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Abstract 

Numerical experiments are conducted to investigate spatially developing Grrtler vortices and the way in which wall 
roughness promotes their formation and growth. Several different types of walls are examined and their relative merits 
as vortex promoters assessed. The only disturbances of the flow are due to the rough wall; hence, at each downstream 
station the local field feels (1) the upstream flow distribution (produced by the upstream wall conditions) and (2) the 
local forcing at the wall. Rapid vortex formation and growth, like in the case of ribleted walls, can be qualitatively 
explained by the positive combination of these two effects; when the two influences on the local flow field compete, e.g. 
for randomly distributed wall roughness, the equations with the boundary conditions filter the disturbances over some 
streamwise length, function of the roughness amplitude, to create coherent patches of vorticity out of the random noise. 
These patches can then be amplified by the instability mechanism. If a thin rough strip is aligned along the span of an 
otherwise smooth wall to trip the boundary layer, the filtering region is shorter and growth of the vortices starts earlier. 
Also for the case of an isolated three-dimensional hump a rapid disturbance amplification is produced, but in this case 
the vortices remain confined and a very slow spanwise spreading of the perturbation occurs. In all naturally developing 
cases, where no specific wavelengths are explicitly favored, the average spanwise wavelengths computed are very close 
to those of largest growth from the linear stability theory. 

1. Introduction 

In all problems of  linear stability (e.g. the G6rtler problem) a small perturbation is needed so that 
a stable solution (the two-dimensional boundary layer flow) can bifurcate and a new stable state 
(with steady streamwise-oriented vortices) ensues. The small perturbation is the "seed" required 
to initiate the vortex formation; it acts at the boundaries of  the physical domain and may take 
several forms such as inlet inhomogeneities (e.g. honeycomb grids), free-stream turbulence and 
acoustic disturbances, distributed or isolated wall roughness elements. In any experimental set up it 
is typically a combination of several of  these effects which is responsible for the instability of the 
base flow. This multiplicity of  causes is the reason why experimental results for Grrtler vortices 
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differ widely from one apparatus to another (compare e.g. wavelength results from Tani [1], Bippes 
and G6rtler [2] and Swearingen and Blackwelder [3]) and are sometime not even reproducible on 
the same apparatus [4]. Matters are further complicated by the fact that a very large range of wave 
numbers exists with almost equal spatial amplification rate [5, 6]: the wavelength selection mechanism 
is very weak. 

Theoretical/numerical studies have the advantage over experimental work to permit a clear defi- 
nition of the boundary effects and to allow their complete isolation. It becomes then possible to de- 
termine if one cause is preponderant in promoting the vortex development and if so why. Our current 
understanding of the G6rtler instability suggests that the leading sources of stationary streamwise 
vorticity are upstream screens (i.e. initial spatial conditions) and wall roughness. The former vortex 
"seed" has been studied by Hall [7] with a linear theory and by Bottaro et al. [6] with non-linear 
simulations: Bottaro et al. found a linear response of the vortices with increasing screen-induced per- 
turbations, up to very large initial disturbance amplitudes. The latter "seed" of  vortex formation is 
the object of the present work. Its importance in practical applications stems from the fact that, e.g. 
on wing surfaces, imperfections due to manufacturing processes, corrosion, surface stresses, icing or 
even insect impingement, are known to affect transition location in a wide variety of flow situations. 

The literature on the receptivity of G6rtler vortices to roughness is rather scarce. Denier et al. [8] 
considered a wall with different streamwise and spanwise roughness scales. The small and the O(1 ) 
wavelength limits were examined with linear theory. Their O(1) results were later extended and 
corrected by Bassom and Hall [9], who indicated that distributed roughness is a very efficient mean 
of vortex generation: the critical G6rtler number becomes arbitrarily small, the closer the wall forcing 
is applied to the plate's leading edge. Furthermore, they predicted that in the absence of distributed 
roughness, isolated roughness elements would have a prevailing role in triggering vortices only in an 
environment virtually free of free-stream disturbances. Bertolotti [10] solved by a linear parabolized 
streamwise marching technique (the PSE approach) the equations for the flow over concave surfaces 
with streamwise aligned wall corrugations. This riblet-like wall was found to be very conducive to 
the formation and development of  vortices, even for riblets' wavelength different from that of the 
inlet vortex. Bertolotti also found that vortices are receptive to the wall forcing over an extended 
streamwise distance. 

The first experimental verification that the G6rtler vortex wave number depends on the na- 
ture of the incoming perturbation field was provided by Bippes and G6rtler [2]. Swearingen and 
Blackwelder [11] confirmed this upstream influence by introducing strips of tape at the wall and by 
positioning cylinders in the incoming flow, with the aim of isolating the wavelength selection mech- 
anism. The upstream influence clearly arises from the parabolic nature of the governing disturbance 
equations for O(1) wavenumbers [12]. Recent experiments by Bippes and Deyhle [13] indicate that 
the G6rtler instability in a wind tunnel is primarily promoted by the screens in the settling chamber. 

The situation is somewhat different in three-dimensional boundary layers, such as those over 
swept wings. In a low-disturbance environment it has been experimentally demonstrated [14-16] 
that stationary cross-flow vortices are preferentially excited and the location of their appearance is 
intimately tied to micron-sized roughness in the model; this correlation was investigated by Radeztsky 
et al. [17] who found an increase in the transition Reynolds number with subsequent levels of 
polishing of the wall. Radeztsky et al. also placed isolated roughness elements on their swept surface 
to find a dependence of the transition "point" on roughness location, dimensions and spanwise spacing 
of the elements. Stationary cross-flow vortices are profoundly affected by the presence of roughness 
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Fig. 1. Sketch of the problem. 

close to the plate's leading edge [18]. On the other hand, it appears that sound has no significant 
effect on this type of  transition [19]. 

In the present study different rough surfaces are examined and compared for their effect on trig- 
gering the initial vortex: The perturbation to the base flow is provided by the fact that the wall 
is not smooth, and hence a small distance from the wall an inhomogeneous velocity distribution is 
produced. It will be shown that minute wall imperfections are sufficient to destabilize the basic flow 
and that riblet-like surfaces are most conducive to the downstream formation of  stationary G6rtler 
vortices. 

2. Physical configuration, equations and boundary conditions 

The physical configuration considered is sketched in Fig. 1. Fluid flows over a concave surface 
of  large streamwise and spanwise extents. A boundary layer is formed at the wall and, in the limit 
of  large Reynolds number and radius of  curvature, it is governed by the Prandtl equations. 

The boundary layer flow over a concave wall with constant radius of curvature R has been 
described by several authors (see, for instance, Ref. [12]). The starting point of  the analysis is the 
system of  Navier-Stokes and continuity equations in cylindrical coordinates (r, 0, (); l is taken to 
be a typical length along the wall and a curvature parameter ~, a Reynolds number Re and a G6rtler 
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number G are introduced: 

K = l R  -1, R e =  U~l/v, G 2 = K R e  1/2, (1) 

with U~ the free stream velocity and v the kinematic viscosity. The limits ~: --~ 0 and Re ---, oc 
are taken such that G = O(1). We define the dimensionless boundary layer coordinates x, y, and z 
through: 

0 x = - ,  y =  [ ( - r - R ) / l ] R e  1/2, z = ( ~ / l ) R e  1/2. (2) 
K 

and the dimensionless velocities u, v, w and pressure p: 

p! 
Vo Vr Rel/2, w =  v¢ Re1/2, P - -  Re, (3) 

u -  U~ '  v -  U~ U~ pU~ 

where p is the density and p' is the dimensional pressure. When these variables are introduced into 
the Navier-Stokes equations, the leading order system is found: 

+ vy~- + -~z = 0, (4) 

(s) g3y2 g322' 

U 0 0 W ~ ] G2u 2 c3p (~2v (~21) (6) 
+ Yz + aV' 

u 0 0 w ~3 J @ ~?2w O2w 
~x + V~yy + ~z w -- ~?z + c~y-----; + 0z --5-' (7) 

These equations are parabolic and can be marched from an initial streamwise position x = 1. The 
terms neglected are formally of  order Re -~. Notice that time is ignored because of experimental 
evidence [1-3] in the early development. An a posteriori justification for employing the parabolic 
model (4 ) - (7 )  in the present study is given in Appendix. 

At the inflow of the computational domain only the Blasius velocity distribution is imposed. At the 
free-stream zero y-derivatives of the three velocity components are specified, and at the lateral edges 
symmetric conditions are applied. Only wall roughness, simulated with the adoption of  non-zero slip 
velocities at y = 0, can act as a trigger for the vortices. If the "true" wall is represented by 
y = eg(x, z) we have: 

u = v = w = 0  at y = e g ( x , z ) ,  (8) 

with e the roughness amplitude and g(x, z) the roughness distribution function. For small roughness 
amplitude we can Taylor expand Eq. (8) as 

~u eg(x, z) + O(~2), u(x,~o,z) = u(x,O,z) + 7y y=0 (9) 
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and similarly for v and w. The computational domain in the vertical direction extends from y = 0, 
where the Robin-type boundary condition 

~u ~g(x, z) = 0 (10) u(x,O,z)+ ~y y:0 

is implicitly enforced (and likewise for the other two components). Other authors (i.e. Ref. [20]) 
have used the same conditions to simulate rough walls. The boundary conditions are accurate up to 
O(e): the smallest order terms retained in Eq. (10) must be larger than the terms neglected in Eqs. 
(4)-(7) .  This leads to 

>> Re -l.  (11) 

Furthermore, for first-order boundary layer theory to be applicable and to avoid the appearance of  
macroscopic recirculating flow zones the inequalities 

g~<AYmin << 1 (12) 

should hold, with A y m i  n the minimum grid distance along the vertical direction. Such a minimum 
grid length is that of  the control surface adjacent to the wall for the non-uniform mesh employed 
in the present calculations. With requirements (11) and (12) on e, the (parabolic) boundary layer 
equations are appropriate to describe the phenomenon under consideration (see also Refs. [7-10]); 
for larger roughness amplitudes other models must be used to capture eventual regions of  backflow. 

Taking as a basis the experiments of  Swearingen and Blackwelder [3] we can obtain some typical 
roughness amplitudes. For a flow of  air (v = 0.15 c m 2 / s )  with U~ = 500 cm/s, it is R e - l =  7.5 × 10 -6  

when l is 40 cm. One can therefore perform numerical experiments with roughness amplitudes 
ranging from, for example, 0.003 (corresponding to 3 ~tm) to 0.05 (55 ~tm): these are realistic 
measures that allow appreciation of  the impact of  surface finish. 

3. Numerical solution technique and governing parameters 

The numerical approach is the same as that used by Bottaro et al. [6] in a recent study of  spanwise 
rotating Grrtler vortices. Only the main features of  the technique are given here. The flow cross- 
section is subdivided into a finite number of  non-overlapping control surfaces; second-order schemes 
are used in y - z  to discretize convective and diffusive fluxes, and a fully implicit Euler scheme is 
used to march the equations downstream. The pressure is treated with a pressure correction algorithm 
(see Ref. [21]). 71 smoothly stretched control surfaces are employed to cover the y range ~ which 
spans from 0 to Ye = 50 and 151 regularly distributed control surfaces cover the z range which goes 
from 0 to L = 89.7; the streamwise marching step is taken equal to 0.02. The suitability of this 
mesh has been proven by comparisons with calculations on both coarser and finer grids and is fully 
documented in Ref. [6]. Note that the large dimension along the span has been chosen to allow the 
natural development of several neighboring vortex pairs: this way the wavelength of the instability 

The value of Aymin is 0.0894. 



348 A. Bottaro, A. Zebib / Fluid Dynamics Research 19 (1997) 343-362 

is a result of the calculations, rather than being forced. One dimensionless measure of the spanwise 
wavelength which is frequently used is A, defined by 

A -  U~2'v ~/~" (13) 

A remains constant at all streamwise locations (unless merging and/or splitting of vortices takes 
place and the physical wavelength 2' of the vortices is modified). Both local [5] and non-local [6] 
linear stability theories predict that the wavelength of maximum amplification is about A = 210 
sufficiently downstream of the plate's leading edge. 

All computations presented here start from x =  1 with G=6.756;  in Swearingen and Blackwelder's 
[3] parameter space this corresponds to / = 4 0 c m  and R e =  133 333. The simulations are carried out 
through a filtering phase (where the flow receptivity operates), the linear growth phase and up to 
the early stages of non-linear saturation. Each calculation required of  the order of 25 h of CPU time 
on the Cray Y-MP of the EPFL. 

4. Types of walls considered and discussion of the results 

Several kinds of surfaces have been considered by appropriately choosing the function g(x, z) 
and, to facilitate comparisons, all the cases treated have been listed in Table 1. The influence of 
roughness amplitude can be inferred by comparison of cases 1 and 2 for a rough surface with 
stochastic distribution; the function fo(x, z)  of Table 1 is made up of  random numbers between 
- 1  and 1. Cases 3-5 correspond to spanwise aligned rough strips, while case 6 is for walls with 
triangular grooves along the longitudinal directio.n (riblets) and 7 is the case of an isolated three- 
dimensional hump on a smooth wall. 

To monitor the vortex formation and growth we focus on the streamwise disturbance energy 
E = E(x), defined through 

'L~  y~ 2 dy dz, (14) E = u I 

where Ul is the deviation from the Blasius similarity solution. Other measures of the perturbation 
field have also been examined (energy of the local deviation from the spanwise averaged flow, for 
example) which have no effect on the conclusions reached. 

Finally, the growth rate a of the instability can be introduced as 

1 dE 
o - -  2E dx" (15) 

4.1. Cases 1 and 2: Distributed wall roughness 

When a broad band of roughness wavelengths is imposed - the common situation in most practical 
applications - G6rtler vortices can start growing after an initial phase in which the equations and the 
boundary conditions filter the disturbances (Fig. 2, left). The length, in the streamwise direction, of  



A. Bottaro, A. Zebib /Fluid Dynamics Research 19 (1997) 343-362 

Table 1 
Summary of the cases investigated 

349 

Case e 9(x,z) Remarks 
n o .  

1 0.005 fo(x,z) 

2 0.025 fo(x,z) 
fo(x,z) : white noise distribution ) 
of amplitude in the interval [-1,  1] 

3 0.05 fl(x,z)exp[-50(x- 1.25) 2] 

4 0.05 f2(x) exp [-50(x - 1.25) 2] 

5 0.05 f3(z)exp[-50(x- 1.25) 2] 

f l, f2, f3 : white noise distributions "~ 
of amplitude in the interval [0, 1] J 

2(z  - ~s) 
6 0.05 S( z ) 

2 1 s ks 

6.1 s = 3.588 

6.2 s = 9.966 

6.3 s = 22.425 

(s: spanwise period of the riblets) 

7 0.05 exp [-50(x - 1.25) 2] exp [ - (z  - 35) 2] 

Random rouyhness. Randomly distributed wall inhomogene- 
ities can act as a vortex promoter mechanism. Larger ampli- 
tude roughness produces a more rapid vortex growth. The 
receptivity mechanism is linear. Average wavelength A close 
to 210. 

Rough Gaussian strip alon9 z. A rough Gaussian strip 
aligned along z is more efficient than distributed roughness. 
The vortex seeding is absent for spanwise aligned 2D rough- 
ness (case 4), while streamwise aligned 2D roughness (case 
5) is very conducive to vortex formation. Average wavelength 
A close to 210. 

for ks <~z <~ (2k + 1 )s/2, ~ k = 0, l, 2 

for (2k + 1)s/2<~z<~(k + 1)s, J 
Trianyular riblets. Each distribution prescribes a unique 
wavelength. Riblets are the best vortex promoter. Grrtler vor- 
tices adjust to the riblets and acquire their wavelength. The 
faster growth is found for spanwise wavelength A of about 
210. For A < 50 the vortices decay. 

The three-dimensional hump. It induces localized vortices 
with A ~ 210. 

this phase  increases  wi th  decreas ing  roughness  ampl i tude ,  for  f ixed roughness  distr ibution.  This  can 
be c lear ly  inferred b y  inspec t ion  o f  the curves  o f  g rowth  rate a wi th  x (Fig.  2, center  and  right):  
a b a c k w a r d  ex t rapola t ion  towards  a = 0 indicates  the "po in t "  f rom which  the per turba t ion  starts 
g rowing  for  each  case.  It  wil l  be  shown  later that  vor t ices  o f  different ampl i f ica t ion  levels  coexis t  
at each  x; hence,  a unique poin t  f rom which  quas i -exponen t ia l  g rowth  beg ins  does  not  rea l ly  exist. 
H o w e v e r ,  it is c lear  that  vor t ices  are ampl i f ied  earlier,  on the average ,  for  case  2 (wi th  e = 0 .025)  
than for  case 1 (e = 0.005);  i.e., the length o f  the receptivity region depends on the roughness 
amplitude. Unl ike  the case  o f  r a n d o m  inf low per turba t ions  (wh ich  m i m i c s  the s i tuat ion o f  ups t r eam 
gr ids)  on a s m o o t h  wall ,  t reated b y  Bot ta ro  et al. [6], the d is turbance  ene rgy  does  not  decrease  wi th  

x dur ing the recep t iv i ty  phase  because  the source  o f  the per turba t ion  - the rough  wal l  - is act ive  
over  an ex tended  s t r eamwise  distance.  

Dur ing  the initial phase  coheren t  pa tches  o f  a l ternat ing pos i t ive  and  nega t ive  s t r eamwise  vor t ic i ty  
o f  " app rop r i a t e "  d imens ions  are f o r m e d  near  the wall .  In Fig. 3 c ross -sec t ions  at x = 1.1 + 0.2i, 
i = 0, 1 . . . . .  9, o f  pos i t ive  ( l ight  shad ing)  and nega t ive  (da rk  shad ing)  s t r eamwise  vor t ic i ty  are shown  
for  case  1. Init ial ly,  la rge-sca le  reg ions  o f  ve ry  w e a k  pos i t ive  and nega t ive  vor t ic i ty  are fo rmed .  Wi th  
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increasing x, there is a seemingly random coalescence of  zones of  equal sign vorticity; in the process, 
regions of  opposite sign vorticity are engulfed or displaced. At each x the local field will be affected 
by (1) the upstream field and (2) the local forcing at the wall; the competition between these 
two mechanisms is the cause of  the relatively long filtering length (x from 1 to about 2.7). The 
disturbance energy will start growing once a more or less regular alternation of  positive and negative 
vorticity concentrations is created. These patches must be sufficiently organized and "strong" not to 
be affected any longer by the local wall forcing. Clearly, this is only a qualitative statement; in a 
linearized setting, a rigorous description of  the causality relation between the solution at a given x 
and the history of  the wall condition up to that x depends on a suitable kernel. Preliminary progress 
in this direction has been made by Luchini and Bottaro [22] who evaluated this kernel, a Green's 
function, via the solution of  an adjoint system of parabolic partial differential equations with a 
reversed (backward) natural direction of  evolution. 

Back to the problem at hand, the reason why case 1 presents a slightly longer receptivity region 
when compared to case 2 is ascribed to the fact that the rough wall in 1 plays an active role on the 
flow field over a longer streamwise length. This is also the reason why the downstream flow evolution 
for the two cases differs somewhat, as can be inferred from Fig. 4, where isolines of  the spanwise 
velocity on the plane y = 0.9193 are plotted. The w = 0 line is explicitly drawn to demonstrate 
the equivalence of  the two cases for x < 2.7. Downstream of x = 2.7 differences start appearing 
because in case 1 the competing influences of  upstream flow and wall forcing take place over a 
slightly longer streamwise distance. It is expected that differences will be more enhanced for larger 
roughness amplitude ratios. Differences in the receptivity lengths will cause different developments 
of  the vortices. 

As far as disturbance energy amplitudes are concerned, case 2 "preceds" case 1 of a distance Ax 
0.6, as shown on Fig. 2. Isolines of  the velocity fields on two cross-sections of  equal perturbation 
energies, x = 5 (case 1) and x = 4.4 (case 2) are plotted in Fig. 5. There are some similarities 
(stemming from the relatively long "common history") but also marked differences, e.g. a well- 
defined upwash zone is present at z ~ 50 in case 2 but not in case 1. Vortex pairs of  different 
wavelengths and growth levels are present on the same cross-section; upright, symmetric vortices 
represent the exception in a world of  deformed structures. The average wavelength A computed 
simply by counting the number of  upwash regions (positive v at the wall) is equal to 233 for both 
cases, a value very close to that of  the largest growth predicted by linear stability theory. 

The preceding discussion suggests that a thin rough strip along z on an otherwise smooth plate 
should be more effective than random roughness in triggering G6rtler vortices since the competition 
between upstream flow influence and local wall forcing occurs only over a reduced streamwise 
length, that of  the strip. This case is discussed next. 

4.2. Cases 3 -5 :  The rough strip 

Three cases are presented in this section and they are distinguished by the roughness function 
of  the strip. In case 3, we have taken 9(x, z )  = f l ( x ,  z ) e x p [ - 5 0 ( x -  1.25)2], in case 4 the rough 
strip is uniform along the span, 9(x, z) = f2(x)exp [ - 5 0 ( x -  1.25)2], whereas in case 5 the wall 
presents a white noise distribution only in z : 9(x, z) = f3(z) exp [ -50(x  - 1.25)2]. The perturbation 
energies for cases 3-5  are plotted in Fig. 6. The presence of  the strip is reflected in the relatively 
large increase in perturbation energies up to x = 1.25 and subsequent decrease downstream; for 
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Fig .  4.  Isolines of  the spanwise velocity on the plane y = 0 . 9 1 9 3  for case 1 (left) and case 2 ( r i g h t ) .  Isolines spacing is 
1, negative values are shown with dotted lines. 

x > 1.7 the three-configurations show marked differences. Growth rate curves (not shown) indicate 
that in case 3 the vortices start growing from x ~ 2.0; as expected a more rapid filtering is actuated 
when compared to cases 1 and 2, and the Gaussian strip is a better vortex promoter than distributed 
roughness. In case 4, where the roughness function depends only on x and streamwise vorticity 
cannot be created, the perturbation energy is exponentially damped for x > 2.2 and G6rtler vortices 
do not form. Conversely, if  the wall is grooved along x (case 5) the instability starts at x ~ 1.7. 
This is not unexpected since in this case the forcings from the upstream flow field and from the 
wall positively combine at all x's to enhance spanwise inhomogeneities. 

Fig. 7 shows regions of  negative and positive streamwise vorticity on different cross-sections 
x = 1.1 + 0.1i, i = 0 , 1 , . . . , 8 ,  for cases 3-5 .  Some non-zero streamwise vorticity is present in 
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Case 1, x = 5.0 Case 2, x = 4.4 
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Fig. 5. Isolines of w, v and u (from top to bottom) for case 1 (left) and case 2 (right). Isolines spacing is 0.1 for the 
streamwise velocity component and 2 for the cross-stream components. 

Rough Gaussian strip along z 
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X 

Fig. 6. Perturbation energy for the cases of the rough Gaussian strip centered on x = 1.25. 

case 4, but it is solely due to computer  round-off errors. The interesting cases are 3 and 5, and the 
difference between them is immediate ly  apparent: the situation in 3 resembles  that o f  the distributed 
roughness case, al though here a regular alternation o f  well-defined patterns o f  vorticity concentration 
is formed faster since the wall  is rough only over  a relatively short s t reamwise distance. In case 5, 
one can easily follow the downst ream evoluation o f  each negative or posit ive streamwise vorticity 
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Fig.  7. Cases  3 ( le f t ) ;  4 ( cen t e r )  and  5: r eg ions  o f  pos i t ive  ( l igh t  s h a d i n g )  a n d  nega t i ve  (da rk  s h a d i n g )  s t r e a m w i s e  vor t i c i ty  
for  x = 1.1 + 0.1i, i = 0, 1 . . . . .  8, i i nc rea s ing  f r o m  top  to bo t tom.  

region, starting from the first station examined. This happens because, as already mentioned, forcings 
from the upstream flow and the rough wall do not counteract each other but act in a combined way. 
If vortex formation is the desired objective, case 5 indicates that a manner to promote it is to groove 
the wall along x, like in the case of  riblets. 

In Fig. 8 the streamwise velocity distribution on a z-x  plane at y = 0.9193 is shown for cases 3 
and 5. Average spanwise wavelengths in the two cases are, respectively, 255 and 233. The patterns of  
low- and high-speed streaks formed are reminiscent of  those of  turbulent boundary layers. Similarities 
between the two flow situations have been examined extensively by Blackwelder [23] and Bottaro 
et al. [6]. 

4.3. Case 6. Riblets 

Triangular riblets of  dimensionless wavelength s can be simulated by imposing the wall distribu- 
tion as 

{ 2 - ( z  - k = )  

g(x,z) = s z -  
2 ( 1  s ks)  

for ks <,z <<, (2k ÷ 1 )s/2, [ 

/ for (2k + l)s/2<<.z<~(k + 1)s, 
k = 0 ,1 ,2 , . . . .  

Three cases have been studied, corresponding to s = 3.588 (case 6.1, corresponding G6rtler wave- 
length A = 46), s = 9.966 (case 6.2, A = 212) and s = 22.425 (case 6.3, A = 717). In the three 
configurations studied there is a brief initial transient phase until x ~ 1.4; downstream an exponential 
damping (case 6.1) or amplification (cases 6.2 and 6.3) of  the disturbances occur (Fig. 9). The per- 
turbations induced by the riblets have same wavelengths of  the riblets, with downwash (secondary 
flow towards the wall) at the crests and upwash at the riblets valleys. Case 6.1 is not amplified, a 
fact consistent with both parallel and non-parallel local linear stability theories according to which 
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Fig. 8. Contours of the streamwise velocity for case 3 (left) and case 5 (right) on the plane y = 0.9193. Isoline spacing 
is 0.1. 

perturbations are damped for all G when A is less than about 45. This decay in amplitude for the 
small wavelength limit case was also predicted by the analysis of  Denier et al. [8]. Our calculation 
has, however, the surprising feature that the energy starts increasing after x ~ 3.8. This is due to 
the coalescence of  equal sign vorticity regions on either side of  z = 65, a coalescence made pos- 
sible by minute losses of  symmetry caused by round-off errors. During this process, exemplified in 
Fig. 10, a coherent structure of  larger wavelength is formed. It is this new structure that can be 
amplified and that produces the increase of  the disturbance energy. It is to be noted that this event 
would always occur in an experimental facility equipped with small-wavelength riblets, because of  
the inevitable manufacturing imperfections of  the riblets. Note also that this merging of  equal sign 
vorticity regions differs from the 3 to 2 merging event of  non-linear streamwise vortices caused by 
a generalized Eckhaus instability described by Bottaro [24] and Guo and Finlay [25]. 
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Fig. 9. Disturbance energy versus x for triangular riblets of different spanwise wavelengths. 

In cases 6.2 and 6.3 regular arrays of G6rtler vortices are formed, as shown in Fig. 11. The rapid 
growth of the disturbance energy in these cases is in agreement with the analysis of Bassom and 
Hall [9] for the situation of  distributed wall forcing of spanwise wavelength of the order of the 
boundary layer thickness. For A = 212 a larger growth rate is found as by linear stability theory 
[5,6]; interestingly, the total integrated perturbation energy at saturation is bigger for the larger 
wavelength case. 

4.4. Case 7." The three-dimensional hump 

The last case studied is that of an isolated three-dimensional hump centered at x = 1.25 and z = 35, 
with wall function prescribed by g(x,z) = exp [ - 5 0 ( x -  1.25) 2] exp [ - ( z -35 )2 ] .  Bassom and Hall [9] 
considered an isolated element consisting of a delta function-shaped wall forcing - a necessary 
assumption to make analytical progress - and concluded that isolated roughness is inefficient in 
generating G6rtler vortices. For the more realistic wall forcing treated here quasi-exponential growth 
is found immediately downstream of the hump, as shown in Fig. 12. Two regions appear, with 
different growth rates: An initial one, up to x ~ 2, of slow amplification, and a second one for x > 2.2 
with same growth rate as that of a vortex with A ~ 210. The initial perturbation produced by the 
hump is uniformly spread over a large z range; around x ~ 2 an area of concentrated disturbances 
emerges. Further downstream a high-speed streak is produced along x at z = 35, with two vortex 
pairs symmetric about z = 35; the rest of the cross-section seems unaffected by the presence of 
the roughness element (Fig. 13). Clearly, if the height of the element had exceeded some critical 
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value, boundary layer separation would have occurred with consequent rapid transition to turbulence. 
To deal with such an event interacting boundary layer theory [26], triple-deck theory [27] or full 
Navier-Stokes computations are needed. 

5. Concluding remarks 

This paper presents the first numerical experiments of linearly and non-linearly spatially devel- 
oping G6rtler vortices promoted uniquely by small-amplitude surface roughness; unlike Bertolotti's 
work [10], no perturbation is superposed to the basic Blasius flow at the inflow of our computa- 
tional domain. Several surfaces not previously examined have been treated here and their effect as 
near-wall vortex "generators" elucidated. This was made possible because our parabolic model was 
found to accurately describe the physics, as proven in the Appendix. 

Our results demonstrate that ribleted surfaces of sufficiently large spanwise wavelength are ex- 
tremely efficient in triggering G6rtler vortices of that particular wavelength, whereas very small- 
wavelength riblets (A less than about 50) or grooves cut along the spanwise direction do not promote 
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the vortex development. For all cases examined there is a linear filtering (receptivity) region be- 
fore the instability can start amplifying disturbances. The streamwise length of such region de- 
pends on wall type and roughness amplitude. A boundary layer tripped over a short streamwise 
distance by a thin strip reacts more rapidly (appropriate perturbations develop faster and can be 
exponentially amplified earlier) than one uniformly perturbed at the wall. When isolated rough- 
ness elements are employed, the disturbance energy increases immediately but the vortices remain 
localized. Under a broad-band distribution of spanwise roughness wavenumbers it is found that 
G6rtler vortices of average wavelength close to that of largest growth of the linear stability theory 
develop. 

One interesting question brought about by the present study is whether small-wavelength ri- 
blets or spanwise grooves can act to suppress or delay the growth of G6rtler vortices induced, 
for example, by free-stream turbulence. Some effect on the vortices would not be unexpected 
for the case of a wall equipped with riblets of spanwise scale smaller than that of the streaks, 
simply by analogy to the case of turbulent boundary layers. This issue awaits further 
investigations. 
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Appendix. An a posteriori justification for the parabolic approach 

The parabolic Eqs. (4 ) - (7 )  were derived to investigate the spatial development of G6rtler vortices 
over smooth walls (see e.g. Ref. [12]). The underlying assumption is that of  slow streamwise varia- 
tion, so that streamwise diffusion terms can be labelled as negligible when compared to cross-stream 
diffusion terms. Because the wall boundary condition here is, in general, not a slow function of x, it 
has to be verified a posteriori that the solution presents slowly varying properties in the streamwise 
direction. For, if this is not the case, the elliptic effects of  these rapid variations would be important 
and could not be ignored. 

The most offending situations are cases 1 and 2, in the initial receptivity region as evidenced 
by Fig. 2. For our check we have monitored, for x in the range 1.4 < x < 1.6, the streamwise 
development of the extrema of ~2U/~X 2, ~2u/~y2 and uOu/~x. We call R~ the ratio of the first to the 
second, and R2 the ratio of the first to the third; Rl and R2 are measures of  the ellipticity of the system 
and are plotted in Fig. 14. In case 2 (e = 0.025) RI and R2 are of the order of 500, whereas in case 1 
(e = 0.005) they are of the order of 100. Since, from the scalings proposed in Eqs. (2) and (3), 
terms like O2U/OX2 a r e  multiplied by Re -1 (here taken to be 7.5 x 10 -6) and hence discarded as 
asymptotically small, we conclude that the parabolic approximation is tenable for the cases at hand. 
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It wou ld  not  be tenable i f  R1 and R2 were  o f  order  Re. As  expected  (and conf i rmed by  Fig. 14) the 
quali ty o f  the parabol ic  solutions degrades  as the roughness  ampl i tude  is increased.  
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