

Modelling of poroelastic carpets

G. A. Zampogna & A. Bottaro

London, 9th May 2016

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

-

Man often tries to achieve technical surfaces which are rigid and smooth...

イロン 不良と 不同と 不同と

... but in Nature, porous, anisotropic, irregular, elastic, rough is the norm!

Motivation

In biomimetics we deal with several separation of scales phenomena

Motivation

In biomimetics we deal with several separation of scales phenomena

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

-

Motivation

In biomimetics we deal with several separation of scales phenomena

- Theory of homogenization applied to poroelastic media
- Resolution of the microscopic equations
 - Permeability tensor
 - Elasticity tensor
- Resolution of the macroscopic equations
 - Oscillating channel flow
- Left to do ...

-

イロト イヨト イヨト イ

Introduction: carpet of elastic fibres

Transversely isotropic porous medium, made by fibers shown in the (x_1, x_3) and (x_1, x_2) plane, respectively. The dotted rectangle in the two frames represents the elementary cell V. V_f is the volume occupied by the fluid and V_s is that occupied by the solid, so that $V = V_f + V_s$. Γ is the fluid-solid microscopic interface. The porosity ϑ is defined as V_f/V . All the unknowns are periodic over V.

A D > A P > A B > A

Introduction: carpet of elastic fibres

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

The scales considered

$$U = \frac{V}{T_S} \qquad \text{No slip on } \Gamma$$

$$E \frac{Pl^2}{\mu L^2} T_S = P, \qquad \text{macroscopic solid stresses balanced by pressure on } \Gamma$$

$$\frac{P}{L} = \frac{\mu U}{l^2} \qquad \text{macroscopic press forces balanced by viscous dissipation}$$

$$\Rightarrow T_S = \frac{\mu L^2}{El^2} = \frac{\mu}{\epsilon^2 E} \qquad \text{solid time scale}$$

$$\frac{\rho_s}{T_S^2} = \frac{E}{L^2}, \qquad \text{inertia of the solid of the same order of the solid stress}$$

(Fluid and solid variables)

$$\hat{\mathbf{x}} = l\mathbf{x}, \quad \hat{p} = Pp, \quad \hat{t}_f = \frac{lt_f}{U}, \quad \hat{\mathbf{u}} = \epsilon \frac{Pl}{\mu} \mathbf{u}$$
$$\hat{\mathbf{v}} = \frac{PL}{E} \mathbf{v}, \quad \hat{t}_s = \frac{\mu t_s}{E\epsilon^2}$$

The homogenized model

$$\frac{\partial u_i}{\partial x_i} = 0 \text{ on } V_f$$

$$\epsilon \operatorname{Re}_I \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} + \epsilon \nabla^2 u_i \text{ on } V_f$$

$$\epsilon^2 \frac{\partial^2 v_i}{\partial t_s^2} = \frac{\partial}{\partial x_i} C_{ijkl} \varepsilon_{kl}(\mathbf{v}) \text{ on } V_s$$

linked by

$$u_{i} = \frac{\partial v_{i}}{\partial t} \text{ and } -p n_{i} + 2\epsilon \varepsilon_{ij}(\mathbf{u})n_{j} = \frac{1}{\epsilon} \left[C_{ijkl} \varepsilon_{kl}(\mathbf{v}) \right] n_{j} \text{ on } \Gamma$$
$$\operatorname{Re}_{l} = \frac{\rho_{f} U l}{\mu} = \epsilon \frac{\rho_{f} U L}{\mu} = \epsilon \operatorname{Re}_{L}$$

DEVELOPED MODELS

• $\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$ & $\mathcal{O}(1)$ for poroelastic media, isotropic and anisotropic

$$egin{aligned} &\left(1-artheta
ight)rac{\partial^2 v_i^{(0)}}{\partial t^2} = rac{\partial}{\partial x_j'}\left[\mathcal{C}_{ijpq}arepsilon_{pq}'(\mathbf{v}^{(0)}) - lpha_{ij}'p^{(0)}
ight] \ & \left(rac{\partial\langle u_i^{(0)}
angle}{\partial x_i'} = \langlerac{\partial\chi_i^{pq}}{\partial x_i}
anglearepsilon_{pq}'(\dot{\mathbf{v}}^{(0)}) - \langlerac{\partial\eta_i}{\partial x_i}
angle\dot{p}^{(0)} \ & \langle u_i^{(0)}
angle - artheta\dot{v}_i^{(0)} = -\mathcal{K}_{ij}rac{\partial p^{(0)}}{\partial x_i'} \end{aligned}$$

valid in the homogenized macroscopic domain, and the equations for the microscopic fields χ , η , K and A valid in the microcell

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \\ \begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases} \begin{cases} \frac{\partial A_j}{\partial x_i} - \frac{\partial^2 K_{ij}}{\partial x_k^2} = \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_i} = 0, \\ K_{ii}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases} \end{cases}$$

4 A 1 1 4

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} = \frac{\partial}{\partial x'_j} \left[\begin{array}{c} \mathcal{C}_{ijpq} \varepsilon'_{pq}(\mathbf{v}^{(0)}) - \alpha'_{ij}p^{(0)} \right] \\ \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x'_i} = \left\langle \frac{\partial \chi_i^{pq}}{\partial x_i} \right\rangle \varepsilon'_{pq}(\dot{\mathbf{v}}^{(0)}) - \langle \frac{\partial \eta_i}{\partial x_i} \rangle \dot{p}^{(0)} \\ \\ \langle u_i^{(0)} \rangle - \vartheta \dot{\mathbf{v}}_i^{(0)} = -\mathcal{K}_{ij} \frac{\partial p^{(0)}}{\partial x'_i} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial A_j}{\partial x_i} - \frac{\partial^2 K_{ij}}{\partial x_k^2} = \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_i} = 0, \\ K_{ij}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} = \frac{\partial}{\partial x_j'} \left[\begin{array}{c} \mathcal{C}_{ijpq} \\ \mathcal{C}_{ijpq} \end{array} \varepsilon_{pq}' (\mathbf{v}^{(0)}) - \begin{array}{c} \alpha_{ij}' \\ \alpha_{ij}' \end{array} p^{(0)} \right] \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \left\langle \frac{\partial \chi_i^{pq}}{\partial x_i} \right\rangle \varepsilon_{pq}' (\dot{\mathbf{v}}^{(0)}) - \left\langle \frac{\partial \eta_i}{\partial x_i} \right\rangle \dot{p}^{(0)} \\ \langle u_i^{(0)} \rangle - \vartheta \dot{v}_i^{(0)} = -\mathcal{K}_{ij} \frac{\partial p^{(0)}}{\partial x_i'} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial A_j}{\partial x_i} - \frac{\partial^2 K_{ij}}{\partial x_k^2} = \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_i} = 0, \\ K_{ij}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} = \frac{\partial}{\partial x_j'} \left[\begin{array}{c} \mathcal{C}_{ijpq} \\ \mathcal{C}_{ijpq} \end{array} \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \begin{array}{c} \alpha_{ij}' \\ \alpha_{ij}' \end{array} p^{(0)} \right] \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \left\langle \frac{\partial \chi_i^{pq}}{\partial x_i} \right\rangle \varepsilon_{pq}'(\dot{\mathbf{v}}^{(0)}) - \left\langle \frac{\partial \eta_i}{\partial x_i} \right\rangle \dot{p}^{(0)} \\ \langle u_i^{(0)} \rangle - \vartheta \dot{\mathbf{v}}_i^{(0)} = - \begin{array}{c} \mathcal{K}_{ij} \\ \frac{\partial p^{(0)}}{\partial x_i'} \end{array} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp}\delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp}\delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial A_j}{\partial x_i} - \frac{\partial^2 K_{ij}}{\partial x_k^2} = \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_i} = 0, \\ K_{ij}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} + \left[\operatorname{Re}_I U_j \langle \frac{\partial u_i^{(0)}}{\partial x_j} \rangle \right] = \frac{\partial}{\partial x_j'} \left[\mathcal{C}_{ijpq} \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \alpha_{ij}' p^{(0)} \right] \\ \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \left\langle \frac{\partial \chi_i^{pq}}{\partial x_i} \right\rangle \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \left\langle \frac{\partial \eta_i}{\partial x_i} \right\rangle \dot{p}^{(0)} \\ \\ \langle u_i^{(0)} \rangle - \vartheta \dot{v}_i^{(0)} = - \left[\mathcal{K}_{ij} \right] \frac{\partial p^{(0)}}{\partial x_j'} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \boxed{\operatorname{Re}_{l}U_{k}\frac{\partial K_{ij}}{\partial x_{k}}} = -\frac{\partial A_{j}}{\partial x_{i}} + \frac{\partial^{2}K_{ij}}{\partial x_{k}^{2}} + \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_{i}} = 0, \\ K_{ij}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases}$$

$\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$: packed rigid spheres

$$\mathcal{K}_{ij} = \mathcal{K}\delta_{ij}$$

<ロ> (日) (日) (日) (日) (日)

3

$\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$: packed rigid spheres

Mini-Symposium on Flows over Non-Smooth Walls

$\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$: arrays of rigid cylinders

$$\mathcal{K}_{11} = \mathcal{K}_{22}$$

イロン イヨン イヨン イヨン

$\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$: arrays of rigid cylinders

 \mathcal{K}_{33}

<ロ> (日) (日) (日) (日) (日)

$\operatorname{Re}_{l} = \mathcal{O}(\epsilon)$: arrays of rigid cylinders

Zampogna & Bottaro

 ${\sf Re}_l = \mathcal{O}(1)$

Macroscopic level

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} + Re_l U_j \langle \frac{\partial u_i^{(0)}}{\partial x_j} \rangle = \frac{\partial}{\partial x_j'} \left[\mathcal{C}_{ijpq} \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \alpha_{ij}' p^{(0)} \right] \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \langle \frac{\partial \chi_i^{pq}}{\partial x_i} \rangle \varepsilon_{pq}'(\mathbf{\dot{v}}^{(0)}) - \langle \frac{\partial \eta_i}{\partial x_i} \rangle \dot{p}^{(0)} \\ \langle u_i^{(0)} \rangle - \vartheta \dot{v}_i^{(0)} = -\mathcal{K}_{ij} \frac{\partial p^{(0)}}{\partial x_j'} \end{cases}$$

Microscopic level

$$egin{aligned} & \mathcal{R}e_{l}\mathcal{U}_{k}rac{\partial\mathcal{K}_{ij}}{\partial x_{k}}\simeq-rac{\partial\mathcal{A}_{j}}{\partial x_{i}}+rac{\partial^{2}\mathcal{K}_{ij}}{\partial x_{k}^{2}}+\delta_{ij}, & rac{\partial\mathcal{K}_{ij}}{\partial x_{i}}=0 \ & \mathcal{K}_{ij}(\mathbf{x},t)=0 \quad on \ \Gamma, \quad plus \ periodicity \ over \ V_{f} \ & \mathcal{R}e_{l}=rac{\mathcal{U}l}{
u}, \quad \mathcal{U}_{k}:=rac{1}{\mathcal{V}_{Tot}}\int_{V_{Tot}}\langle u_{k}^{(0)}
angle \, dV \end{aligned}$$

MICRO and MACRO level linked by iterations over U_k .

cf. Gustaffson & Protas (2013) on the use of Oseen's closure for high Re

$\operatorname{\mathsf{Re}}_{l}U_{k}\in[0,150]\delta_{1k}$, artheta=0.7

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

London, 9th May 2016 21 / 44

Edwards et al. (1990)

$$\mathsf{Re}_l = \mathcal{O}(1)
ightarrow \mathcal{K}_{ij} = \ egin{pmatrix} \mathscr{O}(10^{-9}) & \mathcal{O}(10^{-9}) \ \mathcal{O}(10^{-9}) & \mathscr{O}(10^{-9}) \ \mathcal{O}(10^{-9}) & \mathcal{O}(10^{-9}) & \mathscr{O}(10^{-9}) \ \end{pmatrix}$$

イロト イヨト イヨト イヨト

2

$\operatorname{Re}_{I}U_{k}=(c,0,0)$

Ghisalberti & Nepf (2004,2006,2009)

・ロト ・回ト ・ヨト

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

London, 9th May 2016 23 / 44

2

3

$\operatorname{Re}_{I}U_{k} = (10, 20, 15), \ \vartheta = 0.7$

$\operatorname{Re}_{I}U_{k} = (10, 20, 15), \ \vartheta = 0.7$

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} = \frac{\partial}{\partial x_j'} \left[\begin{array}{c} \mathcal{C}_{ijpq} \\ \mathcal{C}_{ijpq} \end{array} \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \begin{array}{c} \alpha_{ij}' \\ \alpha_{ij}' \end{array} p^{(0)} \right] \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \left\langle \frac{\partial \chi_i^{pq}}{\partial x_i} \right\rangle \varepsilon_{pq}'(\dot{\mathbf{v}}^{(0)}) - \left\langle \frac{\partial \eta_i}{\partial x_i} \right\rangle \dot{p}^{(0)} \\ \langle u_i^{(0)} \rangle - \vartheta \dot{\mathbf{v}}_i^{(0)} = - \begin{array}{c} \mathcal{K}_{ij} \\ \frac{\partial p^{(0)}}{\partial x_i'} \end{array} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp}\delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp}\delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial x_j} \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] = 0, \\ \left[C_{ijkl} \ \varepsilon_{kl}(\eta) \right] n_j = -n_i \quad \text{on } \Gamma \end{cases}$$

$$\begin{cases} \frac{\partial A_j}{\partial x_i} - \frac{\partial^2 K_{ij}}{\partial x_k^2} = \delta_{ij}, \\ \frac{\partial K_{ij}}{\partial x_i} = 0, \\ K_{ij}(\mathbf{x}, t) = 0 \quad \text{on } \Gamma \end{cases}$$

$\operatorname{Re}_{l} = O(\epsilon) \& \operatorname{Re}_{l} = O(1)$ effective tensors

(Cylinders, $\vartheta = 0.3 - 0.99$)

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma, \end{cases}$$

$$C_{ijpq} = \langle C_{ijkl} \ \varepsilon_{kl}(\chi^{pq}) \rangle + \langle C_{ijpq} \rangle = \begin{pmatrix} \bigcirc & \blacksquare & \bigotimes & 0 & 0 & 0 \\ & \bigcirc & \bigotimes & 0 & 0 & 0 \\ \otimes & \bigotimes & \bigstar & 0 & 0 & 0 \\ 0 & 0 & 0 & \bigstar & 0 & 0 \\ 0 & 0 & 0 & 0 & \bigstar & 0 \\ 0 & 0 & 0 & 0 & \bigstar & 0 \end{pmatrix}$$

$\operatorname{Re}_{l} = O(\epsilon) \& \operatorname{Re}_{l} = O(1)$ effective tensors

(Cylinders, $\vartheta = 0.3 - 0.99$)

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma, \end{cases}$$

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

$\operatorname{Re}_{l} = O(\epsilon)$ & $\operatorname{Re}_{l} = O(1)$ effective tensors

(Linked cylinders, $\vartheta \approx 0.8$)

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl} (\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma, \end{cases}$$

$$C_{ijpq} = \langle C_{ijkl} \ \varepsilon_{kl}(\chi^{pq}) \rangle + \langle C_{ijpq} \rangle = \begin{pmatrix} \bigcirc & \blacksquare & \bigotimes & 0 & 0 & 0 \\ \blacksquare & \bigcirc & \bigotimes & 0 & 0 & 0 \\ \otimes & \bigotimes & \bigstar & 0 & 0 & 0 \\ 0 & 0 & 0 & \bigstar & 0 & 0 \\ 0 & 0 & 0 & 0 & \bigstar & 0 \\ 0 & 0 & 0 & 0 & \bigstar & 0 \end{pmatrix}$$

 $\operatorname{Re}_{l} = O(\epsilon) \& \operatorname{Re}_{l} = O(1)$ effective tensors

$$\begin{cases} \frac{\partial}{\partial x_j} \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} = 0, \\ \left\{ C_{ijkl} \left[\varepsilon_{kl}(\chi^{pq}) + \delta_{kp} \delta_{lq} \right] \right\} n_j = 0 \quad \text{on } \Gamma, \end{cases}$$

$$C_{ijpq} = \langle C_{ijkl} \varepsilon_{kl}(\chi^{pq}) \rangle + \langle C_{ijpq} \rangle = \begin{pmatrix} \partial & \partial & \partial & 0 & 0 \\ \partial & \partial & \partial & 0 & 0 \\ \partial & \partial & \star & 0 & 0 \\ 0 & 0 & 0 & \partial & 0 & 0 \\ 0 & 0 & 0 & 0 & \partial & 0 \\ 0 & 0 & 0 & 0 & 0 & \partial & 0 \\ 0 & 0 & 0 & 0 & 0 & \partial & 0 \end{pmatrix}$$

Averaged components of the effective elasticity tensors

Macroscopic simulations: oscillating channel flow

A domain-decomposition-based solver

Macroscopic results: linked cylinders

$$\begin{cases} (1-\vartheta)\frac{\partial^2 v_i^{(0)}}{\partial t^2} = \frac{\partial}{\partial x_j'} \left[\mathcal{C}_{ijpq} \varepsilon_{pq}'(\mathbf{v}^{(0)}) - \alpha_{ij}' p^{(0)} \right] \\ \frac{\partial \langle u_i^{(0)} \rangle}{\partial x_i'} = \langle \frac{\partial \chi_i^{pq}}{\partial x_i} \rangle \varepsilon_{pq}'(\dot{\mathbf{v}}^{(0)}) - \langle \frac{\partial \eta_i}{\partial x_i} \rangle \dot{p}^{(0)} \\ \langle u_i^{(0)} \rangle - \vartheta \dot{v}_i^{(0)} = -\mathcal{K}_{ij} \frac{\partial p^{(0)}}{\partial x_i'} \end{cases}$$

イロト イロト イヨト イヨト

u=0

NSE are forced by an oscillating pressure gradient of the form $\Re(Ae^{i\omega t}).$ Solution shown for

- $\rho_f = 1.22 \ kg/m^3$, air,
- Re_L = 100,
- Ca = 9.15×10^{-8} (polyurethane foam, $E = 3 \times 10^{5}$ Pa, $\nu_{P} = 0.39$),
- $A = \omega = 1$.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NSE are forced by an oscillating pressure gradient of the form $\Re(Ae^{i\omega t}).$ Solution shown for

•
$$\rho_f = 1.22 \ kg/m^3$$
, air,

- $Re_L = 100$,
- Ca = 9.15×10^{-8} (polyurethane foam, $E = 3 \times 10^{5}$ Pa, $\nu_{P} = 0.39$),
- $A = \omega = 1$.

3

NSE are forced by an oscillating pressure gradient of the form $\Re(Ae^{i\omega t}).$ Solution shown for

- $\rho_f = 1.22 \ kg/m^3$, air,
- $Re_L = 100$,
- Ca = 9.15×10^{-8} (polyurethane foam, $E = 3 \times 10^5$ Pa, $\nu_P = 0.39$),
- $A = \omega = 1$.

3

イロト イポト イヨト イヨト

NSE are forced by an oscillating pressure gradient of the form $\Re(Ae^{i\omega t}).$ Solution shown for

•
$$\rho_f = 1.22 \ kg/m^3$$
, air,

- $Re_L = 100$,
- Ca = 9.15×10^{-8} (polyurethane foam, $E = 3 \times 10^{5}$ Pa, $\nu_{P} = 0.39$),
- $A = \omega = 1$.

3

Left to do ...

Zampogna & Bottaro

2

< □ > < □ > < □ > < □ > < □ > < □ >

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

London, 9th May 2016 39 / 44

- 2

・ロト ・回ト ・ヨト ・ヨト

Considering higher order approximation (in $\epsilon = \frac{l}{L}$), $\langle u_i \rangle = \langle u_i^{(0)} \rangle + \epsilon \langle u_i^{(1)} \rangle$ and $\langle p \rangle = \langle p^{(0)} \rangle + \epsilon \langle p^{(1)} \rangle$:

Macroscopic level

$$\langle u_i^{(1)} \rangle = -\mathcal{L}_{ijk} \frac{\partial p^{(0)}}{\partial x_j'} \frac{\partial p^{(0)}}{\partial x_k'} - \mathcal{M}_{ijk} \frac{\partial^2 p^{(0)}}{\partial x_j' \partial x_k'} - \mathcal{K}_{ij} \frac{\partial p_0^{(1)}}{\partial x_j'}$$

3

イロト イポト イヨト イヨト

$\epsilon < {\sf Re} < 1$

Microscopic level

$$\begin{cases} \frac{\partial L_{ijk}}{\partial x_i} = 0 \\ \frac{\partial B_{jk}}{\partial x_i} - \frac{\partial L_{ijk}}{\partial x_g \partial x_g} = K_{lj} \frac{\partial K_{ik}}{\partial x_i} \begin{cases} \frac{\partial M_{ijk}}{\partial x_i} = -K_{kj} \\ \frac{\partial C_{jk}}{\partial x_i} - \frac{\partial M_{ijk}}{\partial x_g \partial x_g} = -A_j \delta_{ik} + 2 \frac{\partial K_{ij}}{\partial x_k} \end{cases} \\ L_{ijk} = S_{ij} = T_j = 0, \ M_{ijk} = -\frac{V}{|\Gamma|} \langle K_{kj} \rangle n_i \quad on \ \Gamma, \\ L_{ijk}, \ M_{ijk}, \ B_{jk}, \ C_{jk}, \ S_{ij}, \ T_j \ V\text{-periodic} \end{cases}$$

$$\langle L_{ijk} \rangle = 0$$

(< (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) <

Nield and Bejan (2006), Skjetne and Auriault (1999)

Zampogna & Bottaro

Mini-Symposium on Flows over Non-Smooth Walls

London, 9th May 2016 41 / 44

Macroscopic simulations: the homogenized model

$$(\sigma_{ij}n_j)n_i|_{NS} = (\sigma_{ij}n_j)n_i|_{BR} \qquad (\sigma_{ij}n_j)t_i|_{NS} = (\sigma_{ij}n_j)t_i|_{BR}$$

can be written as

$$\left. \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \right|_{NSE} = \left. \frac{\mu_e}{\mu} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \right|_{BRINK}$$

and

$$\left(-p + \frac{1}{2\text{Re}}\frac{\partial u_3}{\partial x_3}\right)\Big|_{NSE} = \left.\left(-p + \frac{\mu_e}{2\mu\text{Re}}\frac{\partial u_3}{\partial x_3}\right)\right|_{BRINK}$$

Macroscopic simulations: the homogenized model

Case 1
Case 2
Case 2

$$\langle u_i^{(0)} \rangle = -\mathcal{K}_{ij} \epsilon^2 \operatorname{Re}_L \frac{\partial p^{(0)}}{\partial x'_j} \qquad \langle u_i^{(0)} \rangle = -\mathcal{K}_{ij} \epsilon^2 \operatorname{Re}_L \frac{\partial p^{(0)}}{\partial x'_j} + \\
+\mathcal{K}_{ij} \epsilon^2 \frac{\mu_e}{\mu} \nabla^2 \langle u_j^{(0)} \rangle \\
u_i|_{NS} = u_i^{(0)}|_{DARCY} \qquad (\sigma_{ij} n_j) n_i|_{NS} = (\sigma_{ij} n_j) n_i|_{BR} \\
(\sigma_{ij} n_j) t_i|_{NS} = (\sigma_{ij} n_j) t_i|_{BR} \\
\delta = c \sqrt{\frac{\mathcal{K}}{\theta}} \qquad u_i|_{NS} = u_i^{(0)}|_{BR} \\
\text{Le Bars & Worster (2006).} \qquad \text{imposed at } y_{ITF}. \end{cases}$$

イロト イポト イヨト イヨト

Macroscopic simulations: Re_L=100

(A) (□) (A) (□) (A)