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Transition, a burning question for 100+ years ...

What happens/why?

Time-Averaged

. Velocity Profiles

http://en.wikipedia.org/wiki/Boundary layer transition

‘... the concept of boundary layer transition is a complex one and still lacks a
complete theoretical exposition.


http://en.wikipedia.org/wiki/Boundary_layer_transition

What we know already

e 2D TS waves
SUPERCRITICAL TRANSITION
(for ‘small’ disturbance levels)

A-vortices hairpin vortices

Philipp Schlatter, 2009




What we know already

* Emmons (1951) spots, induced by free-stream turbulence

Matsubara & Alfredsson, 2005

SUBCRITICAL (BYPASS) TRANSITION
(for ‘large’ Tu disturbance levels)

streamwise fluctuations
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Zaki & Durbin, 2005



What we know already

‘Optimal perturbations ’ to explain bypass transition??

- Linear (based on B/L scalings): I T
Andersson, Berggren & Henningson, 1999 .‘ 1\\‘3 toud v
Luchini, 2000 -

- Nonlinear (based on B/L scalings): e
Zuccher, Luchini & Bottaro, 2004

e T ]

... but a = 0 streaks are not oL ]

good at kicking transition S| 4>02 |
Waleffe, 1995 %E A<02 :
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Fig. 12. Curve of initial perturbation energy Eq as a function of § for which A = 0.2 somewhere in the domain



What we know already

What about ECS, saddles, edge states, etc.?

+. saddle

edge surface

Sketch in some
phase space ...

laminar fixed point ©



What we know already \‘ turbulence

What about ECS, saddles, edge states, etc.? \ /

homoclinic cycle
° y edge surface

laminar fixed point



What we know already turbulence

What about ECS, saddles, edge states, etc.?

homoclinic cycle

edge surface
E, = fixed 8

trajectory to turbulence starting from
the optimal disturbance, E, = fixed

laminar fixed point

disturbance amplitude



What we know already

What about ECS, saddles, edge states, etc.?
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Figure 7. (a) Ey ‘energy’ versus Re,. The laminar fixed point with Re,=3163 and E;=306.45 is
denoted by a square. (b) Better details of the flow trajectory on the edge (dashed curve).

Biau & Bottaro, 2009 (square duct)



What we know already

What about ECS, saddles, edge states, etc.?
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NL E(0)=0.004444275
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Cherubini et al., 2011 506} P g
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FIG. 2. (Color online) Snapshots of the streamwise component of the pertur-
bation (darker surfaces, blue online, for # = —0.13) and of the Q-criterion
(lighter surfaces, green online) at ¢ = 300 and ¢ = 700 (top and bottom,
respectively) obtained by the DNS initialized with the nonlinear optimal per-
turbation with Ey = 0.004444275.



What else?

Localized initial disturbance (in x, y and z)
Efficient (small input = catastrophic output)
Nonlinear interactions

Maintain ‘obliquity’ (i.e. no B/L scales)

®




Questions we will try to answer ...

Linear/nonlinear mechanisms

What is the most dangerous, localized initial flow
state (which we will call the minimal seed)?

How robust is it with respect to flow domain
constraints, Re, initial energy level ... ?

Path to transition? Going near some saddle point
in phase space (the edge state)?

Can we imagine something like a cycle for the
regeneration of flow structures?




Effect of 3D inlet noise: suboptimal

A, criterion
high dist. velocity
low dist. velocity

Philipp Schlatter et al., 2009



Optimizing the initial disturbance field

* Direct-adjoint procedure to maximize the
disturbance energy at given target time T

Polack & Ribiere, 1969, conjugate gradient approach needed
to converge also for ‘large’ initial disturbance energies



The DNS code

MNon-dimensional incompressible Navier-Stokes equations:

u +(u-yhu = — +i u
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with 1 = (u, v, w)? the velocity vector, p the pressure and Re =
@ Fractional step’ method on a ‘staggered grid.
@ Centered second-order spatial discretization
@ Temporal discretization: Crank—Nicolson for the viscous terms,
third-order Runge-Kutta for non-linear ones.
@ Domain: 200 x 20 x 10.5 in terms of 4, discretized on a
901 = 150 = 61 gnd
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Convergence
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Convergence
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Pringle, Willis & Kerswell, 2011 (periodic pipe flow)
‘... however the domain is by no means long enough for us to observe
truly localisd optimals as opposed to periodic disturbances.
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For target time T sufficiently large nonlinear optimals

produce much larger gains



Linear versus nonlinear
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For given Re and T, a threshold on E, exists above

which nonlinear effects become important

Eo

10"



Dependence of nonlinear optimal on E,

t=0, T=75, Re=610
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Above the threshold the same basic building block reappears ...



THE MINIMAL SEED

Optimal initial perturbation at 7' =75, Fy = 0.01 and Re = 610 —
alternated vortices inclined in x and tilted upstream (yellow and blue), which
lay on the flanks of a region of high negative streamwise disturbance (green).

0 Large differences w.r.t. the linear optimal:
@ it is localized in = and =

@ vortices are streamwise-inclined

45 N
@ ' is the largest component
(|tmaz| = 0.018)
10 @ regions with high negative u’ are
210 230 250 associated with high positive v’




= universality of the minimal seed

Re=610, T=75, E,=0.01
Re=300, T=125, E,=0.1

10
130 140 X 150 160

@ The minimal seed is observed at
different Re.

@ It slightly depends on the domain
length

@ |t is has a characteristic spanwise and
streamwise size

15
210 220 230 X 240 250 260



What happens at the target time T?

t=T=75, Re=610

=
E,:0.001 ?
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Beyond the non-linearity threshold A-vortices appear;
their interactions lead the flow to turbulence when
several minimal seeds are present in the initial field



Path to turbulence of the minimal seed




Path to turbulence of the minimal seed

Orr mechanism tilts the vortices (drawn in green
via the Q criterion) downstream



Path to turbulence of the minimal seed

Lift up —related to v'U, — to amplify the
streamwise disturbance field (drawn in blue)



Path to turbulence of the minimal seed

“Landahl (1975, 1980) studied the linear evolution of localized
disturbances and formalized a physical explanation for the
streak growth mechanism, which we denote the lift-up effect.
Since a fluid particle in a streamwise vortex will initially retain
Its horizontal momentum if displaced in the wall-normal
direction, such a disturbance in the wall-normal velocity will

cause in a shear layer a perturbation in the streamwise velocity. ”
105 2% L. BRANDT, P. SCHLATTER AND D.S. HENNINGSON, JFM 2004

Lift up to amplify the streamwise disturbance field
(drawn in blue)



Path to turbulence of the minimal seed

Structures remain oblique thanks to the term ww,



Path to turbulence of the minimal seed

) J—
107 ¢
E — = .
. N x Non-linear
5 B , 320

0o 1035_

Structures remain oblique thanks to the term ww,



E(t)/E(0)

Path to turbulence of the minimal seed
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Structures remain oblique thanks to the term ww,



Path to turbulence of the minimal seed

Creation of a A-vortex because of stretching of the
vortical disturbances by the mean flow, via the term Uu’

X



Path to turbulence of the minimal seed

Formation of an arch-vortex = hairpin, (switching off the
term (u’v’), inhibits the development of the hairpin head)



Path to turbulence of the minimal seed

Smaller scale vortices and subsidiary hairpins



Path to turbulence of the minimal seed
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Smaller scale vortices and subsidiary hairpins



minimal seed snapshot from a simulation of turbulence
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FIGURE 23. Iso-surfaces of the streamwise component of the velocity (green, v’ = —0.25) and
streamwise vorticity perturbations (yellow and blue for w), = 0.6 and w} = —0.6), respectively.

The top frame shows the entire view of the wave packet, whereas the bottom ones provide the

local view of the three regions of the flow marked by black rectangles on the top.

This suggests a cycle for the regeneration of flow
structures at smaller/faster space/time scales ...



The disturbance regeneration cycle
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Summing up

Minimal seed, localized spatial structure invariant w.r.t. Re,
E,, domain size, target time

Minimal seed differs in shape and amplitude from both
classical OP (Andersson et al. 1999, Luchini 2000) and from
linear, localized OP

It triggers transition faster than any other IC (better than
oblique transition, for details consult the paper by Cherubini
et al.,, in press). NONLINEARITY IS CRUCIAL!

Steps: Orr mechanism, lift-up (v'U, ), maintain obliquity
(ww),, A-vortices (Uu’,), hairpins = THEN REPEAT!

Disturbance regeneration cycle could start from other
disturbances, such as free-stream turbulence ...



