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Man often tries to achieve technical surfaces 

which are rigid and smooth … 
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which are rigid and smooth … 

 

 

 

 

 

 

 

 

 

 

 

 

Rivets, nuts and bolts are ‘negative’ features … 

 

 



 

 
 

 

In Nature, porous, anisotropic, compliant ,  

irregular, rough … at different length scales  

is the norm! 
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  Superhydrophobicity: the Lotus leave 
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Can a poroelastic coating reduce drag “optimally” (thanks 

to its compliance) as opposed, i.e., to the (sub-optimal) 

pressure drag reduction of golf/tennis/baseball  balls? 
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Transition delay/lift/skin friction drag/wave drag/noise/… 



 

 
 

 

rigid 
poroelastic coating 

How to model a flow over a porous, flexible 

coating anchored onto a rigid substrate? 



 

 
 

 

rigid 

interface conditions? 
large scale compliance 

microscopic features 

dynamic equations for the porous,  

elastic, anisotropic coating? 



http://smartwing.org 

 

 

EMMAV + DYNAMORPH, sponsored by STAE-RTRA 

 

(SMA, EP, Piezo ...) 

SMART MORPHING CENTRE, IMFT & Laplace 

http://smartwing.org/


PelSKIN, ongoing EU project, TRL0 

 

 

 

Simulations 

 

 

 

 

Experiments 

 

 

 

 

Theory 



  Homogenization theory for multiscale mechanics 

(x, y, z) = (x1, x2, x3) 



Within dashed lines: elementary cell      V = Vs + Vf 

                                  with  G  the fluid-solid interface 

 

l ‘microscopic’  length scale 

L  ‘macroscopic’ length scale 

                                                                  



 Fluid (on Vf) 

 

 

 

 

 

 
 

Solid (on Vs) 

 

B.C. over G 

plus V-periodicity 

and 



Order of magnitude estimates: 

Dimensionless variables (hat): 



After nondimensionalization of the equations  

(and dropping the hats): 

plus B.C. and periodicity. 



Multiple scales: 
 

    fast, microscopic variable 

                                     slow, macroscopic variable 

 

 

Expansions: 
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Furthermore: 



The strain tensor (for either solid or fluid) is: 
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Plugging the expansion into the governing equations  

and boundary conditions: 

b.c.’s 



Equation and boundary conditions on the solid  

stress tensor at leading order imply that 

 

 

 

 

and thus 

 

 

This yields:  
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b.c.’s 
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Equation and boundary conditions on the solid  
 

stress tensor at second order can be written:   
 

 

                                                                                  on Vs 

 

 

 

 

 

plus V-periodicity.  This is a linear differential form for 
 

forced by         and        .  We can thus write: 

 

 

 

 



Equation and boundary conditions for the fluid after 
 

treating the convective term a-la-Oseen to linearize  
 

the equations 
 

                                        with 

 
yields: 

                                                                    (if steady) 

 

 

 

 

 

 

  



Volume averaging for a quantity  g  defined over either Vs or Vf 



 

 

  

To interchange differentiation and integration we use 

 

 

 

 

 

 

 

 

 

 

 

 

which is a 3D version of Leibniz rule  

(Marle, 1967; Whitaker, 1967) 



 

 

  

System of equations after averaging: 

 

 

 

 

 

 

 

 

 

plus boundary conditions. 
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Resulting system of equations: 

 

 

 

 

 

 

 

 

 
 

 

                

                 

 



 

 

  

Resulting system of equations: 

 

 

 

 

 

 

 

 

 
 

 

                

                 

 

(iterations needed) 

over  G 

Dynamic permeability  

with account of inertia (Oseen) 
≈ 



Simple example: RIGID system in steady state 

 

 

The porous system considered is transversely isotropic 

 



Darcy equation 

 

 

 

 

with anisotropic permeability (in reality we have K11 = K22   

and K33;  the off-diagonal terms vanish. 

(small Re) 

 

 

(large Re) 



 

 

  

Small Re (isotropic case) 



 

 

  

Small Re (isotropic case) 



 

 

  

Small Re (transversely isotropic case) 



 

 

  

Small Re (transversely isotropic case) 



 

 

  

 

 

 

 

 

1. Test the iterative procedure and find K(q, Re) 

2. Validate against DNS (which captures the flow  

                        in the space within filaments) 

Large Re (transversely isotropic case) 



Effect of inertia 



          Effect of inertia (after averaging) 

Permeability 

goes down 



 

 

  

      Case studied 

Darcy   

(and the boundaries?) 

 Re = 2 



O(K1/2) 

Darcy 

Navier-Stokes 

 

 

 

         interface 

         conditions 

Brinkman: 



O(K1/2) 

Darcy 

 

       Navier-Stokes 

 

 

         interface 

         conditions 

 

Brinkman: 

plus continuity of velocity 



3D DNS (periodicity along y) 

The DNS permits to compute        which satisfies Darcy in 
 

the “bulk”; then, having established the value of        we can 
 

find the effective viscosity       to use in the Brinkman filter 



3D DNS 



3D DNS 

x3 = 0.333 

(interface) 

 

 
x3 = 0.3 

 

 

 
x3 = 0.2 

 

 

 
x3 = 0.1 

 



3D DNS            Transverse velocity at the interface 



3D DNS 



3D DNS                        

ReL = 100 

Givler & Altobelli 

JFM 1994 



2D  NS + Darcy in transversely isotropic medium, with inertia, 

                Kij = Kij(q, Re), no Brinkman filter at the boundary 

                       



                        
Agreement 3D DNS/model is acceptable, not yet perfect  

because of the “boundary layer” developing near the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Need to implement Brinkman filter. 



Conclusions 

 

Passive control via poroelastic 

feathery coating 

 

Homogenization  

methods  

effective  

for multiscale  

mechanics 

 

 

 

 

                            Validation still incomplete … 

 

                        



Conclusions 

 

 

 

                                                                   Lots of interesting 

        perspectives ahead! 

                        



THANK YOU! 


