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This paper is concerned with the transition of the laminar flow in a duct of square
cross section. As in the similar case of pipe flow, the motion is linearly stable for all
Reynolds numbers, rendering this flow a suitable candidate for a study of the ‘bypass’
path to turbulence. It has already been shown that the classical linear optimal
perturbation problem, yielding optimal disturbances in the form of longitudinal vortices,
fails to provide an ‘optimal’ path to turbulence, i.e. optimal perturbations do not elicit a
significant nonlinear response from the flow. Previous simulations have also indicated that
a pair of travelling waves generates immediately, by nonlinear quadratic interactions,
an unstable mean flow distortion, responsible for rapid breakdown. By the use of functions
quantifying the sensitivity of the motion to deviations in the base flow, the optimal
travelling wave associated with its specific defect is found by a variational approach. This
optimal solution is then integrated in time and shown to display a qualitative similarity
to the so-called ‘minimal defect’, for the same parameters. Finally, numerical simulations
of an ‘edge state’ are conducted, to identify an unstable solution that mediates laminar–
turbulent transition and relate it to results of the optimization procedure.
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1. Introduction

Transition to turbulence in ducts is still a challenging issue despite the 125 years
since the seminal paper by Reynolds (1883), which led to the definition of a
dimensionless number, which came sometime afterwards to bear his name, capable
of broadly discriminating cases of ‘streamlined’ flow from cases where ‘sinuous
motion’ prevailed. Osborne Reynolds recognized also that there was no unique
value of this dimensionless parameter, representing the ratio of convective to
viscous forces, separating the two classes of motion, and that the end state was
influenced by the background perturbations present. The problem of laminar–
turbulent transition in shear flows was posed, to fascinate and attract the
attention of thousands of researchers in the years to come. Incidentally, the story
of how the paper was reviewed by two referees of the calibre of Lord Rayleigh and
Sir George Stokes makes for instructive reading (Jackson & Launder 2007).
Phil. Trans. R. Soc. A (2009) 367, 529–544

doi:10.1098/rsta.2008.0191
Published online 7 November 2008
e contribution of 10 to a Theme Issue ‘Turbulence transition in pipe flow: 125th anniversary of
publication of Reynolds’ paper’.

uthor for correspondence (damien.biau@univ-poitiers.fr).
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In a subsequent paper, Reynolds (1895) had gone beyond transition to present,
for the first time, the decomposition of the turbulent field into a mean and a
fluctuating part, arriving at the equations now known as the ‘Reynolds-averaged
Navier–Stokes equations’, with unknown turbulent stress terms in the mean flow
equations. Reynolds had the intuition that a balance is necessary to maintain
turbulence, namely production, i.e. the transfer of kinetic energy from the mean
flow to the fluctuations must equilibrate dissipation of the fluctuations for
turbulence to subsist.

While some classical flows, such as that between differentially heated parallel
plates in the gravity field or that between concentric differentially rotating
cylinders, exhibit a smooth progression to increasingly complicated patterns via
a sequence of bifurcations, whose initial points are well predicted by (modal)
linear stability theory, the laminar square duct and the pipe flows are linearly
asymptotically stable (Gill 1965; Tatsumi & Yoshimura 1990). On the other
hand, experiments clearly show that these flows undergo transition abruptly at
moderate values of the Reynolds number. The transition to turbulence originates
from a subcritical instability that requires perturbations of finite amplitude to
bring the flow out of the basin of attraction of the laminar state. Current
understanding ascribes the failure of classical stability theory to its focus
uniquely on the least stable eigenmode. When a small disturbance composed by a
weighted combination of linear eigenfunctions is considered, owing to the non-
normality of the linearized stability operator, there is the potential for very large
transient amplification of the disturbance energy, even in nominally stable flow
conditions. This property has been beautifully described in a paper by Trefethen
et al. (1993), where the authors also show that non-normal operators render the
modal instability of pseudo-modes (i.e. modes of a perturbed operator) possible.
The definition of pseudo-spectrum has later been extended to the case of base
flow uncertainties by Bottaro et al. (2003).

A recent new direction in rationalizing the abrupt transition of many wall-
bounded shear flows focuses on identifying alternative solutions (beyond the
laminar state) to the governing Navier–Stokes equations. In the last two decades,
such coherent solutions, generally unstable and in the form of steady states or
travelling waves, have been found, first for channel flows (Nagata 1990; Clever &
Busse 1992; Cherhabili & Ehrenstein 1997; Waleffe 1997) and more recently in a
pipe (Faisst & Eckhardt 2003; Wedin & Kerswell 2004). The solutions computed
have the same basic structure that appears to be in relation to the self-sustaining
process (SSP) observed in the near-wall region of turbulent shear flows. The
three main ingredients of the SSP are: streamwise rolls of amplitude 1/Re, which
induce streaks (an order 1 spanwise modulation of the ideal laminar flow) by lift-
up effect and, to close the loop, a travelling wave (an unstable eigenmode of the
streak) whose quadratic interactions feed onto the rolls.

These alternative solutions to the Navier–Stokes equations, also labelled
‘exact coherent structures’, have been computed by continuation methods. First
the rolls are generated by a thermal body force (Clever & Busse 1992), by a
centrifugal force (Nagata 1990), or by an ad hoc body force (Waleffe 1997). The
solution is then obtained by progressively decreasing the forcing imposed to
create the rolls. Flow states similar to those computed by continuation
approaches have been observed in numerical simulations of turbulent flows. By
reducing the size of the computational box, Hamilton et al. (1995) have found the
Phil. Trans. R. Soc. A (2009)
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minimal flow unit, containing just a single pair of streaks, capable of maintaining
some turbulent activity. Periodic solutions have also been used to describe the
bursting event, i.e. the break-up and recreation of coherent structures such as
streaks, in the turbulent buffer layer. Kawahara & Kida (2001) have found two
periodic solutions in plane Couette flow, which represent quiescent and turbulent
phases of the flow. The phenomenon of bursting has thus been interpreted
in phase space as the wandering of the flow trajectory back and forth between
such solutions.

Tracking the bifurcation of SSP states by continuation with the Reynolds
number has led to two kinds of solutions: the so-called upper and lower branch
states. From a dynamical system point of view, the lower branch solutions sit on
a separatrix, the phase–space boundary between the basin of attraction of the
laminar flow and that of the turbulence. The lower branch flow is also called an
‘edge state’. An open question concerns the number of different states embedded
in the separatrix. These exact coherent solutions, with their stable and unstable
manifolds, are typically low-dimensional saddle points that collectively produce a
chaotic repeller. This leads to the perspective of representing the chaotic
dynamics of turbulence through a projection into a (hopefully not too large)
set of ‘exact’ coherent solutions. The idea is that these structures, connected
through their stable and unstable manifolds, are capable of supporting chaotic
trajectories in phase space. A chaotic behaviour with a finite number of degrees
of freedom could be explained by the existence of a strange attractor (Ruelle &
Takens 1971). The appealing aspect is that turbulence could be described by a
finite number of coherent solutions, which constitute the skeleton around which
the chaotic dynamics is organized. However, the question of whether a global
attractor of the Navier–Stokes equations in three dimensions exists is an issue
that is not yet settled. Beyond its fundamental character, this question has
important practical implications, for knowing that a finite-dimensional attractor
exists would guarantee that the long-time behaviour of the Navier–Stokes
solutions can be approximated by numerical means (i.e. using a finite number of
degrees of freedom).

The present paper deals with the flow through a duct of square cross section
with constant pressure gradient dP0/dx in the streamwise direction. While
sharing many characteristics with cylindrical pipe flow (both flows are linearly
stable, for example, and undergo spontaneous transition at comparable values of
the Reynolds number), the square cross section, by its geometric features, has
the capacity of strongly constraining secondary flows, both instantaneous
and time-averaged. An example of this is provided in figure 1a where turbulent
mean velocity components arising from a direct numerical simulation at
ReZuth/nZ150 in a duct of (dimensional) length equal to 6ph are displayed,
and the presence of symmetric secondary vortices of Prandtl’s second kind is
shown. The Cartesian coordinates employed in the following are x, y and z to
define, respectively, the streamwise, vertical and spanwise directions. The scales
used to normalize the Navier–Stokes equations are the friction velocity
utZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKh=4rÞdP0=dx

p
, the side length of the square h, the density r and the

kinematic viscosity n.
Figure 1b, obtained from a series of direct numerical simulations at

progressively varying values of the pressure gradient, shows that in the turbulent
regime the Reynolds number RebZUbh/n, where Ub is the bulk velocity, grows
Phil. Trans. R. Soc. A (2009)
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Figure 1. (a) Turbulent mean crossflow vortices and streamwise flow contours. Spacing between
adjacent isolines is equal to 4 in units of ut. (b) Variation of Reb with Ret in the laminar (dashed
line) and turbulent (solid line) regimes.
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almost linearly with Re (denoted Ret in this figure for immediate distinction
from Reb), in agreement with the results by Uhlmann et al. (2007). The smallest
Re for which turbulence exists is found to be 130, corresponding to Rebz1730.
This value is slightly smaller than that identified by Uhlmann et al. (2007)
(ReZ160, RebZ2154). Uhlmann et al. (2007) have interpreted ReZ160 as the
value defining a ‘minimal channel’ capable of some form of turbulent activity,
with two streaks, each flanked by a pair of quasi-streamwise vortices, active over
two walls that face one another. Such a state with two pairs of rolls adjacent to
opposing walls, with the active role of the walls alternating in time, exists near
marginal conditions, and it has been interpreted as the signature of the edge state
(Biau et al. 2008). Interestingly, the effect of the long time averaging of the
two possible sets ofmarginal states (with the two pairs of rolls lying on the horizontal
or the vertical walls) is that of producing an eight-vortex pattern such as
that displayed in figure 1a.

The very first step of the bypass transition process in boundary layers,
channels and ducts has often been described as an algebraic instability of the
base flow, leading to the formation of streamwise-elongated streaks. Subsequent
steps in the process are the linear wavy instability of the streaks and the
nonlinear feedback onto the rolls. Despite the fact that streaks, rolls and waves
are all present in the exact coherent solutions briefly cited above, there is as yet
no description of how such states might arise from the stable laminar base flow.
A path to transition relying on the amplification of so-called optimal
disturbances and their subsequent nonlinear development has proven to be
suboptimal, when viewed from the point of view of the minimal initial energy
needed to provoke transition (Biau et al. 2008).

A different optimization strategy is thus called for, to identify the optimal
path from the laminar to the turbulent state, relying on recent developments of
the SSP and of physical understanding of the breakdown process.
Phil. Trans. R. Soc. A (2009)
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2. The optimization approach

Evidence collected indicates that key to transition is the establishment of a
distorted mean flow profile, capable of supporting strong instabilities. This
distortion is different from that caused by the rolls and the streaks issued from
classical optimal perturbation theory. The recent theory of ‘minimal defects’
(Bottaro et al. 2003; Biau & Bottaro 2004; Ben-Dov & Cohen 2007a,b), yielding
the base flow deformation of fixed amplitude capable of maximal destabilization,
is also not sufficient to explain available observations, since it provides no link
between the initial state and the deformed flow.

Thus, we have set up a new optimization strategy, aimed at finding the
travelling wave of minimal amplitude capable of yielding a self-sustained state,
based on the following initial steps:

— linear algebraic growth of the travelling wave,
— generation of weak streamwise vortices by quadratic interactions,
—production of a strong streak by lift-up, and
— regeneration of the travelling wave, closing the loop for a sustained state.

Velocity and pressure are decomposed into a base, laminar state (U0, P0) and a
time-dependent part. The time-dependent component is itself decomposed into a
slowly time-varying mean flow defect (Q) plus a streamwise travelling wave (q)
of order OðeÞ/1. The vortex (V, W ) is of order Oðe2Þ, while the streak
U resulting from lift-up is Oðe2ReÞ. Using the decomposition

U0ðy; zÞ
0

0

P0ðxÞ

2
66664

3
77775C

Uðy; z; tÞ
V ðy; z; tÞ
W ðy; z; tÞ
Pðy; z; tÞ

2
66664

3
77775C

uðx; y; z; tÞ
vðx; y; z; tÞ
wðx; y; z; tÞ
pðx; y; z; tÞ

2
66664

3
77775;

the equations governing the mean, streamwise-averaged flow read as

Vy CWz Z 0;

Ut CV ðU0CUÞy CW ðU0 CUÞz Z
1

Re
ðUyy CUzzÞK vujy Cwujz

� �
;

Vt ZKPy C
1

Re
ðVyy CVzzÞK vv jy Cwv jz

� �
;

Wt ZKPz C
1

Re
ðWyy CWzzÞK vw jy Cww jz

� �
;

associated with homogeneous boundary conditions UZVZWZ0 on the walls.
Note that in the equations above, overbars over the products of fluctuating
velocity components denote averaging along the streamwise distance. The
Phil. Trans. R. Soc. A (2009)
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Navier–Stokes equations, linearized around the streaky flow (U0CU ), are

ux Cvy Cwz Z 0;

ut CðU0 CUÞux CvðU0CUÞy CwðU0CUÞz ZKpx C
1

Re
ðuxx Cuyy CuzzÞ;

vt CðU0 CUÞvx ZKpy C
1

Re
ðvxx Cvyy CvzzÞ;

wt CðU0 CUÞwx ZKpz C
1

Re
ðwxx Cwyy CwzzÞ;

together with uZvZwZ0 on the walls and streamwise periodicity.
The energies of mean flow defect (E ) and fluctuations (e), to be used later, are

defined as

EðtÞZ 1

2

ð
yz
ðU 2CV 2CW 2Þdy dz

and

eðtÞZ 1

2

ð
xyz

ðu2Cv2 Cw2Þdx dy dz:

A gain is defined as GZe(t)/e(0), and the goal of the work is to find the
initial wave at tZ0 capable of maximizing G. In the first step of the iteration
procedure, U, V and W are zero; they are created from the second iteration
onwards owing to the presence of the Reynolds stress terms in the mean flow
equations. As an alternative, it might have been interesting to test the approach
with a different objective functional, such as a gain based more directly on the
Reynolds stresses or the ratio between production and dissipation terms.

The optimization procedure is standard and, instead of carrying out a
constrained optimization, we introduce a Lagrangian functional L to be
maximized without constraints. This augmented functional is

LZGK hQ†;LðQ; qÞiK hq†; lðQ; qÞi;

where h.i denotes the usual inner product (i.e. volume integration of the product
of the two quantities over the domain) and Q†, q† are Lagrange multipliers. On
an extremum point, the following necessary conditions must be satisfied:

vL
vQ

dQZ 0 and
vL
vq

dq Z 0

leading to the adjoint problems in symbolic form

hL†Q†; dQiZKhq†; lðdQÞqiZ hGQ; dQi

and

hl †q†; dqiZKhQ†;LðdqÞQiZ hgq; dqi
Phil. Trans. R. Soc. A (2009)
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(superscript † designates adjoint quantities), which must be solved together with
the direct equations for the fluctuations and the mean flow; dQ and dq are
infinitesimal variations of the mean flow and fluctuations, respectively; GQ and gq
are sensitivity functions that arise naturally after integration by parts when
isolating dQ and dq, respectively.

In extended form, the adjoint equations for the mean flow are

V †
y CW †

z Z 0;

KU †
t Z

1

Re
ðU †

yy CU †
zzÞCGU ;

KV †
t CU †ðU0CUÞy ZKP†

y C
1

Re
ðV †

yy CV †
zzÞ;

KW †
t CU †ðU0CUÞz ZKP†

z C
1

Re
ðW †

yy CW †
zzÞ;

with U †ZV †ZW †Z0 on the walls. The adjoint equations for the fluctuations are

u†
x Cv†y Cw†

z Z 0;

Ku †
tKðU0CUÞu†

x ZKp†x C
1

Re
ðu†

xx Cu†
yy Cu†

zzÞCgu;

Kv†t KðU0CUÞv†x Cu†ðU0 CUÞy ZKp†y C
1

Re
ðv†xx Cv†yy Cv†zzÞCgv;

Kw†
t KðU0CUÞw†

x Cu†ðU0CUÞz ZKp†z C
1

Re
ðw†

xx Cw†
yy Cw†

zzÞCgw;

with u†Zv†Zw†Z0 on the walls and periodic boundary conditions along x. Note the
minus signs in front of the time derivatives of the ‘adjoint momentum equations’,
indicating that the onlypossible direction of stable evolution is negative time.All the
adjoint equations are linear but are coupled to the direct state, and this represents a
numerical challenge since the direct fields must be stored at all time steps.

The sensitivity terms are

GU ZKu†ðux Cvx CwxÞx Cðu†vÞy Cðu†wÞz ;

gu ZKU †
y vKU †

z w;

gv ZKU †
yuK2V †

y vCwðV †
z CW †

yÞ;

gw ZKU †
z uK2W †

zwCvðV †
z CW †

yÞ:

GU corresponds to the sensitivity to variations in the base flow; it is a
generalization of the function found by Bottaro et al. (2003). The terms gu, gv and
gw correspond to wave sensitivity functions, and are necessary for the
optimization of the feedback loop.
Phil. Trans. R. Soc. A (2009)
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Figure 2. Behaviour in time of the energy e (solid line) of the optimal initial fluctuations and of the
energy E (dashed line) of the optimal defect. The dotted line is the result of a simulation of
the linear disturbance equations in the absence of mean flow distortion, starting from the optimal
initial disturbance field.
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A sequence of direct and adjoint calculations is carried out to optimize G by
employing spectral collocation codes that are slight modifications of those
employed by Biau et al. (2008). The result of the integration of the direct system
up to tZT (where T is the target time of the optimization) provides q(T )
(and Q(T )); the adjoint system is integrated backwards in time and is initialized
by q†(T )Zq(T ) and Q†(T )Z0. Once the adjoint fields are computed, the direct
calculations are reinitialized with q(0)Zq†(0) and Q(0)Z0, so that the cycle can
restart. At convergence, we obtain the optimal initial fluctuating field q(0) whose
energy is maximized at tZT, and the associated base flow distortion Q(t)
produced by the action of the fluctuations onto the mean field.

The disturbances are expressed using a single-mode Fourier decomposition in
the streamwise direction, i.e.

q ðx; y; z; tÞZ ~qðy; z; tÞeCiax C~q*ðy; z; tÞeKiax ;

where superscript * denotes complex conjugate. The present representation is
acceptable if the first stages of the transition process are focused upon.
3. Optimization results

In the following, the Reynolds number is fixed at the value ReZ150. Figure 2

shows results of the optimization procedure for the case aZ1, e0Z3!10K3, and
for a final target time TZ1. Initially, the transient behaviour of the fluctuation
energy follows the linear curve (shown with a dotted line) obtained in the
absence of a base flow defect. Within the optimal procedure developed here, the
energy E of the mean flow distortion increases, as a result of Reynolds stress
feedback. For t larger than approximately 0.8, the deformed mean flow can
sustain a rapid amplification of the fluctuations, which brings the disturbance
Phil. Trans. R. Soc. A (2009)
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energy e to a level unattainable by the transient growth process alone. Thus it
appears that transient amplification and defects concur in defining the initial
stages of transition, as postulated by Biau & Bottaro (2004).

Figure 3 shows results from a detailed parametric study of the problem,
under the conditions indicated in the caption of the figure. It should preliminarily
be observed that gains of order 800 can be achieved by the transient
amplification mechanism in the linear case when aZ0 (Biau et al. 2008).
However, for aZ0 no mean flow distortion is produced in a nonlinear setting,
and at large times the disturbances simply decay. For aZ1, the results are
more interesting.
Phil. Trans. R. Soc. A (2009)
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Figure 3a shows that for T sufficiently long both e and E can increase very
much. Within the time interval considered, the energy gain of the fluctuations is
optimal for Tz1.8, i.e. over a physical viscous time scale of order h/ut, which is
the characteristic time of evolution of the streaks. At the imposed value of e0, the
defect plays a role only for T larger than approximately 0.5; the result of
optimization runs carried out for smaller target times coincide with classical
optimal perturbation results (dashed curve).

The effect of varying e0 is displayed in figure 3b; as a result of nonlinearities
the gain can increase very much, causing subcritical transition when the initial
disturbance energy level is sufficient.

The effect of the computational box size is represented in figure 3c. There are
two noteworthy results here. The first is that there appears to be a clear cut-off
length L†

xz250, below which the cycle is not self-sustained. This is the ‘minimal
box dimension’ for transition to appear, and the result is consistent with direct
simulations by Uhlmann et al. (2007). The second interesting point is that, for
TZ1, there is an optimal box length, equal to L†

xz350 (the corresponding
wavenumber is aZ2pRe=L†

xz2:7), where maximum amplification of both
fluctuations and mean flow defect is achieved. These results are mitigated by the
observation that a single wavenumber disturbance has been considered in
the model, as already pointed out earlier. In reality, one should expect
streamwise Fourier modes interactions when long computational boxes are
numerically computed. When a single mode with very small value of a is

considered (i.e. L†
x larger than 2500), the results obtained here are superposed to

the (classical) optimal case; the amplification process coincides with the
phenomenon of lift-up of low-speed streaks from the wall, with a base flow
that is not distorted from the ideal conditions. This demonstrates that, although
classical optimal perturbation theory (Butler & Farrell 1992) yields initial
flow states capable of large growth for small a, these are inefficient at triggering
the sequence of processes that eventually causes breakdown of the flow.
The reason is that no defect can be generated by the Reynolds stress terms,
as shown in figure 3c(ii). The optimization strategy outlined in this paper, while
recovering results of the classical theory for a small, highlights the importance
of closing the feedback loop.
4. The minimal defect

The previous section demonstrates the importance of mean flow defects for the
sustainment of fluctuations. It is thus interesting here to introduce a link between
optimalperturbations andminimaldefects, i.e. thosebaseflowdistortions ofminimal
energy capable of inducing efficiently subcritical instability (Bottaro et al. 2003). For
transitional flows (i.e. low-amplitudemean flow distortions), the concept of minimal
defect provides a new outlook on the possibility of rapid disturbance growth. For
turbulent flows (distortions of finite amplitude), these defects display characteristics
of possible relevance to the dynamics of coherent eddies.

The following is a brief summary of the methodology to compute minimal
defects. Let us consider the linear stability equations in symbolic form as an
eigenvalue problem

LðU0Þq ZKiuq:
Phil. Trans. R. Soc. A (2009)
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A steady base flow defect dU induces variations on the perturbations and
corresponding eigenvalues, i.e.

U0 CdU0
uCdu

qCdq
:

(

The linear stability problem then becomes

LðU0 CdUÞðqCdqÞZKiðuCduÞðqCdqÞ;
the first variation of which is

LðU0 CdUÞqCLðU0Þdq ZKiudqKiduq:

In order to isolate the variation of u, we use the adjoint variable q† defined by

hq†; ðLC iuÞqiZ hq; ðL†Kiu*Þq†iZ 0;

with an appropriate inner product (Bottaro et al. 2003). We can thus obtain the
sensitivity function GU

duZ i hq†;LðU0 CdUÞqi
Z hGU ; dU i;

with the normalization hq†,qiZ1. Note that here the function GU differs from
that obtained earlier. The minimal defect is found by maximizing the
growth rate uiZImag(u), under the constraint that the energy of the defectÐ
yzðUKU0Þ2dy dz is fixed at the value ED. This latter constraint is a simplified
state equation for the base flow deviation. The Lagrangian functional takes
the form

LZuiKl

ð
yz
ðUKU0Þ2dy dzKED

� �
;

and, by imposing that ðvL=vUÞdUZ0, the optimization loop is

lnC1 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
yzImagðGn

U Þ
2dy dz=4ED

q
dUnC1 Z ImagðGn

U Þ=2l
;

8<
:

with the exponent n denoting the iteration number. An illustrative result is
presented in figure 4a. The qualitative similarity between the results in
figure 4a,b (corresponding to the optimization of §2) is clear, with a low-speed
streak at the centre of the wall flanked by two high-speed streaks, although the
minimal defect displays much stronger gradients of the velocity and presents a
much larger (local) instability growth rate. It has to be stressed that the minimal
defect is a local feature, which does not satisfy the momentum conservation
equation. When it is imposed as initial condition in a direct simulation, the sharp
gradients diffuse rapidly leading to a solution that resembles more that displayed
in figure 4b,c. Figure 4c is very similar to that arising from the optimization
procedure, aside from the smaller peak absolute values of U attained. In the
direct numerical simulation in figure 4c, nonlinearities contribute to a
redistribution of the energy among many flow harmonics, whereas in figure 4b
the only wavenumbers that can accommodate the available energy are aZ0
and 1. Despite this, the agreement is sufficiently good to provide confidence in
Phil. Trans. R. Soc. A (2009)
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Figure 4. (a) The minimal defect is plotted with isolines of the streamwise disturbance velocity, for
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equal to 1 (i.e. ut in dimensional terms) and the dotted lines denote negative values.
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the ability of our simple model to provide correct flow features in the initial
phases of transition. It is also interesting to observe that the flow patterns
displayed in figure 4 resemble the asymmetric solution computed by Pringle &
Kerswell (2007) for the case of the pipe.

An open question concerns the mechanism that associates the position of each
streamwise vortex to its sign of rotation. Uhlmann et al. (2007) proposed a
heuristic explanation based on a simple kinematic analysis of the interaction of
streamwise vorticity with a corner. The interaction of a streamwise vortex, close
to one of the corners, with the impermeable wall can be modelled using three
image vortices and potential theory. Thus the vortex would migrate owing to the
induced velocity field towards a stable position. This argument is consistent with
the observations. Considering the results in figure 4, another hypothesis can be
formulated: a low-speed streak sitting on a bisector is the ‘most active’ flow
feature, i.e. it is that particular flow structure capable of better sustaining the
wall cycle.

If we express the wavy perturbations as qðx; y; z; tÞZAðtÞq̂ðy; zÞexpðiaxKiur tÞ,
the variation in time of the amplitude, when a mean flow is mildly distorted,
obeys the equation

1

A

dA

dt
Zui Cdui Zui ChImagðGU Þ; dUi:

The product hImag(GU),dU i can be interpreted as a Landau coefficient that
determines the nonlinear character of the bifurcation; if this coefficient is positive,
then the nonlinearity is destabilizing and the bifurcation is subcritical. It is
interesting here to note that dU is always proportional toA2Rewhether we consider
the lift-up regenerating loop (through the formation of streamwise vortices) or
the direct generation of streaks by the Reynolds stresses in the streamwise
momentum equation (and the latter assertion is clear after realizing that the
characteristic time scale of evolution of the defect is the viscous scale). It is
thus feasible to assume that a second self-sustaining mechanism exists, with the
streaks directly regenerated by the fluctuations.
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5. Nonlinear simulations of the edge state

Numerical simulations of non-trivial states are described in this section; the
calculations at ReZ150 are initialized at tZ0 with the laminar flow plus the
optimal wavy perturbation of figure 2 (with aZ1 and e0Z3!10K3) multiplied
by an appropriate scaling factor b. The time evolution of the skin friction is
depicted in figure 5 and the blue trajectory that relaminarizes after a few
units of time has bZ0.92. The edge of chaos is a stable manifold residing in
phase space somewhere between the laminar and turbulent flows. To find this
invariant object, the procedure described by Schneider et al. (2007) has been
adopted, successively refining (every viscous time unit) the initial guesses on
either sides of the edge surface in phase space, through a continuous update
of the relaxation parameter b. Four intermediate solutions (a couple initiated
at time tZ0 and that at tZ15, on both sides of the edge) are also shown
with colours in figure 5, highlighting the exponential separation with t within
each pair, with the trace of one state swinging up to turbulence and the
other relaminarizing.

The edge state lives in between and is represented by the dashed line.
Snapshots of the secondary flow patterns along the dashed curve are provided in
figure 6. It is interesting to observe that the basic building block of the edge state
is represented by two pairs of vortices. The larger outer pair is weaker; it sits
above a smaller near-wall pair that presents an upwash region fluctuating around
a bisector. The patterns displayed in the figure are similar to those shown in
figure 4; here, as time varies, different walls become ‘active’. The time-averaged
edge state in a pipe of circular cross section consists of one strong pair of vortices
near the surface with a much weaker pair above it (Eckhardt et al. 2007;
Pringle & Kerswell 2007; Schneider et al. 2007). In turbulent shear flows, the
spatio-temporal chaos is extensive, i.e. the number of degrees of freedom scales
with the system’s volume. Thus, it is impossible to represent a turbulent flow
as a dynamical system in a low-dimensional phase diagram. Toh & Itano (2003)
used the total energy input versus the dissipation rate as a two-dimensional
picture of the dynamics. Here, in figure 7, we use a reduced phase diagram
representation spanned by the energy of the streamwise-averaged flow,

EUZð1=2Þ
Ð
yzðUCU0Þ2CV 2CW 2dydz, and by the bulk Reynolds number

(see also Biau et al. 2008).
The black curve, i.e. the trajectory that goes to turbulence shortly after tZ0,

shows that chaos is attained very rapidly (on a convective time scale) once the
trace starts diverging from the edge. After a few orbits around an unstable
(turbulent) node, the flow is ejected along the unstable-laminar manifold. During
the relaminarization process, the patterns of motion remain self-similar while
slowly decaying. The x -structure disappears first and the flow tends to be formed
by quasi-straight rolls and streaks, which then decay on a viscous time scale
towards the laminar fixed point. The dashed curve in figure 7 shows the
trajectory that oscillates on the edge surface: this state is a relative attractor and
all trajectories that are initially on the edge surface remain confined to it.
Conversely, if the initial condition is close to the edge surface, but not exactly
onto it (the case of the red and blue curves), the trajectory will arrive close to the
saddle, before being ejected away.
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It is significant that the optimal initial condition obtained from the procedure
outlined in §2 yields a solution that resembles that found on the edge and follows
closely, for some time, the dashed curve in figure 5, before departing away from it.
This fact signals that the simplified optimization procedure that we have devised
Phil. Trans. R. Soc. A (2009)
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produces an appreciably good estimate of the ‘true optimal’ (as also attested by
the fact that the relaxation parameter b needed to maintain the solution on the
edge is close to 1), where by true optimal we define that fluctuating state of
minimal initial energy e0 capable of provoking transition. The initial disturbance
of minimal energy causing breakdown arrives arbitrarily close to the hyperbolic
point, and, of course, the closer it gets, the more slowly transition is triggered.
6. Conclusions

Transition in many wall-bounded shear flows arises from a complicated
interaction of rolls, streaks and waves; 125 years ago Osborne Reynolds was
able to catch a glimpse of this interaction. Efforts since, to unravel the secrets of
transition to turbulence, have focused mostly on linear stability theory (modal
and non-modal) and, more recently, on ‘exact coherent states’, the SSP and, to a
lesser extent, on minimal defects. We have tried to put together these individual
bricks to provide a coherent picture of the process.

The new optimization approach described here provides for the first time a
complete model of a transitional path including, in particular, the feedback of the
fluctuations onto the mean flow. We have shown that the initial stages of
transition rely on a combination of algebraic and exponential amplification of
disturbances, with the latter closely associated with the creation of a mean flow
defect. If disturbances of long streamwise wavelength are initially excited by the
receptivity conditions, mean flow distortions cannot be created, except in the
obvious case of very noisy environment.

Albeit simplified, our optimal model of transition has produced a solution that
sits initially on a trajectory directed towards the hyperbolic point on the edge
surface, i.e. the separatrix between the laminar basin of attraction and the chaotic
dynamics. Direct simulations have confirmed the suitability of themodel proposed.
The basic flow structure of the edge state in the cross section of the square duct is
formed by two overlapping pairs of vortices, with the near-wall pair more intense.
This pattern resembles that obtained by minimal defect theory and is also similar
to the asymmetric edge state computed by Schneider et al. (2007), Eckhardt
et al. (2007), Pringle & Kerswell (2007) and Duguet et al. (2008) for pipe flow.

Work in progress focuses on the effects of increasing the Reynolds number, to
try and compute the unsteady coherent solutions encountered during turbulent
intermittency or in puffs. From a practical point of view, it should be possible to
use the optimization technique introduced here also to determine semi-empirical
transition criteria based on a simple balance between production and dissipation,
as indicated by Reynolds (1895).

The support provided by the EU under Marie Curie grant EST FLUBIO 20228-2006 is gratefully
acknowledged.
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