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This paper describes a scenario of transition from laminar to turbulent flow in a

spatially developing boundary layer over a flat plate. The base flow is the Blasius

non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest

energy growth over a short time interval. Such perturbations are computed by a

nonlinear global optimization approach based on a Lagrange multiplier technique. The

results show that nonlinear optimal perturbations are characterized by a localized basic

building block, called the minimal seed, defined as the smallest flow structure which

maximizes the energy growth over short times. It is formed by vortices inclined in the

streamwise direction surrounding a region of intense streamwise disturbance velocity.

Such a basic structure appears to be a robust feature of the base flow since it is

practically invariant with respect to the initial energy of the perturbation, the target

time, the Reynolds number and the dimensions of the computational domain. The

minimal seed grows very rapidly in time while spreading, and it triggers nonlinear

effects which bring the flow to turbulence in a very efficient manner, through the

formation of a turbulence spot. This evolution of the initial optimal disturbance

has been studied in detail by direct numerical simulations. Using a perturbative

formulation of the Navier–Stokes equations, each linear and nonlinear convective term

of the equations has been analysed. The results show the fundamental role of the

streamwise inclination of the vortices in the process. The nonlinear coupling of the

finite amplitude disturbances is crucial to sustain such streamwise inclination, as well

as to generate dislocations within the flow structures, and local inflectional velocity

distributions. The analysis provides a picture of the transition process characterized by

a sequence of structures appearing successively in the flow, namely, 3 vortices, hairpin

vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived,

initiated by the fast nonlinear amplification of the minimal seed, providing a possible

scenario for the continuous regeneration of the same fundamental flow structures at

smaller space and time scales.
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1. Introduction

Despite many efforts in the last century and some breakthroughs, the very nature

of transition to turbulence continues to elude the fluid mechanics community, an

indication of how formidable and fascinating the process is. It is now clear that

several routes to turbulence may exist in a given flow, with different degrees of

efficiency, which can be measured in terms of the space and/or time needed to

reach the final chaotic state. The original view, consisting of the linear amplification

of two-dimensional Tollmien–Schlichting or Rayleigh waves in boundary and shear

layers, followed by secondary instability and a nonlinear mixing process capable

to redistribute energy among different modes, has been all but replaced by new

scenarios focusing on receptivity (Saric, Reed & Kerschen 2002), transient growth

(Chomaz 2005), as well as coherent flow structures (Adrian 2007) and their nonlinear

interactions (Eckhardt et al. 2007).

It has been established that in the subcritical regime, when all eigenmodes are

damped, disturbances may be amplified by a non-normal growth mechanism arising

from the constructive interference of nearly antiparallel eigenfunctions (Schmid &

Henningson 2001). At small initial disturbance levels this growth is linear; to identify

the maximum possible growth, the concept of optimal perturbations was introduced.

Optimal disturbances are defined as those initial flow states which yield the largest

amplification of the disturbance energy density over a time/space interval (Farrell

1988; Luchini 2000). For the case of the boundary layer at low Reynolds number,

of interest here, the result, obtained for a laminar profile in a local setting, is that

linear optimal perturbations consist of pairs of counter-rotating streamwise vortices,

capable of eliciting streamwise streaks by the lift-up effect (Landahl 1980). If

growth is sufficient, such elongated structures can experience secondary instability

and breakdown (Schoppa & Hussain 2002; Brandt, Schlatter & Henningson 2004).

For sufficiently high values of the Reynolds number and of the initial perturbation

amplitude, nonlinear effects may set in and trigger bypass transition, by generating a

turbulent spot which rapidly amplifies and spreads, leading the flow towards the fully

turbulent state.

A common objection to this transition scenario is that optimal streamwise-invariant

initial disturbances can be rarely observed in a real non-parallel boundary-layer flow.

In fact, in most practical cases, the flow undergoes transition by receptively selecting

and amplifying free stream turbulence perturbations (Jacobs & Durbin 2001; Brandt

et al. 2004), or localized disturbances, such as those arising from the presence

of roughness elements or gaps on the wall. Therefore, it is important to justify

the choice of employing an initial optimal perturbation for studying the route to

transition. As already discussed by Luchini (2000), optimal perturbations can be used

to unravel the most efficient amplification mechanisms which dominate the growth of

the perturbation over short time/space scales. In a linear framework, this happens when

the first and the second singular values of the evolution operator are well separated,

such as in the case of the boundary layer (Luchini 2000). Therefore, perturbations

having a large projection onto the optimal one would provide a large contribution

to the energy amplification. This could lead to a flow dominated by optimal and

near-optimal streaks even when the flow is excited by free stream turbulence, as

suggested by the comparison of the optimization results obtained by Luchini (2000)

with the experimental data of Westin et al. (1994). However, many studies have by

now demonstrated that linear optimals obtained by a local approach are inefficient

at triggering transition and, for example, the so-called oblique transition mechanism
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succeeds in triggering transition at a much lower initial disturbance level than linear
optimals (see, for instance, Reddy et al. 1998).

Following these ideas, Cherubini et al. (2010b) attempted to identify, in a
linear framework, initial localized disturbances capable of provoking breakdown to
turbulence most effectively in a Blasius boundary layer. The procedure to find the
optimal wave packet was that of the linear global optimization theory, the optimization
of the perturbation energy being performed for a laminar non-parallel boundary-layer
flow without any assumption on the shape or on the frequency spectrum of the
perturbation. The results showed that the optimal initial perturbation is characterized
by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, resulting
at the optimal time in streak-like structures alternated in the streamwise direction.
Such vortices trigger transition more effectively than streamwise-independent initial
disturbances via a mechanism which goes through the formation of hairpin
vortices.

Evidence for the presence of hairpin-shaped structures in transitional boundary
layers (Wu & Moin 2009; Cherubini et al. 2010b) proves that nonlinear mechanisms
are indeed crucial in the transition scenario for wall-bounded shear flows. For parallel
flows, such as the plane Couette flow and the flow in a circular pipe, the search
for a purely nonlinear route to turbulence has been pursued in the last 20 years,
after Waleffe (1995) demonstrated that the linear mechanism which yields streamwise-
homogeneous streaks cannot easily trigger transition at low-to-moderate disturbance
amplitude levels. Since the work of Nagata (1990), who found the first exact coherent
solution of the Navier–Stokes (NS) equations for a Couette flow, followed by the
theoretical work of Waleffe (1997, 1998), explaining the nature of the self-sustaining
process responsible for maintaining such coherent structures, many authors advocated
a theory in which transition and turbulence stem from the random walk of the systems
trajectory in phase space among nonlinear mutually repelling states, which are exact
unstable solutions of the NS equations (Kawahara & Kida 2001; Faisst & Eckhardt
2003; Wedin & Kerswell 2004; Hof et al. 2004; Eckhardt et al. 2007; Schneider,
Eckhardt & Yorke 2007; Gibson, Halcrow & Cvitanović 2009). Many such states have
been identified, initially in small, periodic domains and very recently also as localized
solutions in large domains (Duguet, Schlatter & Henningson 2009; Mellibovsky et al.
2009; Schneider, Gibson & Burke 2010a; Schneider, Marinc & Eckhardt 2010b;
Cherubini et al. 2011).

However, it is not yet clear which kind of initial perturbation is able to better switch
on the process which brings the system most efficiently to these coherent states and
then to turbulence. Recently, some studies have been carried out aimed at finding
special initial disturbances, built by a linear combination of a limited number of ‘basic
modes’, which cause the disturbed velocity field to approach such coherent structures
(the lower-branch solution in a pipe flow in Viswanath & Cvitanovic 2009, and the
edge-state in a plane Couette flow in Duguet, Brandt & Larsson 2010).

A more generic approach for identifying a purely nonlinear route to transition
has been used by Pringle & Kerswell (2010) for the pipe flow, and by Cherubini
et al. (2010a) for the boundary-layer flow. For the case of the laminar boundary
layer developing over a flat plate of interest here, the latter authors have used a
global approach extending the linear transient growth analysis of Cherubini et al.
(2010b) to the nonlinear framework. Optimizing the energy of the perturbations in
a nonlinear framework, they have proved the existence of a nonlinear amplification
mechanism of the disturbances which is more effective than the linear one and is
capable of leading the flow to turbulence for lower values of the perturbation energy.
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The suitability of an energy optimization to determine the disturbances which bring
the flow more effectively on the verge of turbulence has been confirmed by results
obtained with a different optimization functional for the case of a Couette flow in
a small domain (Monokrousos et al. 2011). For such a flow, using a functional
constructed on thermodynamic considerations, better suited to target a turbulent state,
has provided similar results to those obtained by using a disturbance energy functional.
The optimizations performed by Pringle & Kerswell (2010), Cherubini et al. (2010b)
and Monokrousos et al. (2011) have provided a breakthrough on the importance of
nonlinearity on the amplification mechanisms leading to turbulence. Nevertheless, for
the case of the boundary-layer flow, it is still not clear whether the shape and the
amplitude of the nonlinear optimal perturbations are robust features of the flow, as
well as to what extent they depend on the Reynolds number, the domain length, the
initial energy and/or the target time of the optimization. Moreover, still nothing is
known about the mechanisms leading such optimal disturbances to turbulence, and
the role of nonlinearity in the route to transition initiated by such fast growing
perturbations is still to be identified. The present work aims at providing an answer to
such questions by investigating: (i) the robustness of the nonlinear optimal perturbation
and its dependence on the optimization parameters; (ii) the amplification mechanisms
capable of triggering transition in a spatially developing boundary-layer flow following
a purely nonlinear route.

A Lagrange multiplier technique is employed to find the optimal perturbation of
given initial energy and Reynolds number Re for the Blasius boundary-layer flow.
The results of the optimization procedure are provided for two values of Re and
several values of the target time and the initial energy. For values of the initial energy
larger than the threshold one, the optimal perturbation is found to be characterized
by a fundamental invariant structure, the minimal seed for turbulent transition, which
is formed by a localized array of vortices and low-momentum regions of typical
length scale, capable of maximizing the energy growth the most rapidly. Furthermore,
direct numerical simulations (DNSs) have been employed to study the mechanism
of transition to turbulence when the flow is initialized using the minimal seed.
Finally, a disturbance regeneration cycle is conceived, initiated by the fast growth and
nonlinear evolution of the optimal disturbance, providing a possible scenario for the
continuous regeneration of the same fundamental flow structures at smaller space and
time scales.

This paper is organized as follows. In § 2 we define the problem and describe the
nonlinear optimization method. In § 3, a thorough discussion of the results of the
nonlinear optimization analysis is provided. In particular, in the first part, the focus
is on the characterization of the optimal perturbation, whereas the second part deals
with the optimal route to turbulence. Finally, the regeneration cycle is conjectured and
concluding remarks are provided.

2. Problem formulation

2.1. Governing equations and the numerical method

The behaviour of a three-dimensional incompressible boundary-layer flow is governed
by the NS equations:

ut + (u ·∇)u = −∇p +
1

Re
∇2u, (2.1)

∇ ·u = 0, (2.2)
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where u is the velocity vector and p is the pressure term (including the contribution
of conservative-force fields). Dimensionless variables are defined with respect to the
inflow boundary-layer displacement thickness, δ∗, and the free stream velocity, U∞, so
that the Reynolds number is Re = U∞δ∗/ν, ν being the kinematic viscosity. Several
computational domains have been employed, the reference domain having dimensions
equal to Lx = 200, Ly = 20 and Lz = 10.5, x, y and z being the streamwise, wall-normal
and spanwise directions, respectively. The Blasius base flow is obtained by integrating
the NS equations with the following boundary conditions: at inlet points, placed at
xin = 200 downstream of the leading edge of the flat wall, a Blasius boundary-layer
profile is imposed for the streamwise and wall-normal components of the velocity
vector whereas the spanwise component is set to zero. At outlet points, placed at
xout = 400 for the reference domain, a standard convective condition is employed
(Bottaro 1990). At the bottom wall the no-slip boundary condition is prescribed. At the
upper-boundary points the Blasius solution is imposed for the wall-normal component
of the velocity, whereas the spanwise velocity component and the spanwise vorticity
are set to zero. Finally, in the spanwise direction periodicity is imposed for the
three velocity components. The NS equations are discretized by a finite-difference
fractional-step method using a staggered grid (Verzicco & Orlandi 1996). A second-
order accurate centred space discretization is used. After a grid-convergence analysis,
a mesh made up by 901 × 150 × 61 points, clustered towards the wall so that the
thickness of the first cell close to the wall is equal to 0.1, is selected for the reference
domain.

2.2. Nonlinear optimization

The nonlinear behaviour of a perturbation q = (u′, v′, w′, p′)
T

evolving in a laminar
incompressible flow over a flat plate is studied by employing the NS equations written
in a perturbative formulation, with respect to the two-dimensional Blasius steady-state
solution, Q = (U, V, 0, P)T. A zero-perturbation condition is chosen for the three
velocity components at the x-constant and y-constant boundaries, whereas periodicity
of the perturbation is imposed in the spanwise direction. The zero-perturbation
condition at inflow and outflow points is enforced by means of a fringe region
(Cherubini et al. 2010b), which allows the perturbation at the exit boundary to vanish
smoothly.

In order to find the perturbation at t = 0 providing the largest disturbance growth at
a given target time, T , a Lagrange multiplier technique is used (Zuccher, Luchini
& Bottaro 2004; Pringle & Kerswell 2010). The disturbance energy density is
defined as

E(t) =

∫ Lz

0

∫ Ly

o

∫ xout

xin

[u′2(t) + v′2(t) + w′2(t)] dx dy dz

=

∫

V

[u′2(t) + v′2(t) + w′2(t)] dV; (2.3)

the aim is to find the initial perturbation q0 of given initial energy E(0) = E0 which
can induce at target time T the largest energy E(T). Thus, the objective function of the
procedure, G, is the energy gain G = E(T)/E(0). The Lagrange multiplier technique
consists of searching for extrema of an augmented functional, L , with respect to
every independent variable, the three-dimensional incompressible NS equations and the
value of the initial energy being imposed as constraints. The gradient of the augmented
functional with respect to every independent variable is forced to vanish by means of a
coupled iterative approach similar to that used by Zuccher et al. (2004) and Pringle &
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FIGURE 1. Optimal energy gain versus target time T for Re = 300, E0 = 0.1. The white
squares indicate the results of a linear optimization; the black circles indicate the nonlinear
results.

E(T)

10–1

100

101

102

103

10–3 10–2 10–1

E0

10–3 10–2 10–1

E0

10–3 10–2 10–1

E0

10–1

100

101

102

103

10–1

100

101

102

103(a) (b) (c)

FIGURE 2. Optimal energy at target time T for (a) Re = 300, T = 75; (b) Re = 300, T = 125;
(c) Re = 610, T = 75. The white squares indicate the results of a linear optimization; the
black circles indicate the nonlinear results.

Kerswell (2010), employing a conjugate gradient method. A detailed description of the
optimization technique is provided in Appendix.

3. Results

3.1. Nonlinear optimal perturbations

The nonlinear optimization has been performed for two values of the Reynolds
number; the first, Re = 300, is subcritical with respect to Tollmien–Schlichting waves,
whereas the second, Re = 610, is supercritical. Figure 1 shows the value of the optimal
energy gain versus the target time for Re = 300 and E0 = 0.1 (black circles). For
comparison, the optimal energy gain obtained by the corresponding linear optimization
(see Cherubini et al. 2010b) is provided in the same figure (white squares). For
T > 50, the nonlinear optimal energy gain is remarkably larger than the corresponding
linear one. In particular, the energy gain grows in time following a quasi-exponential
curve, unlike the linear case which shows an initial growth phase followed by a
decay. The trend of the energy gain curve obtained for Re = 300 is similar to
that obtained for Re = 610 (see figure 2 in Cherubini et al. 2010a). However, a
higher increase of the gain is obtained for Re = 610 with respect to Re = 300.
The influence of the parameter E0 on the value of the optimal energy is shown in
figure 2, for two values of the target time and of the Reynolds number. In all cases,
a threshold on the initial energy exists (hereafter called the nonlinearity threshold)
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FIGURE 3. (Colour online available at journals.cambridge.org/flm) Initial perturbations
obtained by the nonlinear optimization for Re = 610 and target time T = 75: isosurfaces
of the optimal perturbations (grey (green online) for the negative streamwise component; dark
and light (blue and yellow online) for negative and positive streamwise vorticity, respectively)
with initial energy (from a to e) E0 = 0.001 (surfaces for u′ = −0.0005, ω′

x = ±0.005),
E0 = 0.0025 (u′ = −0.001, ω′

x = ±0.01), E0 = 0.005 (u′ = −0.007, ω′
x = ±0.03), E0 = 0.05,

and E0 = 0.1 (u′ = −0.01, ω′
x = ±0.05). Axes are not on the same scale.

from which strong modifications are observed in the nonlinear optimal energy with
respect to the linear one. Such a threshold decreases when the Reynolds number or
the target time increase (as one can observe by inspection of figure 2). Moreover,
crossing such a threshold yields strong modifications in the shape of the optimal
perturbations. This is clearly shown in figure 3, which provides the optimal initial
perturbations obtained for Re = 610 and T = 75, for five values of the initial energy,
E0. For the lowest value, E0 = 0.001 (top frame), the perturbation is similar to that
obtained by the linear optimization (see Cherubini et al. 2010b); it is characterized
by elongated vortices aligned along x, localized in the middle of the domain. For
0.001 < E0 < 0.005, the shape of the optimal perturbation changes remarkably, moving
close to the inlet, and decreasing its streamwise size. For E0 > 0.005, the structure
of the optimal perturbation changes slightly, being characterized by a basic building
block (cf. Cherubini et al. 2010a), which is replicated one or more times along x

and/or z for increasing values of the initial energy. The same basic building block
is observed for larger target times, for values of the initial energy larger than the
nonlinearity threshold, and will henceforth be called the minimal seed, i.e. the smallest
structure by which the maximum energy growth is achieved over short times. It is
characterized by alternated vortices inclined with respect to the streamwise direction
(light and dark surfaces, yellow and blue online, indicating the positive and negative
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FIGURE 4. (Colour online) Contours and vectors of the velocity components of the initial
optimal perturbation obtained for Re = 610, T = 75, and E0 = 0.01, on the planes x = 224 (a),
x = 228 (b), x = 232 (c) and x = 236 (d). Shaded contours indicate the streamwise
disturbance velocity (dark (red online) for positive values; light (green online) for negative
values), vectors represent the wall-normal and the spanwise disturbance velocity components.
Axes are not on the same scale.

streamwise vorticity, ω′
x, respectively), which lay on the flanks of a region of negative

streamwise velocity disturbance (grey surfaces, green online). The inclined vortices
are shown in figure 4, which provides four x-constant sections of the optimal initial
perturbation obtained for T = 75, E0 = 0.01 and Re = 610. The vortices are inclined
with respect to the mean flow, both in the wall-normal and in the spanwise direction.
The upstream tilting with respect to the wall-normal direction, which can be observed
in figure 4(a,b) for the vortices A and B, in figure 4(b,c) for the vortices C and D,
and in figure 4(c,d) for the vortices E and F, is linked to the Orr mechanism
(see Schmid & Henningson 2001). This inclination is observed also in the linear
optimal case, as shown by Cherubini et al. (2010b) and Monokrousos et al. (2010),
due to the fact that a transient energy growth is produced when the mean flow
tilts downstream the structures initially opposing the base flow. On the other hand,
spanwise tilting is not observed in the linear case, in which the optimal perturbations
are characterized by elongated vortices perfectly aligned with the streamwise direction
(see figure 3a). Another remarkable difference with respect to the linear optimal
perturbation concerns the relative magnitude of the velocity components. Figure 5
provides a section of the flow at y = 1.4 showing the contours of the streamwise
(shaded), wall-normal (black lines) and spanwise (white lines) velocity components
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FIGURE 5. (Colour online) Section at y = 1.4; contours of the velocity components
of the initial optimal perturbation obtained for Re = 610, T = 75, and E0 = 0.01.
Shaded contours indicate the streamwise disturbance velocity component (light, green
online, for negative values; dark, red online, for positive ones), black and white
lines represent the wall-normal and the spanwise disturbance velocity components,
respectively (solid for negative values, dashed for positive values). The values of the
contours are v′ = −0.004, −0.003, −0.002, −0.001, 0.001, 0.0015, 0.002, 0.0025 and w′ =
±0.01, 0.008, 0.006, 0.004, 0.002. Axes are not on the same scale.

of the initial optimal perturbation obtained for T = 75, Re = 610 and E0 = 0.01.
The component of the initial velocity perturbation having the highest absolute value
is the streamwise component (u′−

max = −0.018, u′+

max = 0.011), unlike the linear case
in which the streamwise component is the smallest (u′

max = ±0.00026, not shown).
Moreover, unlike the linear optimal case, at the initial time, regions with high negative
streamwise component of the velocity disturbance are associated with high positive
values of the wall-normal component (compare the dashed lines with the grey (green
online) regions in figure 5, as well as the upwards arrows with the grey (green online)
regions in figure 4).

What comes out from the optimal perturbations at T is shown in figure 6, for the
same five values of the initial energy used in figure 3. One can observe 3-shaped
low-momentum structures, along with streamwise inclined vortices tilted downstream.
Such structures are observed for all of the initial energies larger than the nonlinearity
threshold, although one can notice that, when the initial perturbation occupies more
space in the spanwise and streamwise direction, the minimal seeds interact nonlinearly,
leading to more chaotic, small-scale structures over a finite time (see, in particular, the
bottom frame of figure 6).

Similar optimal perturbations are obtained at different target times and Reynolds
numbers, when the initial energy is larger than the corresponding nonlinearity
threshold. As an example, figure 7 shows the streamwise component of the velocity
perturbation (grey (green online) surfaces) as well as the streamwise vorticity
perturbation (light and dark (yellow and blue online) surfaces) for the optimal
perturbation obtained for Re = 300, T = 125 and E0 = 0.01. One can observe two
minimal seeds (top frame), having the same structure and a similar spatial extent as
those found at Re = 610 (see figure 3), with inclined vortices staggered in x. They are
tilted downstream by means of the Orr mechanism, yielding at larger time 3 structures
and vortices with a finite (positive) inclination with respect to x (second frame).

It is important to establish whether the optimal perturbation maintains its
characteristic shape and size varying the streamwise or spanwise domain length. Thus,
further optimizations have been performed for different streamwise and spanwise
domain lengths, maintaining the same local grid resolution of the previous case
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FIGURE 6. (Colour online) Outcome at t = T = 75 and Re = 610 of the optimal initial
perturbations injected at t = 0: isosurfaces of the perturbations (grey (green online) for the
negative streamwise velocity component; dark and light (blue and yellow online) for negative
and positive streamwise vorticity, respectively) with initial energy (from a to e) E0 = 0.001
(surfaces for u′ = −0.01, ω′

x = ±0.015), E0 = 0.0025 (u′ = −0.02, ω′
x = ±0.05), E0 = 0.005

(u′ = −0.08, ω′
x = ±0.08), E0 = 0.05 and E0 = 0.1 (u′ = −0.2, ω′

x = ±0.5). Axes are not on
the same scale.

z

x

0

5

10

z

0

5

10
100 120 140 160 180 200 220 240 260 280 300

(a)

(b)

FIGURE 7. (Colour online) Time evolution of the optimal perturbation obtained by the
nonlinear optimization for T = 125, E0 = 0.01 and Re = 300, at time t = 0 (a) and t = T (b).
The grey (green online) surfaces indicate the negative streamwise component of velocity
(u′ = −0.006 at t = 0, u′ = −0.04 at t = T), the dark and light (blue and yellow online)
surfaces indicate negative and positive streamwise vorticity, respectively (ω′

x = ±0.04). Axes
are not on the same scale.

(namely, the number of points in the streamwise or in the spanwise direction is
scaled with Lx or Lz, respectively). Optimizations performed with streamwise domain
lengths Lx = 100 and Lx = 400 (for Re = 610, E0 = 0.01 and T = 75), indicate that
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FIGURE 8. (Colour online) Initial optimal perturbations obtained by the nonlinear
optimization at T = 75, E0 = 0.01 and Re = 610, for three different spanwise domain
lengths, Lz = 7 (a), Lz = 10.5 (b) and Lz = 15 (c). The grey (green online) surfaces indicate
the negative streamwise component of velocity (u′ = −0.01); the dark and light (blue and
yellow online) surfaces indicate negative and positive streamwise vorticity, respectively
(ω′

x = ±0.05).

the optimal disturbance is practically independent of the streamwise domain length.
Similarly, optimizations carried out with Lz = 15 and Lz = 7 show that the optimal
perturbation and energy gain is slightly dependent on the spanwise domain size, the
variation on the optimal energy gain being lower than 10 %. However, it is noteworthy
that the shape of the minimal seed is qualitatively unchanged. Figure 8 shows the
initial optimal disturbances obtained at Re = 610, E0 = 0.01 and T = 75 for the three
values of the spanwise domain length considered here: the shape of the perturbation
remains the same. Moreover, the spanwise extent of the optimal perturbation varies
only slightly with Lz, hinting at the fact that the spanwise length scale selected by the
optimizations is a robust feature of the problem.

The persistence of the minimal seed structure at different values of the initial energy,
Reynolds number, domain sizes and target times indicates that the structure obtained
here, which maximizes the disturbance energy over a finite time, has an intrinsic
fundamental importance for the boundary layer.

3.2. The route of the minimal seed to turbulence

3.2.1. Description of the overall transition process
In this section, we study in detail the route to turbulence of the minimal-seed

perturbation, employing the DNS. For most of the computations the minimal seed
obtained for T = 75, E0 = 0.01 and Re = 610 has been used to initialize the flow
field. Computations have been performed in a domain three times longer in x than that
used for the optimizations, in order to follow the flow evolution for a sufficiently long
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FIGURE 9. Energy gain versus time obtained by DNSs initialized using the linear (dashed
lines) and nonlinear (solid lines) optimal perturbations computed for T = 75 (thick lines) and
T = 125 (thin lines), E0 = 0.01 and Re = 610. The black squares and circles represent the
energy gain obtained by the linear and nonlinear optimization, respectively.

time before the disturbance wave packet leaves the domain. A 2701 × 150 × 61 grid
has been used, so that the local grid resolution is the same of the optimization runs.
Figure 9 provides the energy gain computed by DNSs initialized with four optimal
perturbations, two linear and two nonlinear, obtained for two target times, and for
the same value of the initial energy, E0 = 0.01. Both nonlinear optimal perturbations
grow very rapidly in time, reaching an energy gain close to 8000 in ∼200 time
units. On the other hand, the linear optimal perturbations do not show a rapid energy
growth: that obtained for the smaller value of T starts to decay right after the target
time (for t ≈ 85); the other experiences saturation for a considerable amount of time
followed by decay (at t ≈ 475, not shown). Evaluating the spanwise-averaged skin
friction coefficient Cf , we have verified that when the DNS is initialized by the
minimal seed perturbation with E0 = 0.01, Re = 610 and T = 75, the Cf reaches
values which are typical of turbulent flows for t > 200 (see figure 5 in Cherubini
et al. 2010a); on the other hand, when the simulation is initialized by the optimal
perturbation resulting from a linear optimization with the same initial energy and
target time, Cf reaches values which are at most 1.5 % larger than those of the
laminar reference curve (not shown). Thus, for the same value of the initial energy,
the nonlinear optimal perturbation is able to lead the flow to turbulence, whereas the
linear perturbation is not. Optimal perturbations obtained for larger initial energies
are even more efficient in inducing transition. Indeed, observing in figure 10 the skin
friction coefficient corresponding to the evolution of the nonlinear optimal perturbation
obtained for T = 75 with E0 = 0.1, one can conclude that transition to turbulence
occurs earlier in space and time with respect to the case with E0 = 0.01 (cf. the
results in Cherubini et al. 2010a). In particular, turbulence is reached at the target
time, whereas for the lower value of E0 transition is reached ∼175 time units after
the target time. In both cases one can notice the presence of an elongated calmed
region localized at the trailing edge of the wave packet, a common feature of turbulent
spots.

It is thus interesting to investigate the route to turbulence followed by the minimal
seed. A qualitative picture of the transition process initiated by the nonlinear optimal
perturbation has been given by Cherubini et al. (2010a). In the present paper we
provide a more detailed analysis of the transition route which was first sketched
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FIGURE 10. (Colour online) Streamwise distribution of the spanwise-averaged skin-friction
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initialized by the nonlinear optimal perturbation obtained for T = 75, E0 = 0.1 and Re = 610.
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also reported for comparison.

z

x

z

z

0

5

10

z

z

240 250 320210 220 230 260 270 280 290 300 310 330

0

5

10

0

5

10

0

5

10

0

5

10

0.23

0.13

–0.05

–0.15

–0.25

–0.8

0.6

0.28

–0.16

–0.48

–0.8

0.72

0.36

–0.08

–0.44

–0.8

–0.44

–0.08

0.36

0.72

0.78

0.28

–0.12

–0.30

–0.90

(a)

(b)

(c)

(d)

(e)

FIGURE 11. Snapshots of the perturbation on the plane y = 1.8 at t = 0, 35, 65, 95 and
125 (from a to e) obtained by the DNS initialized by the nonlinear optimal for T = 75,
Re = 610 and E0 = 0.01. The shaded contours refer to the streamwise component of the
velocity perturbation, the solid and dashed black lines to the negative and positive values
of the wall-normal velocity component, respectively, and the white lines to the Q criterion.
Each variable has been normalized using its maximum value at each time; solid and dashed
contours show the values Q = 0.02 and v′ = ±[0.1, 0.2, 0.3, 0.4].
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in our previous paper. Figure 11 shows the contours of the streamwise and wall-

normal components of the velocity perturbation, as well as of the Q criterion

(Hunt, Wray & Moin 1988), on the y = 1.8 plane at t = 0, 35, 65, 95, 125 (to

allow a comparison among several times, each variable has been normalized using

its maximum value at each time). One can observe that the 3 vortices at t = 35

(white contours on the second frame) almost overlap on the 3-shaped low-momentum

zones. This is a completely different picture from the linear case. It is known that

in a linear framework the amplification of the optimal perturbation is mainly due to

the transport of the base flow momentum by a pair of streamwise vortices (the lift-up

effect), which induces streamwise streaks at a finite time. Thus, the bypass route to

transition goes through secondary instability of the streaks and nonlinear mixing which

sustains the streamwise vortices. On the other hand, in the present case, the optimal

perturbation is characterized by streamwise-inclined vortices; they transport the flow

momentum causing an amplification of the streamwise component of velocity along

them and inducing the creation of low- and high-momentum zones modulated in x, i.e.

3-shaped low-momentum zones and sinuous high-momentum zones. Owing to such

a streamwise modulation of the momentum, the flow can bypass the mechanism of

secondary instability and reach transition via a more rapid route.

Moreover, it is worth pointing out that both the base flow momentum and the

finite amplitude initial streamwise perturbation are transported by the inclined vortices,

inducing defects in the base flow and dislocations of the initial disturbance. Here,

defects are defined as modifications of the base flow with zero temporal frequency,

which can affect the stability properties of the base flow (cf. Biau & Bottaro 2009),

whereas dislocations are defined as regions of strong interaction between neighbouring

flow structures of finite amplitude, resulting in the merging or splitting of the initial

structures. Such flow modifications are mostly due to the spatial correlation of regions

of high streamwise velocity with regions of low wall-normal velocity components,

and vice versa, as can be observed in figure 11. Therefore, the low-momentum

perturbation is rapidly transported up in the boundary layer, whereas the high-

momentum perturbation is convected close to the wall. Such effects can be clearly

observed looking at planes perpendicular to the streamwise direction (figure 12),

providing the contours and vectors of the disturbance velocity components of the

optimal perturbation at t = 75. Comparing it with figure 4 (t = 0), one can notice

that the regions of negative streamwise perturbation are lifted up in the wall-normal

direction (light (green online) contours), whereas the positive streamwise perturbations

(dark (red online) contours) plunge towards the wall. As a result, the horizontal shear

layers present in figure 4 increase in magnitude and change in shape, inducing strong

modifications and inflection points in the base flow profile. The shapes of the low-

and high-momentum zones are strongly reminiscent of those characterizing Görtler

and Dean vortices (Guo & Finlay 1991; Bottaro 1993) while undergoing an Eckhaus

instability.

The creation of inflection points can be more clearly observed in figure 13, showing

the profiles of the instantaneous streamwise velocity at three times and positions

within the flow, along with the isosurfaces of the streamwise perturbation velocity

at each time. An inflection point is firstly established in the flow at t = 75, when

dislocations have already formed; then, at larger time, t = 100, the main 3 structure

breaks up into smaller disturbance patches. This suggests that the inflection points of

the mean-flow profile are related to the rupture of large-scale structures into smaller-

scale structures.
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FIGURE 14. (Colour online) Isosurfaces of the negative streamwise component of the
velocity perturbation (light (green online) for u′ = −0.2) and of the Q criterion (dark (blue
online) for Q = 2000) obtained at t = 100 by a complete DNS (a) and by a DNS with U
multiplied by 0.9 at t = 111 (b), both initialized by the minimal seed perturbation.

The correspondence of regions of streamwise and wall-normal velocity components
of opposite sign and finite amplitude is an important feature of the minimal seed
perturbation, since it strongly recalls the dynamics of a turbulent boundary-layer
flow. In fact, it has been demonstrated that the mechanisms responsible for creating
Reynolds shear stress in a boundary layer are mostly related to negative streamwise
fluctuations being lifted away from the wall by positive wall-normal fluctuations
(ejections), as well as to positive streamwise fluctuations approaching the wall (sweeps;
see Corino & Brodkey 1969; Willmarth & Lu 1972). Such mechanisms have been
linked to the burst phenomenon and, later, to the presence of hairpin vortices
(Robinson 1991), so that they can be considered the kinematic basis of boundary-layer
turbulence.

At this stage of the transition process, owing to the tilting of the initial vortices
and to the dislocations induced by the interactions of finite amplitude perturbations,
the downstream part of the vortex, which is the most distant from the wall, is
convected downstream faster than the upstream part; since it experiences higher base
flow velocity, the vortex is stretched in the streamwise direction. This is shown in the
third frame of figure 11 (t = 65), where one can notice that the vortical structures
and the low-momentum regions increase their intensity due to the vortex-stretching
mechanism. Only after the two main vortices connect in their downstream part (third
frame) does the main 3-structure break up into two main legs connected by a vortex
filament (fourth frame, t = 95). The creation of a hairpin vortex characterizes the
breakdown phase of the transition path initiated by the minimal seed (see also the
movie included as supplementary material, available at journals.cambridge.org/flm). It
is worth pointing out that the streamwise streaks begin to develop only after the
creation of the hairpin head (see the fifth frame of figure 11 at z ≈ 2.8, z ≈ 8.4, and
the first frame of figure 14). Thus, as already conjectured in Wu & Moin (2009)
and Cherubini et al. (2010a), the formation of long streamwise streaks appears to
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be a simple kinematic consequence of the presence of hairpin vortices. The same
behaviour has been observed for all of the spanwise domain lengths considered here.
In particular, to ascertain that the transition process involves the same spanwise length
scales, the spanwise spacing of the streaks has been measured in the late stage of
transition (at t = 200) for three DNSs having Lz = 7, Lz = 10.5 and Lz = 15, each
one initialized by the minimal seed perturbations obtained using the corresponding
computational domain (cf. figure 8). Normalizing the spanwise spacing with respect to
the wall shear stress, one obtains λ+ ≈ 114.5 for Lz = 15 and Lz = 10.5, which is close
to the streak spacing commonly observed in turbulent boundary layers (e.g. Kline
et al. 1967), whereas a smaller value, λ+ ≈ 98, is found for Lz = 7, due to the limited
spanwise length of the computational box. A similar behaviour is recovered for all
values of the Reynolds number, the initial energy, and the target time considered here,
as soon as the nonlinearity threshold is overtaken.

3.2.2. Analysis of the basic mechanisms of the transition process
In the discussion above we have described the route leading the minimal seed

perturbation to transition. Now, we are going to identify in a more quantitative way the
basic mechanisms of this amplification process, as well as the role of the linear and
nonlinear convective terms. Such an analysis is performed using DNSs, switching off
or rescaling one by one the convective terms of the NS equations, and comparing the
results with those obtained solving the complete NS equations. All of the computations
discussed in this subsection have been performed initializing the flow by means of the
minimal seed perturbation obtained for Re = 610, E0 = 0.01 and T = 75.

Among the linear terms, we have found that those which mostly affect the route of
the flow to transition are: (i) the term of convection of the streamwise component of
the base flow by the wall-normal component of the perturbation, v′Uy; (ii) the terms of
convection of the perturbation by the streamwise component of the base flow, namely,
Uu′

x, Uv′
x and Uw′

x. Other linear convective terms have been found to play a small role
due to the weak non-parallelism of the flow.

The term v′Uy is usually associated with the lift-up mechanism, in which slow/fast
fluid is transported upwards/downwards in the boundary layer creating slow/fast
streaks of streamwise perturbation and increasing the perturbation energy. In the
present case, a mechanism similar to the lift-up is found, since, when such a term is
switched off, no energy increase is found, and the maximum value of the streamwise
velocity drops quickly (at t = 25, u′

max is 20 times lower than in the optimal case),
inhibiting the triggering of nonlinear effects within the flow and leading to a fast
relaminarization. This indicates that transition relies on the lift-up mechanism to allow
an initial growth of the perturbation.

Concerning the terms of transport of the perturbation by the streamwise component
of the base flow, they have a large effect on the flow dynamics, owing to the much
larger value of U with respect to V , u′, v′ and w′. Thus, in such a case we have used
a different diagnostic: three simulations have been performed in which the linear terms
containing U are multiplied by a factor h smaller than one. The first and second frame
of figure 14 show the disturbance structure at t = 100 for the complete DNS, and at
th = t/h for a DNS with h = 0.9, where the time has been scaled in order to take
into account the different base-flow convection velocities. The most striking difference
with respect to the complete case is the absence of the head of the hairpin vortex. In
fact, reducing the convection of the perturbation by the base flow, the flow structures
experience less stretching in the streamwise direction, and the 3 vortices are not able
to join on their downstream part to create the hairpin head.
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FIGURE 16. (Colour online) Isosurfaces of the perturbation obtained at t = 25 (a,c) and
t = 50 (b,d), for a linear simulation (a,b) and a complete nonlinear simulation (c,d). The
grey (green online) surfaces indicate the negative streamwise component of the perturbation
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yellow online) surfaces indicate negative and positive streamwise vorticity, respectively
(ω′

x = ±0.15 for t = 25 and ω′
x = ±0.2 for t = 50).

The linear convective terms discussed above have an important role in transition.
However, nonlinear terms are necessary to trigger turbulence and have a major effect
in the development of the perturbation. This can be first verified by performing a
simulation in which all of the nonlinear terms are switched off. Figure 15(a) shows the
evolution of the energy gain in such a case (dashed line), compared to the complete
DNS (solid line). One can notice the strong differences between the two curves for
t > 25, the first showing a decrease of the energy gain and a drop of the perturbation
down to the laminar flow, the second showing a fast growth of the energy, followed
by transition to turbulence. Thus, such curves confirm that, whereas for t 6 25 the
energy amplification is related to linear mechanisms, for t > 25 it is nonlinearity which
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FIGURE 17. (Colour online) Isosurfaces of the perturbation obtained at t = 25 (a) and t = 50
(b) by a DNS with the term (w′w′)z switched off. The grey (green online) surfaces indicate
the negative streamwise component of the perturbation velocity (u′ = −0.05 for t = 25 and
u′ = −0.08 for t = 50), the dark and light (blue and yellow online) surfaces indicate negative
and positive streamwise vorticity, respectively (ω′

x = ±0.15 for t = 25 and ω′
x = ±0.2 for

t = 50).

causes the disturbance energy to grow. The left frames of figure 16, providing the

perturbations for the linear (a,b) and the nonlinear (c,d) case at t = 25, show that the

structure of the perturbations is almost identical in the two cases. On the other hand,

at t = 50 (figure 16b,d) strong modifications appear; in particular, the contribution of

the nonlinear terms is fundamental to induce the lateral inclination of the vortices.

In fact, in the absence of nonlinear terms, at such a time instant the vortices are

aligned with the streamwise direction and the streamwise perturbation is much less

intense compared with the nonlinear case. At larger times, both the vortices and the

streaks continue to decrease their amplitude, leading to the relaminarization of the

flow. This confirms that the lift-up mechanism alone is not capable of sustaining the

perturbation, and indicates that the inclination of the vortices is a fundamental feature

of the transition onset.

It is interesting to investigate which of the nonlinear terms are capable to sustain the

inclination of the vortices against the mean flow. To this purpose, we performed nine

numerical simulations in which the nonlinear terms (in conservative form) are switched

off one by one. The corresponding energy growth curves are given in figure 15(b),

and show that some terms provide a dissipative contribution, others contribute to

production of E(t). It is found that the most important term is that which couples

the spanwise disturbance with its spanwise derivative: (w′w′)z. Such a term plays a

key role in sustaining transition, since it leads the flow to relaminarization when it is

switched off. Comparing the dashed line in figure 15(a) with the thick solid line in

figure 15(b), it appears that the energy gain curve is very similar to that previously

found in the linear case; moreover, observing the perturbation structure at t = 25 and

t = 50, shown in figure 17 (first and second frame, respectively), one can note that the

effect obtained on the perturbation evolution switching off only such a term is very

similar to that obtained switching off all of the nonlinear terms. Also in this case the

vortices rapidly lose their initial inclination, inducing a decrease in the perturbation

growth, although in such a case the streamwise disturbance decreases more slowly,

and maintains for some time a 3 shape. This behaviour confirms the fundamental

role of the inclination of the vortices in the transition process studied here, and

proves that the nonlinear term (w′w′)z is responsible to maintain such an inclination.

This finding could be important for the design of efficient control strategies, since a

relaminarization of the flow might be obtained by compensating the (w′w′)z coupling

term by a careful use of sensors and actuators at the wall.
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FIGURE 19. (Colour online) Isosurfaces of the perturbation (negative streamwise component
of the velocity, u′ = −0.15) obtained at t = 75 by a DNS having the term (u′u′)x switched
off (a), by a complete DNS (b) and by a DNS having the term (u′v′)y switched off (c).

Also other nonlinear terms have a significant effect on the development of the
perturbation and its route to turbulence. A decrease of the energy gain around t ≈ 50
is observed when the term (w′v′)y is switched off. Figure 18 shows the iso-surface
of the streamwise vorticity at t = 50 for a complete DNS (a), and for a DNS with
the (w′v′)y term switched off (b). One can notice that, in the latter case, the vortices
are weaker and lie closer to the wall, since the spanwise/wall-normal components
of the velocity perturbation are not transported in the wall-normal direction. This
inhibits the self-sustainment of the vortices, causing a substantial drop in the energy
of the perturbations, eventually leading to the relaminarization of the flow (not shown
in figure 15b). A large impact is also produced by the (u′u′)x term, since, switching
it off, the energy gain is one order of magnitude smaller with respect to the complete
case at t = 250 (see figure 15b). The amplification mechanisms linked to such a term
play a role at slightly larger times than in the previous case. Figure 19(a) show that at
t = 75 large differences are present with respect to the complete case (b). In particular,
by switching off such a term, fewer dislocations in the plot of the streamwise
component of the perturbation are found, and the creation of 3 low-momentum
structures is inhibited. As a result, the streamwise disturbance tends to be realigned
with the streamwise direction, creating an array of elongated streaks. A similar effect
is induced by switching off the term (u′v′)y, although the underlying mechanism is
slightly different, since this is a dissipative term (switching it off, an increase of the
energy gain of 10 times is observed at t = 150). The third frame of figure 19 shows



The minimal seed of turbulent transition in the boundary layer 241

5

0
10

5

0 250

255

260
265

270

275

280

285
290

295

300

x

z

y
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velocity perturbation (grey (green online) for u′ = −0.2) and Q criterion (dark (blue online)
for Q = 1500) obtained at t = 100 by a DNS having the term (u′v′)y switched off.

that also in this case the resulting flow is populated by streaky structures localized
close to the wall. In fact, the role of the term (u′v′)y in the nonlinear optimal transition
scenario is to displace the streamwise finite amplitude perturbation up and down in
the boundary layer, creating peaks of low momentum fluid at higher wall-normal
positions, as well as peaks of high-momentum fluid close to the wall. Thus, when such
a term is switched off, transition occurs following a route which does not privilege the
creation of hairpin vortices. As shown in figure 20, at transition the flow is dominated
by streamwise streaks and vortices, with remarkable differences with respect to the
nonlinear optimal case (cf. figure 14a). In fact, transition appears to be due to the
secondary instability of the streaks, which dominate the flow before breakdown. One
can also notice that the flow structures observed in such a case closely recall those of
one of the edge states identified by Cherubini et al. (2011), obtained by initializing
the perturbation with a linear optimal disturbance. A similar behaviour is observed also
when the dissipative term (u′w′)z is switched off, although the effect is now weaker.

Finally, it has been observed that switching off the term (v′u′)x inhibits the
formation of the hairpin head, delaying the transition to turbulence. This is probably
due to the fact that this term contributes to the spanwise vorticity, which is precisely
the component which is needed in forming the head of the hairpin. The remaining
terms cause only weak modifications of the perturbation structure, and do not affect
the features of the transition scenario discussed so far.

3.2.3. A conjecture about a disturbance regeneration cycle
It is possible to summarize the above results by outlining a transition scenario based

on the following successive steps.

(a) Tilting and amplification of the initial minimal seed by means of the linear Orr
mechanism, resulting in a staggered array of elongated inclined vortices on the
flanks of a low-streamwise-momentum region.

(b) Lift-up effect induced by the linear term v′Uy, resulting in a further amplification
of the streamwise disturbance alongside the vortical structures.

(c) Appearance of dislocations in the perturbation field induced by nonlinear coupling
terms with (i) further streamwise tilting of the initial vortices due to the
term (w′w′)z, and sustainment of the vortical structures from the term (w′v′)y;
(ii) dislocations of the initial localized patches of finite amplitude streamwise
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FIGURE 21. (Colour online) Isosurfaces of the lift-up term v′Uy = ±0.04 at t = 75 and
t = 125 (a and b, respectively); of the term (w′w′)z = ±0.025 at t = 75 and t = 125 (c and d,
respectively); of the Uv′

x = ±0.13 term at t = 100 and t = 150 (e and f, respectively).

disturbance associated with nonlinear terms such as (u′u′)x and (u′v′)y, generating
3-shaped structures of slow and fast fluids.

(d) Transport of the vortical structures by the mean flow, which stretches them in
the streamwise direction, owing to the terms Uu′

x, Uv′
x and Uw′

x; this causes an
interaction of the vortices in their downstream part, resulting in the creation of 3

vortices of finite amplitude.

(e) Redistribution of the vorticity due to nonlinear mixing (mostly related to the term
(v′u′)x), inducing the creation and the rise of a spanwise arch vortex; as a result, a
hairpin is created.

(f ) Release of smaller-scale vortices and hairpin structures from the main one (see
also Adrian 2007).

It is noteworthy that such mechanisms can be observed at smaller scales for larger
times. We have analysed at different times the regions of the flow where the main
convective terms involved in the transition process are active, i.e. where they achieve
a large value. For instance, observing the isosurfaces of the lift-up term v′Uy at time
t = 75, provided in the first frame of figure 21, one can notice that such a term
is active in the inclined elongated regions corresponding to the alternated inclined
vortices characterizing the optimal disturbance at such time. Similar inclined elongated
structures are observed at smaller scales for t = 125 (see the boxed regions on the
second frame of figure 21), meaning that the step (b) of the transition process outlined
above is repeated at smaller scales. At the same times, also the regions where the
nonlinear term (w′w′)z is large show similar shapes and are characterized by smaller
scales at larger times, as provided in the middle frames of figure 21. Likewise for the
Uv′

x term (bottom frames of figure 21) at t = 100 and t = 150; it can be observed that
such a term is active at t = 100 in the zone where the main hairpin head is created
(compare with the first frame of figure 14 at x ≈ 290), and it is active again at t = 150
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FIGURE 22. (Colour online) Sketch of the cycle of transition and disturbance–regeneration
for the boundary-layer flow. The isosurfaces in the figures (following the cycle, up to ‘Growth
of dislocations’) represent the negative streamwise component of the perturbation velocity
(grey (green online)) and the positive and negative streamwise disturbance vorticity (light and
dark (yellow and blue online), respectively). In the last two large frames, the green (grey)
regions still represent patches of low streamwise perturbation velocity, while isosurfaces of
the Q criterion have been plotted in dark (blue online) to visualize regions of intense vorticity.

in the region corresponding to the head of a secondary hairpin (for x ≈ 310 and z ≈ 8),
confirming the role of such a term in the creation of main and subsidiary hairpin
vortices. Thus, it appears that also at larger times the mechanisms summarized in the
previous subsection are at work, each playing a role in a similar way but at smaller
scales.

These results suggest the existence of a regeneration cycle initiated by streamwise-
inclined vortices, which turn into 3 and hairpin structures and induce the release of
smaller vortices from the main ones, allowing the cycle to be repeated over faster
(smaller) time (space) scales. In fact, being advected downstream, the main hairpin
vortex increases in size; then, from the main quasistreamwise vortices smaller vortical
structures separate (see also Adrian 2007), probably due to inflectional instabilities
linked to the appearance of defects (see figure 13 and related discussion). If such
vortical structures have a small streamwise inclination (which is very likely), the
optimal amplification cycle can be replicated, as sketched in figure 22. Figure 23
shows the disturbance wave packet at t = 200, when transition to turbulence has
occurred. The bottom frames show the local view of three regions of the flow
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(green online) for u′ = −0.25) and streamwise vorticity perturbations (light and dark (yellow
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x = 0.6 and ω′
x = −0.6), respectively. Panel (a) shows the entire view of

the wave packet, whereas panels (b–d) provide the local view of the three regions of the flow
marked by black rectangles on the top.

highlighting the presence of small-scale arrays of inclined vortices along with negative
streamwise disturbance patches. These perturbations have a downstream inclination,
closely recalling the elongated inclined vortices formed by the minimal seed in the
second step of the transition scenario (see the second frame from the top in figure 22).
Similar small-scale structures have been identified at different times, and for different
initial perturbations (for E0 and T larger than the nonlinearity threshold), leading us
to postulate the existence of a disturbance–regeneration cycle. Such a cycle is here
initiated by the minimal seed perturbation, but its inception might be likely due also
to free stream turbulence or other finite amplitude disturbances naturally occurring
in a real flow (cf. for instance, the results in Wu & Moin 2009). This cycle thus
appears to be a good candidate to explain the late stages of transition to turbulence in
a boundary-layer flow, based as it is on the regeneration of 3 structures and hairpin
vortices, preponderant features in this kind of flow (Adrian 2007; Wu & Moin 2009),
and grounded on well-recognizable amplification mechanisms.

3.2.4. Comparison with other transition scenarios
The transition scenario described here shows some features which recall the

structures already observed in classical transition scenarios analysed in the literature.
For example, the development of 3 structures and hairpin vortices was also observed
in the late stage of oblique transition (Berlin, Wiegel & Henningson 1999). In
this scenario, transition is induced by exciting oblique modes at the inflow, which
grow and generate new modes through triad interactions. The streamwise-invariant
modes which emerge grow much more rapidly than the others, due to the lift-up
effect, inducing streaks which finally experience secondary instability and breakdown.
On the other hand, in the case considered here the initial forcing is spatially
localized, impulsively injected and characterized by a superposition of several modes.
A comparison between the two scenarios can be performed by analysing the
most amplified modes characterizing the time evolution of the nonlinear optimal
perturbation. We have extracted such modes by means of a two-dimensional Fourier
transform, identifying them by a pair of wavenumbers, α and β, in the streamwise
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FIGURE 24. Two-dimensional Fourier transform providing the variation in time of the modes
extracted by a DNS initialized by a nonlinear optimal perturbation with E0 = 0.01 (a) and a
linear optimal with E0 = 0.1 (b). The modes are labelled as (n, m).

and spanwise direction, respectively. The minimal seed with E0 = 0.01, T = 75 and
Re = 610 has been chosen to initialize the computations. Figure 24(a) shows the
time history of the energy associated with such modes, labelled as (n, m), where
n = α/(2π/Lz) and m = β/(2π/Lz), with 2π/Lz the fundamental spanwise wavenumber
defined by the characteristic length of the computational domain (the spanwise length
Lz has been chosen because z is the only homogeneous direction). It is possible to
compare this time history with that emerging from the oblique-transition scenario, for
instance, that provided in figure 3 of Berlin, Lundbladh & Henningson (1994), in
which the computations where performed at Re = 400 and for an initial amplitude
of the perturbation A = 0.01 (thus close to the parameters used here). Unlike the
case of the oblique-transition scenario, the increase of the (0, 2) mode is not very
rapid (for instance, the mode increases by two orders of magnitude in 100 time
units, instead of 30 time units as in the oblique scenario). Indeed, this mode appears
to grow at a rate which is similar to that of the other modes, especially mode
(0, 1), whose growth is not observed in the oblique scenario. When transition occurs
(t ≈ 250), such zero-streamwise-wavenumber modes attain energy values which are
higher than those associated with the non-zero streamwise wavenumber components.
It is worth specifying that most of the energy of such modes is not linked to the
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development of streaks or streamwise invariant perturbations, but it is due to the fact
that, the flow not being periodic in the streamwise direction, the disturbances have
mean value in the streamwise direction different from zero. Moreover, mode (1, 1)

has a low energy level at the initial time, the most energetic modes being (0, 1),
(0, 2) and (2, 1). The first two modes account for the fact that the initial perturbation
has a mean value in the streamwise direction which is non-zero, whereas the third
mode accounts for the spatial localization of the disturbance. Mode (2, 1) does not
experience a large growth in time, unlike the other modes, which increase their
energy due to the combined effect of lift-up, nonlinear mixing and vortex regeneration.
This behaviour is remarkably different from the oblique transition scenario. Since
the amplitude of the perturbation is very close to that used in Berlin et al. (1994),
this behaviour is mostly due to its particular shape. This can be easily shown by
comparing such a transition path to that induced by a linear optimal perturbation.
Thus, to initialize the computations, a linear optimal perturbation with initial energy
ten times larger than that used in the nonlinear case has been chosen (E0 = 0.1),
in order to reach transition. The time history of the energy associated with the
most amplified modes characterizing the linear optimal perturbation is provided in
figure 24(b). It can be observed that, in the linear case, a very rapid increase of
the (0, 2) mode is observed, due to the streaks generation induced by the initial
streamwise vortices, followed by a saturation. A similar behaviour is displayed by
mode (0, 1), although a slower increase is observed. At the same time, the mode
(1, 1) experiences an initial increase, and then oscillates around a constant value.
Modes (2, 1) and (2, 2) experience a first increase at short times, due to nonlinear
effects induced by the growth of modes (1, 1) and (0, 2), and a second increase at
t ≈ 350, due to the onset of a secondary instability of the streaks. Most of these
features have been observed in previous works on the oblique transition scenario (see
figure 3 in Berlin et al. 1994); this means that the linear optimal disturbance reaches
turbulence by following a path which is similar to the oblique case, which appears
to be the most efficient in triggering transition for parallel flows in small domains
(Reddy et al. 1998; Duguet et al. 2010). On the other hand, in the case of a nonlinear
optimal disturbance, streamwise streaks are not observed until transition is initiated,
so that the mechanism of secondary instability of the streamwise streaks is skipped.
Instead, nonlinear effects cause an increase of all of the modal components of the
perturbation at short times, explaining the differences between such a scenario and the
oblique case.

These differences result in a different spreading of the disturbance, which can
be visualized in figure 25, providing the space–time diagram of the streamwise
component of the velocity measured at y = 1, z = 5, for a nonlinear and a linear
optimal initial conditions. It is clearly shown that in the nonlinear optimal case
(figure 25a) the disturbance has a larger spreading rate in space, both at the leading
and at the trailing edge of the wave packet. In particular, the leading edge of the wave
packet is convected downstream at the velocity Ulead ≈ 0.9U∞, whereas the trailing
edge is advected at Utrail ≈ 0.5U∞ (the presence of the main hairpin vortex at the
leading edge explaining the large value of Ulead). Such values of velocity are very
close to the advection velocities of the edges of a turbulent spot reported in the
literature (Singer 1996). Moreover, the spreading rate at small times appears to be the
same as that of the turbulent spot, which is established in the flow at t ≈ 250. On the
other hand, for a linear initialization the spatial spreading is much smaller in the first
phase of the oblique transition, when streamwise streaks are generated (clearly visible
in figure 25b), and it only increases when a turbulent spot is established (t ≈ 450).
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FIGURE 25. Space–time diagram of the streamwise component of the velocity perturbation
extracted at y = 1, z = 5 by a DNS initialized by a nonlinear perturbation with E0 = 0.01
(a) and a linear optimal disturbance with E0 = 0.1 (b). The contours show 10 values of
velocity from |u′| = 0.05 to |u′| = 0.5.

Such results thus confirm that the nonlinear optimal perturbation is able to initialize
turbulence very rapidly, with a fast spreading in space and time, until a turbulent spot
forms.

4. Summary

We have used a variational procedure to identify nonlinear optimal disturbances in a
boundary-layer flow developing over a flat plate, defined as those initial perturbations
yielding the largest energy growth at a given target time T , for a given Reynolds
number Re. The analysis has been performed for two values of Re and several values
of T and initial energy density E0. For all values of Re and T a threshold value of
E0 exists, called the nonlinearity threshold, from which remarkable modifications are
observed with respect to the linear case, in particular for the value of the nonlinear
optimal energy at T . The nonlinearity threshold decreases when Re and/or T increase.
Moreover, for values of the initial energy larger than the threshold, the optimal
perturbation changes slightly and is characterized by a fundamental structure, called
here the minimal seed, which has been analysed in detail. The same minimal seed
structure, characterized by similar size and amplitude, is recovered also for different
domain lengths, target times and Reynolds numbers, demonstrating that this is a robust
feature of the considered flow. Unlike the linear optimal perturbations, the minimal
seed contains vortices inclined in the streamwise direction surrounding a patch of
intense streamwise disturbance velocity. These features induce a more rapid energy
growth with respect to the linear case, due to the streamwise modulation of the
momentum and to the significant distortion of the base flow profile.

DNSs have then been employed to study the mechanism of transition to turbulence
when the flow is initialized using the minimal seed. It has been shown that, for
the same value of the initial energy, the nonlinear optimal perturbation is able to
lead the flow to turbulence whereas the linear optimal perturbation is not. The
nonlinear optimal perturbation has been found to trigger and spread out turbulence
very efficiently, its spreading rate in space and time being very close to that of a
turbulent spot. The present transition scenario is quite different from the oblique-
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transition scenario, as well as from other classical scenarios, and this leads us to
outline a new path of turbulent transition in the boundary layer, based on the fast
growth and nonlinear evolution of the initial minimal seed. The mechanisms which
characterize such a route to turbulence has been analysed performing DNSs, initialized
by the minimal seed perturbation, in which the convective terms have been switched
off or rescaled one by one to infer their effect. We have thus found that the transition
scenario is basically composed of the following steps.

(a) Tilting and amplification of the initial minimal seed by means of the Orr
mechanism, resulting in a staggered array of elongated inclined vortices on the
flanks of a low-streamwise-momentum region.

(b) Transport of the base flow momentum by the disturbance (lift-up) along
the inclined vortices, resulting in a further amplification of the streamwise
disturbance.

(c) Dislocation of the initial localized patches of finite amplitude disturbance due to
the self-interactions of the perturbation field, generating 3-shaped structures of
slow and fast fluids, and sustaining the initial inclination of the vortices.

(d) Transport of the vortical structures by the mean flow, which stretches them in the
streamwise direction, resulting in the creation of 3 vortices of finite amplitude.

(e) Redistribution of the vorticity due to nonlinear mixing, inducing the creation
and the lift-up of a spanwise vorticity zone (the arch vortex) connecting two
neighbouring vortex structures, constituting a main hairpin vortex.

(f ) Release of smaller-scale vortices from the main hairpin because of inflectional
instabilities related to the base flow modifications.

In particular, observing the activation in time of the convective terms connected to
the amplification mechanisms summarized above, we have found that when the main
hairpin releases smaller-scale vortical structures, new, localized inclined vortices are
generated, allowing the cycle to repeat over faster (smaller) time (space) scales. Such a
cycle is here initiated by the minimal seed perturbation, but its inception can also be
due to free stream turbulence or other finite amplitude disturbances occurring in a flow.
Future work will aim at evaluating the effects of such initial forcing on the nonlinear
optimal disturbance, trying to include the receptivity mechanisms in the optimization
procedure.
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Appendix. Nonlinear optimizations

The nonlinear optimization has been carried out using a Lagrange multiplier
technique, similar to that used by Zuccher et al. (2004) for a boundary-layer flow
described by the (spatially parabolic) boundary-layer equations, and by Pringle &
Kerswell (2010) for a pipe flow. This technique consists of seeking extrema of the
augmented functional L with respect to every independent variable. Such a functional
is written as

L = G −
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, (A 1)

where the NS equations (direct problem) and the value of the energy at t = 0, E0, have
been imposed as constraints, and a, b, c, d, λ0 are Lagrange multipliers. Integrating by
parts and setting to zero the first variation of L with respect to u′, v′, w′, p′ leads to
the adjoint equations:

−bt = 2bxu
′ + byv

′ + bzw
′ + bxU + (bV)y −cVx + ax +

bxx

Re
+

byy

Re
+

bzz

Re
(A 2)
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(A 3)

−dt = dxu
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′ + 2dzw
′ + dUx + (dV)y +az +

dxx

Re
+

dyy

Re
+

dzz

Re
(A 4)

0 = bx + cy + dz (A 5)

where q† = (a, b, c, d)T is defined as the adjoint vector. The adjoint equations are
linked to the direct equations by the presence of direct variables in the advection terms.
By using the boundary conditions of the direct problem, we obtain

b = 0, c = 0, d = 0, for y = 0 and y = Ly, (A 6a)

b = 0, c = 0, d = 0, for x = xin and x = xout; (A 6b)

moreover, the compatibility conditions (Zuccher et al. 2004) are

2u′

E0

− b = 0,
2v′

E0

− c = 0,
2w′

E0

− d = 0, for t = T. (A 7)

The direct and adjoint equations are parabolic in the forward and backward time
direction, respectively, so that they can be solved by a coupled iterative approach,
similar to that used by Cherubini et al. (2010b). By solving the direct and adjoint
equations at each step of the iterative procedure, the first variation of the augmented
functional with respect to q and q† is set to zero. Moreover, the gradient of L

with respect to the initial state q0 has to vanish within a reasonable number of
iterations. Different methods can be used to achieve this goal. For instance, one can
set to zero the gradient of L with respect to the initial state at each step of the
iteration, achieving directly an estimate of the initial condition for the next step of the
procedure (an ‘optimality’ condition, currently used in linear optimization problems).
This strategy is effective in a linear framework in which the optimization procedure
is guaranteed to converge to the global optimum (see Corbett & Bottaro 2000 and
Cherubini et al. 2010b), but it does not guarantee efficient convergence in a nonlinear
problem such as that considered here. Therefore, in order to achieve convergence
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efficiently, a conjugate gradient algorithm is used, similar to that employed in Marquet
et al. (2008). The initial state is updated in the steepest ascent direction, denoted as
∇q0

L , namely:

∂L

∂u′
0

= −2u′
0

(E(T) − λ0E0)

E(0)
+ b(0), (A 8a)

∂L

∂v′
0

= −2v′
0

(E(T) − λ0E0)

E(0)
+ c(0), (A 8b)

∂L

∂w′
0

= −2w′
0

(E(T) − λ0E0)

E(0)
+ d(0), (A 8c)

with an adjustable step length α, so that q
(n+1)
0 = qn

0 + αn∇q0
L

n
. After the first

iteration in the steepest ascent direction (with α sufficiently large for the solution
to be significantly modified), the successive steps are taken along a conjugate direction,
3q0, which is computed on the basis of the gradient at two consecutive iterations

according to 3q
(n+1)
0 = ∇q0

L
(n+1)

+ β(n+1)3qn
0. In the present work the value of the

parameter β(n+1) is computed by means of the Polak–Ribière formula (Polak & Ribière
1969),

β(n+1) =
(1q

(n+1)
0 )

T
(1q

(n+1)
0 − 1qn

0)

(1qn
0)

T 1qn
0

. (A 9)

Periodically, this value should be reset to zero in order to avoid conjugacy loss (which
corresponds to updating the solution in the steepest ascent direction). The step length
α has been chosen carefully in order to ensure convergence to the optimal value, as
described below, with values in the range [0.001/E0, 0.1/E0].

The optimization procedure for a chosen target time T can be summarized as
follows.

(a) An initial guess is made for the initial condition, q0, with associated initial energy
E0 (in most of the computations, the perturbation obtained by a linear optimization
has been used as initial guess).

(b) The direct problem is integrated up to t = T .

(c) The adjoint variables, b(T), c(T), d(T), are provided by the compatibility
conditions (A 7).

(d) The adjoint problem (A 2)–(A 5) is integrated backward in time from t = T to
t = 0.

(e) At t = 0, the initial direct state is updated in the direction of the conjugate
gradient with step length α and β computed according to the Polak–Ribière
formula (β = 0 is imposed at the first iteration).

(f ) The objective function E(T) is evaluated:

(i) if its increase between two successive iterations is smaller than a chosen
threshold, e, the loop is stopped, otherwise the procedure is continued from
step (b);

(ii) if a decrease of the objective function is found, the value of α is halved, and
the value of β is set to zero.

Each iteration requires the integration of the three-dimensional NS and adjoint
equations forward and backward in time up to the target time; moreover, owing to the
presence of the direct variables in the advection terms of the adjoint equations, the
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whole direct-variable field needs to be stored at each time step, requiring a remarkable

storage capacity. Considering that ∼200 iterations are needed to achieve convergence

within machine accuracy, the computational effort required to optimize the solution for

a single set of the independent parameters (T , Re and E0) is very high. To keep the

computational cost affordable, the optimizations have been performed up to a target

time T = 125 and a threshold value equal to e = 10−6 has been chosen, after having

verified that it produces an error on the value of E(T) smaller than 0.5 % (a more

detailed convergence study is provided in Cherubini et al. 2010a).
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