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ARTICLE INFO ABSTRACT
Keywords: Thermoacoustic instabilities arise from the feedback between an acoustic field and the unsteady
Green’s functions heat released in a burner, yielding self-sustained oscillations. A fundamental framework for

Thermoacoustic instability
Mean flow effect
Hopf bifurcation

modelling thermoacoustic instabilities in systems where a mean flow is present is introduced,
based on the definition of the adjoint Green’s function which permits to convert the acoustic
analogy equation into an integral equation. The adjoint Green’s problem produces sensitivity
functions which quantify the response of the system to initial, boundary or other forcing
terms. A simple one-dimensional system is examined; it includes a steady uniform mean flow
and a nonlinear heat source with an amplitude-dependent time-delay heat release model. The
versatility of the approach is demonstrated by applying it to two resonators characterized by
different acoustic boundary conditions: a Rijke tube and a quarter-wave resonator. The control
parameters are: heat source position, heater power and tube length. The results reveal that the
proposed analytical framework successfully captures the limit cycles, triggering phenomena,
hystereses, and Hopf bifurcations observed in experiments. We show that the mean flow velocity
cannot be discarded in the study of such systems; by increasing it, a stabilization generally
ensues, with a modification of the bistability characteristics of the system.

1. Introduction

Self-excited oscillations in thermoacoustic and aeroacoustic systems are crucial concerns for industry. Thermoacoustic instabilities
might arise in premixed combustion and hydrogen combustion apparata, designed for the reduction of NOx emission. In systems
such as gas turbine engines, aeroengines, rocket engines and domestic boilers, the interaction between the unsteady heat released
by the flame and the acoustic field can be destructive to equipment structures [1-3]. Aeroacoustic whistling is typically observed
in confined geometries. In devices such as mufflers, perforated plates and Helmholtz resonators coupling might occur between
the aerodynamic and the acoustic field, so that sound is radiated. An abundance of studies has been devoted to the mitigation of
thermoacoustic and aeroacoustic instabilities with a variety of approaches. The mechanism driving the instabilities and the coupling
between pressure waves and combustion or hydrodynamics represent the main concerns.

Laboratory-scale experiments of combustion systems are useful to focus on the elementary dynamical processes of the flame and
on the acoustic properties of fluid-carrying devices. The Rijke tube is a prototypical system much used for research in thermoacoustic
instabilities. The horizontal Rijke tube setup was devised by Heckl [4,5] to decouple the variation of mean flow and the heat release
rate fluctuations of the electrical-heated source, placed within the tube. Matveev and Culick [6] (cf. also Refs. [7,8]) investigated
the nonlinear effects in a nonuniform temperature Rijke tube and the balance between thermoacoustic energy and acoustic losses.
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Gopalakrishnan and Sujith [9] observed hysteresis and subcritical bifurcations in a horizontal Rijke tube by varying the heater
power, the mass flow rate, and the heat source position.

Analytical approaches can provide crucial physical insights and capture significant phenomena with a modest computational
effort. In thermoacoustic problems, the flame is often modelled as an acoustically compact heat source, so that the growth of
acoustic waves within the tube can be focused upon, often within a one-dimensional propagation model. A thorough summary of
the mechanisms of combustion instabilities and common methods of analysis has been written by Culick [10]. One of the commonly
used analytical approaches is low-order network modelling, pioneered, among others, by Dowling [11]. The geometry, boundary
conditions and heat-release-source of the thermoacoustic system are modelled as individual elements, each described by a linear
transfer function. The system is formed (and then solved) when all these elements are connected by jump conditions. Evesque
and Polifke [12] applied network modelling to an annular combustor to analyse the passive control effect of using non-identical
burners. Another widely-used method for developing reduced-order models is the Galerkin technique, employed, among others,
by Balasubramanian and Sujith [13] to study non-normality and non-linearity in a Rijke tube neglecting the mean flow and the
temperature gradient in the tube. Shortly afterwards, it was argued by Nicoud and Wieczorek [14] that not only the heat source but
also the mean flow could enhance the non-normality of the system, favouring the possibility of transient growth of perturbations.

The Green’s function technique, originally developed by George Green to tackle electrostatic problems [15], has been widely
used in various fields of physics and engineering, especially in the study of wave propagation. Lighthill’s acoustic analogy [16]
benefits from the application of the Green’s function technique. The Green’s function is a powerful tool due to its computational
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efficiency and versatility. With the help of the Green’s function, the acoustic disturbances can be expressed in the form of an integral
equation. In unbounded space, the Green’s function is called the free-space Green’s function, and the analytical solution is known.
In a confined system, the Green’s function satisfying certain boundary conditions is called exact Green’s function or tailored Green’s
function [17].

Yang and Morgans [18,19] developed a semi-analytical model based on the Green’s function for a short circular hole with
through flow, to study the vortex-sound interactions. The Green’s function was in the form of a fluctuating stagnation enthalpy.
Hedge et al. [20] established a theoretical model based on the Green’s function to study the sound field of a V-shaped flame in a
rectangular duct. Heckl et al. [21] gave a clear summary of the tailored Green’s function framework in the study of aerodynamic
and thermoacoustic instabilities.

To the present authors’ best knowledge, existing investigations on acoustics in a confined geometry using the Green’s function
approach have consistently adopted the zero-Mach number assumption, thus neglecting the mean flow. Mean flow can, however,
be important and several analytical methods exist which allow for its inclusion. Stow and Dowling [22], Orchini et al. [23], Polifke
et al. [24] have used a wave-based network model by describing the acoustic field in various combustion systems in terms of Riemann
invariants, with forward- and backward-travelling waves displaying different transport speeds. Bothien et al. [25] used a state-space
network approach to represent the acoustic pressure in an annular combustor, with focus on the azimuthal modes. Polifke [26]
employed an impulse response approach to represent the linear dynamics of an acoustically compact flame. The convective effect
of the flow is described by distributed time delays.

The aim of the present study is to extend the existing tailored Green’s function framework, centring attention on a simple
thermoacoustic system with a mean flow. The present approach relies on the definition and use of adjoint equations, a well-known
tool in sensitivity and shape optimization studies. The application of adjoints in thermoacoustics has been extensively reviewed by
Magri [27]. Aguilar et al. [28] applied adjoints to calculate the structural sensitivity and base-state sensitivity of a one-dimensional
low-order thermoacoustic model. Juniper [29] compared several techniques to study the sensitivity of simple thermoacoustic models,
highlighting the efficiency of the adjoint approach. Magri and Juniper [30] applied adjoint-based sensitivity analysis to a Rijke tube
and identified the most effective stabilizing feedback mechanism. They also described the base-state sensitivity to variations in
several parameters: a damping factor in the flame model, a time delay in the heat-release model, the location of the hot wire, etc.
Mensah et al. [31] applied the adjoint perturbation theory to a generic annular combustor model and found the optimal damper
arrangements and the impedance design to mitigate the thermoacoustic instabilities. Orchini et al. [32] exploited the orthogonality
of direct and adjoint eigenvectors to show the interaction of acoustic and intrinsic modes with exceptional points.

For the systems under scrutiny here, Green’s identity naturally leads to defining the adjoint operator when the mean flow is
accounted for. There is, however, a subtle difference between adjoint-based sensitivity analysis and the adjoint Green’s function
approach. In sensitivity analyses, adjoint fields are generally used to determine how a system (for example, its eigenmodes) respond
to parametric changes; the aim in such analyses is eventually that of defining optimal control strategies or modifying a system’s
design with the goal, for example, of mitigating instabilities. Thus, a functional is introduced and its optimization is iteratively
achieved. The Green’s function approach, on the other hand, provides a direct way to calculate the system’s response to external
forcing terms, thus helping to understand how disturbances propagate and interact within a system. The definition and use of the
Dirac delta function are crucial in this respect. With the present investigation, we aim to demonstrate the effectiveness of the Green’s
function approach in modelling the nonlinear dynamics of a simple thermoacoustic system.

The structure of the paper is as follows: Section 2 (and related Supplementary Material) starts by defining the model problem
and provides full details of the theory developed, highlighting differences between the direct and the adjoint Green’s function, in
both the time and the frequency domain. In Section 3, applications of the theory are illustrated, focusing on the effects of varying
the position of the heat source, the tube length, and the coefficient that couples the acoustic velocity at the heat source to the power
released per unit mass. The paper closes in Section 4 with a brief summary of the achievements of the work and recommendations
for future extensions of the theory.

2. Mathematical model

We consider the configuration described in Section 2.1. The governing equations are given in Section 2.2 and solved for the
case without forcing in Section 2.3. The full governing equations can be solved with minimal effort if they are converted into an
integral equation. To this end, the direct Green’s function is introduced in Section 2.4. The adjoint Green’s function is introduced
in Section 2.5 and calculated in Section 2.6. Its relationship with the direct Green’s function is given in Section 2.7. The final result
for the integral governing equation is shown in Section 2.8 A by-product of the integral equation is an algebraic equation for the
complex frequencies of the thermoacoustic modes; this equation is derived in Section 2.10.

2.1. The configuration considered

Our configuration is shown in Fig. 1. It is a 1-D resonator, i.e. a straight tube, of length L. The upstream end at x = 0 is described
by the reflection coefficient R, and its downstream end at x = L is described by R;. We do not limit ourselves to idealized boundary
conditions, but in principle allow the reflection coefficients to be complex functions of frequency.

A uniform flow with speed & passes through the tube and the Mach number, M = i/c, is assumed to be smaller than 1. The
mean values of temperature (T), density (5), and speed of sound (c) are also uniform. Since there is neither a temperature gradient
nor a sudden area change in the present simplified setting, the generation of entropy waves is not considered [33,34].
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Fig. 1. Schematic illustration of a flow duct with mean velocity &, an unsteady heat source at x
coefficients R, and R, .

,» acoustic waves with amplitudes A,,A_, B,, B_ and reflection

An unsteady heat source is located at the axial position x,. We consider this source to be compact and described in terms of the
delta function by

q(x,1) = q(1)6(x — x,); €8]

q(x,1) is the rate of heat release per unit mass (local heat release rate). The time-dependent part, ¢(z), is closely related to the global
heat release rate, Q(r), by

o) = Spq(1), (2)

where § is the cross-sectional area of the tube. The rate of heat release is not independent, but coupled with the acoustic field.
Following Heckl [35], we assume a generalized nz-law to describe this coupling,

q(t) = K [nju,(t = 7) = nou, ()] , 3)

where u, is the acoustic velocity at the heat source. Our assumption that the mean temperature is uniform implies that we neglect
the mean heat release rate from the heat source and only consider the fluctuating part. In this context, the parameter K is a measure
of the coupling between the heat release rate and the acoustic field. We call K the “heater power”; it has units J kg~!. The three
parameters 7 (time-lag), ny and n; (coupling coefficients) are assumed to depend on the non-dimensional acoustic velocity amplitude
at the heat source, ¢ = A/#, with # denoting the mean flow velocity and A the amplitude of u,(#), by the following expressions,

T =TO+1'2€2, @
1

ny = E(go—g.e— 1), )
1

n =§(80—g1€+1)- (6)

The quantities 7, 7,, ny, n;, in Egs. (4)—(6) are constants. g, and g, are the parameters obtained by fitting the flame describing
function [35]. Eq. (3) represents a nonlinear heat release rate law due to the amplitude dependence of its parameters.

2.2. Governing equations for the acoustic field

The acoustic field resulting from the unsteady heat source in the presence of a mean flow can be described by the convected
version of the acoustic analogy equation [36],
0*¢ 0*¢ 2 2.0%
L 42— — (¢ —iP)— = —(y — Dg(x,1). 7
o2 s (" —u )ax2 (r — Da(x,1) )
This is a PDE for the velocity potential ¢(x, ¢); the heat release rate appears in the forcing term on the right-hand side.
We assume that the initial conditions act only at the point x, and that the initial conditions are given by

d(x, )| = @ed(x — x,), (8
=0
99  _0¢ /
[E + ua] ) = @6(x — x,), 9
1=

where ¢, and (p(’) have prescribed values.
The boundary conditions at x = 0 and x = L are given in the frequency-domain by the reflection coefficients Ry(w) and R; (w).
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2.3. Solution of the unforced problem and calculation of the eigenfrequencies

The unforced version of the PDE (Eq. (7)) governs the propagation of acoustic waves up and down the flow duct on either side
of x,, where g(x,) = 0 (see Fig. 1). We transform this into the frequency-domain (assuming the time dependence e¢~') in order to
determine the wave numbers of these waves. This gives

. ¢ 0%
P+ 217(iw)—¢ +(? - a2)—¢ =0, (10)
ox 0x?
where ¢(x, w) is the frequency-domain equivalent of ¢(x, ). Eq. (10) is readily solved when ¢ is assumed to behave in space as e**,
Two results are obtained for the wave number &:
(0]
ky = 11
*T et (11)

is that of the wave travelling with the flow, and

k. =-2 (12)

T c—1i

is that of the wave travelling against the flow. The acoustic velocity potential can then be written as a superposition of forward and
backward travelling waves:

R A ikyx A —ik_x f 0
¢(x,w) _ { +€ ++ A_e or <x< xq (13)

B, e*+=D 4 B_e7ik-(=1)  for x, <x<L,

where A, A_, B, and B_ are (generally complex) amplitudes of the velocity potential (see Fig. 1). The reflection coefficients R
and R; are used to define the boundary conditions. At x = 0 there is

A+eik+x o
RO = m N giving A+ = A_Ro, (14)
- x=0
and likewise at x = L,
B_e—ik_(x—L)
RL = m ,  glving B_ = B+RL. (15)
+ x=L

This reduces the number of unknown amplitudes to two, and Eq. (13) becomes

N A_(Ryeik+* 4 g7ik-x) for 0<x<x,
P(x, w) =

. : (16)
B, (e*+O=D) 4 Ry e=k-0=L)y for x, <x < L.

The eigenfrequencies w, are obtained by considering the case without the heat source, where the sound field in the tube is given
by
d(x, w) = A+e"k+’C +A_e” k¥ for 0<x< L. a7

The boundary conditions given above in terms of Ry and R; have to be satisfied, and this leads to two homogeneous equations for
A, and A_ and subsequently to the characteristic equation

— 1+ RyRpe*++kL < o, (18)

With k, and k_ given by Egs. (11) and (12), their sum can be expressed in terms of the frequency,

2wc¢

k++k_=cz_a2. 19
Then Eq. (18) can be written as
. 2cL
F(w)=0, with F(w)=—1+RyRe "2, (20)

The solution of Eq. (20) gives the eigenfrequencies w,, w,,...

We note here that our acoustic field variable is the velocity potential ¢ and that in our notation, R, and R; are the reflection
coefficients of ¢. It is more common to work with the reflection coefficients of the acoustic pressure p; these are closely related to
those of the velocity potential. The linearized momentum equation in the form

(09  _0¢
/
T 21
p==r ( a ax> 21
allows us to express the pressure field in terms of its forward and backward travelling waves. The result for the upstream side is
P, ) = A, (io — Gik,)e™ + A_(io — aik_)e™ ">, (22)
This gives the pressure reflection coefficient as
A, o —ik 1-M
(p) + + .
RY = — = ; 23
O T A_w+ak. 1+ M (23)
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in the second step of this equation, the wave number results in Eqgs. (11) and (12) were used. An analogous derivation can be
performed for the downstream side, and this leads to

_B_cu+12k+_ 1+ M

= = . 24
B, w—ik_ Li—m (24)

(p)
Ry
For mean flows with low Mach number M, the numerical values of R, and Rg’ ), as well as R; and R(f), are very similar.

2.4. The direct Green’s function

The direct Green’s function is a mathematical concept with a clear physical meaning. If an impulse is emitted at time 7’ from
a hypothetical point source at position x’ in the tube, a sound field is generated in the tube. We call this sound field the impulse
response and describe it mathematically by the function g(x,x’,t,#). The variable x denotes the position of an observer, and the
variable 7 denotes the observer’s time. The measured sound field does not depend on ¢ or ¢ individually, but on the time elapsed
since the impulse, t — #'. In mathematical terminology, g is called the direct Green’s function.

In line with its physical meaning, the direct Green’s function is defined by the following governing equations. The PDE

g _0%g
or? otox
describes the sound field generated in the tube (of unspecified end conditions). The causality conditions

2
—(*- ul)(‘%ﬁ =8(x—x)s¢t—1") (25)

gtx,x',t—=t)=0 for t<t (26)
0 7]
2 aq% —0 for 1<t (27)
ot ox

guarantee that no sound field is generated before the source has emitted its impulse.

We also require the direct Green’s function to be “tailored” to the tube boundaries, which are described by the reflection
coefficients R, and R;; however, these are given in the frequency domain.

The Fourier transform of g(x,x’,t — ') is §(x,x’, w), given by

8(x, %', @) = / gCx, ¥ 1 = 1)y, (28)
t

=—00

Its governing equation is the Fourier transform of Eq. (25), i.e.
08 0’8
@280, X w) + 26i0L + (2 —?)TE = _5(x - ). (29)
0x 0x2
In analogy to Eq. (16), we can write down solutions for §(x,x’,w) on either side of the heat source

A_(X, @)[Ryeeri™ + "] for 0<x<x'
8(x, X w) = (30)

B+(x',co)[ec%(x_l') + RLe_%(x_L)] for x'<x<L
this satisfies the required boundary conditions.
Egs. (29) and (30) form the governing equations for g(x,x’,®). The latter contains the two functions A_(x",w) and B, (X', ),

which have yet to be determined. This can be done with a generalized function approach (see Supplementary Material Part A.1).
The result is

e F) G 1)F( )e_i(k+_k—)xl e +Lpx wya(x,w) for 0<x<x'

c(io)F(w

£ 0) = GD
! —ilky =k )x! e*+Lax, w)b(x,w) for 0<x<x

2c(iw) F () ¢
where F(w) is given by Eq. (20), and

a(x,w) = Roeik+x + e ikx, (32)

b(x, w) = e*+>=D) 4 RLe_ik—(x_L). (33)

The time-domain function, g(x,x’,z —1"), is then obtained by inverse Fourier transform of g(x, x’, w). This requires integration in
the complex w-plane and application of the residue theorem (see Supplementary Material Part A.2). The result is

(34)

00 ’

g,(x,x", w,) _. (—")

g, X' t=t)=H@t—1) ) Re| L omitn .
'; w,F'(o,)
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F'(w) in Eq. (34) denotes the derivative of the function F(w) (given by Eq. (20)) with respect to w. The other quantities in Eq. (34)
are

v(x', w)b(x', w,)a(x,w,) for 0<x<x'
g.(x, X @,) = (35)
v (X', w)a(x',w,)b(x,w,) for x' <x<lL
with the functions ¢ and b given by Egs. (32) and (33), and y by

2iwi i

WX, ) = ——e2-2 ¢ el (36)
c

The expression for g(x,x’,7 —t') in Eq. (34) features all the physical properties one would expect from the acoustic response to
an impulsive point source in a resonator. Eq. (34) describes a superposition of modes; n is the node number, w, is the (generally
g,(x, X, w,)

o, F'(w,)
the causality of the direct Green’s function:

complex) frequency of mode n, and is the corresponding mode amplitude. The Heaviside H(¢ — ') function expresses

(37)

H(—1)= 0 for r<7, i.e. before the impulse,
1 for r<¢, ie. after the impulse.

2.5. The adjoint Green’s function (AGF)

The full governing equations in Section 2.2 cannot be solved analytically because they involve a PDE with a forcing term that
is coupled nonlinearly to the acoustic field. Furthermore, they need to be solved as the boundary and the initial conditions are
changed, and for a variety of heat release rates (Eq. (1)), to systematically assess the effect of forcing terms on the results. To make
matters worse, these governing equations are a mixture of time-domain and frequency-domain equations. Motivated by the Green’s
function approach of Heckl and collaborators [37-39] for the case without mean flow, our aim is to derive an integral governing
equation for the acoustic field.

To this end, we perform a series of mathematical operations on Eq. (7):

 write it in terms of the new variables x’,# (instead of x, 1);

« multiply it by a test function G(x’, x,?',7) (yet to be defined);

- integrate the result with respect to 7' from the initial time 0 to a “terminal time” T, (yet to be defined);
- integrate with respect to x’ over the whole length of the tube;

« shift the derivatives from ¢ to G by repeated use of integration by parts.

This leads to (see Supplementary Material Part B.1)

T, rL 2 2 2
/ / 9°G | 539G —(cz—az)ﬁ oG, 1"ydx di' +
=0 J x'=0 ox'2

L

or'2 ot ox’
; (38)
/ (BT 1)dx" + BT2 = —(y — 1)/ G(xq,x, !, Hg(Hdt,
x'=0 '=0
with
op  _0d¢ "
_ oG = _0G
t'=0
L
T dp 4G d¢ G
BT2 = iH(G— — p—) — (¢* —i*)(G— — p— dr. 40
AZO [”( o ~Pop) T T INGG =85 o (40)

The terms BT1 and BT?2 in Egs. (39) and (40) are “boundary terms”. Our aim is now to define the test function G(x/, x,,f) in
such a way that Eq. (38) yields an integral equation for the acoustic field without unwelcome boundary terms.
If G(x/, x,t,1) satisfies the PDE

’G . _ 9*G 2 2.0*°G _ ., ,

m +2um —(C —u )ax_’Z —5()6 —.X)&(t —t), (41)
then the double integral in Eq. (38) reduces to ¢(x,1). If we further impose the terminal conditions

G ,x,/',)=0 at =T, (42)

G _9G ,

W +u§ =0 at ¢ ZT;, (43)

then the terms at #/ = T, in the boundary term BT'1 of Eq. (38) vanish. The terms at # = 0 can be rewritten with the initial conditions
Egs. (8) and (9). The integral of BT'1 in Eq. (38) then becomes

L G
/ BT1dx' = — | @ G(x', x,1',1) — (PO(W +
X

0G
TR , 44
B is) (44)

! —
X' —Xq
=0
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and Eq. (38) becomes, using Egs. (41) to (44):

T,
px,0)=—(—1) G(x,, x,1',1)q(t)dr’ +

=0
0G (45)
— +

_0G
or Mﬁ) + BT2.

x'=

[(ng(x’, x,1',1) = @o(
/=0

We call G(x', x,t',t) the “adjoint Green’s function” (Morse and Feshbach [17] (section 7.5) refer to it as the “Green’s function of
the adjoint operator”). The adjoint Green’s function (AGF) is not fully defined at this stage, because the boundary conditions have
not been specified yet, leaving the boundary term BT2 undetermined. Also, the terminal time 7; is still unspecified. The adjoint
Green’s function governed by Eq. (41) is the adjoint field of the direct system, with an impulse source term. Note that we choose
to show the derivation of the adjoint system following a continuous approach since we believe that it is more pedagogical and it
elucidates the rationale behind the selection of terminal and boundary conditions in the next subsection. The equivalent discrete
adjoint approach would be feasible but requires a discretization in both spatial and temporal domains before using Green’s identity
(cf. the Supplementary Material in Luchini and Bottaro [40]).

2.6. The AGF in the frequency- and time-domain

The boundary conditions of the adjoint Green’s function are given in the frequency domain, so we focus for now on the adjoint of
8(x, x', w). This adjoint function is determined by performing a series of mathematical operations on the PDE, Eq. (29) for g(x, x', w);
these are shown in Supplementary Material Part B.2. The adjoint PDE turns out to be

2

0*G(x,x', @) — Zﬁin +(? - =-6(x —x"). (46)
ox ox

Comparison of Eq. (46) with Eq. (29) reveals that § and G satisfy very similar PDEs: they only differ by the sign of the mean
velocity @. The functional dependence of G(x,x',w) is also determined in Supplementary Material Part B.2; the result is

A_(x’,w)[Roechwﬂx + e_%x] for 0<x<x'
Glx, X' @) = “47)

io

1§+(x',w)[ec—ﬁ(x_L) + RLe_H_ﬁ(x_L)] for X’ <x<L

The functions A_(x', ®) and B, (x',®) are analogous to A_(x',®) and B, (x',®) in Eq. (30), and they are undetermined at this
stage.
G(x, x', w) satisfies the PDE Eq. (46), while G(x', x, ', 1) satisfies Eq. (41). These two functions form a Fourier transform pair, i.e.

G, x,',1) = 2L/ G, x, 0)e @ g, (48)
T :

=—00

(for details see Supplementary Material, Part C).
2.7. Calculation of the boundary term BT2 in Section 2.5

In order to get a usable equation from Eq. (45), we need to calculate the boundary term BT?2, which is given by Eq. (40) and
involves the time integral f[ ,T:’0 ..dt'. Here, we are faced with the fact that the integrand contains boundary expressions at x = 0 and
x = L, which are given in the frequency (and not in the time) domain.

The acoustic field is not defined for times before the initial conditions act, so we can put

o(x',t"hY=0 for ¢ <O. (49)
Similarly, G(x', x,#',1) is not defined for times beyond the terminal time T, so we can put

G x.t',n=0 for ¢ >T, (50)

This allows us to extend the integration limits in Eq. (40) from ft ,T:’O to f,°__ and subsequently use Fourier transforms.
Supplementary Material Part D shows the calculation of BT2, which leads to the result

BT2=0. (51)
2.8. Relationship between the adjoint and the direct Green’s function

We know the functional dependence of g(x,x’,—1') from Section 2.4, but we have yet to determine that of G(x’, x,#',r). We can
infer it from g(x,x’,7 —t’) if we manage to derive the relationship between G(x’, x,,t) and g(x,x’,7 —t). To this end, we perform
the operations shown in Supplementary Material Part B.3. The result is

G x, !, ) =g(x,x',1,1). (52)
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This result expresses the reciprocity between the direct and adjoint Green’s function [17]. We note that neither G, nor g, are
symmetric, i.e.

g, x',t=1) # g(x', x,1' =), (53)

Gx,x' t—t)# G, x,t' —1), (D))

this is a key difference to the case of a tube without mean flow.

With the reciprocity theorem given by Eq. (52), and the functional dependence of g(x,x’,7 —¢') given by Eq. (34), the adjoint
Green’s function G(x,x’,t —¢') is obtained simply by swapping the source position and the observer position in Eq. (34), as well as
the source time and observer time.

The function g and G are both solutions of the same source problem, but they differ in terms of causality. The direct Green’s
function describes the evolution as time increases, starting with the initial impulse and ending with the acoustic field measured
by the observer. The AGF describes the same process in reverse time, beginning with the acoustic field measured by the observer
and going backward in time to the initial impulse (Morse and Feshbach [17], section 7.4). Given that the direct Green’s function is
causal, we call the AGF causal in reverse time (some authors use the term anti-causal, e.g. Le Bras et al. [41]).

We can express these properties in terms of the following equations.

gtx,x',t—=t)=0 for t<t

(55)
(causality of the direct Green’s function)

G(x',x, —t)=0 for t>1¢

(56)
(causality in reverse time of the AGF)

2.9. Integral equation for the acoustic field
It remains to fix the terminal time T,. According to Eq. (56), G = 0 for all times 7 > ¢'. Therefore the integrand in Eq. (45) is zero
in the range ¢’ = 1,...,T,. This suggests that the upper integration boundary in Eq. (45) should be changed from 7 to 1. The final
version of the integral equation for ¢ is
1
Px,0)=—(y — 1)/ G(x,. x, 1", 1)q(t")dt’
=0

G G 57
y +uﬁ) . .

+ [%G(X',x,t’,t) = @o(

The velocity at the heat source is given by

_ 0g(x.1)
K e (58)
x=xq
and this allows us to turn Eq. (57) into an integral equation for the velocity u, (),
"G, x, 1t
u, () =—( - 1)/ (xa—x) q(@)dt' +
=0 * x=x,, x'=x
q q
06K x, 1" 1) (020 L 06 (59
0T ox P0%oxar T oxax! | v,

=0
X:Xq

The heat release rate ¢(t') is given in terms of u, by Eq. (3), so Eq. (59) represents an integral equation (Volterra type) for u,(1).
It can be solved with a straightforward iteration process, stepping forward in time. The strength of the approach outlined, related
to the role of G(x', x,?,r) as sensitivity function, emerges clearly from Egs. (57) and (59): knowledge of the unique adjoint Green’s
function (and its derivatives) is sufficient to map immediately the output, i.e. ¢(x,1) or u,(?), to whatever input, represented here

by q(t), ¢, and (pz).
2.10. Modal analysis

Numerical solution of the integral equation (59) gives the time history of u,(¢). Eq. (59) also allows an analytical approach, which
will give the frequencies of the acoustic modes driven by the thermoacoustic feedback.

Motivated by the observation that the frequency spectrum of a thermoacoustic oscillation has discrete peaks, we express the
acoustic velocity as a sum of modes with complex frequencies £2,, and complex amplitudes u,,,,

u, (1) = Z <ume"nmt + uj;,e_igfn’>. (60)

m=1



J. Wei et al. Journal of Sound and Vibration 593 (2024) 118673

Table 1
Model parameters of the horizontal Rijke tube.
Parameters Symbol Value Unit
Mean temperature T 304 K
Sound speed c 350 m s~!
Reflection coefficient (upstream end) R, -1
Reflection coefficient (downstream end) R, -1
&0 1.4
Fitting parameters & 0.3
of nonlinear heat release model 7y 5% 1073 s
7 44%1073 s
Mach number M 0, 0.1, 0.3, 0.5
Tube length L 04 .2 m
Heat source position X, 0..L m
Heater power K 0 ..4x10° J kg™!

At this stage, £,, and u,, are unknown; their complex conjugate is denoted by . It is possible to determine them from a series
of mathematical manipulations, which are described in Appendix A of Ref. [39]. The resulting equation for £2,, (form =1, 2 ...) is

. el T, rr
(ng —nle’gmr)z - . -— = 2 ) (61)
= (o, —2,) i(w;+Q2,) (r—-DK
where
98, (x, X', ®)
r,=—— 62
" ox x=xq ( )
x/:xq

The real part of ©,, gives the circular frequency of mode m, while the imaginary part represents the growth rate, revealing whether
mode m is stable or not.

3. Results and discussion

In this section, we consider two configurations: a Rijke tube (Section 3.1) and a quarter-wave resonator (Section 3.2). We perform
extensive parameter studies exploiting the computational efficiency associated with the adjoint Green’s function approach.

3.1. Application of the theory to a horizontal Rijke tube

The stability behaviour of the first thermoacoustic eigenmode in a horizontal Rijke tube is investigated. We focus on the first
mode because the flame model is valid mainly in the low-frequency range [35]; as such, the results for the higher order modes
would be less reliable (cf., for example, mode 3 of Fig. 13). We follow the work by Bigongiari and Heckl [39], with a steady mean
flow included, and choose the following three control parameters: heat source position, X4 tube length, L, and heater power, K.
The values of the model parameters and ranges of the control parameters are given in Table 1.

Stability maps are created by numerically solving Eq. (61), which contains implicitly the parameter ¢ = A/i. In order to avoid
numerical problems for the case without mean flow (@ = 0), we put # = 1 m s~! if M = 0. Our stability maps show unstable
regions, where Im(£2;) > 0, and stable regions, where Im(£2,) < 0. Stable regions are depicted in blue shading, and unstable regions
are displayed in red shading, with the growth rates indicated by colour bars. The maps highlight the dependence of the stability
behaviour on the control parameter and the dimensionless acoustic velocity fluctuation amplitude at the source, e.

3.1.1. Dependence on the position of the heat source

The stability maps based on the control parameter x, for different mean flow velocities through the tube are shown in Fig. 2.
The tube length is fixed at L = 2 m and the heater power is maintained at K = 3 x 10° J kg~!. For purely illustrative purposes
the plots display the growth rate with e up to the rather large value of 1.5. For the case M = 0, shown in Fig. 2(a), the system is
linearly unstable if x, is anywhere within the upstream half of the tube (0 m < x, < 1 m), and again in the range between 1.25 m
and 1.75 m within the downstream half. The points (x,,e) = (1.25 m, 0) and (1.75 m, 0) are subcritical Hopf bifurcation points.
For the case M = 0.1, shown in Fig. 2(b), these two points have moved close together, reducing the linearly stable range along the
x,-axis. For the cases M = 0.3 and M = 0.5, shown in Figs. 2(c) and 2(d), respectively, the Hopf bifurcation points have disappeared
and there is linear stability for any position x, in the downstream half. For such positions, a non-zero initial amplitude is required
to trigger instability. This triggering amplitude becomes progressively larger as M increases. Thus, the presence of a mean flow
is generally stabilizing for the system. This observation qualitatively agrees with the experimental finding by Gopalakrishnan and
Sujith [9] that, at a higher mass flow rate, no instability occurred when x, > L/2. On the other hand, when the heat source is in
the upstream half of the duct (x, < 1 m), the stretching of the unstable region towards higher values of ¢ when M increases results
in enhanced limit cycle amplitudes.

10
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Fig. 2. Stability maps of a horizontal Rijke tube; the coloured shading indicates the growth rates given on the colour bar on the right. The control parameter
is x,, the position of the heat source; L =2 m, K =3x 10° J kg~'. (a) Mean flow is absent; (b) M = 0.1; (c) M = 0.3; (d) M = 0.5.
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Fig. 3. Hysteresis effect and bistable regions in a horizontal Rijke tube with changing heat source position 1 < x, <2 m, L =2 m, K =3x10° J kg~'. The white
part indicates the stable region and the grey part indicates the unstable region. The blue solid arrows denote the forward bifurcation path when the system is
switched on with a small perturbation when x, = 1 m and the heat source is moved downstream. The red dashed arrows denote the backward path when the
system is switched on with a small perturbation when x, =2 m and the heat source is moved upstream. Bistability occurs for x, on the left (right) of the blue
(red) dashed line. (a) Mean flow is absent; (b) M = 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3 shows the same results for two values of M (M = 0 and M = 0.1), focusing on the range 1 m < x, < 2 m, to highlight
the presence of bistable regions and the occurrence of hysteresis. Again, stable regions are marked in white, while unstable regions
are shown in grey (without the growth rate contours). Bistability is the phenomenon where the solution can be either steady or
oscillatory, depending on the initial condition. As Fig. 3(a) shows for M = 0, there is a bistable region for x, between 1 m and
1.25 m, and another one between 1.75 m and 2 m. Let us, for example, consider the position x, =1.1 m, which is in the bistable
region. If the initial amplitude is small enough to be in the white region, the system will oscillate with a decaying amplitude and
approach a linearly stable state. Conversely, if the initial amplitude is large enough to be in the grey region, the oscillation amplitude
will grow. It will reach a limit at the upper edge of the grey region, and the system will subsequently oscillate in a stable limit cycle.
Fig. 3(b) gives equivalent results for M = 0.1. It is evident that the stability boundaries have changed and that the bistable regions

11
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Fig. 4. Time histories starting from points A and B as initial conditions, cf. Fig. 3(b), computed iterating in time Eq. (59). Mean flow with M =0.1: (a) Point
A: x, =14 m, ¢=0.5; (b) Point B: x, = 1.4 m, ¢ =0.1.
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Fig. 5. Comparison of the first-mode eigenfrequency of the Green’s function (®,/(27)) and the heat-driven frequency (Re(£2,)/(2x)), for varying Mach number.
(a, b) The heat source is fixed at x, =04 m; (c, d) the heat source is fixed at x, =16 m; (a, c¢) small amplitude, ¢ =0.1; (b, d) large amplitude, ¢ = 0.8.

have become much larger. For example, the bistable region now includes the point x, = 1.4 m, which was outside the bistable region
for M = 0. This prediction is consistent with papers in the literature [7,9,42], which report that a decrease in mass flow rate in a
Rijke tube reduces the width of bistable regions. The results in Fig. 3 also highlight the incorrect conclusions one could draw when
assuming zero Mach number when, in fact, the Mach number is small but non-zero.

12
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Fig. 6. Modal frequency variation, Re(£2,)/(2x), as function of the heat source position, x,, for various Mach number M. K = 3 X 10° J kg~!. Blue symbols
represent the stable state of mode 1; red symbols represent the unstable state. (a) Small amplitude, ¢ = 0.1; (b) large amplitude, ¢ = 0.8. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

The presence of bistable regions is an indicator that hysteresis occurs if the control parameter is first increased, and then decreased
again. This is also illustrated in Fig. 3. The solid blue curves represent the forward path, with x, increasing, and the dashed red curves
represent the backward path, with x, decreasing. In Fig. 3(a), in the absence of mean flow, the forward path starts at x, = 1 m and
zero initial amplitude. As the heat source is moved downstream, this stable state persists until the position x, = 1.25 m (a subcritical
Hopf bifurcation), where a sudden transition occurs: an oscillation with growing amplitude sets in until a limit cycle is reached. As
x, is increased beyond this point, the system follows the blue path along the top edge of the grey region. The backward path in
Fig. 3(a) starts at the downstream end, x, = 2 m, and zero amplitude. The system is stable until the position x, = 1.75 m is reached.
Another sudden transition occurs there through a subcritical Hopf bifurcation. A limit cycle ensues, and as x, is decreased further,
the limit cycle persists all the way to the starting position x, = 1 m. The forward and backward paths are evidently different.

The hysteresis for M = 0.1 shown in Fig. 3(b) displays qualitatively the same properties, but the overlap between the forward and
backward paths has become much smaller. As the Mach number increases, the two bistable regions become wider and eventually
merge into one (see Figs. 2(c), (d)). At that point, the hysteresis effect disappears. It is noted that the limit cycle amplitude is rather
large (¢ mildly above 1 at both values of M shown in Fig. 3), in agreement with Matveev and Culick [43] who stated that “the
oscillating velocity magnitude estimated in the vicinity of the heater tends to be stabilized near the mean flow velocity (slightly exceeding it)
in the unstable regimes”.

Fig. 4 shows the time histories of the velocity perturbations at the initial condition marked as A and B in Fig. 3(b), respectively.
When the mean flow is absent and the heat source is located at x, = 1.4 m, the steady state is always unstable (cf. Fig. 3(a)). For
the non-zero Mach number of M = 0.1, the source position x, = 1.4 m falls in a bistable range, cf. Fig. 3(b). Given a large excitation
amplitude, for instance, ¢ = 0.5 (point A), the system rapidly reaches a stable limit cycle. For low excitation amplitude (point B,
e = 0.1) the system decays to a steady state quite slowly. These observations, embodied by Fig. 4, require time-history calculations.

Fig. 5 illustrates the comparison between the eigenfrequencies of the Green’s function first mode (n = 1, Eq. (20)), which do
not vary with the amplitude of the acoustic velocity at the flame, and the heat-driven frequencies of mode m = 1, at two values
of the amplitude of the acoustic velocity at the position of the source. When the flame is located in the upstream half of the tube
(x, = 0.4 m), for both high and low amplitudes, the heat-driven frequencies remain slightly below the eigenfrequencies of the Green’s
function; the situation is reversed when the flame is in the downstream half of the tube (x, = 1.6 m). In all cases, the differences
are not major and increasing the Mach number leads to a reduction of the frequencies. As pointed out in several previous studies
[39,44-46], the frequency shifts are related to thermoacoustic feedback, which is amplitude-dependent through the heat release
law, Eq. (3).

13
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Fig. 7. Stability maps of a horizontal Rijke tube; the coloured shading denotes the growth rate given on the colour bar on the right; x, =0.1 m, L =2 m. (a)
Mean flow is absent; (b) M = 0.1; (¢) M = 0.3; (d) M = 0.5.

Fig. 6 shows the variation of the heat-driven frequency of the first mode as a function of the position of the heat source, for
different Mach numbers. Fig. 6(a) and (b) illustrate the scenarios, respectively, at low (¢ = 0.1) and high excitation amplitude
(e = 0.8). We observe a consistent trend across all heat source positions: increasing the mean flow velocity reduces the heat-driven
frequency. Until M = 0.1 differences in frequencies are hardly noticeable. As the Mach number increases, the frequency can decrease
quite significantly compared to the M = 0 case, especially when the heat source is located in the downstream half of the tube.
Conversely, for the high amplitude case, the larger discrepancy in frequency appears when the heat source is located in the upstream
half of the tube.

3.1.2. Dependence on the coupling between velocity and heat release rate

As explained in Section 2.1, the parameter K, which we call heater power, is a measure of the coupling between the heat release
rate and the acoustic field. It seems worthwhile to focus on this parameter and inspect the stability behaviour if K is varied.

The stability maps based on control parameter K for different mean flow velocities are shown in Fig. 7. Egs. (41) and (61) reveal
that the variation of heater power K does not change the solution of the adjoint Green’s function but affects only the complex modal
frequencies £,,. The stability maps quantify the effect of the coupling strength on the system’s stability. The results displayed in
Figs. 7 and 8 are in line with the hysteresis zone and the fold point observed in the experiments by Gopalakrishnan and Sujith [9].

The comparison of the stability maps for M = 0,0.1,0.3, and 0.5 suggests that the mean flow effect is only significant when M
is sufficiently large. At low Mach number, M = 0.1, the alteration of the stability map is negligible compared to the M =0 case. A
subcritical Hopf bifurcation and a fold point are found (marked in Fig. 8), leading to sudden jumps in the forward and backward
bifurcation paths. This agrees qualitatively with several experimental observations [6,9,42,47]. As the Mach number increases, the
limit cycle amplitude grows when K is low and the growth rate increases. At the same time, the band-shaped unstable region when
K > 3x10° J kg~! becomes narrower and straighter. Fig. 8 focuses on the range 2.2x10° < K < 4x10° J kg~! for two different Mach
numbers: by increasing the mean flow, another bistable region (cf. inset in the figure for M = 0.5) is generated when K exceeds
3.94 x 106 J kgL

Fig. 9 shows the variation of the first-mode heat-driven frequency with K for varying Mach numbers. Part (a) illustrates the
behaviour when ¢ = 0.1, whereas in part (b) the amplitude is larger (¢ = 0.8). The mean-flow effect is less prominent when the
oscillation amplitude is low. For both low-amplitude and high-amplitude cases, when K is lower than 1.5x10° J kg~1, the frequency
decreases as the Mach number increases. The reverse effect is found for the high-amplitude case when K > 1.5x 10° J kg~! and the
mean-flow impact is more evident.
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Fig. 8. Hysteresis effect and bistable regions in a horizontal Rijke tube for variable heater power 2.2 x 10° < K < 4x 10° J kg™!, x, = 0.1 m. The white part
indicates the stable region and the grey part indicates the unstable region. The blue solid arrows denote the forward (bifurcation) path when the system is
switched on with a small perturbation when K =2.2x10° J kg~! and the heater power gradually increases to 4 x 10° J kg~!. The red dashed arrows denote the
backward (bifurcation) path when the system is switched on with a small perturbation when K = 4 x 10° J kg~ and the heater power gradually decreases to
2.2x10° J kg~!'. (a) Mean flow is absent; (b) M = 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 9. Modal frequency variation, Re(£2,)/(27), as function of the heater power, K, for various Mach numbers M. x, = 0.1 m. Blue symbols represent the stable
state of mode 1; red symbols represent the unstable state. (a) Small amplitude, e = 0.1; (b) large amplitude, ¢ = 0.8. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Stability maps of a horizontal Rijke tube; the coloured shading denotes the growth rate given on the colour bar on the right. The control parameter
is L, the length of the Rijke tube; x, = 0.01 m, K =3 x 10° J kg~!. (a) Mean flow is absent; (b)) M = 0.1; (c) M = 0.3; (d) M = 0.5.

3.1.3. Dependence on the length of the Rijke tube

From the characteristic Eq. (20) it is known that changing the tube length affects the eigenfrequencies of the resonator (w,) and
hence alters the modal frequency of the thermoacoustic system (£2,,). Fig. 10 shows the stability maps for variations of the control
parameter L between the values of 0.4 m and 2 m. The heat source is fixed at x, = 0.0l m and K = 3x 10° J kg~!. The comparison of
the different stability maps highlights the effect of the Mach number. The alteration of the stability boundaries is significant when
the Mach number is relatively high. As the Mach number increases, the unstable region where the tube length is longer is expanded
and the growth rate in the band-shaped unstable regions increases. Overall, the unstable regions are moving in the direction of
decreasing tube length as the mean flow velocity increases.

Fig. 11 focuses on the range 0.4 m < L < 1 m and shows the bifurcation that is observed when L is increased (solid blue curve)
or decreased (dashed red curve). Fig. 11(a) shows this for M = 0. The system is in the limit cycle at the starting point of the
forward path (L = 0.4 m), and as L increases, the limit cycle is maintained, while its amplitude grows. Along the backward path,
several transitions occur: at L = 0.88 m and L = 0.45 m, there are transitions from a linearly stable state to a limit cycle (subcritical
Hopf bifurcation); at L = 0.56 m, the transition is in the other direction, i.e. from limit cycle to linearly stable (supercritical Hopf
bifurcation). The bistable regions are in the ranges L = 0.45...0.56 m and L = 0.88 ... 1 m. For increasing Mach numbers, the bands
of instability and hence the Hopf points move to lower L-values; this changes the bistable regions and the transition points as shown
in Fig. 11(b).

Fig. 12 depicts the effect of the parameters L, M and ¢ on the oscillation frequency, Re (£2,), of the thermoacoustic mode 1. As
expected, Re (£2,) decreases with L; it also decreases slightly with M, while the amplitude ¢ has no obvious effect.

3.2. Application of the theory to a quarter-wave resonator

The aim of this section is to show the versatility of the adjoint Green’s function approach by applying it to a quarter-wave
resonator, which has different boundary conditions from the Rijke tube. We model the test rig developed by Noiray et al. [48],
which features a moveable piston at the upstream end, allowing continuous tube length adjustment. The downstream end is fitted
with a perforated plate but is otherwise open. A two-dimensional array of flamelets is anchored on the downstream side of the
perforations, forming a matrix flame just outside the tube. Noiray [45] measured the reflection coefficients of both ends of the matrix
burner and showed that the piston end could be approximated as a closed boundary (R, = 1), while the perforated-plate-flame end
had a reflection coefficient around R; = —1. Therefore, this setup is effectively a quarter-wave resonator with a closed end and an
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Fig. 11. Hysteresis effect and bistable regions in a horizontal Rijke tube with changes in the Rijke tube length 0.4 < L <1 m, x, =00l m, K =3x10° J kg~".
The white part indicates the stable region and the grey part indicates the unstable region. The blue solid arrows denote the forward (bifurcation) path when the
system is switched on with a small perturbation when L = 0.4 m and the tube length gradually increases to 1 m. The red dashed arrows denote the backward
(bifurcation) path when the system is switched on with a small perturbation when L = 1 m and tube length gradually decreases to 0.4 m. (a) Mean flow is
absent; (b) M = 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Modal frequency variation, Re(£2,)/(2x), as function of the tube length, L, for various Mach number M. x, =001 m, K=3x 10° J kg~!. Blue symbols
represent the stable modes; red symbols represent the unstable modes. (a) Small amplitude, ¢ = 0.1; (b) large amplitude, ¢ = 0.8. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

open end. The matrix flame and the perforated plate are considered as a single heat source element. Since the present analytical
model does not include the mean temperature jump, modelling a flame located outside the tube (at 0.01 m from the downstream
end) is expected to yield a good match with the experimental setup. The heat release rate is modelled by Heckl’s extended time-lag
law [35] described by Egs. (3)-(6), with the fitting parameters listed in Table 2. Also listed in Table 2 are all the other parameter
values we use to model Noiray’s test rig.
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Table 2
Model parameters to simulate Noiray’s test rig [48].
Parameters Symbol Value Unit
Mean temperature T 296 K
Sound speed ¢ 345 m s~!
Reflection coefficient (upstream end) R, 1
Reflection coefficient (downstream end) R; -1
£ 1.4
Fitting parameters £ 0.3
of nonlinear heat release model 7y 0.94 x 1073 s
7, 2.5%x1073 s
Mach number M 0.1
Tube length L 0.1 ...0.75 m
Heat source position X, 0.01 m to the downstream end
Heater power K 3% 10° J kg!
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Fig. 13. Comparison of heat-driven modes of a quarter-wave resonator with tube length L as the control parameter, with experimentally measured results from
Noiray et al. [48]. The grey regions denote instability while the white regions indicate stability. The red solid curves denote the limit-cycle amplitudes. The
green stars display the acoustic velocity amplitude measured in experiments when the tube length is progressively increased, whereas the blue circles represent
the acoustic velocity amplitude obtained with the tube length progressively decreasing. (a) m = 1; (b) m =2; (c) m = 3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Comparison of heat-driven frequencies of modes m = 1,2,3 at the limit cycle amplitudes, corresponding to the red solid curves in Fig. 13; the symbols
correspond to experimental measurements by Noiray et al. [48]. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 13 shows the stability maps calculated with the AGF approach of the first three modes of the matrix burner with the tube
length L as the control parameter, together with corresponding data extracted during the limit-cycle phase of the experiments. Our
stability maps successfully capture the unstable states except for the small-amplitude limit cycle region of mode 2 in the backward
path, around L = 0.2 m. The size of the limit cycle region of mode 3 and generally the limit cycle amplitudes are over-predicted. This
is mostly due to the heat release model incorrectly predicting the high-frequency behaviour of the flame [35], and also because we
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have neglected any damping that would be present in an actual combustion chamber. Fig. 14 shows the frequency of the oscillatory
stable states, i.e. when Im(£2,,) = 0, corresponding to the limit cycles indicated by red curves in Fig. 13. The agreement between
predicted and measured frequencies for all modes is very satisfactory, and this is because the flame is very close to the downstream
end of the tube, so that the effect of the hot region can be ignored. A quantitative comparison of a combustor with the flame that
separates the combustion chamber into cold and hot regions would require the model to include a temperature jump [26,36,49-51]1.

4. Conclusion

This work has introduced an analytical framework utilizing the adjoint Green’s function to investigate self-excited acoustic
oscillations within a generalized thermoacoustic system. The system incorporates mean flow and accounts for feedback interactions
between the acoustic field and a heat source. The governing equation of the system has the form of the acoustic analogy equation,
with a convective term and a heat source described by a generalized time-lag heat release law. A key aspect of the theory is
the transformation of the governing partial differential equation into an integral equation of Volterra type. This transformation
requires finding the Green’s function of the adjoint equation. The resulting integral equation (59) provides extensive flexibility to
find solutions of the system; without modifications in the adjoint Green’s function and without further derivations, we can easily
assess the effect of changes in the initial conditions or vary, for example, the flame model. Another benefit is that the integral
equation yields both time-domain and frequency-domain results for multiple modes. Eq. (59) is also used to derive an algebraic
equation for the thermoacoustic eigenfrequencies.

The reciprocity relation between direct and adjoint Green’s functions has been demonstrated. The direct Green’s function
represents the acoustic field in the system generated by an impulsive point source. The adjoint Green’s function marches backward
in time and yields the system’s sensitivity to forcing terms and to initial and boundary conditions. Exploiting the physical meaning
of the direct Green’s function, we have found the solution of the adjoint Green’s function analytically.

We have implemented this framework to a horizontal Rijke tube and to a quarter-wave resonator, in the presence of uniform
mean flow. Our analysis reveals the framework’s adaptability in various aspects:

The approach can address the stability of the system and provide information on the nonlinear dynamics of the oscillations,
such as limit cycles and bifurcations. Our investigation for the horizontal Rijke tube covered three control parameters: heat
source position, heater power, and tube length. The model successfully identifies Hopf bifurcations, hysteresis phenomena,
and bistable regions observed in experiments.

When the heat source position is the control parameter, increasing M above 0.1 permits to avoid hysteresis and has a stabilizing
effect. When the heater power is the control parameter, the hysteresis zone between the fold point and the subcritical Hopf
bifurcation disappears. When the tube length is modified, the region of instability is shifted (and globally enlarged) with M.
The effect of convection is properly accounted for and by varying the mean flow velocity the stability behaviour of the system
is altered in two ways: the heat release function changes and so do the Green’s functions. The present findings, thus, highlight
the importance of including the mean flow: a small increment in Mach number from M =0 to M = 0.1 dramatically changes
the stability behaviour, particularly at low disturbance amplitudes.

Different acoustic boundary conditions of the system can be used in the model. A laboratory matrix burner with a closed end
has been modelled and stability predictions and frequency variation of the first three modes obtained with the AGF approach
have shown good agreement with experimental measurements.

.

The proposed AGF approach has been applied to simple one-dimensional thermoacoustic systems, with the aim to highlight the
interaction between the nonlinear heat source and the acoustic field. We have tried to capture the dominant physical phenomena
within the realm of a very basic set of equations, to extract key features and control parameters. Applications of the approach to
industrial combustion systems are better left to dedicated computational fluid dynamics solvers. On the other hand, the present
framework can be usefully extended to provide insight, for example, on the effect of including additive noise, multiple heat sources
or passive control devices.
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