress exerted by the fluid on
the shell with p∗ the flow pressure fluctuation. Koga and Nagata use the same wall
model as (2.4) in their study of the Taylor–Couette flow between compliant cylinders
(see Carpenter & Pedley 2003).

In scaling the wall properties, it is important to adopt reference quantities such that
the non-dimensional wall parameters vary independently from the non-dimensional
flow properties, particularly the Reynolds number. Thus, we impose that variations on
Re are only related to changes in the angular velocity Ω and scale the wall properties
with the fixed quantities h, ρ and ν related to the fluid and the geometry as

m =
m∗

ρh
, d =

d∗h

ρν
, B =

B∗

ρν2h
, E =

E∗h2

ρν2
, K =

K∗h3

ρν2
, T =

T ∗h

ρν2
.

After writing the wall displacement, scaled by h, as a normal mode in the form

η = η̂ exp[i(αx + βz) + σ t],

a dimensionless shell displacement equation is obtained[
mσ 2 +

d

Re
σ +

1

Re2

(
Bk4 + T k2 + K +

H

h

γ 2

4
E

β4

k4

)]
η̂ =

{
p̂(1)
−p̂(−1)

, (2.5)

with k2 = α2 + β2. Compared to the displacement equation for a thin plate
(Carpenter & Garrad 1985) an additional term proportional to γ 2 introduces two
new parameters, the ratio H/h and the dimensionless Young modulus E related to
the dimensionless flexural rigidity by

E = 12(1 − ν̂2)

(
h

H

)3

B.
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For the compliant materials used in typical experiments (silicon or natural rubber),
the Poisson’s coefficient is close to 0.5 (Buckingham, Hall & Chun 1985; Joslin,
Morris & Carpenter 1991; Carpenter 1993), and thus we set ν̂ = 0.5. Then, the only
new parameter compared to the plane-wall case is the ratio H/h.

2.4. Boundary conditions coupling

The boundary conditions impose the continuity of velocity at the displaced interface
between the solid and fluid parts; for the outer wall at y =1 + η we have

U + u = 0, v = ηt , w = 0,

and linearization around y = 1 yields

û + η̂ U ′ = 0, v̂ − σ η̂ = 0, ŵ = 0.

The displacement η̂ can be eliminated to get a simpler hydrodynamic boundary
condition

σ û + U ′v̂ = 0. (2.6)

Likewise, the compliant model equation (2.5) becomes for y = + 1

mσv̂ +
d

Re
v̂ − 1

U ′Re2

(
Bk4 + K + T k2 +

H

h

γ 2

4
E

β4

k4

)
û = p̂. (2.7)

Hence, the three boundary conditions for y = 1 are ŵ = 0 and (2.6) and (2.7). For
the inner wall at y = −1, the same set of equations applies, except for the sign in
front of the pressure term in (2.7). With these six boundary conditions the generalized
eigenvalue problem can be solved.

2.5. Energy balance for the fluid–walls system

The energy balance for the fluid–walls system is analysed through a modified version
of Reynolds–Orr energy equation. The time derivative of the disturbance fluid kinetic
energy E

f
k is obtained by accounting for the inhomogeneous boundary conditions in

the Reynolds–Orr equation (Guaus & Bottaro 2007)(
E

f
k

)
t︷ ︸︸ ︷(∫ 1

−1

uiui

2
dy

)
t

= −
∫ 1

−1

U ′uv dy − 1

Re

∫ 1

−1

∂ui

∂xj

∂ui

∂xj

dy +

∫ 1

−1

m2Uuv dy

−
∫ 1

−1

m2pv dy +
1

Re

∫ 1

−1

(
m4

∂ui

∂x

∂ui

∂x
+ m3

(
u

∂v

∂x
− v

∂u

∂x

))
dy

− γ 2

8

∫ 1

−1

(u2 + v2 − w2) dy − vp

∣∣∣∣ 1

−1

+
1

Re

(
u

∂u

∂y
+ v

∂v

∂y

)∣∣∣∣ 1

−1

+
m2

Re

u2 + v2

2

∣∣∣∣ 1

−1

.

In this equation, the repeated Einstein convention has been employed and overbars
denote averaging over a period along x and z. A similar kinetic energy equation was
derived by Domaradzki & Metcalfe (1987) and Carpenter & Morris (1990) for the
case of the temporal development of two-dimensional disturbances in a boundary
layer over a compliant wall. For the case of spatially developing TS waves in a plane
channel with finite compliant panels, the energy equation was given by Davies &
Carpenter (1997b).
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Following the lead of Hoepffner, Bottaro & Favier (submitted), the term vp | 1
−1 is

rewritten to introduce the wall kinetic and potential energies Ew
k and Ew

p

vp
∣∣ 1

−1
=

1∑
−1

⎡
⎢⎢⎢⎢⎢⎣m

(
η2

t

2

)
t︸ ︷︷ ︸

(Ew
k )t

+
d

Re
η2

t︸ ︷︷ ︸
wall damping

+
1

Re2

(
B2

h + T h + K +
H

h

γ 2

4
E

) (
η2

2

)
t︸ ︷︷ ︸

(Ew
p )t

⎤
⎥⎥⎥⎥⎥⎦ .

The total perturbation energy of the flow-walls system can thus be defined as

E = E
f
k︸︷︷︸

flow

+

1∑
−1

(
Ew

k + Ew
p

)
︸ ︷︷ ︸

walls

. (2.8)

and the total energy budget reads

Et =

(I1)︷ ︸︸ ︷
−

∫ 1

−1

U ′uv dy

(I2)︷ ︸︸ ︷
− 1

Re

∫ 1

−1

∂ui

∂xj

∂ui

∂xj

dy +

(G1)︷ ︸︸ ︷∫ 1

−1

m2Uuv dy

−
∫ 1

−1

m2pv dy︸ ︷︷ ︸
(G2)

+
1

Re

∫ 1

−1

(
m4

∂ui

∂x

∂ui

∂x
+ m3

(
u

∂v

∂x
− v

∂u

∂x

))
dy︸ ︷︷ ︸

(G3)

− γ 2

8

∫ 1

−1

(u2 + v2 − w2) dy︸ ︷︷ ︸
(G4)

−
1∑

−1

[
d

Re
η2

t

]
︸ ︷︷ ︸

(C1)

+
1

Re

(
u

∂u

∂y
+v

∂v

∂y

)∣∣∣∣ 1

−1︸ ︷︷ ︸
(C2)

+
m2

Re

u2 + v2

2

∣∣∣∣ 1

−1︸ ︷︷ ︸
(C3)

.

(2.9)

The terms (I1) and (I2) are, respectively, the Reynolds stress production and dissipa-
tion terms. The additional terms in (2.9) are related to our specific configuration: the
terms (G1), (G2), (G3), (G4) and (C3) arise from the curvature of the walls while the
terms (C1), (C2) (and (C3)) arise from their movement. Extensive numerical results
indicate that only the terms (C1), (C2) and (G1) are significant in the disturbance energy
balance, the remaining terms being invariably negligible. The term (C1) represents the
viscous damping in the walls; (C2) is the rate of irreversible work done to the wall
by fluctuations in viscous stresses and (G1) is the energy exchange between the mean
flow and the perturbation arising because of the curvature of the walls. The curvature
effect is intrinsically included in all terms. For example, in (I1) curvature is explicitly
present in the mean profile and, in the terms (I2), (C1) and (C2), curvature modifies
the normal shape of the perturbation profile implicitly. The detailed contribution of
the different terms to the disturbance energy balance will be discussed further.

3. Axisymmetric perturbations (n= 0)

3.1. Numerical implementation and validation

The generalized eigenvalue system with all the boundary conditions has been
discretized using a Chebyschev collocation method. The spectrum of eigenvalues
has been explored by employing both global (QZ) and local (Arnoldi) techniques in a
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Matlab code previously validated for the case of a plane channel flow with compliant
walls (Guaus & Bottaro 2007). We have also checked the results against those for
the Taylor–Couette configuration with rigid walls (Chandrasekhar 1981; Drazin &
Reid 1981) by considering the limit B → ∞, always verifying that the eigenvalues σ

of interest were converged to several significant digits.
The number of parameters at play is very large; hence we have restricted attention

to the case of two walls with identical physical and mechanical properties. We have
chosen to concentrate on the influence of three wall parameters: the flexural rigidity
B , the spring stiffness K and the damping coefficient d; the mass of each wall is
arbitrarily fixed to m =2 and the longitudinal tension T is assumed equal to zero
throughout. The ratio H/h between the thickness of the walls and the gap height
is also chosen constant and equal to 1 for simplicity. Finally, we have to set the
curvature parameter by choosing γ = 0.0174 as in the rigid-walls experiments by
Prigent & Dauchot (2000).

The effect of the untensioned-wall assumption on the complex wave velocity can
be seen from the wall model (2.5) in the case of natural oscillation, i.e. in the absence
of fluid. Neglecting the damping coefficient, the complex phase velocity is

c̃ =
σ

k
=

i

Re
√

m

√
Bk2 + T +

K

k2
+

H

h

γ 2

4
E

β4

k6
.

In the limit of infinite wavelength (k → 0), the velocity is proportional to 1/k while in
the limit of small wavelength (k → ∞), the velocity is proportional to k. The derivative
of the modulus of the phase velocity with respect to the tension force is in the range
[10−3, 10−8] using the numerical parameters of our study. Thus, the tension T plays
a minor role and can be neglected.

When fluid is present, its effect on the compliant surfaces can be approximated by
the presence of an added mass ma . In the analysis by Hoepffner et al. (submitted), such
an added mass takes a different form in the case of sinuous or varicose streamwise-
homogeneous wall waves in a channel. In the present configuration, there are no
waves with exact sinuous or varicose symmetry, but results to be shown indicate that
quasi-sinuous and quasi-varicose axisymmetric waves appear. Empirical arguments
developed by Hoepffner et al. (submitted) suggest to take ma =(1 − e−β)/β for the
sinuous-like waves and ma =(1 − e−β)/β + 1/β2 for the varicose-like waves, so that c̃

can be approximated by

c̃ =
σ

k
=

i

Re
√

m + ma

√
Bk2 + T +

K

k2
+

H

h

γ 2

4
E

β4

k6
.

Here, the accuracy of such an approximation will be assessed by comparison with the
full numerical results.

3.2. Features of the axisymmetric hydroelastic modes

When the walls are compliant, four new modes appear in addition to the classical
centrifugal modes present in the rigid-wall case. Here, these modes driven by the wall
flexibility are termed hydroelastic modes or FISI for flow-induced surface instabilities.
They are clearly identified in figure 3(a) by comparing the spectra in the rigid and
compliant cases for a Reynolds number fixed at Re = 250 and an axial wavenumber
β = 1. The rigid-wall spectrum presents the classical centrifugal eigenvalues with zero
phase velocities. For the chosen set of parameters, only one centrifugal mode is
unstable and corresponds to the appearance of Taylor vortices.
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Figure 4. Evolution of the main axisymmetric eigenvalues with the spanwise wavenumber
(0.2 � β � 2). The parameters are Re = 250, B = 400, K = B/16 and d =0. Arrows denote
increasing β .

In the compliant-wall case, the four hydroelastic modes are stable and are coupled
in pairs (i.e. they are pairs of complex conjugate modes), which means that their
superposition can yield a standing wave. The two modes labelled FISI 1 are
sinuous-like modes and the two modes labelled FISI 2 are varicose-like modes.
Their frequencies are compared to those obtained using the added mass model in
figure 3(b) with a satisfactory quantitative agreement.

For relatively large axial wavenumbers, such as β = 1 in figure 3(a), the hydroelastic
modes remain stable and coupled by pairs for all wall parameters considered. The
analysis of spectra highlights that the most interesting behaviour of hydroelastic
modes occurs for axial wavenumbers small enough: for sufficiently soft walls, when β

decreases, the FISI modes become stationary and, once stationary, possibly unstable.
This is illustrated in figure 4, in which we have fixed Re = 250, B = 400, K = B/16 and
d =0, and spanned the β range from 0.2 to 1. This figure has to be looked at together
with figure 5 where the real (growth rate) and imaginary (frequency) parts of σ versus
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β are separately presented. For β > 0.71, the spanwise phase velocity |σi/β| of the
four hydroelastic modes decreases with β until the phase velocity of FISI 2 reaches
zero for β = 0.71. For β < 0.71, the two FISI 2 modes have zero phase velocities and
growth rates evolving in opposite directions when β decreases. Each FISI 2 mode is
then associated with a static normal displacement of the walls since their frequency
is zero (σi = 0). Hence, a hydroelastic instability occurs for β < 0.59 as a static wall
deformation growing exponentially in time. The FISI 1 modes, which remain stable,
are subject to a similar behaviour for β < 0.12 (not shown). For the whole β range,
however, the most unstable mode is always a centrifugal, Taylor mode.

For the parameters chosen in figures 4 and 5, the phenomenon of intersection of
two FISI 2 branches on the real axis is observed; for other sets of parameters, an
intersection can occur between a real FISI eigenvalue whose growth rate decreases (or
increases) with β and another eigenvalue whose growth rate behaves in the opposite
way. Section 3.6 is dedicated to the implications of these intersections between
branches.

3.3. Influence of wall parameters

The effect of varying the parameters K and B on the neutral curves can be assessed
from figure 6, in the absence of damping. As can be inferred from the spectral analysis
in the previous section, wall compliance does not modify the flow stability properties
at large axial wavenumbers where a Taylor mode always dominates. At small axial
wavenumbers (β � 1.5 for B = 400 and β � 1 for B = 4000), the range of unstable
wavelengths for a given Reynolds number increases with wall flexibility (i.e. when K

and B decrease). Different instability thresholds exist depending on K and B and the
critical Reynolds number is significantly reduced, compared to the rigid-wall value, in
the case of walls which are sufficiently soft (figure 6a). Furthermore, for very soft walls
(B = 400 and K = B/16 for instance), numerical results obtained for decreasing values
of β suggest that the critical axial wavenumber tends to zero, which would correspond
to a perturbation with no axial structure. The degeneracy of the equations in the limit
α = 0, β → 0 has been examined in an asymptotic analysis described succinctly in § 4.
This degenerate behaviour for β → 0 has also been observed by Guaus & Bottaro
(2007) in the curved-channel configuration, and explored in details by Guaus (2008).

Until now, the ideal situation with no internal wall damping has been considered.
However, many studies on wall compliance have demonstrated the large influence
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Figure 6. Neutral curves showing the influence of the spring stiffness K on axisymmetric
perturbations with (a) B = 400 and (b) B =4000. In both cases, d =0. The cross in (a) corres-
ponds to Re = 100 and β = 0.4.

of wall damping on flow stability. The effect of introducing a non-zero value of d

can be assessed from figure 7 which presents the neutral curves and the curves of
constant positive growth rate for the two most unstable modes, considering different
wall damping parameters: d = 0, 100 and 1000. In addition to the most unstable mode
already presented in figure 6, results are plotted for the second most unstable mode
(dashed line); it is unstable only for small values of β and grows much more slowly
than the most unstable mode (as can be inferred by comparing the spacing between
isolines in the two cases).

Compared to B and K , wall damping has a minor impact on flow stability. Intro-
ducing damping into the walls has very little effect on the appearance of either modes,
and neutral curves for different values of d can almost be superposed to one another.
The influence of d is only visible for small β ’s when focusing on isolines of constant
positive growth rate σr : both modes considered experience a slower amplification
when d increases.

3.4. Structure of the modes

The structure of the most unstable mode for β = 0.4 and Re = 100 in the case B = 400,
K =B/16 and d = 0 is shown in figure 8 and compared with the structure of the least
stable mode in the rigid-wall case. These parameters correspond to the point marked
with a cross in figure 6(a). Isocontours of the azimuthal velocity u and velocity vectors
(v, w) are displayed in the (y, z/λz) plane, with λz = 2π/β axial wavelength. In the
rigid-wall case, the least stable mode presents the classical centrifugal structure, with
centrally positioned pairs of contra-rotating vortices. In the compliant-wall case, the
most unstable mode has similar structure; however, because of wall flexibility, the
contra-rotating vortices are closer to the inner wall (y = −1). Moreover, the u velocity
presents very high values near the walls.

Figure 8 also shows a sketch of the walls displacements which appears to be strongly
linked to the position of the vortices. First, the wall displacement is more important
for the inner wall, near which the vortices are located. Moreover, the two vortices
induce maximum positive v velocity for z/λz = 0.5. This provokes displacements of
the walls, with the outer one pushed away from the flow and the inner one sucked
towards the outer one, in a sinuous-like motion.
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Figure 7. Neutral curves (thick lines) and curves of constant positive growth rate for the two
most unstable axisymmetric modes with (a) d = 0, (b) d = 100 and (c) d = 1000. The spacing
between two adjacent lines is σr = 1 × 10−4 for the solid lines and σr = 2 × 10−5 for the
dashed lines. The other wall parameters are B = 400 and K = B/16.

The structure of the hydroelastic FISI 2 mode unstable in figures 4 and 5 is
displayed in figure 9 for β = 0.4 in the (y, z/λz) plane. The mode is characterized by
high values of the streamwise velocity at the walls and by a varicose-like form of
walls displacement.

3.5. Energy budget

In this section, the energy budget of the fluid–walls system for the most unstable
axisymmetric modes is analysed. The plot of the growth rate of the disturbance energy
E versus β (a) and the terms contributing the most to the energy budget (b) are
presented in figure 10 for the most unstable – centrifugal-like – mode of figure 7(a).
In figure 10(a), only the fluid kinetic energy term is significant in the total energy for
the compliant case, the wall energy contribution being negligible. The destabilization
of the mode for small wavenumbers, compared to the rigid-wall case, is linked both
to an increase of energy production by the Reynolds stresses (I1) and a decrease of
viscous dissipation (I2) (cf. figure 10b).

This is the opposite of what happens for the stabilization of the TS waves in a plane
channel (Davies & Carpenter 1997b). It is also different from what has been observed
by Guaus & Bottaro (2007) for the centrifugal instability in a curved channel. For
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the case of Dean vortices, energetic exchanges with the mean flow remain very small,
the destabilization is essentially due to the work done on the wall by the fluctuating
viscous stresses (term (C2)). In the present case, the term (C2) remains small.

Figure 11 presents the growth rate of the system disturbance energy and its
contributing terms (cf. (2.8)) versus β (a) for the FISI 2 mode which becomes
unstable in figure 4 and the most important terms of the energy balance (b). The
curves show a break in slope around β = 0.71, the value for which the imaginary
parts of the FISI 2 modes vanish. The destabilization of the disturbance for β < 0.59
is essentially linked to an increase of the fluid kinetic energy, concentrated near the
walls. Both the kinetic and potential wall energy terms have similar evolutions with
β . The perturbation is destabilized by energy transfer from the mean flow to the
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perturbation ((I1) > 0). For large values of β , the destabilizing influence of (I1) and
(C2) is compensated by the stabilizing effect of viscous dissipation (I2).

3.6. Exchanges between axisymmetric modes with zero phase velocity

As anticipated at the end of § 3.2, the possible intersections between eigenvalue
branches on the real axis, once the frequency of hydroelastic modes vanishes, are now
considered. This issue has been isolated in a specific section for the sake of clarity: it
provides no direct additional information on modes instability since intersections have
been observed to involve only stable modes; nonetheless the phenomenon deserves
being mentioned since intersections lead to what we have termed ‘exchanges’ between
modes, that have indirect influence on eigenvalues.

The ‘exchange’ behaviour is illustrated in figure 12: for the least stable modes, the
evolution of the growth rate (left panel) and of the frequency (right panel) are plotted
as function of β (0.2 � β � 0.8) for different values of the Reynolds number. For
Re = 200 and Re = 185 (cf. figures 12a and 12b), the centrifugal (Taylor) mode and
the four hydroelastic (FISI) modes are clearly identifiable and the centrifugal mode is
always the most unstable one. The FISI 1 modes have conjugate eigenvalues meaning
that their phase velocities are opposite. When the Reynolds number decreases, the
opposite phase velocities (and therefore the frequency σi) of the two FISI 1 modes
become close to zero for β � 0.5. The FISI 2 modes present the specific behaviour
described in § 3.2: they have conjugate eigenvalues for β � 0.6 and real eigenvalues
when β decreases. For a Reynolds number larger than Re = 185, one of the FISI 2
mode is mildly unstable when β � 0.4.

In figure 12(c), for Re =170, the situation is more complex:
(1) For β � 0.42, the behaviour of the modes is similar to that at higher Reynolds

numbers.
(2) The frequency of the FISI 1 is equal to zero for 0.39 � β � 0.42.
(3) For β < 0.39, one FISI 1 mode and one FISI 2 mode have the same growth

rate and opposite phase velocities (dashed lines in figure 12c). These modes have
similar structures (see further) so that they are indistinguishable from one another.

(4) Above all, the unstable hydroelastic mode, belonging to a FISI 2 branch for
Re = 185 and Re = 200, now belongs to a FISI 1 branch.

In figure 12(d ), for Re =160, all modes are anew easily identifiable. The two FISI 1
modes and the two FISI 2 modes have again the same behaviour: complex conjugate
eigenvalues for large values of β , then real eigenvalues for small ones. However, the
unstable hydroelastic mode now belongs to a FISI 1 branch whereas it belonged
to a FISI 2 branch at larger Re. This highlights the so-called exchange between a
FISI 1 mode and a FISI 2 mode at the moment when their eigenvalues meet on
the real axis since on one side and the other of the point of intersection, they have
exchanged their behaviours. During the exchange, the structures of the two modes
are identical as shown in figure 13 (plot just after the exchange). Similar exchanges
between hydrodynamic and surface-based modes have been observed by Levinski,
Levy & Cohen (2001) in a linear stability analysis of a compliant wall-jet flow.

A similar exchange, but now between a centrifugal mode and a FISI 2 mode, exists
when the Reynolds number is further decreased. For Re = 110 (cf. figure 12e), the
growth rate of the centrifugal mode increases when β is reduced while the growth
rate of the hydroelastic modes decreases. However, no exchange occurs because the
hydroelastic modes have non-zero frequencies. At Re = 100, the centrifugal mode
joins a FISI 2 mode with a real eigenvalue for β = 0.5. For β � 0.5, the centrifugal
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and the FISI 2 modes have conjugate eigenvalues (dashed lines in figure 12f ). The
unstable mode for β � 0.5 no longer belongs to a centrifugal branch but to a FISI 2
branch. However, as shown in figure 8, the structure of this disturbance still resembles
that of a centrifugal mode.

The consequence of these exchanges is that, for small values of β when hydroelastic
modes are stationary, it is no longer possible to clearly separate the centrifugal and
hydroelastic modes since they belong to different branches, depending on the Reynolds
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Figure 12. Exchanges between axisymmetric modes with zero phase velocity. Evolution of the
main perturbations growth rate (left) and frequency (right) with β (0.2 � β � 0.8) for different
values of the Reynolds number. The wall parameters are B = 400, K =B/16 and d = 0. The
curves drawn with dotted lines (figures c and f ) correspond to modes which are not clearly
identifiable.

number. Then, an unstable eigenvalue can be identified as a FISI or a centrifugal
mode if the Reynolds number slightly varies. However, the fact that an unstable
mode belongs to one branch or another does not modify its structure. In particular,
the most unstable mode at small Reynolds number and low axial wavenumber has



Effects of wall compliance on the linear stability of Taylor–Couette flow 349

0–0.5–1.0 0.5 1.0

0

0.2

0.4

0.6

0.8

1.0

z/λz

0

0.2

0.4

0.6

0.8

1.0

z/λz

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0–0.5–1.0 0.5 1.0

0–0.5–1.0 0.5 1.0
y

0–0.5–1.0 0.5 1.0
y

(a)

(b)

Figure 13. Exchange between the FISI 1 and FISI 2 modes with conjugate
eigenvalues with β = 0.35 and Re = 170.

the centrifugal structure shown in figure 8. The exchange between stable modes only
complicates the linear stability analysis, since it affects modes identification, but does
not play a role in the instability mechanism.

3.7. Preliminary conclusions

As for the curved-channel configuration (Guaus & Bottaro 2007), the wall compliance
has a destabilizing influence on axisymmetric perturbations with small axial
wavenumbers compared to the rigid-wall case. In addition to the centrifugal modes
already present when the walls are rigid, the flexibility of the walls is responsible
for the appearance of four hydroelastic modes whose behaviour strongly depends
on the axial wavelength. These four hydroelastic modes are stable for large enough
values of β and have opposite phase velocities (pair by pair) which decrease with
β . When the walls are very soft, the hydroelastic modes have zero phase velocities
and growth rates evolving in opposite ways with β in the limit of vanishing β ,
possibly yielding a static deformation of the walls. This collision and splitting of the
hydroelastic modes on the real axis always occurs when they are stable, contrary to
what observed by Argentina & Mahadevan (2005) in their study of fluid-flow-induced
flutter in a flag, when instability is observed to arise from a similar collision/splitting
effect. Furthermore, unlike what was observed in the curved-channel case, only
the stationary axisymmetric hydroelastic modes are possibly unstable here. Finally,
interesting exchanges of behaviour between stable steady modes have been observed.
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4. Asymptotic analysis for axisymmetric perturbations in the limit of large
transverse wavelengths

In this section, an asymptotic analysis, focusing on the degenerate behaviour
of axisymmetric disturbances in the large transverse wavelength limit, has been
carried out. The study provides little additional understanding on the destabilization
mechanisms but interesting information on specific behaviours of the eigenmodes. In
particular, the collision/splitting of the hydroelastic (FISI 1) modes on the real axis
and the exchanges described in § 3.6 are more methodically described and interpreted
then with the numerical calculations.

A solution of the eigenvalue problem is sought through an asymptotic expansion
of the eigenmodes in integer power of the small parameters β and γ . The expansion
for the eigenvalue σ is written as

σ = σ00 + γ σ01 + γ 2 σ02 + O(γ 3)

+ β (σ10 + γ σ11 + γ 2 σ12 + O(γ 3))

+ β2 (σ20 + γ σ21 + O(γ 2)) + O(β3),

with β � 1 and γ � 1. A similar expression is written for q̂; all expressions are then
plugged into the equations, and like order terms are collected.

The terms of the expansion calculated are those written above. As far as the
eigenvalues are concerned, the following terms have been found to vanish:

σ10 = σ11 = σ12 = σ21 = 0,

so that the expression of σ reduces to

σ = σ00 + γ σ01 + γ 2σ02 + β2σ20 + · · ·
By considering the eigenvalue problem with α = β = γ = 0, the eigenvalue at order

zero can be easily found to be given by

σ00 = ω0

(
− d

dc

+ ε

√
d2

d2
c

− 1

)
with ε = ±1, (4.1)

with

dc = 2
√

K(m + 1) and ω0 =
1

Re

√
K

m + 1
,

coherent with the added mass hypothesis of § 3.1. As expected, by considering the wall
equation (2.7), the most important wall parameters in the limit β → 0 are K , d and m.
The real and imaginary parts of the two σ00 solutions are plotted versus the damping
coefficient d in figure 14(a) with B = K =8000, m =2, Re = 300. This set of parameters
(for which we have dc = 309.8 and ω0 = 0.172) will be used in the remainder of the
section, in association with β = 0.1 when numerical results are sought for comparison.
The figure shows the behaviour of the σ00 eigenvalue as function of wall parameters

(1) When d =0, the two σ00 solutions are purely imaginary conjugates,
corresponding to neutral perturbations with opposite frequencies σi = ε i ω0.

(2) When 0 < d < dc, the two σ00 solutions are complex conjugates. The
associated perturbations are stable (σr = −ω0 d/dc) with opposite phase velocities

(σi = ε i ω0

√
1 − d2/d2

c ).
(3) Finally, when d � dc, the two σ00 solutions are negative real numbers that

generate stable perturbations (σr = ω0 (−d/dc + ε
√

d2/d2
c − 1)) with zero phase

velocities.
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Crosses mark the numerical eigenvalues for d = 0. Arrows denote increasing values of d .

Thus, the two σ00 eigenvalues always correspond to stable or marginally stable
perturbations.

By proceeding further, it is easy to find the solutions σ01

σ01 = ε
Re

4
√

d2 − d2
c

.

The real and imaginary parts of σ01 are plotted in figure 14(b) versus d . The solutions
present a singularity for d = dc. The two eigenvalues are purely imaginary conjugates
for d < dc and opposite real numbers for d > dc.

The comparison of the numerical spectrum (dots) with the analytical solutions
σ00+γ σ01 (solid lines) is displayed in figure 15 for 0 � d � 350. The damping coefficient
d reaches the critical value dc at the point marked A in the figure. The analytical
solution is not plotted around this point since σ01 is undefined. Away from this
singular point, the analytical solutions are in good quantitative agreement with the
FISI 1 numerical modes. Their behaviour matches the one described above: the
FISI 1 eigenvalues are complex conjugate for d < dc and purely real for d > dc, dc

being equal to 302.2 in the numerical case. The asymptotic analysis thus gives two
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solutions corresponding to the two FISI 1 modes and a good estimate of the different
behaviours depending on the wall parameters; the collision/splitting of the FISI 1
mode on the real axis is produced in the asymptotic sense by a singularity when
d = dc.

When the higher order terms in the expansion are considered, the situation is more
complex since the exchanges described in § 3.6 correspond to additional singularities
in the asymptotic analysis. The solutions σ02 and σ20 are, respectively,

σ02 =
1

σ00Re2(m + 1)
(
σ 2

00 − ω2
0

)(
4 − 4

3
σ00Re − 8

15
σ 2

00Re2 +
1

6
σ 4

00Re2

−1

4
Eσ 2

00 − 4√
σ00Re

sinh(
√

σ00Re)

cosh(
√

σ00Re)

)
,

and

σ20 =
σ 2

00

(m + 1)
(
σ 2

00 − ω2
0

) (
σ00

3
−

√
σ00√
Re

cosh
(√

σ00Re
)

sinh
(√

σ00Re
) )

.

Each solution depends on σ00 and hence takes two different values. Both σ02 and
σ20 present a singularity for σ00 = ± ω0 (d = dc), like σ01. Furthermore, they present
specific singularities when sinh(

√
σ00Re) = 0 for σ20 and cosh(

√
σ00Re) = 0 for σ02,

associated to specific behaviours in the spectrum, described below.
Let us first consider the case sinh(

√
σ00Re) = 0. This equation is verified when√

σ00Re = i k π with k ∈ � which is not possible when d < dc. When d > dc, we have
from (4.1)

ε

√
d2

d2
c

− 1 = − k2π2

ω0Re
+

d

dc

, (4.2)

providing the following conditions on d:

d �
dc

ω0Re
k2π2 when ε = 1,

d �
dc

ω0Re
k2π2 when ε = −1.

When the above conditions are verified, the solution of (4.2) is

d =
dc

2 ω0 Re k2 π2

(
k4π4 + ω2

0Re2
)

with k ∈ �∗.

This means that, for d > dc (when the FISI 1 modes are real eigenvalues), for each
value of k ∈ �∗ one of the σ20 solution is undefined. For the parameters chosen, the
eigenvalue corresponding to ε = 1 verifies (4.2) for k � 2 with d = 321.1 and 840.2.
The eigenvalue corresponding to ε = −1 presents an infinity of singularities for k � 3.

Similarly, the equation cosh(
√

σ00Re) = 0 imposes
√

σ00Re = (2k + 1) i π with k ∈ �.
A solution exists only for d > dc

d =
dc

2 ω0 Re (2k + 1)2 π2

(
(2k + 1)4π4 + 4ω2

0Re2
)

with k ∈ �, (4.3)
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Figure 16. Zoom around point (a) B and (b) C from figure 15. Evolution of the numerical
eigenvalue spectrum with d; (a) 310 � d � 315 and (b) 405 � d � 426. The mode followed with
the asymptotic analysis before the intersection is labelled ‘mode’. In figure (b), the eigenvalue
labelled 2 is not visible for d = 426. Arrows denote increasing values of d .

and the compatibility conditions read

d �
dc

4ω0Re
(2k + 1)2π2 when ε = 1,

d �
dc

4ω0Re
(2k + 1)2π2 when ε = −1.

Also in this case, when (4.3) is verified, one of the σ02 solutions is undefined. This σ02

solution corresponds to ε = 1 for k � 2 with d = 426.9 and 3249.7 and to ε = −1 for
k � 3.

For the parameters chosen here, once the FISI 1 modes have reached the real
axis for d ≈ dc, the mode corresponding to ε = 1 has a growth rate increasing with
d while the mode corresponding to ε = −1 has opposite behaviour. For ε = 1, the
mode followed by the asymptotic analysis will become very close to four centrifugal
modes with the increase of d . These four centrifugal modes are visible for d =0 in
figure 15. Intersections between modes occur for values of the damping coefficient
corresponding to singularities of σ02 and σ20: d ≈ 311, 417, 766 and 3200 in the
numerical case. For ε = −1, the same agreement is observed for all the intersections
examined. Depending on the wall parameters, the quantitative agreement between
the values of d corresponding to intersections and those obtained from (4.2) and
(4.3) is more or less accurate: the closer to the rigid case, the better the quantitative
agreement. Nevertheless, in every case considered, the number of intersections matches
the number of singularities.

Four kinds of intersections have been observed. The first two involve the exchanges
described in § 3.6; one is illustrated in figure 16(a) displaying a close-up of the
numerical spectrum around the point marked B in figure 15. The growth rate of the
FISI 1 mode increases with d until the eigenvalue reaches on the real axis a centrifugal
mode whose growth rate decreases with d . The exchange occurs for d = 310.2 when
both modes leave the real axis. For d > 312.7, the two modes reach again the
real axis and their growth rates evolve in an opposite way with d , the asymptotic
analysis always follows the mode which is more amplified. The second configuration
is illustrated in figure 16(b) with a close-up of the numerical spectrum around the
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Figure 17. Eigenvalues growth rates versus d around point (a) D (300 � d � 450) and (b) E
(2000 � d � 50 000) from figure 15. σ00 is plotted in dotted line. The mode followed with the
asymptotic analysis before the intersection is labelled ‘mode’ and other significant modes are
labelled ‘Taylor’ (centrifugal mode) and ‘FISI2’.

point marked C in figure 15. In that case, a second centrifugal mode (labelled 2 in
figure 16b) is involved on top of that (labelled 1 in figure 16b) subject to the exchange.
While the FISI 1 mode and the first centrifugal mode leave the axis for d =416.8, the
growth rate of the second centrifugal mode increases significantly so that it becomes
the mode followed by the asymptotic analysis. Hence, for these two configurations,
the modes followed before and after the exchange can be different.

The last two configurations are more easily handled if the growth rate of the
involved (real) eigenvalues is plotted versus d . Figure 17(a) illustrates the behaviour
of the spectrum around point D from figure 15. In this case, the mode followed by
the asymptotic analysis and the centrifugal modes exchange their behaviour without
meeting on the real axis, so that after the intersection, which occurs around d ≈ 352,
the analysis follows the Taylor mode (there is a singularity for ε = −1 at d =356.5). If
one parameter other than d is slightly modified, the configuration undergoes the same
kind of modal exchanges as described in the above paragraph. Finally, figure 17(b)
displays the situation around the point marked E in figure 15. The two FISI 2 modes
have reached the real axis for d ≈ 1724; around d ≈ 3000 (there is a singularity
for d = 3249 when ε = 1), the growth rates of the mode followed by the asymptotic
analysis, one FISI 2 mode and one Taylor mode, display a break in slope.

To sum up, we have chosen to analyse the behaviour of solutions of the
axisymmetric stability problem in the limit of small axial wavenumbers, in the form
of integer powers of γ and β . With this expansion, two eigenvalues are found
which means that other forms of developments should be considered to find the
other eigenmodes. The two solutions obtained show different behaviour depending
on the relative values of the wall parameters, and a critical value dc of the damping
coefficient has been highlighted. For d < dc, the analytical eigenmodes show a very
good quantitative agreement with the solutions obtained numerically for the FISI 1
modes. The change from complex conjugate eigenvalues to real ones of the FISI 1
modes for d ≈ dc corresponds to a singularity in the analytical solutions. For d > dc,
the situation is rather complex. The terms of the expansion at high orders display
additional singularities with modal exchanges. This short analysis then provides a
way to systematically describe exchanges as function of the parameters.
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Figure 18. Neutral curves (thick lines) and curves of constant positive growth rates for
different azimuthal wavenumbers in the compliant case (solid lines) and neutral curves for
the rigid case (dashed lines) with (a) n= 1, (b) n= 6, (c) n= 20 and (d ) n= 40. The spacing
between two adjacent lines is σr = 0.004. The wall parameters are B =400, K = B/16 and
d = 0. Vertical lines are drawn for Re = 80 and Re = 155 in (b).

5. Non-axisymmetric perturbations (n �= 0)

5.1. Influence of the azimuthal wavenumber

When the walls are rigid, the critical Reynolds number increases linearly with n,
meaning that the most unstable perturbation is axisymmetric. For the compliant case,
the situation is more complex as seen in figure 18 where the isocontours of the zero
and positive growth rate σr are plotted for different values of n (n= 1, 6, 20 and
40). The neutral curve corresponds to σr =0 and is also plotted in dotted line for
the rigid-wall case. For each azimuthal wavenumber, a break in slope in the neutral
curve, for a given critical βc value, separates the range of axial wavenumbers in two
zones (βc � 0.3 when n=1, 0.6 when n=6 and 1.65 when n= 20, βc not shown in the
figure for n= 40).

In the axial wavenumber range above βc, a comparison between neutral curves in
the compliant- and rigid-wall cases indicates that the main instability is of centrifugal
type (for n= 40, the centrifugal mode appears for Re > 350). Besides, as in the
axisymmetric case (see figure 6), compliance has increased the range of unstable
wavenumbers.
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Figure 19. (a) Evolution of the main non-axisymmetric eigenvalues with β (0 � β � 1) for
n= 6 and Re = 80. The wall parameters are B =400, K = B/16 and d = 0. Arrows denote
increasing β . (b) Frequency of the sinuous-like and varicose-like hydroelastic modes (solid
lines) compared to the results obtained using the added mass model (dashed lines) for n= 6,
Re = 250, B = 4000, K =B/4 and d = 0.

For axial wavenumbers smaller than βc, the breaks in slope in the neutral curves
denote the presence of a new (not centrifugal) large-wavelength unstable mode. The
different figures show that the instability of this particular mode is initiated by
two-dimensional perturbations with β = 0.

The presence of this second unstable mode is confirmed in figure 19(a) by
examination of the evolution of the main eigenvalues with increasing β for n= 6
and Re = 80. As in the axisymmetric case, in addition to the centrifugal mode, four
non-axisymmetric hydroelastic modes are generated by wall flexibility. For large
values of β , two modes propagate with positive phase velocity (σi < 0) and the two
remaining ones with negative phase velocity. These four modes are easily identifiable
by continuation since σi increases (or decreases) significantly when β increases. We
denote the least stable hydroelastic mode for large β ’s with a positive (negative) phase
velocity by FISI 1 (FISI 3). The second hydroelastic mode with a positive (negative)
phase velocity is called FISI 2 (FISI 4). As for the case α = 0, the agreement between
the frequency of the FISI modes and that obtained using the added mass model is
satisfactory (cf. figure 19b), especially for large values of β for which the hydroelastic
modes are coupled in pairs.

According to the spectrum in figure 19(a), the breaks in slope with β in the curves
of constant positive growth rate are effectively related to the presence of two different
unstable modes. These two unstable modes are the FISI 4 mode for 0 � β � 0.35
and the FISI 1 mode for 0 � β � 0.58. Accordingly, the curves of constant positive
growth rate in figure 18(b) correspond to the predominant FISI 4 mode for β < 0.31,
while they correspond to the predominant FISI 1 mode for β > 0.31.

The influence of the flexural rigidity B and of the spring stiffness K can be
ascertained by inspection of figure 20 where neutral curves are displayed for two
different azimuthal wavenumbers, n= 6 and n= 21. When B is fixed (cf. figures 20a
and 20b), the influence of K is restricted to small axial wavenumbers and the critical
Reynolds number decreases with K . When K is fixed (cf. figures 20c and 20d ), the
influence of B is small for large enough or small enough wavenumbers. The case
n=21 shows an opposite influence of B on hydroelastic and centrifugal modes. The
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Figure 20. Neutral curves showing the influence of the spring stiffness K on non-axisymmetric
instabilities for a) B = 4000; n= 6 and (b) B = 4000; n= 21 and the influence of the flexural
rigidity B for c) K = 250; n= 6 and (d ) K = 250; n= 21. In all cases d = 0. The dashed curve
is the neutral curve in the rigid-wall case.

range of wavenumbers for which the centrifugal instability dominates (for β ’s above
the breaks in slope) increases with B . On the contrary, the range over which the
hydroelastic instability dominates (for β ’s below the breaks in slope) decreases with
B . Moreover, the stabilizing influence of wall compliance on the large-wavenumber
centrifugal instability increases with n, as can be inferred by comparison of the neutral
curves in figures 20(c) and 20(d ) with the rigid-wall case.

The influence of damping in the wall can be assessed from examination of figure 21.
Neutral curves are displayed for different wall damping parameters and different n

values, n= 6, 13 and 20, in figures 21(a), 21(b) and 21(c). Like for the parameters
B and K , also d has little effect when β is large. Besides, once d �= 0, the neutral
curves for very low β ’s are all superposed to one another. In the middle β range,
the situation is more complex because no general monotonic trend can be found.
Attention should focus on the neutral curve for d =10 near the points marked A and
B in the figures (especially in figures 21b and 21c). Near point A, damping has a
destabilizing influence while near point B it is stabilizing.

Analysis of the eigenvalue spectra confirm that the influence of d on non-axisy-
mmetric eigenvalues is non-monotonic. This can be further assessed from figure 21(d )
where the evolution of the main eigenvalues is plotted against d (0 � d � 10 000) for
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Figure 21. (a)–(c) Neutral curves showing the influence of wall damping for different non-zero
azimuthal wavenumber with (a) n= 6, (b) n= 13 and (c) n= 20. (d ) Evolution of the main
eigenvalues with d (0 � d � 10 000) for n= 20, β = 0.5 and Re = 150; arrows denote increasing
d . The other wall parameters are B = 400 and K = B/16.

n=20, β =0.5 and Re = 150. The four hydroelastic modes are identified as explained
above, all the other modes in the spectrum are of centrifugal origin. When d increases,
both the FISI 1 and FISI 4 modes tend to collapse on the origin. Three different
modes can be unstable depending on the value of d: the FISI 4 mode for d < 10,
the FISI 2 mode for d < 24 and the FISI 1 mode for d > 26. But, while the FISI 2
growth rate decreases monotonically with d , the behaviour of the FISI 1 and FISI 4
modes is less simple: FISI 4 amplification is maximal for d = 0 while FISI 1 growth
rate is maximal for d = 78. Analysis of spectra for other parameters shows the same
complex behaviour, with different d extrema.

5.2. Exchanges between non-axisymmetric modes

A complete study of the case n= 6 from figure 18(b) shows that, as in the axisymmetric
case, it is difficult to dissociate the different modes with small axial wavenumbers due
to exchanges between the eigenvalues. As already stated, figure 18(b) suggests that,
for Re � 80, a centrifugal-like mode predominates for all values of β . The spectrum
shows that the unstable mode for Re � 80 can belong to different branches depending
on the value of the Reynolds number.

This can be understood in figure 22 where the evolution of the eigenvalue spectrum
with β is presented for n= 6 and for two very close values of the Reynolds number,
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Re =155 and 156. As already stated, the four hydroelastic modes are easily identified
for large values of β because of their frequency. For the parameters considered, only
one mode is unstable for β � 0.94. By continuously following the modes by drawing
branches for decreasing β , it appears that this unstable mode belongs to a centrifugal
branch for Re = 155 while it belongs to a FISI 2 branch for Re = 156. This is due to
an exchange between the FISI 2 and the centrifugal stable modes for β � 0.95 as can
be seen in the close-up in figures 22(c) and 22(d ). As the exchange involves stable
modes, it is not visible in the curves of constant positive growth rate which remain
continuous in figure 18(b).

Isocontours of azimuthal vorticity ω and velocity u for the four hydroelastic modes
and the centrifugal mode with n= 6 are displayed in figure 23 when Re = 155 and
β = 0.5. The same quantities are also presented in the rigid-wall case for the least
stable mode. First, by comparing with the rigid-wall case, it is not easy to recognize
the centrifugal mode when the walls are compliant. All the modes (except the FISI 1
mode) present characteristics similar to the centrifugal mode in the rigid case. Besides,
the two modes submitted to an exchange for an axial wavenumber β close to that
considered have similar structures. It is therefore impossible to distinguish the origin
of each mode only by looking at their shapes, and only a continuous approach of the
spectrum allows proper identification.
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(b) to (f ) main modes in the compliant-wall case (cf. figure 22a).

5.3. Critical value nc

The neutral curves plotted in figure 18 in the (Re, β) plane for different values
of n have already shown that the most unstable perturbation is two-dimensional
(with β = 0) for each value of n. Thus, the axially homogeneous two-dimensional
perturbations will now be considered separately. In figure 24 the neutral curves
for the perturbations with β = 0 are displayed in the (Re, n) plane for different
wall parameters. Note that the curves are plotted with continuous lines but are
only defined for integer values of n. The neutral curves have quite complex shapes
because different unstable modes predominate depending on the Re and n values.
In figure 24(b), with B fixed at 4000, there exists a range of parameters for n � 150
for which all the perturbations are stable, illustrated by the ‘stable pockets’ in the
figure.

For each set of wall parameters there exists a critical non-zero nc value for which
the critical Reynolds number Rec is minimal. The critical (Rec, nc) couple is marked
with a black dot for each curve in figure 24. Critical values have been calculated
for different wall parameters in the range 400 � B � 40 000 with K in the range
B/16 � K � 8 B (cf. figure 25). From these values, a trend emerges: nc depends on the
ratio K/B and varies slowly with B . For instance, it is around nc = 55 for K/B = 1/2
and nc = 122 for K/B = 4 as can be seen in figure 25, meaning that, for the chosen
value of γ , the azimuthal wavelength is equal to 13.13 units of length in the first case
and 5.92 in the second.
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Figure 25. Critical value of n versus flexural rigidity B (400 � B � 40 000) for different K/B
ratios in the absence of wall damping. The calculated points are denoted by circles. The K/B
ratio varies from 1/16 (lower curve) to 8 (higher curve) with a factor 2.

6. Concluding remarks
The linear analysis of the different modes of instability occurring in a Taylor–

Couette system equipped with compliant walls has been carried out for the case of
only the inner cylinder rotating. The compliant walls have been modelled as thin
elastic shells supported by rigid frames through arrays of springs and dampers. Some
of the results obtained are comparable to those found for the curved-channel flow
(Guaus & Bottaro 2007), which also undergoes a centrifugal instability mechanism.
The parametric study has not brought out compliant parameters capable of delaying
the onset of the instability. Similar conclusions have been obtained by Kempf &
McHugh (1996, 1998) and Koga and Nagata (cited by Carpenter & Pedley 2003)
when only the outer cylinder is compliant. As for the curved-channel case, wall
flexibility promotes the existence of four hydroelastic modes, whose phase velocities
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can be estimated reasonably well by the simple added mass model developed by
Hoepffner et al. (submitted). The main effect of compliance is to destabilize both
hydrodynamic and hydroelastic modes of large wavelength, and the more so the
softer the walls. An important conclusion is that, in opposition to the rigid-wall case,
the most unstable modes are not the axisymmetric ones. Instability is initiated by a
hydroelastic mode for a critical non-zero azimuthal wavenumber which depends on
the compliant wall parameters, and in particular on the spring stiffness K . This mode
has a two-dimensional structure, being homogeneous in the axial direction.

The study of the spectra turned out to be quite complex as it is difficult to
distinguish the different unstable modes with large axial wavelengths, which are
of interest. For small axial wavelengths, hydroelastic modes have very large phase
velocities and hydrodynamic modes have eigenvalues in the spectrum very close to
those in the rigid-wall case. Then, all modes are unmistakably identifiable. On the
contrary, for large axial wavelengths, hydroelastic modes have eigenvalues close to
the hydrodynamic ones. Due to exchanges between modes with identical eigenvalues,
the same mode can be identified as hydrodynamic or hydroelastic depending on the
Reynolds number considered. Similar exchanges have been observed by Levinski et al.
(2001) for the case of the compliant wall-jet flow. The asymptotic analysis conducted
for axisymmetric modes in the limit of small axial wavenumbers has highlighted
interesting relations between the specific behaviours in the computed spectra and
mathematical singularities of the analytical eigenmodes.

One particularity of the Taylor–Couette configuration (compared to the curved-
channel flow case) is the behaviour of axisymmetric modes. The destabilization of
large-wavelength centrifugal modes by compliant walls is essentially linked to energy
exchanges with the mean flow. Whereas in the curved-channel case, the instability
of streamwise-homogeneous hydroelastic disturbances is due to pairs of conjugate
eigenvalues, possibly yielding a standing wave, here the instability of axisymmetric
wall disturbances is initiated by a mode with zero phase velocity, provoking a static
deformation of the walls.

Even in the limited frame of the linear stability analysis, this study has revealed
the unexpected richness of behaviour of the Taylor–Couette system in the presence
of flexible bounding walls, and it is the hope of the authors that the results herein
will inspire and motivate future experimental and numerical investigations.

The first author acknowledges the support of a FLUBIO Marie Curie grant
(MEST-CT-2005-020228) at the University of Genova, where this work was
initiated.

Appendix
The metrics mi and the operator L are

m1 =

(
1 − γ

2
y +

γ 2

4
y2

)
, m2 =

γ

2

(
1 − γ

2
y

)
,

m3 = γ (1 − γy), m4 = γy

(
1 − 3

4
γy

)
,
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∂x2
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∂2

∂y2
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∂2

∂z2

)
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∂2
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The generalized eigenvalue system is

0 = iαm1û + Dv̂ + iβŵ + m2v̂,

σ û = −iαm1Uû − U ′v̂ − m2Uv̂ − iαm1p̂ +
1

Re

[(
L̂ − γ 2

4

)
û + iαm3v̂

]
,

σ v̂ = −iαm1Uv̂ + m2Uû − Dp̂ +
1

Re

[(
L̂ − γ 2

4

)
v̂ − iαm3û

]
,

σ ŵ = −iαm1Uŵ − iβp̂ +
1

Re
L̂ŵ,

with

D = d/dy, U ′ = DU, k2 = α2 + β2, L̂ = D2 − k2 + m2D + α2m4.
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