
A slip-transpiration-vortex model for riblets past

the viscous regime

Alessandro Bottaro, Giulia Innocenti, Essam Nabil Ahmed

DICCA, University of Genova, via Montallegro 1, Genova, 16145, Italy.

Contributing authors: alessandro.bottaro@unige.it;
giulia.innocenti@edu.unige.it; essameldin.abdo@edu.unige.it;

Abstract

A new boundary condition at a plane, fictitious wall, meant to simulate the
presence of small-scale streamwise-aligned riblets is outlined and tested. The need
for an approach which extends beyond the viscous regime stems from the high cost
of numerically resolving microscopic flow details within micro-ribs, and from the
desire to rapidly optimize a variety of wall textures. A multiscale homogenization
technique which accounts for advection is coupled to a synthetic vortex model
which mimics the transverse flow in the near-wall region. The proposed wall
model captures the non-monotonic behavior of the skin-friction drag over ribleted
surfaces with the increase in ℓ+ (the pitch distance measured in viscous units),
including the performance degradation and the eventual drag increase beyond
some ℓ+ threshold.
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1 Introduction

Riblets are streamwise-aligned microscopic grooves designed on surfaces to reduce
skin friction. These tiny structures mimic the natural design of dermal denticles in
the skin of sharks, whose unique texture inspired the development of riblets for use
in fluid dynamics [1]. The history of riblet research dates back several decades, when
Walsh and collaborators [2–4] documented early NASA experiments that indicated
drag reductions on aircraft surfaces when riblets were applied, highlighting their poten-
tial for wide-scale use in commercial and military aviation. More recent studies [5]
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have shown that, once properly designed, riblets can reduce drag by up to 10%, mak-
ing them a significant approach to pursue when fuel efficiency and speed are critical.
In the aeronautical sector, riblets have been tested on aircraft fuselages, wings, and
turbine blades. The ability to reduce drag can lead to substantial fuel savings over
long flights, translating to lower operational costs and reduced environmental impact
due to decreased carbon emissions. The reduction in fuel consumption is particularly
crucial in the aviation industry, where even small improvements in aerodynamics can
lead to massive cost savings.

In the maritime sector, riblets can be applied to the hulls of ships and submarines
to reduce drag and enhance fuel efficiency. As in aeronautics, reduced drag in marine
environments means that less energy is required to propel vessels through water, lead-
ing to cost savings in fuel and higher speeds. The 1987 America’s Cup yacht Stars &
Stripes is perhaps the most famous example of the effectiveness of riblets in marine
applications [6]; ongoing research in this field continues to explore their potential for
commercial shipping and naval vessels, including the possible application that consists
in impregnating riblets or riblet-like microstructures with a lubricant liquid [7].

Riblets can be fabricated using various techniques, including microfabrication, laser
etching, and 3D printing [8], allowing engineers to create precise patterns that are
tailored to specific applications. The scale of the riblets and the spacing between them
must be carefully designed to match the size of the turbulent eddies that they are
intended to control. Too large or too small riblets will fail to deliver the expected
benefits, making the design process a critical aspect of their application. Probably,
the most exhaustive set of experimental results for riblets is due to Bechert et al. [5];
different types of riblets (sawtooth, scalloped, blade and trapezoidal riblets, adjustable
slits and ribs) of different spanwise wavelengths were tested in the Berlin zero-pressure
gradient oil channel, measuring shear stress with both a high-accuracy balance and a
Preston tube. The results were reported in terms of DR = ∆τw/τw0 ≈ ∆Cf/Cf0 (τw

is the wall shear stress and Cf is the skin friction coefficient, Cf =
2 τw
ρû2

bulk

, with ûbulk

the outer/bulk speed and ρ the density of the fluid; subscript “0” denotes a smooth-
wall value) versus the spanwise spacing of the riblets, ℓ+ = ℓ uτ/ν (uτ is the friction
velocity and ν is the kinematic viscosity of the fluid), demonstrating the existence of
a viscous regime for very closely spaced ribs with a linear reduction in skin friction,
a subsequent peak in drag reduction, followed by an increase of the DR parameter
which turns into a drag penalty for ℓ+ exceeding a value of the order of 30. The
viscous regime (for ℓ+ less than 5 ÷ 10, depending on the geometry of the riblets) is
well described by the Stokes-based theory from Luchini et al. [9]. They proved that
riblets offer a greater resistance to transverse flow than they do to the streamwise
motion, and were able to characterize this different resistance quantitatively in terms
of a longitudinal and a spanwise slip length, λx and λz respectively. Luchini el al. [9]
argued also that, since the two slip lengths simply measure distances from the riblet
tips (which represent but an arbitrary origin of the y axis), they hold no particular
role in relation to the macroscopic flow. Any physically significant quantity cannot
depend on the choice of the origin, whereas the same does not hold for the difference
between the two slip lengths, ∆λ = λx − λz. This was confirmed later by Luchini [10]
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and Jiménez [11], who were able to derive an expression for DR, i.e.

Cf − Cf0

Cf0

= − ∆U+

(2Cf0)
−1/2 + (2κ)−1

= − µ0 ∆λ+

(2Cf0)
−1/2 + (2κ)−1

, (1)

with ∆U+ the log-layer velocity difference (assumed positive when skin friction drag
is reduced) and κ von Kármán’s constant. The constant µ0 depends on the riblets’
shape and periodicity; it was reported to be approximately equal to 0.66 by Jiménez
[11], 0.785 by Bechert et al. [5] and 1 by Luchini [10]. In particular, Luchini argued
that the equality ∆U+ = ∆λ+ stems from the rigid upwards displacement of the
origin of the mean turbulent flow profile, in the presence of riblets, for the increase in
mean streamwise velocity to match the vertical displacement. This argument ceases
to apply beyond the viscous regime, for ℓ+ above a value of about ten.

The breakdown of the viscous regime, the presence of a peak in drag reduction
for any given riblet shape and the subsequent deterioration in performance with the
increase of ℓ+, is less-well understood, although the first half of equation (1), which
stems directly from Prandtl’s skin friction law, is believed to maintain its validity for
as long as the logarithmic region exists, i.e. as long as Townsend similarity hypothesis
holds. An enticing analysis on the effect of advection on the drag-reduction break-
down has been put forward by Goldstein and Tuan [12]. Through direct numerical
simulations of turbulence next to a solid surface with scalloped riblets, they showed
that, as the spanwise periodicity of the micro-structures increases, the ability of the
ribs’ lateral walls to damp crossflow fluctuations is hampered, favouring the formation
of secondary streamwise vortices through and above the ribs, increased vertical mix-
ing and drag. Similar secondary pairs of counter-rotating vortices were identified later
also by Endrikat [13]. These observations motivate the present study, which aims to
model advection above the grooves with a homogenization approach inspired by that
of Luchini et al. [9], with the inclusion, however, of a zero-net-mass-flux transpiration
boundary condition at a virtual surface positioned right above the riblets’ tips.

The particular upscaling technique employed here goes by the name of adjoint
homogenization [14] and allows inclusion of advection, a crucial ingredient when the
periodicity of the wall texture is sufficiently large. Several studies have appeared in
the literature in recent years, aimed at modeling the effect of micro-patterned walls
on the overlying flow [15–20]. All previous studies, except for the very recent one by
Ahmed and Bottaro [21], do not account for advection, not even in an approximate
manner. The purpose of this work is to provide a fresh look at the theory, extending
the concept of slip lengths (and interface permeability coefficients) by accounting for
near-wall streamwise vortex structures. A similar attempt has been made recently by
Wong et al. [22]; similarities and differences will be discussed in the following.

2 The upscaling approach

This section is dedicated to providing the details of the derivation of effective boundary
conditions at the fictitious interface between a channel flow and a regularly microstruc-
tured wall. The multiple-scale, homogenization procedure builds upon the work by
Bottaro & Naqvi [20], although it eventually differs in two respects:
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1. Since turbulence is the object of the investigation, the expansion parameter does
not use the channel thickness as macroscopic length scale but a length proportional
to the viscous wall unit, ν/uτ , on the assumption that the turbulent motion outside
of the roughness sublayer is independent of roughness’ shape and distribution. This
hypothesis, which goes by the name of Townsend wall-similarity, loses validity when
the roughness elements extend their effect into the outer layer, with consequent
destruction of a significant portion of the log-law region [11].

2. In the model developed the convective terms of the Navier-Stokes equations remain
at leading order when the equations are expanded in terms of a small parameter
δ = ℓ/L, with ℓ the microscale; this permits consideration of near-wall advection,
which is expected to play a significant role when the riblets’ periodicity, ℓ, exceeds
a value of about 10 viscous units. This upscaled model of wall irregularities differs
from all those described in recent papers [14–22].

Section 2.1 of the paper starts with a discussion of the scales adopted, followed by
normalization of the equations in the two domains considered, the inner, or near-
wall, domain, and the outer, or bulk, domain. After identifying a small perturbation
parameter, δ, the expansion of the inner variables is performed and the inner-outer
matching explained. The adjoint homogenization procedure [14] for the inner problem
at leading order is outlined in Section 2.4, allowing to close the inner-outer matching at
the boundary of the two domains. The important issue of the transpiration velocity at
the fictitious boundary at Y = 0 is then addressed (Section 2.5); even if such velocity
is formally of smaller order compared to the wall-parallel components, it plays an
important role in turbulence near a rough wall, as demonstrated in a number of studies
[23–25]. The most original contribution of the present paper is presented in Section 2.6,
where it is assumed that the adjoint field develops on top of a streamwise-homogeneous
mean flow plus a longitudinal vortex, function of the cross-stream coordinates, of
periodicity equal to that of the riblets. Our synthetic vortex is meant to model the
average vortex computed for flow over riblets by Goldstein and Tuan [12], Endrikat
[13], and Modesti et al. [26]. Slip and wall permeability coefficients are computed for
this new model and used in direct simulations of the turbulent flow over blade riblets.
The results, reported in Section 3.2, show that the new model outperforms previous
wall models in predicting the drag reduction curve, even for relatively large riblets’
spacings.

2.1 Governing equations, domain decomposition and scaling
arguments

Let us consider a wall corrugated by regularly arranged, streamwise-aligned solid
protrusions, with given periodicity in the spanwise direction, x̂3 = ẑ. The other dimen-
sional spatial variables are x̂1 = x̂ and x̂2 = ŷ. The longitudinal velocity component
is denoted by û1 = û, the wall-normal component is û2 = v̂ and the spanwise velocity
component is û3 = ŵ. We consider the turbulent flow in a channel of thickness 2H (cf.
Fig. 1), driven by a constant streamwise pressure gradient ∂p̂/∂x̂1 which balances the
resistance at the solid walls; the bulk speed in the channel is denoted by ûbulk and a
friction velocity can be defined as uτ =

√
τw/ρ, with τw the total stress at the wall
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and ρ the fluid density. In a turbulent channel flow the velocity profile is expected to
behave linearly for small values of ŷ, with the streamwise component of the form:

û = ŷ
τw
µ

+ constant, (2)

with µ the dynamic viscosity of the fluid. The constant in eq. (2) is related to the
position chosen for the ŷ = 0 plane whenever the solid surface is micro-textured; for
a smooth wall the constant vanishes on account of the no-slip condition.

Fig. 1 Sketch of the problem under consideration, not to scale. In the left image, the surface delimited
by the black dashed lines represents the virtual boundary where macroscopic, effective conditions
are enforced. The dashed red surface defines the characteristic length scale ℓg of the riblets, whose
spanwise periodicity is ℓ. The image on the right illustrates the representative elementary volume
(REV ), colored in blue, used to extract the coefficients of the effective boundary conditions, together
with a sketch to explain the appearance of a wall-normal velocity component at ŷ∞ (red arrow)
arising out of spanwise gradients of ŵ (and/or streamwise gradients of û).

It is now necessary to identify the physical length scales of the problem, in order
to decide whether and when separation of scales is tenable. The need to estimate the
order of magnitudes of the different terms is compelling in view, in particular, of the
recent criticism to the use of multiscale theory on the ground that separation of scales
holds only for very narrowly spaced riblets [22].

The microscopic characteristic length, ℓ̃, of the problem can be estimated by the
effect that the microstructured surface exerts on the overlying coherent structures;
quasi-streamwise vortices penetrate below the rim of the riblets by a distance roughly
equal to the transverse slip length. It is known that, for a variety of wall textures, such
a length is much smaller than the periodicity of the patterns, ℓ; just for the purpose

of setting ideas let us assume that ℓ̃ ∼ ℓ

α
, with α a number approximately equal to

15 (we will come back to this number later). The macroscopic scale, denoted by L̃, is
representative of the vortex size, i.e. typically 15 to 20 units of length in viscous units
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[27, 28]. To set ideas, the scale L̃ is thus of order α
ν

uτ
, with α as before. The ratio

between these two scales is thus

ℓ̃

L̃
∼ ℓ+

α2
= α−2 ℓ

h
h+, (3)

with the plus superscript used to denote variables normalized in wall units and h
the height of the riblets (cf. figure 1); the ratio ℓ/h is at the most equal to two
in the present work so that its product with α−2 is ordinarily smaller than 10−2.
The quantity h+ = huτ/ν in equation (3) is the roughness Reynolds number whose
value separates the flow regimes conventionally defined as hydrodynamically smooth
(h+ ≲ 5), transitional (5 ≲ h+ ≲ 70) and fully rough (h+ ≳ 70). If we remain in the
regime sometimes called lower transitionally rough [29], with h+ roughly below 15, the
ratio ℓ̃/L̃ is bounded from above by approximately 0.1, an acceptably low value for
multiple scale theory to hold. Under the conditions just stated, the periodicity ℓ+ of the
riblets should be limited to about 30 viscous units. An a posteriori verification, based
on direct numerical simulations using model interface conditions and comparisons with
experiments and texture-resolving turbulent simulations, will be needed to confirm
that separation of scales is tenable up to ℓ+ ≈ 30.

Let us now estimate the magnitude of the velocity, near the patterned wall and
at some distance from it, to assess comparatively viscous and advective terms in the
microscopic Navier-Stokes equations. The outer velocity magnitude can be evaluated

by equation (2) as being of order L̃ τw
µ

= αuτ . For shear stress to match at the outer

boundary ŷ∞ of the representative elementary volume (cf. fig. 1) the inner velocity

scale must be equal to about
ℓ̃

L̃
αuτ . The microscopic advective term ûj

∂ûi

∂x̂j
is thus

O(α2 ℓ̃ u
2
τ

L̃2
), while the viscous term ν ∇̂2û is O(α

νuτ

L̃ ℓ̃
). Normalization of the Navier-

Stokes equation yields a dimensionless number in front of the advective term which is
given by

α−2

[
ℓ uτ

ν

]2
=

[
1

α

(
ℓ

h

)
h+

]2
. (4)

The quantity above is sufficiently small only for values of h+ equal to a few viscous
units of length, meaning that the conventional approach based on the Stokes approx-
imation of the equations to derive slip lengths [9] ceases to be valid away from the
hydrodynamically smooth regime. When h+ reaches the value of 15 the dimension-
less parameter in equation (4) is of order one; this means that, despite the fact that
separation of scales is tenable, the nonlinear term cannot be neglected any longer.

After this qualitative discussion on scales, needed for a preliminary evaluation
of the limitations and validity of the proposed approach, we can proceed with the
formal analysis, eliminating the empirical coefficient α from the scaling parameters,
but keeping in mind the estimated magnitude of the different terms in the equations.
Indicating with t̂ the dimensional time variable, the mass and momentum conservation
equations governing the flow of a viscous, incompressible, Newtonian fluid are:

6



∂ûi

∂x̂i
= 0,

(
∂ûi

∂t̂
+ ûj

∂ûi

∂x̂j

)
= −1

ρ

∂p̂

∂x̂i
+ ν

∂2ûi

∂x̂2
j

. (5)

Now, we denote the outer region with superscript “O”, while for the near-wall, inner
region the superscript “I” is employed. The normalized variables in the two regions
are the following:

Outer region O:

Xi =
x̂iuτ

ν
, PO =

p̂

ρu2
τ

, UO
i =

û

uτ
, tO =

t̂u2
τ

ν
. (6-a)

Inner region I :

xi =
x̂i

ℓ
, P I =

p̂ ℓ

µ ûinner
, UI

i =
û

ûinner
, tI =

t̂ ûinner

ℓ
, (6-b)

with the microscopic velocity scale ûinner = u2
τ ℓ/ν. The normalization above leads to

the following dimensionless systems in the two regions:

∂UO
i

∂Xi
= 0,

∂UO
i

∂t
+ UO

j

∂UO
i

∂Xj
= −∂PO

∂Xi
+

∂2UO
i

∂X2
j

, (7-a)

∂UI
i

∂xi
= 0, Reinner

(
∂UI

i

∂t
+ UI

j

∂UI
i

∂xj

)
= −∂P I

∂xi
+

∂2UI
i

∂x2
j

. (7-b)

In the outer region of the flow all memory is lost of details of the microstructure,
whereas variables in the inner region are assumed to depend on both ℓ and L. The
factor in front of the convective term in Eq. (7-b) is the microscopic Reynolds number,

Reinner =
ûinner ℓ

ν
; (8-a)

it coincides with the square of the gauge factor δ = ℓ/L which can also take the form

δ = ϵReτ = ℓ+, (8-b)

with ϵ = ℓ/H, Reτ = uτH/ν the friction Reynolds number in the plane channel and
ℓ+ the riblets’ spacing measured in viscous units. Inner velocity and pressure fields
are now expanded in powers of δ as

ΦI = ϕ(0) + δ ϕ(1) + δ2 ϕ(2) + ..., (9)

with ΦI(t, xi, Xi) which represents either P I or UI
i ; keeping in mind that these inner

variables are function of both microscopic and macroscopic spatial coordinates, the

chain rule
∂

∂xi
→ ∂

∂xi
+ δ

∂

∂Xi
must be adopted when expressing spatial derivatives.
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2.2 The microscopic model

In the model we treat the microscopic Reynolds number as an independent parameter,
ignoring in Eq. (7-b) the fact that Reinner can be written as the product of δ times ℓ+.
This is similar in spirit to the procedure adopted when analyzing the linear stability of
slowly spatially evolving flows, and a brief digression is in order. The Orr-Sommerfeld
equation that describes the stability of, e.g., the Blasius boundary layer is the leading
order result of a multiple-scale expansion in terms of a small parameter, ratio of
the length scale of the wave to the scale of evolution of the base state [30–34]. This
small parameter is related to the inverse of the Reynolds number which appears in
the Orr-Sommerfeld equation, but such a relation is conveniently ignored. If it were
not, the leading order system would consist in a differential equation of reduced order
(the Rayleigh equation) not uniformly valid across the boundary layer, which would
require a complex near-wall multi-deck treatment [35]. It is by now accepted that it
is convenient and accurate to solve the Orr-Sommerfeld problem for boundary layers,
lifting to lower order what are, formally, higher order terms, to ascertain the modal
stability of the weakly non-parallel base flow; this produces good results for growth
rates and frequencies even without computing higher order corrections.

We operate with the same logic in the present, different, context; since it has been
argued in Section 2.1 that convective terms are non-negligible when h+ and ℓ+ exceed
a few viscous units, we allow advective effects in the equations for the inner problem,
which we write at leading order as follows:

∂u
(0)
i

∂xi
= 0, δℓ+

(
∂u

(0)
i

∂t
+ u

(0)
j

∂u
(0)
i

∂xj

)
+

∂p(0)

∂xi
− ∂2u

(0)
i

∂x2
j

= 0. (10)

Should we set the product δℓ+ to zero, we would recover the Stokes-like systems already
solved by Bottaro and Naqvi [20]. Equations (10) define the microscopic problems
to be solved numerically in the representative elementary volume (REV ) of Fig. 1,
subject to periodicity at the boundaries normal to the surface in y = 0 plus no-slip at
the impermeable wall, situated in y = ywall. The conditions to be enforced at y → ∞
deserve careful inspection, since they will eventually yield the macroscopic effective
conditions at the virtual wall in Y = 0.

2.3 Inner-outer matching

Continuity of the fields across the interface between the •O and •I regions is obtained
by matching velocity and traction vectors at a dividing surface. If y∞ is the inner
vertical coordinate of such a surface (cf. Fig. 1, right frame), the corresponding position
in outer coordinates is Y∞ = δ y∞. In dimensionless form, after accounting for the
normalization of inner and outer variables, matching means that:

⟨UI
i ⟩
∣∣
y=y∞

=
1

δ
UO
i (t,X, Y∞, Z), (11-a)

⟨−P I δi2 +
∂UI

2

∂xi
+

∂UI
i

∂y
⟩
∣∣∣∣
y=y∞

= Si2(t,X, Y∞, Z), (11-b)
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with δij the Kronecker index and Si2 = σ · e2 = −POδi2 +
∂UO

2

∂Xi
+

∂UO
i

∂Y
the outer

traction vector, σ being the stress tensor. The symbol ⟨·⟩ denotes surface averaging
over x and z, across the microscopic REV, at any given y. Condition (11-a) can be
further modified to eventually yield the macroscopic velocity at the virtual wall, by
Taylor expanding the outer variables around Y = 0, i.e.

UO
i (t,X, Y∞, Z) = UO

i (t,X, 0, Z) + δ y∞
∂UO

i

∂Y

∣∣∣∣
Y=0

+ δ2
y2∞
2

∂2UO
i

∂Y 2

∣∣∣∣
Y=0

+ ..., (12-a)

eventually leading to

UO
i (t,X, 0, Z) = δ

(
⟨u(0)

i ⟩
∣∣
y=y∞

− y∞
∂UO

i

∂Y

∣∣∣∣
Y=0

)
+δ2

(
⟨u(1)

i ⟩
∣∣
y=y∞

− y2∞
2

∂2UO
i

∂Y 2

∣∣∣∣
Y=0

)
+....

(12-b)
The matching condition on the stress at leading order in δ is

⟨−p(0) δi2 +
∂u

(0)
2

∂xi
+

∂u
(0)
i

∂y
⟩
∣∣∣∣
y=y∞

= Si2

∣∣
Y=Y∞

. (13-a)

The microscopic problem to be solved in the REV is thus formed by equations (10)
with no-slip conditions at the wall, periodicity along x and z, plus condition (13-a)
at y∞. The averaged equation (13-a) cannot, however, be enforced as is; it can be
relaxed, on the assumption that y∞ is sufficiently far from ywall for the order zero
field to become invariant of x and z. In this case the boundary condition becomes:

−p(0) δi2 +
∂u

(0)
2

∂xi
+

∂u
(0)
i

∂y

∣∣∣∣
y=y∞

= Si2

∣∣
Y=Y∞

. (13-b)

2.4 Adjoint homogenization

The adjoint homogenization procedure [14] relies on the introduction of an inner prod-
uct between two functions a and b defined over the REV. Here we choose the following
simple definition of the inner product:∫ y∞

ywall

⟨ a b ⟩dy. (14)

We take the inner product of the continuity equation in (10) with the test vector p†j
and subtract this from the inner product of the test tensor u†

ji with the momentum
equation, to obtain

0 =

∫ y∞

ywall

⟨ p†j
∂u

(0)
i

∂xi
− u†

ji

[
δℓ+

(
∂u

(0)
i

∂t
+ u

(0)
k

∂u
(0)
i

∂xk

)
+

∂p(0)

∂xi
− ∂2u

(0)
i

∂x2
k

]
⟩dy
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=

∫ y∞

ywall

⟨
∂u†

ji

∂xi
p(0) +

[
δℓ+

(
∂u†

ji

∂t
+ u

(0)
k

∂u†
ji

∂xk

)
−

∂p†j
∂xi

+
∂2u†

ji

∂x2
k

]
u
(0)
i ⟩dy

− d

dt

∫ y∞

ywall

⟨ u†
ji u

(0)
i ⟩dy + “boundary terms”. (15)

We impose that the test functions u†
ji and p†j are solutions of

∂u†
ji

∂xi
= 0, −δℓ+

(
∂u†

ji

∂t
+ u

(0)
k

∂u†
ji

∂xk

)
= −

∂p†j
∂xi

+
∂2u†

ji

∂x2
k

, (16)

with the normalizing constraint that the term
∫ y∞
ywall

⟨ u†
ji u

(0)
i ⟩dy is time-invariant [36].

System (16), which depends on the direct velocity at leading order, u
(0)
k , permits, in

principle, to retrieve an adjoint field (p†j , u
†
ji) . The equations – despite looking similar

to the Navier-Stokes equations – are well-posed only when integrated backwards in
time [36]. The boundary conditions for the adjoint problem must be chosen also by
examining carefully the - so far unspecified - “boundary terms” in (15), which arise
from integration by parts. Like in the case of the direct field, we impose that the
adjoint variables are periodic along x and z; furthermore, we set u†

ji = 0 at y = ywall.
Then, the “boundary terms” lead to the following condition at y∞:

⟨ u(0)
i

(
−p†jδi2 +

∂u†
ji

∂x2

)
⟩

∣∣∣∣∣
y∞

= ⟨ u†
ji

(
−p(0)δi2 +

∂u
(0)
i

∂x2
− δℓ+ u

(0)
i u

(0)
2

)
⟩

∣∣∣∣∣
y∞

.

(17)
At this point we set the outer boundary condition for the adjoint problem:

−p†jδi2 +
∂u†

ji

∂x2

∣∣∣∣∣
y∞

= δji, (18)

for the adjoint problem to be formally closed. Equation (17) yields the (x, z)−averaged
value of the leading order microscopic velocity at y∞:

⟨ u(0)
j ⟩

∣∣∣
y∞

= ⟨ u†
ji

(
−p(0)δi2 +

∂u
(0)
i

∂x2
− δℓ+ u

(0)
i u

(0)
2

)
⟩

∣∣∣∣∣
y∞

. (19)

The wall being impermeable, at each instant of time it is ⟨ u(0)
2 ⟩ = 0 for any value of y;

if, as argued before, the leading order fields are assumed to be invariant along x and z
on horizontal REV planes sufficiently far from the wall, then it is the local wall-normal

velocity, u
(0)
2 , which vanishes. This is consistent with Stokes-based calculations of the

problem [14, 19, 20, 37] which have shown that the first non-zero transpiration term

10



at the fictitious wall is u
(1)
2 . On this basis, the equation above can be re-written as

⟨ u(0)
j ⟩

∣∣∣
y∞

= ⟨ u†
ji ⟩
∣∣∣
y∞

(
−p(0)δi2 +

∂u
(0)
i

∂x2
+

∂u
(0)
2

∂xi

)∣∣∣∣∣
y∞

= ⟨u†
ji ⟩
∣∣∣
y∞

Si2

∣∣
Y∞

,

(20)
on account of (13-b). Since Si2

∣∣
Y∞

is the only forcing term of the direct problem, we

could have immediately posed the ansatz commonly employed in homogenization [38]
that

u
(0)
j = u†

ji Si2

∣∣
Y∞

and p(0) = p†i Si2

∣∣
Y∞

+ P0, (21)

with P0 an integration constant. Clearly, the result embodied by (20) is consistent
with ansatz (21).

In the Stokes approximation (Reinner = δℓ+ = 0), invariance of the riblet geom-
etry along x allows to treat the problem as two-dimensional in the (y, z) plane, with
equations (16) reducing to an uncoupled Stokes-Laplace pair [9]. Numerical solutions
can be easily conducted in the creeping flow limit, using the freefem++ solver [39], with

piecewise P2 continuous finite elements (except for p†j which is discretized with contin-
uous piecewise-linear elements) on an unstructured grid composed by up to 200 000
triangular elements in the domain, with refinement near the solid boundary, to guar-
antee grid-converged solutions. For uniqueness a condition must also be imposed on
p†j : in our case, the integral of p†j on the domain is forced to vanish. When equilateral
triangular riblets infinitely elongated in x are considered, the numerical solution of the
problem yields the results reported in Table 1 and displayed in Figure 2. The fields of
the dagger variables are also called auxiliary fields. The values reported are uniform
over the surface in y∞, i.e. ⟨u†

11⟩
∣∣
y∞

= u†
11

∣∣
y∞

and ⟨u†
33⟩
∣∣
y∞

= u†
33

∣∣
y∞

. All other values

of u†
ji go to zero at the upper boundary of the domain, provided y∞ exceeds about 2.

Table 1 Non-zero auxiliary fields’ values at the upper boundary of the REV for equilateral triangular riblets in

the Stokes approximation. The values of u†
11 and u†

33 are uniform at each y∞ indicated, differing from one spanwise
position to any other one only in the sixth significant digit; the numbers reported are obtained through z-averaging
at each y = y∞.

Reinner u†
11

∣∣
y∞=4

u†
11

∣∣
y∞=5

u†
11

∣∣
y∞=6

u†
11

∣∣
y∞=7

u†
33

∣∣
y∞=4

u†
33

∣∣
y∞=5

u†
33

∣∣
y∞=6

u†
33

∣∣
y∞=7

0 4.170660 5.170675 6.170678 7.170673 4.080549 5.080515 6.080529 7.080513

With the above results, equation (20) reduces to:

⟨ u(0)
1 ⟩

∣∣∣
y∞

= u
(0)
1

∣∣∣
y∞

= u†
11

∣∣∣
y∞

S12

∣∣
Y∞

, (22-a)

⟨ u(0)
2 ⟩

∣∣∣
y∞

= u
(0)
2 = 0, (22-b)

⟨ u(0)
3 ⟩

∣∣∣
y∞

= u
(0)
3

∣∣∣
y∞

= u†
33

∣∣∣
y∞

S32

∣∣
Y∞

, (22-c)
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Fig. 2 Some steady auxiliary fields for equilateral triangular riblets. From left to right, isocontours

of u†
33, u

†
23 and u†

11.

when y∞ is sufficiently far from the tip of the ribs.

2.5 The transpiration velocity

We now go back to Eq. (12-b), and write out explicitly the expressions up to O(δ) of
the macroscopic boundary conditions to be enforced at Y = 0:

UO
1 (t,X, 0, Z) = δ

[
u†
11 S12

∣∣
Y=δy∞

− y∞
∂UO

1

∂Y

∣∣∣∣
Y=0

]
+O(δ2), (23-a)

UO
2 (t,X, 0, Z) = O(δ2), (23-b)

UO
3 (t,X, 0, Z) = δ

[
u†
33 S32

∣∣
Y=δy∞

− y∞
∂UO

3

∂Y

∣∣∣∣
Y=0

]
+O(δ2). (23-c)

The equations above for UO = UO
1 and WO = UO

3 can be further manipulated by
Taylor expanding around Y = 0 all terms which contain Sij evaluated at Y = δy∞.
For example, we write S12

∣∣
Y=δy∞

= S12

∣∣
Y=0

+ δy∞ (∂S12/∂Y )
∣∣
Y=0

+ ... and so on.

Furthermore, to leading order in δ it is S12

∣∣
Y=0

= (∂UO/∂Y )
∣∣
Y=0

(and similarly for

S32

∣∣
Y=0

), so that the slip conditions at the virtual wall become

UO(t,X, 0, Z) = δ λx
∂UO

∂Y

∣∣∣∣
Y=0

+O(δ2), (24-a)

WO(t,X, 0, Z) = δ λz
∂WO

∂Y

∣∣∣∣
Y=0

+O(δ2), (24-b)

12



with λx = u†
11|y∞−y∞ and λz = u†

33|y∞−y∞. Inspection of Table 1 demonstrates that
the two slip lengths, λx and λz, are independent of the choice of y∞. In particular, in
the Stokes case for equilateral triangular riblets we have λx = 0.1707 and λx = 0.0805.

The transpiration speed UO
2 = V O at Y = 0 vanishes at leading order in terms

of the expansion proposed because the real wall is impermeable, but it has been
shown [14, 21] that neglecting vertical velocity fluctuations at the virtual wall can lead
to serious errors in evaluating drag reduction/increase when modeling the presence
of riblets which operate beyond the viscous regime. The significance of wall-normal
velocity fluctuations for turbulent flows over rough surfaces has been highlighted in
particular by Orlandi and co-workers [23–25].

We start by estimating V O at Y∞ = δy∞ with reference to the sketch on the right
frame of Fig. 1. Equations (11-a) and (21) can be written to leading order for the case
at hand as:

∂UO
j

∂Y

∣∣∣∣∣
Y∞

=
Cjk
δ

UO
k

∣∣
Y∞

, (25)

with j and k equal to 1 and 3, and the 2× 2 diagonal matrix C defined as

C =


1

u†
11

∣∣
y∞

0

0
1

u†
33

∣∣
y∞

 . (26)

Expression (25) can be inserted into Eq. (21) to yield u
(0)
j = δ−1 u†

ji Cik UO
k

∣∣∣
Y∞

, with

the index i which can also take only the values 1 and 3. As shown in reference [14],
on account of continuity the order δ microscopic y-velocity component at the upper
edge of the REV is

u
(1)
2

∣∣
y∞

= v(1)
∣∣
y∞

= − ∂

∂xi

∫ y∞

ywall

u
(1)
i dy − ∂

∂Xi

∫ y∞

ywall

u
(0)
i dy, (27)

with the index i, again, equal to 1 and 3. Integrating in z from 0 to 1 gives∫ 1

0

v(1)
∣∣
y∞

dz = − ∂

∂Xi

∫ y∞

ywall

∫ 1

0

u
(0)
i dz dy = −δ−1

[∫ y∞

ywall

∫ 1

0

u†
ij dz dy

]
Cjk

∂UO
k

∂Xi

∣∣∣∣
Y∞

,

(28)
so that the macroscopic transpiration velocity at Y∞ is

V O∣∣
Y∞

= δ2
∫ 1

0

v(1)
∣∣
y∞

dz +O(δ3) = −δ mik
∂UO

k

∂Xi

∣∣∣∣
Y∞

+O(δ3). (29)
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with mik =

[∫ y∞

ywall

∫ 1

0

u†
ij dz dy

]
Cjk. In the present setting the matrix of components

mik is diagonal, with

m11 =
1

u†
11

∣∣
y∞

∫ y∞

ywall

∫ 1

0

u†
11 dz dy, m33 =

1

u†
33

∣∣
y∞

∫ y∞

ywall

∫ 1

0

u†
33 dz dy. (30)

The effective condition (29) must now be transferred to Y = 0; this is easily
accomplished by expanding V O around Y = 0, i.e.

V O∣∣
Y∞

= V O∣∣
Y=0

+ δy∞
∂V O

∂Y

∣∣∣∣
Y=0

+ δ2
y2∞
2

∂2V O

∂Y 2

∣∣∣∣
Y=0

+O(δ3) =

V O∣∣
Y=0

+ δy∞

[
−∂UO

∂X
− ∂WO

∂Z

] ∣∣∣∣
Y=0

+ δ2
y2∞
2

∂

∂Y

[
−∂UO

∂X
− ∂WO

∂Z

] ∣∣∣∣
Y=0

+O(δ3) =

V O∣∣
Y=0

−δy∞

{
∂

∂X

[
δλx

∂UO

∂Y

]
+

∂

∂Z

[
δλz

∂WO

∂Y

]} ∣∣∣∣
Y=0

−δ2
y2∞
2

[
∂2UO

∂Y ∂X
+

∂2WO

∂Y ∂Z

] ∣∣∣∣
Y=0

+O(δ3).

(31)

Expanding in a similar manner the term on right hand side of Eq. (29) it is obtained:

V O∣∣
Y∞

= −δ m11

[
∂UO

∂X
+ δy∞

∂2UO

∂Y ∂X

] ∣∣∣∣
Y=0

−δ m33

[
∂WO

∂Z
+ δy∞

∂2WO

∂Y ∂Z

] ∣∣∣∣
Y=0

+O(δ3) =

−δ m11

{
∂

∂X

[
δλx

∂UO

∂Y

]
+ δy∞

∂2UO

∂Y ∂X

} ∣∣∣∣
Y=0

−δ m33

[
∂

∂Z

[
δλz

∂WO

∂Y

]
+ δy∞

∂2WO

∂Y ∂Z

] ∣∣∣∣
Y=0

+O(δ3).

(32)

Putting together (31) and (32) it is finally found:

V O(t,X, 0, Z) = −δ2
[
Kitf

xy

∂2UO

∂Y ∂X
+Kitf

zy

∂2WO

∂Y ∂Z

] ∣∣∣∣
Y=0

+O(δ3), (33)

with Kitf
xy = [m11(y∞+λx)−y∞λx−y2∞/2] and Kitf

zy = [m33(y∞+λz)−y∞λz−y2∞/2]
playing the role of interface permeability coefficients [14, 20]. Another form, more
convenient for computational purposes, of (33) can be found by using (24-a) and
(24-b), and this is:

V O(t,X, 0, Z) = −δ n11
∂UO

∂X

∣∣∣∣
Y=0

− δ n33
∂WO

∂Z

∣∣∣∣
Y=0

+O(δ3), (34)

with n11 = Kitf
xy /λx and n33 = Kitf

zy /λz. It is important to stress the fact that n11

and n33, just like the Navier slip coefficients λx and λz and the interface permeability
coefficients, are independent of the choice of y∞ of the REV. Boundary condition (34)
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at the effective surface in Y = 0, together with (24-a) and (24-b), allow the model in
(7-a) for the macroscopic variables (UO, V O,WO, PO) to be closed.

The coefficients of interest are reported in Table 2 for the few riblets’ shapes
displayed in Figure 3. The results are believed to be accurate up to the last significant
digit reported. The parameter ℓg in the table is the square root of the groove cross-
section Ag sketched in Fig. 1; it is a purely geometrical factor introduced by Garćıa-
Mayoral and Jiménez [40] to capture both the influence of riblets’ spacing and shape.
In recent experimental and numerical works it has become customary to report drag
reduction against ℓ+g , measured in viscous units, since the data appear to collapse
better onto a single curve for a variety of conventional riblet geometries, with clearly
defined, open grooves fully exposed to the outer flow.

Fig. 3 Riblets’ shapes: square (a), equilateral triangle (b), right triangle (c), blade (d), parabolic/s-
calloped (e), cosine (f), trapezoidal (g).

Table 2 Effective coefficients for the riblets’ shapes in figure 3, in the Stokes limit.

Riblets’ shape λx λz Kitf
xy Kitf

zy ∆λ = λx − λz ℓg/ℓ
Square 0.0415 0.0179 0.0058 0.0004 0.0236 0.5000
Equilateral triangle 0.1707 0.0805 0.0282 0.0058 0.0901 0.7530
Right triangle 0.1397 0.0779 0.0168 0.0058 0.0618 0.5000
Blade 0.1915 0.0784 0.0379 0.0046 0.1131 0.7000
Parabolic/scalloped 0.1699 0.0804 0.0259 0.0060 0.0894 0.5773
Cosine 0.1141 0.0638 0.0140 0.0042 0.0503 0.4262
Trapezoidal 0.1912 0.0820 0.0348 0.0054 0.1091 0.6830

Two things must be noticed. The first is that λz, which defines the origin of the
crossflow motion below the virtual plane, is significantly smaller than the pattern
periodicity. The average value of λz for the seven cases examined is 0.0687, very close
to α−1, with α ≈ 15, supporting the scaling arguments of Section 2.1.
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Second, skin-friction drag reduction is known to behave linearly with the riblets’
periodicity for ℓ+ of only up to a few viscous units [5]. This so-called viscous regime
holds over a range smaller by a factor of about 2, cf. last column of table 2, when
observed in terms of ℓ+g . In this regime, we recall that Luchini [10] has shown that
the reduction in skin friction coefficient with respect to the smooth-wall value is pro-
portional to ∆λ+ = λ+

x − λ+
z , according to equation (1), with µ0 a constant close to

one. From table 2 it can be ascertained that, at least in the viscous range, thinner
riblets perform better; the best drag reduction is achieved by blade riblets, among the
shapes considered, in agreement with Bechert et al. [5]. To properly assess what goes
on for ℓ+ beyond about 10, including values large enough for drag reduction to turn
into drag increase [40], the effect of advection and transpiration through the grooves
must be accounted for.

2.6 A vortex model for advection

We now go back to equation (16) and approximate the advective term

−δℓ+

(
u
(0)
k

∂u†
ji

∂xk

)
, considering that direct numerical simulations of turbulence over

riblets [13, 26, 41] have furnished indications of the flow structures that emerge in the
proximity of individual grooves. In particular, ensemble-averaged results of the sec-
ondary flow by Modesti et al. [26] highlight the presence of a pair of counter-rotating
vortices, symmetric about a vertical mid-line, with upwash above the riblet tip which
increases in intensity with the increase of the spanwise periodicity. For example, for
the case of trapezoidal riblets of height h = ℓ/2 (like in our case), the largest upwash
velocity, v+ in viscous units attains the value of about 0.04 when ℓ+ = 18 and 0.15
when ℓ+ = 36 [26, 42]; as the spacing between neighboring riblets increases, the aver-
age downward secondary flow transports streamwise momentum into the groove more
efficiently, yielding an increase in drag. However, even for ℓ+ = 63, the vortices are not
lodged inside the grooves and tend to linger on top of them, with each vortex in the
pair centered slightly above the riblet tip. The numerical simulations by Goldstein and
Tuan [12] for scalloped, short riblets indicate that the streamwise vortex pair exhibits
a maximum vertical velocity around 0.03 when ℓ+ = 23 and h+ = 8.7, increasing to
0.12 when ℓ+ reaches 62.8 (for h+ = 8.9).

On the basis of the results above, we have decided to create a synthetic streamwise
vortex pair, shown in figure 4 for the case of blade riblets, solution of a forced Stokes
system with periodicity conditions at z = 0 and 1, no-slip at the walls, and with a
velocity which dies out rapidly outside of the roughness sublayer, i.e. for y+ ≳ ℓ+. It
has been found convenient to build the vortex, of velocity components (v+V , w

+
V ) in the

(y, z) = (x2, x3) plane, by forcing the equations for the “plus” variables with the u†
ji

fields computed from equation (16) with δ = 0, i.e.:

∂v+V
∂x2

+
∂w+

V

∂x3
= 0, −

∂p+V
∂x2

+
∂2v+V
∂x2

i

= P

[
u†
j3

∂u†
23

∂xj

]
, −

∂p+V
∂x3

+
∂2w+

V

∂x2
i

= P

[
u†
j3

∂u†
33

∂xj

]
,

(35)
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with the indices i and j which take the values 2 and 3. The intensity of the vortex pair
can be tuned by acting on the parameter P. Clearly, this leaves a degree of arbitrariness
in the definition of the vortex, while at the same time providing the necessary flexibility
to calibrate the background (v+V , w

+
V ) field to try and match available results. We have

found that values of P in a neighborhood of 160 yield secondary flows of size and
upwash velocity in the range of those quoted by Goldstein and Tuan [12], Endrikat
[13] and Modesti et al. [26]. The vectors in figure 4 (left frame) highlight the shape
of the vortex pair for the largest periodicity tested here (ℓ+ = 40.6) with a maximum
vertical velocity equal to 0.11 (in plus units). The figure also displays isolines of the

streamwise vorticity; the values of ωx =
∂v+V
∂z+

−
∂w+

V

∂y+
at the vortex centers are equal

to ±0.023.

Fig. 4 Synthetic near-wall vortices for blade riblets (P = 160), displayed via velocity vectors of the
(v+V , w+

V ) field and contours of the streamwise vorticity, ωx.

If we now model the advective term in equation (16) by assuming that the u†
ji

field develops on top of a streamwise-invariant mean field plus a synthetic vortex pair
which depends on only y and z, then

−δℓ+

(
u
(0)
k

∂u†
ji

∂xk

)
= −ℓ+

(
v+V

∂u†
ji

∂y
+ w+

V

∂u†
ji

∂z

)
, (36)

on account of the velocity scaling in equation (6-b). The term has a negligible con-
tribution for ℓ+ equal to a few units (where the viscous approximation holds), but

becomes significant for larger periodicity. Once the new u†
ji fields are computed, the

slip and interface permeability coefficients are obtained exactly in the same manner
as before, cf. Section 2.5. Some results are proposed in Table 3 for the case of blade
riblets. It is interesting to observe the rapid decrease of the streamwise slip coefficient,
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λx, with the increase of ℓ+, and the slower decrease of λz. The drop in the value of
∆λ with ℓ+ is indicative of performance deterioration (cf. equation 1).

Table 3 Effective coefficients for blade riblets, fig. 3(d), with the model for advection (P = 160).

ℓ+ ℓ+g max(v+V ) |ωx|vortex center λx λz Kitf
xy Kitf

zy ∆λ
Stokes - - - 0.1915 0.0784 0.0379 0.0046 0.1131
17.7 12.4 0.11 0.052 0.1730 0.0766 0.0400 0.0076 0.0964
27.9 19.5 0.11 0.034 0.1473 0.0740 0.0468 0.0097 0.0733
40.6 28.4 0.11 0.023 0.1038 0.0690 0.0599 0.0126 0.0348

Figures 5 and 6 report some relevant auxiliary fields for blade riblets without and
with the advection vortex model. Differences between the fields in the figures do not
seem particularly significant, aside perhaps for the presence of two extra coherent
regions above the ribs in the isocontours of u†

23, a signature of the presence of the vortex
pair. Despite such mild qualitative differences, λx decreases significantly compared to
the creeping flow approximation, while λz experiences a milder reduction (cf. table 3).
The trend of λx with respect to the Stokes’ value seems in contrast with the texture-
resolving direct numerical simulations of turbulence over ribleted surfaces by Wong et
al. [22] (cf. their fig. 7a), which display a mild increase of the distance of the virtual
origin of the mean streamwise velocity component from the crests of the riblets, past
ℓ+g ≈ 15. This matter deserves further, future scrutiny.

As opposed to the case of the slip lengths, the interface permeability components
increase significantly with respect to the creeping flow case; Kitf

xy has grown by 58%

(when comparing the Stokes’ value to that at ℓ+ = 40.6) and Kitf
zy has more than

doubled. The growth in the interface permeability coefficients is correlated to enhanced
wall transpiration at the virtual wall in Y = 0. This effect can be quantified with the
help of direct simulations of the turbulent motion over the modelled surface.

Before proceeding further, we come back to the very recent approach by Wong et
al. [22], which bears some similarities to the present one. They have modeled the near-
wall flow by solving the Stokes equations in a spanwise-periodic domain encompassing
multiple riblets, forcing the motion at the upper y-boundary of their two-dimensional
domain with cross-flow velocity components of prescribed wavelength and amplitude,
to mimic the effect of outer, smooth-wall-like turbulence. The model, dubbed viscous
vortex model, was used in particular to predict the transverse slip length, and assess
how it varied as a consequence of near-wall upwash/downwash motion, for riblets of
increasing periodicity. Upon assuming that the origin of the mean streamwise flow does
not vanish, Wong and co-workers were able to estimate the roughness function, ∆U+,
and obtain an acceptable agreement with experimental results and texture-resolving
direct simulations for a variety of riblets’ shapes, up to ℓ+g ≈ 10.7, i.e. the position of
maximum drag reduction. For the case of blade riblets, examined here, the model by
Wong et al. [22] works until ℓ+ ≈ 15 (cf. their figure 17, frame k); beyond this values
it predicts a monotonic decrease in drag, at least in the range of riblets’ pitch values
considered. The failure of the model to capture the breakdown of the drag curve has
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Fig. 5 Some auxiliary fields in the Stokes limit, in the vicinity of blade riblets. From left to right,

isocontours of u†
33, u

†
23 and u†

11.

Fig. 6 Same as Figure 5 for ℓ+ = 27.9 using the advection model (P = 160).

been ascribed by the authors to the fact that the outer forcing field mimics smooth-
wall-like turbulence and, as such, is unable to capture the rapid increase in near-wall
Reynolds stress when ℓ+g exceeds 10.7.

3 The macroscale problem

3.1 Problem description and numerical setup

Large-scale numerical simulations are conducted using both the Stokes coefficients
and the coefficients in table 3 for the case of blade riblets, to model the presence
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of microgrooves using the effective conditions (24-a), (24-b) and (34). They resemble
those used by Gómez-de-Segura et al. [43], except for a notable difference; the condition
used in ref. [43] for the transpiration velocity is (using our notations)

V O(t,X, 0, Z) = δ λy
∂V O

∂Y

∣∣∣∣
Y=0

(37)

and it coincides with equation (34) only for isotropic textures in the (x, z)-plane, i.e.
when λy = n11 = n33. Clearly, this is not the case of riblets.

We study the turbulent flow in a channel delimited from the top side by a smooth
boundary and from the bottom side by a corrugated wall; this is similar to the case
sketched in Fig. 1, yet the riblets considered here are thin blades of pitch ℓ, height 0.5 ℓ,
and thickness 0.02 ℓ (cf. Fig. 3(d)). The dimensions of the free-fluid region beyond
the rims of the riblets (i.e. the computational domain of interest for the macroscopic
simulations) are LX × LY × LZ = 2πH × 2H × πH, with H half the channel height.
Given that the magnitude of the macroscopic pressure gradient driving the flow in
the channel is M = |∆p̂/LX |, a bulk stress τM = MH can be defined, and it can be
proven from the momentum balance in the macroscopic domain that τM = (τF+τT )/2,
where τF and τT are the total shear stresses at the fictitious boundary (ŷ = 0) and
at the top, smooth wall (ŷ = 2H), respectively. Correspondingly, we define a shear

velocity uτ(M) =
√

τM/ρ and a shear-velocity Reynolds number Reτ(M) =
ρuτ(M)H

µ
with a fixed value of about 193 for all the simulations carried out. The riblet pitch

is varied from one simulation to another such that different values of ℓ+M =
ρuτ(M)ℓ

µ
are considered, in particular ℓ+M = (13.5, 17.7, 27.9, 40.6). The shear stress at the
corrugated wall, τw, (i.e. the drag evaluated per unit plan area for the bottom physical
surface) can be retrieved theoretically by applying momentum balance over the whole

domain (macroscopic plus microscopic), yielding τw ≈ (2τM − τT ) + τM
ℓ

2H
= τF +

τM
ℓ

2H
, with the thickness of the thin blades neglected. To permit comparison with

the reference data [44], the numerical results reported are normalized based on τw as
given above. The pitch distance measured in viscous units, ℓ+, is found to differ by less
than 5% from ℓ+M. In terms of the half-channel height, the periodicity of the riblets is
equal to ℓ = (0.070, 0.092, 0.144, 0.210)H.

Direct numerical simulations of the macroscale problem are run using the Simcen-
ter STAR-CCM+ finite-volume-based software. The grid resolution and the numerical
procedure are the same as in references [21, 45]; in particular, the mesh is uniform
in the streamwise and spanwise directions, while it is stretched gradually in the wall-
normal direction departing from the upper and lower walls (thinnest layer) towards
the centerline of the channel (thickest layer); the grid spacings in viscous units are
h+
X = 9.47, h+

Z = 6.32, h+
Y |min = 0.27, h+

Y |max = 9.25. In brief, the convective fluxes are
discretized using a third-order scheme formulated as a linear blend between MUSCL
third-order upwind and a third-order central-differencing expression. A second-order
implicit scheme is employed for temporal discretization with 20 internal iterations
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performed at each time step. The time step is set to 0.001H/uτ(M) for the maximum
convective Courant–Friedrichs–Lewy (CFL) number to be maintained below 1. The
averaging time, after the initial transient of the flow field in each simulation, is typ-
ically taken equal to 40H/uτ(M). Finally, it is important to highlight that, despite
the presence of local transpiration velocities, the surface-integrated value of V O at
Y = 0 remains negligibly small, i.e. unlike the case of the porous interface treated by
Ahmed and Bottaro [21], no correction is required here at the fictitious wall to satisfy
conservation of mass.

3.2 Results and discussion

Fig. 7 Drag reduction versus spacing for blade riblets. The grey symbols correspond to experimental
data by Bechert et al. [5] for bulk Reynolds number, based on average channel velocity and half the
channel height, in the range 4000 - 15000, while the black symbols are direct numerical simulation
results by El-Samni et al. [44] (at Rebulk = 2821, Reτ = 180) which account for the microscopic geom-
etry of the wall textures. The dot-dashed line (i) is the viscous, analytical solution given in equation
(1) with µ0 = 1. The dashed line (ii) corresponds to our results obtained by direct simulations using
only the Stokes slip coefficients for the tangential velocity components, without transpiration. The
dotted line (iii) is obtained by using the Stokes slip coefficients plus transpiration at the fictitious
wall, via equation (34); such a line almost coincides with results obtained using the model by Wong
et al. [22]. The shaded region encloses direct numerical simulation results which could be obtained
by the present slip-transpiration-vortex model. The two boundaries of this region, drawn with solid
lines (iv) and (v), pertain, respectively, to P = 140 and 180, with red symbols corresponding to the
simulations conducted.

We first focus on the ability of the linear relation (1) and different homogenization-
based models to predict the behavior of the skin-friction drag over blade riblets, by
validating the results obtained against the reference experimental/numerical results
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by Bechert et al. [5] and El-Samni et al. [44], as presented in Fig. 7. It is clear from
the figure that equation (1) with µ0 = 1 [10] provides inaccurate results even for
vanishingly small riblets. Three different settings of the direct numerical simulations
have been investigated, modifying the definition of the macroscopic velocity boundary

conditions. The skin-friction coefficient is evaluated as Cf =
2τw

ρ (ûbulk)2
, with ûbulk

the temporally and spatially averaged velocity over the whole channel (of total height
equal to 2H + h). Since the DNSs conducted are concerned with the average velocity
in the free-fluid region only, a separate estimation of the average velocity in the riblet
layer (ûR) is needed for the evaluation of ûbulk. From a theoretical perspective, the
value of ûR is expected to be smaller than ûslip (the velocity at the fictitious interface)
and larger than 0 (the velocity at the trough of the groove). An intermediate value of
ûR ≈ 0.5 ûslip ≈ 0.5λ+

x uτ is adopted as an approximation in the present work. The
transpiration-free model with Stokes macroscopic coefficients (dashed line) represents
the simplest form of the boundary conditions, and its predictions appear to be valid
only up to ℓ+ ≈ 10. Incorporating the transpiration velocity (37) component permits
a moderately wider validity range (up to ℓ+ ≈ 15, dotted line). When advection is
taken into account in the evaluation of the upscaled coefficients, employing the present
vortex model, we are able to capture the parabolic shape of DR as function of ℓ+. In
this case, it is clear that the results increasingly depend on the vortex intensity as the
riblets’ spacing grows, and thus the choice of the forcing parameter P (cf. equation 35)
becomes critical. Since our aim is not that of optimizing the agreement with previous
experiments and simulations, but to develop and test practical boundary conditions
which might apply to riblet configurations beyond the viscous regime, we have simply
chosen values of P which provide, for the streamwise vortex pair that sits above the
rib, intensities in the expected range [12, 13].

In Fig. 8, the results of our direct numerical simulations (with vortex-model-based

effective coefficients) for the distributions of the mean velocity U
+

and the Reynolds
shear stress τRXY in the free-fluid region next to the lower boundary are plotted and
compared against those in reference [44]. When ℓ+ is approximately equal to 17.7
and 27.9 the agreement between the model results and the available texture-resolving
data appears acceptable. Also, the model, with P set to 180, appears to accurately
capture the logarithmic behavior of the mean velocity for ℓ+ = 40.6, a value which is
far beyond the viscous range. The same applies also to the peak value of the Reynolds
shear stress. Conversely, the present version of the model has a weakened ability to

predict U
+
and τRXY at and in close vicinity of the corrugated surface with the increase

of ℓ+. A possible reason for the poor agreement between our results and those by
El Samni et al. [44] near the surface when ℓ+ is large, could be related to the issue
of our slip lengths (and ∆λ) decreasing with the increase of the riblets’ periodicity
(cf. table 3 and related discussion in Section 2.6). Another possible explanation has
been suggested to us by a referee, and is related to the resolution of the DNSs by El
Samni et al. [44]. The referee pointed out to us that the number of grid points between
neighboring riblets in [44] ranges from 6 to 16 for the three values of ℓ considered,
and this might be marginally sufficient to accurately resolve the dynamics of the fluid
within adjacent corrugations.
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Fig. 8 Mean velocity (top row) and Reynolds stress as function of Y + for three values of ℓ+. In
each frame, the solid line reports the solution for the flow in a channel with two smooth walls, while
blue and red dashed lines correspond to the results of the turbulent motion in a ribbed channel using,
respectively, P = 140 and 180 in the model. The available data from El-Samni et al. [44] are plotted
with small circular symbols, after having matched the origin of the data in [44] to ours.

4 Concluding remarks

A new model, dubbed the slip-transpiration-vortex model, has been derived and tested
for the flow in a channel with one wall patterned by blade riblets. The configuration
with blades at the surface is probably the most difficult to simulate (in particular, with
the growth of the pitch distance between blades) and previous attempts at modeling
it have met with only partial success.

The procedure adopted here is based on asymptotic homogenization, with the
advective term in the equations (formally of higher order) maintained at leading order
because of indications from a preliminary scale analysis. Such advective terms are
linearized around a streamwise-invariant base state which, in the REV , takes the
form of a stationary vortex pair, with upwash along the side walls of the blades. The
intensity of the vortices can be tuned by acting on the free parameter P, but we have
chosen here to employ the same range of intensities (and the same maximum upwash
speed in the cross-section) for all ribs periodicities, to infer trends rather than to try
and match available results.

The present model appears to be the most successful to-date in predicting the
parabolic shape of the drag curve with ℓ+, for the case of blade riblets; the key to its
fortune lies in the fact that it retains advection, although in an approximate form, and
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it permits zero-net-mass-flux transpiration at the fictitious wall. On the negative side,
it fails at capturing correctly the slip velocity or the near-wall Reynolds stress when
ℓ+ exceeds a value around 30. Such a threshold coincides with our expectations from
the order of magnitude analysis of Section 2.1. Extending the model to higher order
in the small parameter δ could possibly improve matters, and our current efforts are
in this direction.

The applications of this study are not just limited to longitudinally-extended micro-
grooves, because the procedure described can be applied to different kinds of textured
walls, including those with relatively large amplitudes, provided Townsend similarity is
not broken. The concept of equivalent sand-grain roughness is still commonly employed
to identify geometric surface properties, even if it is by now accepted that such a scale
fails to completely characterise roughness in many cases. It has been recently stated
by Kadivar et al. [46] that “there is a need for a universal roughness scale that can
describe every type of roughness and be used in any rough-flow regimes, including fully
rough and transitionally rough regimes”. We believe that the length (Navier slip) and
surface area (interface permeability) coefficients identified here may represent these
universal scales capable to discriminate different types of irregular surfaces; further
work is clearly needed to support this conjecture.

As we look to the future, riblets hold promise for continued innovation in a range
of fields. Among the topics for which research activities are expected to pay a div-
idend, we cite sinusoidal or converging-diverging (herringbone) micro-grooves. Also,
bio-inspired designs can be pursued to further optimize riblet geometry and perfor-
mance. Meanwhile, advancements in material science could lead to self-healing or
adaptive riblet surfaces that adjust to different flow conditions in real-time, further
enhancing their efficacy. With environmental concerns and fuel costs driving the need
for efficiency across industries, riblet technology represents a powerful tool for reducing
energy losses and improving performance.
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