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A quantitative definition of the receptivity of the Go$ rtler instability is given by the
Green’s functions that external disturbances must be scalarly multiplied by in order to
yield the amplitude of the most amplified instability mode, defined sufficiently far
downstream of the plate’s leading edge. These Green’s functions (one for each kind of
external disturbance, either coming from the free stream or from the wall) are here
displayed for the first time. Calculating such functions from a numerical solution of the
instability equations would require repeating the calculation for each of a complete set
of different initial and boundary conditions; although numerical simulations of the
Go$ rtler instability abound in the literature, such a systematic screening has never been
attempted. Here, instead, we calculate the Green’s functions directly from a numerical
solution of the adjoint of the linearized boundary-layer equations, which exploits the
fact that the direct and adjoint parabolic problems have opposite directions of stable
time-like evolution. The Green’s functions can thus be obtained by marching backward
in time at the same computational cost as a single forward-in-time integration of the
direct problem. The backward-in-time technique is not limited to the Go$ rtler problem;
quantitative receptivity calculations for other types of instability can easily be
envisioned.

1. Introduction

The original analysis (Go$ rtler 1941) of the curvature-excited streamwise vortices that
have become known as Go$ rtler vortices was based on a heuristic extension of the
theory of parallel centrifugal instabilities of the Taylor and Dean type (see e.g. Saric
1994 for a recent review). However, the flow cannot be treated as parallel in the initial
region of G of order unity where the Go$ rtler instability originates from external
disturbances. This is why a study of the generation of Go$ rtler vortices cannot be
performed by local mode analysis but rather requires a numerical solution of the
linearized boundary-layer equations, according to the method started by Hall (1983).
For instance, the evolution of free-stream disturbances (such as those that may be
caused by upstream screens) into Go$ rtler vortices was studied by Hall (1990) and by
Bottaro, Klingmann & Zebib (1996), whereas the evolution of wall-induced
disturbances into Go$ rtler vortices is considered in Denier, Hall & Seddougui (1991),
Bassom & Hall (1994), Bertolotti (1993), Bassom & Seddougui (1995), and Bottaro &
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Zebib (1997). In particular, Denier et al. (1991) considered a wall with different
streamwise and spanwise roughness scales. The small and the O(1) wavelength limits
were examined with linear theory. Their O(1) results were later extended and corrected
by Bassom & Hall (1994), who indicated that distributed roughness is a very efficient
means of vortex generation. Bertolotti (1993) solved, by a linear parabolized streamwise
marching technique, the equations for the flow over concave surfaces with streamwise-
aligned wall corrugations. This riblet-like wall was found to be very conducive to the
formation and development of vortices, even when the riblet wavelength was different
from that of the inlet vortex. Bertolotti also found that vortices are receptive to the wall
forcing over an extended streamwise distance. Bassom & Seddougui (1995) studied the
relative effectiveness of a given wall perturbation in exciting a Go$ rtler rather than a
crossflow instability in the presence of a small spanwise velocity component. Bottaro
& Zebib (1997) performed a comparative study of some different wall-roughness
configurations used as Go$ rtler vortex generators.

The numerical approach generally adopted in Go$ rtler receptivity studies has the
advantage that the nonlinear saturation stage of the instability can be quite easily
included, but the drawback that the computation must be repeated for every new initial
disturbance, thus making it prohibitively time-consuming to answer such basic
receptivity questions as which kind of disturbance is most effective in generating
Go$ rtler vortices and what thresholds must be imposed on ambient noise if one wants
to avoid them. Indeed, an answer to such questions is not available in any of the
aforementioned papers. On the other hand, within the limits of a linearized approach,
receptivity questions do in principle possess a general quantitative answer. For, in a
linear setting, the final mode amplitude in the large-G range (where local modes
distinguished from each other do exist) must be a linear functional of the initial
conditions, expressible as the integral of the product of the initial conditions times a
suitable Green’s function. The receptivity can, therefore, be quantitatively charac-
terized by assigning this Green’s function.

In this paper we take the calculation of the Green’s function as our goal, and do it
by first deriving a differential equation obeyed by the Green’s function itself and then
solving this equation by numerical means. The difference with the previous approach
is that the numerical calculation has to be performed just once; after that, the influence
of any initial condition on the final mode amplitude can be directly expressed through
the Green’s function, and the analysis of the effects of given, deterministic or random,
perturbation sources becomes very easy.

2. Mathematical description of the Go$ rtler problem

The centrifugal instability of the boundary layer over a concave wall discovered by
Go$ rtler in 1941 consists of steady longitudinal vortices which alternate in the spanwise
direction. It occurs in a high-Reynolds-number boundary layer in the presence of a
relatively small longitudinal curvature, so that the underlying span-independent mean
velocity profile is (at leading order in the inner–outer expansion) unaffected. The
simplest instance of Go$ rtler instability takes place over a sharp-edged plate of constant
radius of curvature in the absence of external pressure gradient, and we shall restrict
ourselves in the following to this case for the sake of definiteness, although the
generalization to variable radius of curvature and pressure gradient presents neither
conceptual nor computational difficulty.

We shall describe the Go$ rtler phenomenon by means of the linearized steady three-
dimensional boundary-layer equations in the form



GoX rtler �ortices: an approach to the recepti�ity problem 3

u
x
�

y
w

z
¯ 0, (1a)

Uu
x
U

x
uVu

y
U

y
�¯ u

yy
u

zz
, (1b)

U�
x
V

x
uV�

y
V

y
�2G #Uup

y
¯ �

yy
�

zz
, (1c)

Uw
x
Vw

y
p

z
¯w

yy
w

zz
. (1d )

Here x is the longitudinal boundary-layer coordinate made dimensionless with respect
to an arbitrary reference length L, y and z are the wall-normal and spanwise
coordinates made dimensionless with respect to the representative boundary-layer
thickness δ¯Re−"/#L, where Re¯LU¢}ν is the (assumed large) longitudinal Reynolds
number; accordingly, the longitudinal velocities U and u are made dimensionless with
respect to the free-stream velocity U¢ and the wall-normal and spanwise velocities with
respect to Re−"/#U¢. The unperturbed velocity components U(x, y) and V(x, y) are
obtained from the Blasius solution for the unperturbed flat-plate boundary layer, while
u, �, w and p represent velocity and pressure perturbations in the same boundary-layer
scaling. The Go$ rtler number G represents a non-dimensionalized curvature of the wall,
of radius R, according to the definition G #¯Re"/#L}R, i.e. G¯L$/%(U¢}ν)"/%R−"/#.
The derivation of equations (1) can be found e.g. in Bottaro & Luchini (1996) and will
not be repeated here. Historically, this formulation of the Go$ rtler problem goes back
to Floryan & Saric (1979, 1982) and Hall (1983). Indeed, these are nothing more than
the general equations of a three-dimensional boundary layer (Carrier 1946; Moore
1956) with the addition of a curvature term 2G #Uu.

Since the unperturbed flow represented by U(x, y) and V(x, y) is independent of z, it
is expedient to Fourier-transform equations (1) with respect to z, thus obtaining
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where the spanwise wavenumber β is non-dimensionalized with respect to 1}δ¯
(U¢}Lν)"/#. Equations (1) and (2) are parabolic and, just like the two-dimensional
boundary-layer equations, require boundary conditions that specify u, � and w at the
wall y¯ 0 and u, w and p (but not �) for yU¢. They also require initial conditions in
x, the character of which is quite different from that of the conditions that must be
assigned to the original Navier–Stokes equations. Indeed, the boundary-layer
approximation changes the character of the Navier–Stokes equations from elliptic to
parabolic, and simultaneously changes the number of initial conditions needed to form
a well-posed problem. In two dimensions, and under the assumption that u never
becomes negative, the boundary-layer equations only require one initial condition (for
u, say, or equivalently for the streamfunction ψ) at a given position x¯x

!
in order to

make the solution determined for x"x
!
. In three dimensions, two initial conditions

must be given, by assigning, for instance, u and � (Hall 1983) or any other two
equivalent quantities.

3. Forward numerical solution of the boundary-layer equations

It is possible to constrain equations (2) to having real coefficients by introducing
wa ¯ iβw ; in addition, the system can be put in a conservative form by suitably
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combining the continuity equation with the other (this will become instrumental
when we later deal with the leading edge). The system then becomes
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and the numerical solution may be set up in real variables. Equations (3) have been
discretized by second-order central differences in y and either first- or second-order
backward differences in x, on a regular unevenly spaced mesh in which wa and p are
staggered by half a y-step with respect to u and �. The system of finite-difference
equations resulting from the discretization can be expressed as
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(respectively for first- and second-order differences in x). Here x¯ n∆x, the numerical
vector q includes, at alternating positions, the four unknowns u, �, wa , p calculated at
successive discretization points in y, and
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To monitor the development of the instability one typically defines a perturbation
energy, for example

E(x) ¯& u#(x, y) dy (7)

and introduces a dimensionless growth rate σh as

σh ¯
x

2E

dE
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. (8)

The position of ‘neutral ’ stability is defined by the value of x for which σh vanishes:
since a Go$ rtler number G

x
¯Gx$/% and a wavenumber β

x
¯βx"/# are associated with

each x, a ‘neutral stability curve’ in the (β
x
,G

x
)-plane can be constructed. Hall (1983)

observed that the initial perturbation distributions u
!
and �

!
play a crucial role in the

definition of the neutral curve; as a consequence he showed that the concept of a
unique neutral curve is not tenable. In addition, Goulpie! , Klingmann & Bottaro (1996)
have demonstrated that even the definition of energy has profound repercussions on
the location of the neutral points.

If, however, one calculates the evolution of the disturbance farther into the region
of the (β

x
,G

x
)-plane where amplification is taking place, rather than solely looking for

the neutral curve, one finds that with increasing G
x

the amplification curves
corresponding to different initial conditions do tend to coalesce with each other. This
is borne out in figure 1, which shows the disturbance energy as a function of x (and G

x
)

and the final disturbance profiles for four initial disturbances chosen so as to represent
four very different initial conditions. It can be observed that for G

x
greater than about

7 the energy curves become almost indistinguishable from each other. The disturbance
profiles also look very similar in this region. It thus appears that some kind of universal
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behaviour (a mode) is approached in this range of Go$ rtler numbers. Note that the
existence of local modes was proved a long time ago by Hall (1982) in the part of the
(β

x
,G

x
)-plane where the right-hand branch of the neutral curve is encountered, that is

when amplification ends and turns back into damping again. It appears, however, that
local modes can be defined even earlier than that. This is the object of a separate paper
(Bottaro & Luchini 1998).

For the present purposes, it is enough to retain as an empirical observation that for
G

x
" 7 a universal disturbance shape is approached, up to an undetermined coefficient

which determines the energy, in the numerical solution of equations (3). This coefficient
must, of course, be a linear function of the initial conditions, since the problem is
linear, and therefore calculating the coefficient will give a precise definition of the
receptivity of Go$ rtler vortices to initial conditions. Incidentally, it should be pointed
out that G

x
¯ 7 is well within the range of Go$ rtler numbers of most experimental and

numerical analyses available in the literature. Recent nonlinear calculations (Bottaro
et al. 1996) and experiments (Pexieder 1996) – both performed in a fairly standard
disturbance environment – show that the quasi-exponential growth characteristic of
the linear amplification phase persists up to G

x
of about 15.

4. Fundamental properties of the Green’s function of a parabolic problem

Given a parabolic equation, formally represented in terms of the positive-definite
operator L as

f
x
¯L[f, (9)

it is always possible to introduce the adjoint equation

h
x
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with the property that
(h[f )

x
¯ 0 (11)

immediately proved by adding equation (9) scalarly multiplied by h to equation (10)
scalarly multiplied by f, and using the defining property of adjoint operators that
h[L[f¯ f[L+[h. Integrated over a finite distance, equation (11) shows that h has the
role of a Green’s function for equation (9). For, if we choose h so that it assumes the
form of a δ-function at a certain downstream abscissa x

f
, we can write
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and therefore we can calculate the value of f at the point (x
f
, y

f
) from the scalar product

of the initial condition f (x
i
, y) times the Green’s function h(x

i
, y). Moreover, the

character of equation (10) is that of a parabolic equation with a negative-definite right-
hand side, so that its intrinsic direction of stable evolution is reversed, and the problem
of propagating the Green’s function upstream from a δ-function condition given at x

f

is well-posed.
More generally, given any linear functional of the final f that can be expressed as an

integral (possibly in the sense of distributions as in the previous example), namely

Φ¯&¢

!

φ(y) f (x
f
, y) dy, (13)
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we can recast Φ as a functional of the initial condition f (x
i
, y) by using as a Green’s

function the solution hφ of equation (10) that equals φ(y) at x
f
:
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i
, y) dy. (14)

In all such cases, instead of propagating the solution of equation (9) forward in the
time-like direction of the variable x and repeating the calculation for a number of
different initial conditions, we need only propagate the solution of the adjoint equation
(10) backward in time just once in order to get hφ ; formula (14) will then yield the value
of Φ for every possible initial f. Below it will be seen that integrating equation (10)
numerically is not any more difficult than integrating equation (9).

It may be noted that in the special case when the operator L is independent of the
variable x, and therefore equation (9) admits simple eigensolutions proportional to eσx

for suitable (generally complex) eigenvalues of σ, equation (12) reduces to the ordinary
decomposition of the initial condition f (x

i
, y) in eigenfunctions of the operator L using

the adjoint eigenfunctions as projection operators. This type of decomposition was
recently used in a receptivity study of the Orr–Sommerfeld problem (Hill 1995).
However, a local definition of the transverse eigenfunctions is not sufficient in the
Go$ rtler problem, because the most important disturbances act in a region where local
eigenfunctions cannot be introduced. It then becomes essential to observe that
equations (12) and (14) are valid for any operator L, whatever its x-dependence. A very
compact alternative demonstration of this is offered by the use of the evolution
operator U

fi
, formally defined as that linear operator that relates the final profile

f
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i
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product notation for integrals such as equations (13) and (14), one can quickly derive
that
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where hφ ¯φ[U
fi

¯ (U
fi
)+[φ. It should be evident that equation (15) does not require

separability of either the operator L or U.

5. Backward formulation of the Go$ rtler instability problem

It remains to be determined which particular downstream starting condition must be
given to equation (10) in order to produce the appropriate Green’s function that has
the amplitude of the dominant mode as functional Φ. The answer is very easy, as a
simplified example will illustrate. Let us consider the heat diffusion process in a finite
slab with isothermal walls, i.e. the equation

f
t
¯ f

yy
(16)

with boundary conditions f(t, 0)¯ f(t, 1)¯ 0. This equation admits separable modes of
the form f

n
¯ sin(nπy) exp(®n#π#t), n& 1; therefore with increasing t the solution

produced by a ‘generic ’ initial condition (provided only that it has a non-zero
component in the first mode) tends to the asymptotic behaviour determined by the first
mode alone, sin(πy) exp(®π#t). The adjoint equation

h
t
¯®h

yy
(17)

with conditions h(t, 0)¯ h(t, 1)¯ 0 has separable modes given by h
n
¯ sin(nπy)

exp(n#π#t). The Green’s function produced by a ‘generic ’ starting condition tends with
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decreasing t to the first mode sin(πy) exp(π#t), i.e. to the adjoint eigenfunction needed
to extract the first-mode component of the initial f.

This state of affairs is quite general. Whenever the operator L is separable, the same
eigenvalue will govern the behaviour with increasing t of a given eigenfunction of
equation (9) and the behaviour with decreasing t of the corresponding eigenfunction of
equation (10). Therefore, an arbitrary initial condition, provided only that it is given
sufficiently far downstream, will let the backward-marched solution of equation (10)
converge to the adjoint eigenfunction of the leading mode. This is equally true in a
situation, like that of Go$ rtler vortices, in which separable modes exist only
asymptotically in the limit of large x. In the same region where these modes exist, the
backward-marched solution of the adjoint equation will tend to select the adjoint
eigenfunction of the leading mode; continuing the solution all the way back will yield
the Green’s function that expresses the receptivity of the leading mode. This situation
is schematically depicted in figure 2.

A slightly different but equivalent argument can also be given without assuming a
priori that exact or approximate modes exist : if for any reason the solution of equation
(9) tends to be attracted by one and the same functional form f

!
(y) with increasing x,

independently of the initial condition except for an amplitude factor A, namely
f(x

f
, y)¯Af

!
(y), then equation (11) allows this amplitude factor to be calculated from

an arbitrary solution of equation (10) as
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, y) dy5&¢
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h(x
f
, y) f

!
(y) dy. (18)
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Of course, equation (18) can only hold for an arbitrary Green’s function h insofar as
h conversely tends to one and the same functional form with decreasing x independently
of the starting condition given at x

f
. This limiting functional form is the receptivity.

6. Numerical computation of the Green’s function

The standard procedure for extracting the adjoint system from equations (3) begins
by multiplying each of the four equations by suitable, yet to be defined, weight
functions, denoted here by a(x, y), b(x, y), c(x, y) and d(x, y), and then adding and
integrating in y. By successive integrations by parts it is easily found that
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An integral relation verified by an arbitrary solution of the original problem (3) is then
generated by choosing the undetermined coefficients a, b, c and d in such a way that
each term of equation (19) is separately equal to zero. One thus obtains that the scalar
product
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is constant with x provided a, b, c, d represent a solution of the system
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with boundary conditions b¯ c¯ d¯ 0 at y¯ 0 and a2Vcc
y
¯ 0 for yU¢

(which, together with the boundary conditions of the direct problem, u¯ �¯wa ¯ 0 at
y¯ 0 and u¯wa ¯ p¯ 0 for yU¢, nullify the second term of equation (19)). By use
of equation (21d ) and the boundary conditions, the scalar product defined by equation
(20) can also be rewritten with two terms only as

s¯&¢
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(u*uΞ*Ξ) dy, (22)

where u*¯ abU,Ξ*¯®ic}β and

Ξ¯ (Uw)
y
iβ(VuU�). (23)

At this point it would seem necessary, from the computational point of view, to
discretize the ‘backward’ system of equations (21) by finite differences in a similar
manner as for the ‘ forward’ system (3). However, there is an even easier way. The idea
of computing a Green’s function as a particular solution of the adjoint system of
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equations applies to a discrete as well as to a continuous system: since we already have
available a discretization of the forward problem, formulating the discrete version of
the adjoint problem becomes just a matter of matrix transposition.

In fact, multiplying equation (4a) by a yet to be defined coefficient vector p
n−"

and
subtracting from both sides p
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is independent of n provided the vector p
n

is obtained from the difference equation
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The analogy with equations (10) and (11) is remarkable : equation (26) is the discrete
adjoint equation that must be iterated backward (that is, for n decreasing) in order to
determine the Green’s function. As anticipated, it can be derived from the forward
discretized equations by a simple transposition of the matrices defined in equations (5)
and (6) ; as an additional simplification, wall and free-stream boundary conditions need
not be handled separately if the boundary conditions for the forward problem are
initially included in the appropriate rows of matrix B. An essentially similar procedure
yields the discrete backward-marching difference equation corresponding to the
second-order approximation (4b).

In order to recover the continuous Green’s function from the discrete vector p
n
, we

need only equate a discrete approximation of equation (22) to equation (25),
identifying the coefficient u*∆y of u and the coefficient Ξ*∆y of Ξ in the product
p
n
[A

n
[q

n
.

We note that, even if equation (4a) were an arbitrary discrete equation and not an
approximation of a continuous problem, equation (26) would correctly define a
Green’s function for it : whenever p

n
is calculated by iterating equation (26) backwards

from a δ-function starting condition at n¯N (a vector p
N

with all components but one
zero), the scalar product p

N
[A

N
[q

N
(a single component of A

N
[q

N
) equals p

!
[A

!
[q

!
for any q that obeys equation (4a). Therefore equations (14) and (18) remain valid even
for discontinuous solutions, provided only that such solutions are properly captured by
the discretization of the forward problem.

7. The receptivity of Go$ rtler vortices to free-stream disturbances

7.1. Formulation

Externally generated small disturbances can arrive from the free stream into the
boundary layer in two forms: as acoustic waves, which propagate in all directions and
are accompanied by a time-varying irrotational velocity field; or as vorticity waves
which move along streamlines like material particles. The former are inherently high-
frequency disturbances (in order to have a spanwise wavenumber of β they must have
a frequency of at least βa, with a being the speed of sound), and on an ideal plate of
infinite span do not couple to steady or quasi-steady Go$ rtler instabilities. The second
can only arrive from directly upstream of the plate along the streamlines which
eventually enter the boundary layer, and therefore appear in the mathematical
formulation as initial conditions at the leading edge of the plate. Here, however, we
meet a difficulty: at the leading edge of the plate, x¯ 0, the solution of the boundary-
layer equations that corresponds to a uniform impinging stream (the Blasius similarity
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F 3. Structure of the boundary layer near the leading edge.

solution) has a singularity in which V behaves as x−"/#, and the boundary-layer
approximation itself becomes invalid. Therefore, in order to investigate the receptivity
of Go$ rtler vortices to free-stream disturbances, we must first be able to connect the
properties of the boundary layer with those of the upstream oncoming disturbances,
‘ jumping over ’, so to speak, the discontinuity. The appropriate jump conditions to
describe the initial region of a three-dimensional boundary layer were discussed and
determined by Ting (1965), who did so in a general compressible-fluid setting. Since
such conditions are essential to the interpretation of our results in terms of leading-
edge receptivity, a brief re-derivation limited to the incompressible case will now be
given.

Actually, several different scales of length must be distinguished in a neighbourhood
of the leading edge. If L is the total length of the plate (or, equivalently, the
downstream position at which we are measuring disturbance amplification), the final
boundary-layer thickness δ¯ (Lν}U )"/# turns out to determine the y-range of
disturbances to which the boundary layer is most sensitive, as will be seen from the
numerical results, so that the structure of the leading-edge singularity must be
investigated for disturbances characterized by a typical transverse scale δ

d
comparable

to δ. Near the leading edge, therefore, such disturbances are quite well separated in
scale from the Blasius base flow, which has a typical scale of (xν}U )"/# with the local
value of x, and are mostly carried along by the inviscid free stream above the boundary
layer.

Equations (2), which require the scale in x to be much larger than the scale in y, can
only be applied to disturbances for xj δ

d
E δ, i.e. x}Lj (UL}ν)−"/#. Nevertheless, in

boundary-layer scaling (UL}ν)−"/# is an infinitesimal quantity, so that the region near
the leading edge where the approximation fails is perceived as a localized discontinuity.
It should be noted that sufficiently upstream of the leading edge equations (2) recover
their validity, with a base flow simply given by U¯ 1 and V¯ 0, and all that we
actually need is a jump condition connecting the properties of the disturbance
upstream of the discontinuity, for xi®δ, with its properties downstream of the
discontinuity, for xj δ, much in the same way as when shock waves or shear layers are
dealt with in inviscid fluid mechanics.

At a distance x of order δ from the leading edge there is a triple-deck structure, with
a viscous inner deck for 0! y# (δν}U )"/#¯L"/%(νU )$/% and an inviscid but rotational
outer deck for (δν}U )"/#i y# δ. It is this outer deck that determines the coupling
conditions we are interested in, the inner deck occupying only an infinitesimal portion
of the disturbance cross-section. The situation is schematically depicted in figure 3.

The oncoming stream is uniform except for a superposed disturbance which is
sufficiently small to be treated linearly, and is assumed to have a typical scale of length
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δ
d
E δj ν}U¢ in both the spanwise and wall-normal directions. The convection and

slow diffusion of this disturbance in region I, at a negative xi®δ, can be represented
by the same boundary-layer equations (1), with a base flow represented by U¯ 1 and
V¯ 0. Since these equations can be recast as

u
x
¯®(γ#β#) u, ξ

x
¯®(γ#β#) ξ, (27a, b)

with ξ¯w
y
iβ� representing the streamwise component of vorticity, we can

distinguish two independent types of disturbance: u-disturbances (streaks) and
ξ-disturbances (rolls). Each of these kinds of disturbance is accompanied by a crossflow
with both �- and w-components ; in the crossflow plane, they appear respectively as
source–sink (irrotational) and vortical (divergence-free) velocity fields.

In regions II and IV, for ®δ%x% δ the longitudinal pressure gradient is no longer
negligible, but in region II, for yj (δν}U )"/#, viscosity is. In this region the governing
equations are the inviscid Euler equations, and vorticity propagates along streamlines
like an infinitesimal material segment. The streamlines themselves can be determined
from, for instance, Kaplun’s (1954) optimal coordinate solution.

Region II can be treated as a discontinuity on the boundary-layer scale. Rather than
solving the linearized Euler equations pointwise in this region in order to follow the
evolution of the perturbation along the inviscid streamlines, we can set up an integral
momentum balance over a region like that denoted by 1–2–3–4 in figure 3, with two
sides parallel to the y-axis and two sides formed by streamlines. Since there are no
convective fluxes through the streamlines, we obtain

&y#

y"

udy¯&y%

y$

udy, (28a)

&y#

y"

(2Uup) dy¯&y%

y$

(2Uup) dy, (28b)

&y#

y"

(VuU�) dy&
"
–
#
–
$
–
%

p
y
dxdy¯&y%

y$

(VuU�) dy, (28c)

&y#

y"

(Uw) dy®&
"
–
#
–
$
–
%

iβpdxdy¯&y#

y"

(Uw) dy. (28d )

Now we have that pressure is the same on the lines 1–2 and 3–4, because both far
behind and far beyond the leading edge the pressure is constant and equal to the
external pressure, and therefore disappears from equation (28b). Moreover, we can
eliminate pressure between equations (28c) and (28d ) by summing the first multiplied
by iβ to the second differentiated with respect to y. Since, in addition, the vertical
displacement of the streamlines between these two planes is of order (δν}U )"/# and thus
negligible with respect to δ, and relations (28) must hold for all possible choices of the
two limiting streamlines, we obtain a classical jump condition between the lines 1–2
and 3–4 in the form

[u]
"
–
#
¯ [u]

$
–
%
, (29a)

[Uu]
"
–
#
¯ [Uu]

$
–
%
, (29b)

[(Uw)
y
iβ(VuU�)]

"
–
#
¯ [(Uw)

y
iβ(VuU�)]

$
–
%
, (29c)

where, in the scaling appropriate to regions I and III, the planes 1–2 and 3–4 must be
interpreted as being at an infinitesimal distance from each other. In other words,
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equations (29) relate the limits for x going to zero from the left and from the right of
certain flow properties. We thus see that u, Uu and the quantity in square brackets in
equation (29c) (the same that we have already denoted by Ξ in equation (23)) must
remain continuous across the leading edge x¯ 0. Other boundary-layer quantities, e.g.
the velocity perturbation components � and w and the unperturbed V, are instead
discontinuous here.

The two initial conditions that must be assigned to identify a solution of the
boundary-layer equations (2) can thus be uniquely assigned even when the calculation
is started from the leading edge, x¯ 0, provided care is taken in assigning the
quantities that are continuous there. In fact, of the three jump conditions just
determined the first two are equivalent, since the unperturbed velocity U is itself
continuous, and therefore the perturbations of u and Ξ must be assigned at x¯ 0 to
equal their free-stream values. The receptivities u* and Ξ* defined in the previous
section assume at x¯ 0 the role of receptives to free-stream disturbances. In particular,
since in the oncoming stream, where U¯ 1 and V¯ 0, Ξ reduces to the longitudinal
vorticity ξ of equation (27b), the value of Ξ* at x¯ 0 represents the receptivity to
longitudinal vorticity disturbances, which we may call roll recepti�ity and denote by ξ*,
whereas the value of u* at x¯ 0 represents the receptivity to longitudinal velocity
disturbances, which we may call streak recepti�ity.

In order to obtain from equation (18) a quantitative definition of the receptivity to
the two kinds of external disturbance just mentioned, we must still define a suitable
normalization for the final disturbance f

!
which appears at the end of the plate. (The

disturbance velocity profile is easily generated from a marching numerical solution of
the direct equations, but only up to an undetermined multiplicative constant.) We have
chosen to normalize the direct and the adjoint solutions in such a way that both the
kinetic energy defined by equation (8a) and the scalar product s defined by equation
(22) are of unit value at the exit x¯L. Thus the scalar product s of equation (22) will
automatically represent, for any given initial disturbance, the square root of the energy
that the disturbance attains at the end of the plate.

7.2. Numerical results

Figure 4 provides an example of receptivity curves u*(y) and ξ*(y), obtained for a
selection of values of G and β by marching the solution of the backward difference
equation from x¯ 1 down to x¯ 0 and normalizing the result. It has been checked
that the same curves turn up, within graphical accuracy, with several different initial
conditions and different refinements of the discretization. It should be remembered, in
order that this and subsequent figures may be interpreted correctly, that the position
where the final disturbance is observed (and normalized at unit energy) has been taken
as reference length L, and therefore the Go$ rtler number has been calculated according
to this length and the y-coordinate in the figure must be read in units of (Lν}U¢)"/#. It
is not required that the plate should actually end at x¯L because of the parabolic
character of the boundary layer.

Figure 4 gives some not previously available information, for instance that a
spatially localized disturbance is most effective if it flies over the leading edge at a
distance yE 1 and that, since there is no change in sign of either receptivity,
disturbances travelling at different heights sum up in phase. Even more interestingly,
figure 4 shows what an optimal disturbance should look like. Optimal disturbances,
loosely defined as those disturbances that produce the maximum effect with the
minimum effort, are being investigated for different kinds of fluid dynamic instabilities,
in particular under those circumstances in which the non-orthogonality of modes plays
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F 4. (a, b) Streak receptivity curves for (a) (G,β)¯ (10, 0.80) and (b) (20, 1.22). (c, d ) Roll
receptivity curves for (c) (G,β)¯ (10, 0.71) and (d ) (20, 1.18). The values chosen for (G,β) correspond
to optima, as in table 1.

a major role (Butler & Farrel 1992). Once the receptivity curve is available, the effect
of a given disturbance is unequivocally measured by the integral of equation (22). For
any suitable definition of the effort, it becomes a trivial matter to maximize the one
given the other. For instance, if the effort required to create a streak disturbance is
measured by its kinetic energy according to the definition (7), it is immediately seen
that an optimal streak disturbance is one proportional to u* itself. Similarly, if the
effort required to create a roll disturbance is measured by the integral of ξ #, an optimal
roll disturbance is one proportional to ξ*. The consequences of other definitions can
easily be tested.†

Plots such as figure 4 can be repeated for different Go$ rtler numbers G and spanwise
wavenumbers β. A more comprehensive outlook of the receptivity properties in the
z- and y-directions, however, comes from looking at the data in a two-dimensional
wavenumber space. In fact, since there is no real distinction between the z- and y-
directions upstream of the plate, the oncoming disturbance is more naturally thought
of as a superposition of two-dimensional Fourier components in the plane β, γ of the
z- and y-wavenumbers than as a mixed representation in β and y. From Parseval’s
theorem applied to equation (22), we see immediately that the receptivities u*(β,γ) and
ξ*(β,γ) to such two-dimensional plane waves are quite simply the Fourier transforms

† As far as a relative comparison between streak receptivity and roll receptivity is concerned, it
should be remembered that in boundary-layer variables the longitudinal and crossflow velocity
components are normalized differently. Therefore, �, w and ξ should be multiplied by Re−"/# before
they are energetically compared to u, and conversely u* should be multiplied by Re−"/# in order to be
compared to ξ*. In the limit of ReU¢ the receptivity to streak disturbances eventually becomes
negligible and only roll disturbances have to be taken into consideration. For finite Reynolds number,
however, no general conclusion can be reached.



GoX rtler �ortices: an approach to the recepti�ity problem 15

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0
β

γ

n*u*

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0
β

F 5. Contour plot in the spanwise–vertical wavenumber space of the free-stream receptivity.
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G β
maxu* β

maxξ*

10 0.80 0.71
15 1.04 0.99
20 1.22 1.18
25 1.39 1.32
30 1.50 1.37

T 1. Wavenumbers of maximum free-stream receptivity

of u*(β, y) and ξ*(β, y). Therefore in figure 5 we have plotted the level curves of the
moduli of these Fourier transforms at G¯ 10, with the aim of picking up the
wavenumber range of maximum receptivity. This maximum appears quite clearly
located around β¯ 0.8, γ¯ 0 for the streak receptivity and at β¯ 0.7, γ¯ 0 for the
roll receptivity. The fact that the isolines are somewhat oblong along γ indicates a
relatively lower selectivity of Go$ rtler vortices to wall-normal than to spanwise
wavenumbers. If isotropically distributed random fluctuations are carried by the free
stream, their effectiveness will mostly be governed by the spanwise wavenumber
distribution. This result is consistent with the one obtained by Hall (1990), who
performed forward simulations of equations (2) subject to leading-edge disturbance
conditions of the type u¯ ε cos(γy) exp(iβz), to model a grid upstream of the test
section. Hall computed neutral curves and found that the most unstable disturbance is
characterized by γ¯ 0. In the present work, the focus is not on marginal conditions
(where G is typically small) but on the downstream solutions with large G. Once the
spectral distribution of the Green’s function is known, a scalar product with the
spectral receptivity will quantitatively determine the amplitude of the generated vortex.
Similar transfer function plots can easily be obtained for other values of G ; the
wavenumbers of maximum receptivity are collected in table 1. Notice that if the non-
dimensional wavelength Λ is introduced, defined as

Λ¯G02π

β 1$/#,
the wavelengths of maximum free-stream receptivity are all within the often quoted
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F 6. Modulus and phase of the wavenumber receptivity for streaks (a) and rolls (b), at each β
max

from table 1 corresponding to G¯ 10 (solid lines), G¯ 15 (dotted lines) and G¯ 20 (dashed lines),
as a function of the vertical wavenumber γ.

range Λ ` [220, 270] (Bottaro et al. 1996). Constant-β and constant-γ cross-sections
through the points of maximum are given in figures 6 and 7.

8. The receptivity of Go$ rtler vortices to wall disturbances

8.1. Formulation

If the forward problem (2) is given homogeneous initial conditions and non-zero wall
boundary conditions, the effect of disturbances coming from the wall can be studied.
Since three boundary conditions are needed, one for each component of the velocity,
three types of wall disturbance can be considered: u-, �- and w-disturbances. (The
reader is referred e.g. to Bottaro & Zebib 1997 for a discussion of the relationship
between velocity disturbances and wall imperfections.) As far as the adjoint problem
is concerned, once the boundary conditions u¯ �¯w¯ 0 are replaced by u¯ u

w
(x),

�¯ �
w
(x) and w¯w

w
(x) a non-zero contribution appears in the second line of
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equation (19) ; with the coefficients a, b, c and d obeying the same differential equations
and boundary conditions (21) as before, equation (19) now becomes

d

dx&¢

!

[aubUuc(VuU�)dUwa ] dy¯ [b
y
u(ac

y
) �d

y
wa ]

y=!
, (30)

i.e. in terms of the scalar product s of equation (20),

s
f
¯ s

i
&"

!

[b
y
u
w
(ac

y
) �

w
d

y
wa

w
] dx. (31)

This formula replaces the statement that (in the absence of wall perturbations) the
scalar product s remains constant. The effect of wall boundary conditions is
represented through a boundary integral in the same way as the effect of initial
conditions is represented by the initial integral s

i
. The functions b

y
(x, 0), [a(x, 0)

c
y
(x, 0)] and iβd

y
(x, 0) define the wall receptivities u$

w
(β,x), �$

w
(β,x) and w$

w
(β,x), and

can be obtained simultaneously with the initial-value receptivities at no additional
computational cost.

By a similar argument, it can be easily shown that the functions a, b, c and d
represent the receptivity to mass and momentum productions possibly introduced as
external forcing terms in equations (3a–d ) respectively.

8.2. Numerical results

Figure 8 shows the wall receptivity curves u$
w
(β,x), �$

w
(β,x) and w$

w
(β,x) for

representative values of G and β. It can be observed that receptivity is maximum at the
leading edge and, like the initial-value receptivity, never changes sign. The fact that
wall forcing is most effective at the leading edge was already noted by Bassom & Hall
(1994), who investigated the effect of both an isolated roughness element (modelled by
a delta-function at the wall) and distributed roughness (taken to vary like sinx). Our
result is, however, of a more comprehensive nature since receptivity curves such as
those given in figure 8 automatically determine the shape of an optimal wall
disturbance. In particular, if the effort required to create a velocity disturbance at the
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wall is measured by its kinetic energy, an optimal u-disturbance is one proportional to
u$
w
, a optimal �-disturbance is one proportional to �$

w
and an optimal w-disturbance is

one proportional to w$
w
. We recall that u-disturbances are scaled differently from �- and

w-disturbances and must be multiplied by a factor Re"/# before being compared to
them.

If wall disturbances are represented by a superposition of sinusoidal components,
the Fourier transform of each receptivity function becomes useful. Figure 9 shows the
level curves of the moduli of these Fourier transforms in the plane α, β of the
streamwise and spanwise wavenumbers at G¯ 10. Notice that, contrarily to what
happened for the initial-value receptivities, wavelengths on the two axes are now not
directly comparable because there is a ratio of Re"/# between their respective scales.
Nevertheless, these curves still allow us to point out the wavenumber range of
maximum receptivity, which occurs for α¯ 0 (as also noted empirically by Bottaro &
Zebib 1997 via forward nonlinear calculations) and β close to 1. For large β roughness
is inefficient in stimulating Go$ rtler vortices, as already remarked by Denier et al.
(1991). The wavenumbers of maximum receptivity are collected in table 2 for some
values of G. Constant-β and constant-α cross-sections through the points of maximum
are given in figures 10 and 11.



GoX rtler �ortices: an approach to the recepti�ity problem 19

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0 0.5 1.0 1.5 2.0
β

α

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0 0.5 1.0 1.5 2.0
β

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0 0.5 1.0 1.5 2.0
β

ww
*vw

*uw
*

F 9. Contour plots of the receptivity in the spanwise–streamwise wavenumber space for u, �
and w wall disturbances, from left to right. G¯ 10.

G β
maxu

$

w

β
maxv

$

w

β
maxw

$

w

10 0.89 0.81 0.94
15 1.10 1.05 1.15
20 1.29 1.22 1.20
25 1.42 1.39 1.32
30 1.55 1.51 1.49

T 2. Wavenumbers of maximum wall receptivity

9. Conclusions

In this paper the first complete quantitative definition of the receptivity of the
Go$ rtler instability is given, by calculating the Green’s functions that external (free-
stream or wall-induced) disturbances must be scalarly multiplied by in order to yield
the final amplitude of the most amplified instability mode.

Repeated numerical simulations for each of a complete set of different initial and
wall conditions were avoided by calculating the Green’s functions directly from the
adjoint of the linearized boundary-layer equations. Since the direct and adjoint
parabolic problems have opposite directions of stable time evolution, the Green’s
functions could thus be obtained by marching the numerical simulation backward in
time. It might be said that, in this time-reversed approach to instability analysis, the
disturbance is followed, in adjoint-function space, from the time when it is observed
back to the time when it was generated. From the computational viewpoint this is a
problem of the same order of difficulty as a single numerical integration of the forward
system of equations, provided proper care is taken concerning the singularities that
arise, under the boundary-layer approximation, at the leading edge of the plate.

The analysis of the receptivity curves shows a relatively smooth behaviour, with no
change in sign of any of the five types of receptivity (to u and ξ free-stream disturbances
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and u, � and w wall disturbances) and relatively similar, but not identical, regions of
maximum receptivity for the different types. Optimal disturbance shapes can be
immediately identified as they are proportional to the receptivity itself.

Wavenumber receptivities are readily obtained as Fourier transforms. They, too,
exhibit a rather smooth behaviour, the most striking feature being perhaps that both



GoX rtler �ortices: an approach to the recepti�ity problem 21

free-stream and wall-disturbance receptivities peak at zero (respectively, wall-normal
and streamwise) wavelength The transfer-function plots of figures 7 and 11 exhibit the
general appearance of a single-pole low-pass filter.

The need to adopt different receptivity curves at different Go$ rtler numbers stems
from the fact that, owing to boundary-layer growth, the region of maximum
amplification shifts to larger and larger (non-dimensional) β with increasing x, and
although receptivity takes place in the initial portion of the boundary layer, it takes
place differently at different wavenumbers.

As far as the overall energetic yield is concerned, the relative effectiveness of different
generation mechanisms is strongly affected by the different scaling of longitudinal and
crossflow velocity components in the boundary layer. In fact, whereas the effectiveness
of longitudinal-velocity (streak) disturbances can be assessed directly from the figures
given above and is a function of the Go$ rtler number alone, in the case of crossflow
initial or wall disturbances the ratio between final longitudinal and initial transverse
kinetic energy must eventually be multiplied by the Reynolds number in order that the
two energies be measured in the same units. It is clear that, independently of any
amplification provided by the Go$ rtler mechanism, an energetic ratio as high as desired
can always be obtained for crossflow (roll) disturbances by increasing the Reynolds
number enough. This behaviour ensues from the persistence of an instability even in
the absence of any curvature (Luchini 1996).

It goes without saying that the mathematical possibility of calculating a Green’s
function from the solution of the adjoint of an evolution problem has been known for
quite a long time; in particular, it has been developed to a high level of refinement in
the discipline known as Optimal Control. Optimal control of systems governed by
ordinary differential equations is more or less a textbook topic, and the mathematical
properties of optimal control as applied to partial differential equations have also been
thoroughly scrutinized (Lions 1968). Nevertheless, the potential of this method for the
understanding of fluid-dynamic instabilities is just beginning to be exploited. The only
other examples we know of are Farrell & Moore (1992) who developed a theory of
optimal – non-exponentially growing – perturbations in oceanographic flows, and Hill
(1992) who worked on the restabilization of laminar cylinder wakes (both works were
brought to our attention during the refereeing phase of the present paper) ; even more
recently, Hill (1995, 1996) and Herbert (1997) gave results on the receptivity of some
boundary-layer instabilities, in particular through the solution of the adjoint form of
the so-called Parabolized Stability Equations (see Bertolotti, Herbert & Spalart 1992
for a thorough discussion of the properties of the PSE).

It is clear that the present type of ‘reverse’ approach is not limited to the Go$ rtler
problem; quantitative receptivity calculations for other classical types of instability can
and will be performed in the next few years. Given its connection with optimal control,
this reverse method of receptivity calculation is also ideally suited for problems of flow
control and transition delay. It does not seem difficult, in fact, to devise a strategy of
wall and}or inflow forcing in such a way as to minimize the amplitude of the
downstream instability mode.

Some of the results described in this paper were reported at the Sixth European
Turbulence Conference – ETC-VI (Lausanne, Switzerland, 2–5 July 1996) and at the
DFD Meeting of the American Physical Society (Syracuse, NY, USA, 23–26
November 1996). P.L. has been supported by the Swiss Leonhard Euler Center for
Fluid Mechanics, through several grants for extended visits at the EPFL, and by the
Italian Ministry of University and Research. A.B. acknowledges support of the Swiss
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National Fund, grant no. 2118-036035.92. We thank Peter Corbett for bringing the
paper by Farrell & Moore (1992) to our attention.
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