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Introduction

Experimental, numerical, theoretical activities on SH/LI surfaces at
DICCA, Genoa

Goals:

Transition delay (in microfluidic applications)

Drag reduction (for turbulent flows)

Surface topography

Micro-ridges (etched onto silicon wafers)

Hairy surfaces (disordered PDMS pillars obtained
through a simple one-step casting technique)
PDMS=poly(dimethyl)siloxane

Sponsor: Fincantieri Innovation Challenge, 2014
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Introduction

Slip tensor

The surface texture is accounted for in the velocity boundary condition using a generalization of
the Navier condition, the so called slip tensor Λ introduced by Bazant and Vinogradova (2008).[

u(x ,∓1, z)
w(x ,∓1, z)

]
= ±Λ

∂

∂y

[
u(x ,∓1, z)
w(x ,∓1, z)

]
, (1)

where

Λ = Q

[
λ‖ 0
0 λ⊥

]
QT , with Q =

[
cos θ − sin θ
sin θ cos θ

]
(2)

and λ‖, λ⊥ are longitudinal and transverse slip lengths.

In particular we consider micro-ridges for which λ‖ = 2λ⊥ Lauga and Stone (2003); Philip
(1972); Belyaev and Vinogradova (2010)

Figure: Definition of the micro-ridges and the coordinate system.
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Introduction

Base flow

The governing equations for plane, incompressible and steady channel flow, read

∂P

∂x
=

1

Re

∂2U

∂y2
, V = 0,

∂2W

∂y2
= 0, and Re =

Ū?h?

ν?
(3)

Analytical solutions, for 2 cases, are found by imposing the following boundary conditions[
U(−1)
W (−1)

]
= Λ

∂

∂y

[
U(−1)
W (−1)

] [
U(∓1)
W (∓1)

]
= ±Λ

∂

∂y

[
U(∓1)
W (∓1)

]
U(1) = W (1) = 0
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Figure: Streamwise U and spanwise W velocity components of the base flow when λ‖ = 0.155 for the cases
θ = 0◦ (dashed) and θ = 45◦ (solid). Left: one superhydrophobic wall, Right: two superhydrophobic walls.
The symbols show the experimental data from Ou and Rothstein (2005).
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Introduction

Linear stability analysis

We introduce a flow decomposition

u(x , y , z, t) = (U, 0,W )(y) + εũ(y , t) exp[i(α x + β z)] + c.c.

where α and β are the streamwise and spanwise wavenumbers.

The linear equations are obtained collecting terms of order ε.

For the case of two superhydrophobic walls the boundary conditions read[
ũ(∓1, t)
w̃(∓1, t)

]
= ±Λ

∂

∂y

[
ũ(∓1, t)
w̃(∓1, t)

]
and ṽ(∓, t) = 0

In the case of one superhydrophobic wall, at y = −1 the boundary conditions at y = 1 read

ũ(1, t) = 0

Note: the theory is applicable if the wavelength is sufficiently longer than the spatial periodicity
of the ridges.
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Modal analysis

Modal analysis

Here we assume a temporal behaviour such that

ũ(y , t) = û(y) exp(−i ω t),

where ω is the complex angular frequency and ωi > 0 denotes unstable solutions.

On discrete form the resulting system of equations can be written

iωBq̂ = Aq̂, (4)

where q̂ = (û, v̂ , ŵ , p̂).

Spatial derivatives are discretized using second-order finite differences and the least stable
eigenvalue is solved iteratively.
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Modal analysis

Results I

The onset of the instability is studied parametrically by varying the parameters Re, α, β, λ‖ and θ.
We define the critical Reynolds number as

Rec (λ‖, θ) = min
α,β

Re(α, β, λ‖, θ)

Two superhydrophobic walls

Dependency on Rec by the ridge angle θ.

θ

0 20 40 60 80

R
e

c

10
4

10
5

θ

0 20 40 60 80

Φ
c

0

20

40

60

80

θ

0 20 40 60 80

α
c

0.2

0.4

0.6

0.8

1

Figure: Critical Reynolds number Rec (left) and corresponding wave angle (middle) and streamwise

wavenumber (right) as a function of θ for the case of λ‖ = 0.02 (−) and λ‖ = 0.05 (−−) in the presence of
two superhydrophobic walls. For no-slip Rec = 3848.
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Modal analysis

Results II

Two superhydrophobic walls

Dependency on Rec by slip length λ‖.
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Figure: Critical Reynolds number Rec (left) and corresponding wave angle (middle) and streamwise

wavenumber (right) as a function of λ‖ for the case of θ = 0 (−) and θ = 45 (−−) in the presence of two
superhydrophobic walls. For no-slip Rec = 3848.
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Modal analysis

Results III

One superhydrophobic wall

Dependency on Rec by the ridge angle θ.
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Figure: Critical Reynolds number Rec (left) and corresponding wave angle (middle) and streamwise

wavenumber (right) as a function of θ for the case of λ‖ = 0.07 (−) and λ‖ = 0.1553 (−−) in the presence
of one superhydrophobic wall. For no-slip Rec = 3848.

A. Bottaro & J. O. Pralits (University of Genoa) Superhydrophobicity and optimals April 17, 2015 9 / 32



Modal analysis

Results IV

One superhydrophobic wall

Dependency on Rec by slip length λ‖.
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Figure: Critical Reynolds number Rec (left) and corresponding wave angle (middle) and streamwise

wavenumber (right) as a function of λ‖ for the case of θ = 0 (−) and θ = 45 (−−) in the presence of one
superhydrophobic wall. For no-slip Rec = 3848.
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Nonmodal analysis

Nonmodal analysis

The non-modal behaviour is studied by computing the maximum finite-time amplification as a
function of the parameters Re, α, β, λ‖, θ and T .

This is accomplished by computing the gain

G(Re, α, β,T , λ‖, θ) = max
ũ0

e(T )

e(0)
(5)

where

e(t) =
1

2

∫ 1

−1
(ũũ∗ + ṽ ṽ∗ + w̃ w̃∗)dy .

We further define the maximum gain as

GM(Re, λ‖, θ) = max
α,β,T

G

The problem is solved using an adjoint-based optimisation approach.
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Nonmodal analysis

Results

Two superhydrophobic walls

Dependency on slip length λ‖.
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Figure: Gain GM (left), corresponding time TM (middle) and spanwise wavenumber βM (right) as a function of

λ‖ in the case of θ = 0 (−), θ = 15 (?), θ = 30 (−−), θ = 60 (◦), all for Re = 1333 and two
superhydrophobic walls. In all cases the corresponding streamwise wave number αM = 0.

The above results are similar to those by Min and Kim (2005), when θ = 0.

One superhydrophobic wall: ongoing work.
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Weakly nonlinear analysis

Classical optimal perturbation analysis

Initial streamwise vortices induce δU streaks

distortion
of the

mean flow 
U

mean flow
U0

1

NO CYCLE
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Weakly nonlinear analysis

Self-sustained cycle

Wave-Vortex interaction

oblique 
travelling 

waves
ui

distortion
of the

mean flow 
U

mean flow
U0

nonlinear
mixing
uiuj

1
2

Hall & Smith (1991); Waleffe (1997); Hall & Sherwin (2010)
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Weakly nonlinear analysis

Weakly nonlinear analysis I

oblique 
travelling 

waves
ui

distortion
of the

mean flow 
U

mean flow
U0

nonlinear
mixing
uiuj

1
2

We decompose the velocity and pressure into a steady,
laminar parallel state, a travelling wave and a slowly
varying time-dependent base flow distortion. The
optimization is based on the work by Biau and Bottaro
(2009).

U0(y)
0

W0(y)
P0(x)

+ ε


u(x , y , z, t)
v(x , y , z, t)
w(x , y , z, t)
p(x , y , z, t)

+ ε2


U(y , t)
V (y , t)
W (y , t)
P(y , t)

 , (6)

where ε ∈ R denotes the wave amplitude.

The disturbance at order O(ε) is expressed using a single-mode Fourier decomposition in the
streamwise and spanwise directions as

(u, p)(x , y , z, t) = (ũ, p̃)(y , t)e i(αx+βz) + (ũ∗, p̃∗)(y , t)e−i(αx+βz). (7)
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Weakly nonlinear analysis

Weakly nonlinear analysis II

The governing equations, linearized around the perturbed base flow are given by

iαũ + ṽy + iβw̃ = 0, (8)

ũt + iα(U0 + ε2 U)ũ + ṽ(U0 + ε2 U)y + iβ(W0 + ε2 W)ũ + iαp̃ =
1

Re
∆k ũ, (9)

ṽt + iα(U0 + ε2 U)ṽ + iβ(W0 + ε2 W)ṽ + p̃y =
1

Re
∆k ṽ , (10)

w̃t + iα(U0 + ε2 U)w̃ + ṽ(W0 + ε2 W)y + iβ(W0 + ε2 W)w̃ + iβp̃ =
1

Re
∆k w̃ . (11)

At order O(ε2) the streamwise- and spanwise-averaged equations read

V = 0, (12)

Ut −
1

Re
Uyy = −[ṽũ∗y + ṽ∗ũy + iβ(w̃∗ũ− w̃ũ∗)], (13)

Py = −[iα(ũ∗ṽ − ũṽ∗) + ṽṽ∗y + ṽ∗ṽy + iβ(w̃∗ṽ − w̃ṽ∗)], (14)

Wt −
1

Re
Wyy = −[iα(ũ∗w̃ − ũw̃∗) + ṽw̃∗y + ṽ∗w̃y]. (15)
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Weakly nonlinear analysis

Solution procedure

For assigned ε the nonlinear problem is solved iteratively in the following manner:

1 Maximise the energy e(T ) over a given time span T , to find ũ, ṽ , w̃ . The optimization
procedure is performed via adjoint looping; in the first iteration U = 0 ∀y , t.

2 Solve for U(y , t) and W (y , t) under the initial condition U(y , 0) = W (y , t) = 0. Then, go
back to (1).

3 Convergence is declared when the final wave energy e(T ) converges to within a defined
precision. The normalization employed is e(0) = ε2.
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Weakly nonlinear analysis

Example I

Re = 1333, α = 0.085, β = 2.3, different values of ε (no-slip)
In the equations we set UBF = U0 + ε2U, WBF = W0
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Weakly nonlinear analysis

Example II

Re = 1333, α = 0.085, β = 2.3, ε = 9.4× 10−3 (no-slip)
Comparison: UBF = U0 + ε2U, WBF = W0 vs UBF = U0 + ε2U, WBF = W0 + ε2W
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Weakly nonlinear analysis

Couette flow

To set ideas let us consider no slip walls.
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Weakly nonlinear analysis

Linear optimal disturbances over a short time frame

Re=400, Linear (ε=0), contours of G(T=15)
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αopt = 0.475, βopt = 1.81, Gmax = 99.4

(Gmax∀T = 188.8 @ Tmax = 46.8, α = 0.0875, β = 1.6)
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Weakly nonlinear analysis

What happens when the amplitude increases?

Results for linear optimal parameters obtained at T = 15, for ε increasing and varying T
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Beyond ε = 0.391 the gain explodes
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Weakly nonlinear analysis

Mean flow distortion
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A. Bottaro & J. O. Pralits (University of Genoa) Superhydrophobicity and optimals April 17, 2015 23 / 32



Weakly nonlinear analysis

Disturbance waves

t=0

t=25

ε = 0.2 ε = 0.4

Contours of streamwise perturbation velocity and vectors of cross-stream components
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Weakly nonlinear analysis

Nonlinear optimals

Re=400, ε=0.35: contours of G(T=25)
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Weakly nonlinear analysis

Nonlinear optimals

Re=400, ε=0.36: contours of G(T=25)
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Weakly nonlinear analysis

Nonlinear optimals

Re=400, ε=0.37: contours of G(T=25)
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Weakly nonlinear analysis

Nonlinear optimals

Re=400, ε=0.38: contours of G(T=25)
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Weakly nonlinear analysis

Nonlinear optimals

Re=400, ε=0.39: contours of G(T=25)
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Weakly nonlinear analysis

Varying T
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Beyond ε = 0.39 the gain explodes
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Conclusions

Conclusions

A linear and weakly nonlinear analysis of the flow in a channel has been conducted

We have studied surface topography constituted by micro-ridges with arbitrary alignment.

The results of the linear nonmodal study complete those by Min and Kim (2005) by varying
λ‖ and θ.

Both modal and nonmodal analysis show that instability onset is delayed applying a
superhydrophobic surface (both one- and two-sided) in a plane channel.

Nonlinear results will permit to identify threshold amplitudes of disturbances provoking
transition (for the flow in a micro-channel bound by one or two superhydrophobic surfaces).
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