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Optimal control of Tollmien–Schlichting waves in a developing
boundary layer

Steeve Walther, Christophe Airiau, and Alessandro Bottaro
Institut de Mécanique des Fluides de Toulouse, Alle´e du Professeur Camille Soula, 31400 Toulouse, France

~Received 28 June 2000; accepted 19 March 2001!

Optimal control theory is used to determine the wall transpiration~unsteady blowing/suction! with
zero net mass flux capable of attenuating Tollmien–Schlichting waves in a spatially developing
boundary layer. The flow state is determined from the parabolized stability equations, in a linear
setting. An appropriate cost functional is introduced and minimized iteratively by the numerical
solution of the equations for the state and the dual state, coupled via transfer and optimality
conditions. Central to the control is the determination of the wall Green’s function expressing the
receptivity of the flow to wall inhomogeneities. The optimal wall velocity is obtained in few
iterations and a reduction of several orders of magnitude in output disturbance energy is
demonstrated, as compared to the uncontrolled case, for control laws operating both over the whole
wall length and over a finite strip. Finally, white noise disturbances are applied to the optimal wall
velocities already determined, to assess the influence of an imperfectly operating controller on the
final result, and to decide on the practical feasibility of the approach. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1378035#
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I. INTRODUCTION

The capacity of influencing a given flow to make it b
have according to a predetermined goal is clearly an
deavor of fundamental as well as technological significan
In aeronautics much research effort is being spent on find
feasible ways to manipulate the boundary layers over win
fins, and nacelles, to delay transition to turbulence and, c
sequently, reduce the skin friction, as compared to the
controlled situation. Skin friction drag accounts for som
50% of the total drag in large civil transport aircraft, and t
ability to reduce it presents clear economic and environm
tal advantages. The active technology by which the bound
layer is manipulated to pursue a desired objective is ca
laminar flow control~LFC!.

Industrial and academic efforts in LFC so far ha
mainly concentrated on the determination of a steady w
suction distribution capable of delaying the onset of tran
tion. A large amount of literature exists, comprehensiv
reviewed by Joslin.1,2 Flow manipulation is one of the area
in which optimal control theory finds its application: an o
jective functional is specified and manners of extremizing
are proposed, possibly relying on the determination of se
tivities or on the solution of an adjoint problem.3 ~A sensi-
tivity function is defined as the gradient of the flow state w
respect to a control variable.! In LFC the objective is to
provoke an order one change in the base flow in such a
that the new base flow produced is less prone to destabi
tion. The classical argument is that suction through a por
surface or a slot produces a thinner boundary layer cha
terized by a smaller shape factor, in which the growth
Tollmien–Schlichting ~TS! waves is postponed. On th
negative side, a thinner boundary layer has larger skin f
tion, which contradicts the desired goal of drag reducti
2081070-6631/2001/13(7)/2087/10/$18.00
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Furthermore, if the flow is swept~as often occurs in aeronau
tical applications!, the effect of suction on the cross-flow
instability is less understood. These~sometime! opposing re-
quirements in the search for the optimal suction distribut
are to be expressed mathematically as an appropriate
functional; then, the optimization problem yields the optim
solution for any desired flow configuration and parame
setting.

A somewhat different perspective to control is adopt
here: rather than focusing on modifications to the mean fl
the control efforts are aimed at the unstable mode itself. T
technique, which goes by the name of wave cancellation
wave superposition, has advantages and disadvantages
main drawback is that the instability wave must be det
mined, possibly by micro-sensors positioned in the flow. T
output from the sensors must then be fed onto a state ev
ator that produces an estimate of the wave~shape, amplitude
and phase!, at which point the~boundary! control might op-
erate. One of the advantages is that effective control la
might be predefined for a variety of instability modes, po
sibly creating a database that could be rapidly accessed
controller. Another advantage is that by acting on a sm
~order e! perturbation, only a very small amount of contr
energy~order e2! must be provided to efficiently damp th
wave.

Experimental work on the wave superposition concep
boundary layers was initiated at Lockheed by Milling;4 he
performed experiments in water and used an oscillating w
both to induce the wave and to suppress it. Subsequent s
ies employed heating elements,5–8 vibrating ribbons,9–11

sound from a loudspeaker,7,12 surface deflection,13 and peri-
odic blowing/suction through slots or rows of holes.13 All
investigations achieved some degree of success in redu
the wave amplitude, but none was able to achieve comp
7 © 2001 American Institute of Physics
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antiphase control; the primary wave amplitude was redu
at the most by one order of magnitude and, eventually,
residual disturbance left in the flow brought about transit
via three-dimensional interaction mechanisms. Hence, the
alization came about that efforts at damping the primary d
turbance alone might not suffice for significant transition d
lay, unless the control was applied right at the beginning
the primary disturbance’s amplification phase. This was
early recognition of the importance of the receptivity pr
cess.

In theory, a complete elimination of the primary inst
bility wave—to significantly postpone transition avoiding th
emergence of three-dimensional interactions—is possi
Recent theoretical work was conducted by Joslin a
collaborators,14–16 Bewley and Liu,17 Cathalifaud and
Luchini,18 and Corbett.19 Joslinet al.16 determined the opti-
mal boundary control for nonlinear TS waves in wa
bounded shear flows by an adjoint method arising from
Lagrangian optimization procedure applied to the Navie
Stokes system of equations. Bewley and Liu17 used an opti-
mal and a robust control approach for the damping of mo
and pseudo-modes in a channel. Cathalifaud and Luch18

focused on the optimal control of streaks in a boundary lay
and of vortices developing along a concave wall becaus
the Görtler instability mechanism. They adopted a Lagran
ian approach based on the three-dimensional boundary l
equations, an appropriate model when dealing with asy
totically elongated~along the streamwise direction! flow
structures. An analogous procedure was followed
Corbett,19 who studied the optimal control of modes an
pseudo-modes in two- and three-dimensional boundary
ers, using the temporal, parallel framework for the stabi
analysis.

In the present work, the search for optimal bounda
control strategies is performed for a spatially develop
two-dimensional boundary layer susceptible to destabil
tion by small amplitude TS waves. The approach is based
the parabolized stability equations~PSE!;20–24 this system
permits a very rapid iterative search of the flow state an
can be easily extended to deal with nonlinear effects. To
knowledge this is the first article dealing with optimal co
trol based on the, by now popular and well-established, P
method. It provides an assessment on the possibilities o
PSE of being used in an iterative optimization procedure
instability control purposes.

One important aspect of the optimal control approa
adopted here is that the initial, forcing condition may
arbitrary. The optimal, distributed control determined will
the appropriate one for the initial condition provided, whi
must hence be accurately known. An investigation on
receptivity properties of boundary layers constitutes the p
requisite step for the search of efficient flow managem
strategies. The adjoint method of receptivity analysis p
vides the Green’s functions which directly quantify the ef
ciency of given forcing terms~at the wall or throughout the
flow! in exciting instability waves.21,25–29For example, the
forced receptivity to unsteady wall roughness can be pr
erly defined via one adjoint calculation; the result of t
calculation provides the wall Green’s function which mu
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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be scalarly multiplied by any~arbitrary! wall inhomogeneity
to yield the final amplitude of the instability wave. It is not
coincidence that these very Green’s functions are centra
the optimal control of the instability, as will be elucidate
below.

II. DETERMINATION OF THE FLOW DISTURBANCE
STATE

For the determination of the disturbance state the P
approximation is employed; this technique’s potential
nonlocal transition prediction studies in simple as well
more complex configurations has been demonstrated
number of works.21,30 The present application is limited t
the case of two-dimensional TS waves in a Blasius bound
layer; its purpose is to show the feasibility of the contr
approach and to pave the way to further studies in m
realistic configurations of aeronautical interest, for both LF
and wave cancellation approaches.

The flow is defined in a semi-infinite domain along th
directiony normal to the wall, and betweenx0 andxf along
the streamwise direction; lengths are scaled byd0

5(nx0 /U`)1/2 and velocities byU` , the free-stream veloc
ity, with n the kinematic viscosity. These scales define
Reynolds number R. The disturbance vectorq̃, comprising
the velocity vectorũ5(ũ,ṽ) and the pressurep̃, is decom-
posed into an amplitude part and a time-dependent wave
part as

q̃~x,y,t !5q~x,y!x~x!exp@2 ivt#,

x~x!5expF i S E
x0

x

a~x8!dx8D G , ~1!

with a the complex wave number andv the ~real! wave
frequency. In the following we note withq̂5xq the spatial
part of the disturbance. The idea behind this decomposi
stems from Wentzel–Kramers–Brillouin~WKB! analysis:
one part of the disturbance~q! is slowly varying inx, while
the other~x! varies rapidly, the two streamwise length sca
being related by a small parameter which can be shown
scale with the inverse of R. As opposed to the WKB ana
sis, different orders in powers of the small parameter are
separated, but the first two orders are merged, thus yieldi
partial differential system which contains the local and t
nonlocal ~to first order! approximations.22,31 The advantage
of the approach is that the resulting system~often appropri-
ately fixed31,32! is parabolic and can be solved very ef
ciently.

In symbolic form the system reads

xLPSEq50

with

LPSE5HA ]

]y
1B ]

]x
1C1D ]2

]y2J , ~2!

E
0

`

ū
]u

]x
dy50. ~3!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2089Phys. Fluids, Vol. 13, No. 7, July 2001 Optimal control of Tollmien–Schlichting waves
The latter equation, the so-called ‘‘normalization’’ conditio
ensures that the growth of the wave is accounted for in
functionx; this condition provides the means of determini
the unknowna. Different choices can be made with littl
~order R21! effect on the growth rate of the instability.31

Overbar denotes complex conjugation, and the full form
the matrices is given in the Appendix.

Initial conditions can be specified from the local stabil
eigenproblem,

a~x0!5a0 and q~x0 ,y!5q0~y!,

although this is not a necessary requirement and Herb33

has shown examples on the use of the PSE for algebraic
~and transiently! growing disturbances.

Boundary conditions, including the control at the wa
accomplished via a nonzero, time-harmonic vertical veloc
@cf. Eq. ~1!#, read

u~x,0!50; v̂w~x!5v~x,0!x~x!5vwx; lim
y→`

u~x,y!50.

Our problem is the determination of the optimalv̂w which
extremizes a given objective functional, subject to the c
straints provided by the state equations with their initial a
boundary conditions. From the physical point of view, t
simplest thing one might wish to minimize is the disturban
energy, while providing a bound on the energy required
control the system. A convenient measure of the disturba
energy is

E~x!5E
0

`

ū̂û dy. ~4!

The control energyEw can be simply related to the wa
blowing/suction via

Ew5E
x0

xf
v̄̂wv̂w dx. ~5!

An objective functional acting on the real range, a
based on the final value of the perturbation energy, can t
be defined

J0~ û,v̂w ,a!5E~xf !1bwEw . ~6!

Clearly other~more complex! choices can be made, althoug
the functional proposed will suffice for the present purpos
The real coefficientbw permits us to scale the relative influ
ence of the two components of the cost. For example, ch
ing bw50 implies that the cost of the controller is not a
issue, and the goal is just the minimization of the final d
turbance energy. This is possibly a sensible choice, gi
that the control energy is minute anyway and scales with
square of the disturbance amplitude factor.

III. OPTIMAL CONTROL THEORY: THE DUAL STATE

The technique adopted here to solve the minimizat
problem is based on the Lagrange multipliers method,
discussed, for example, in the recent review article
Gunzburger3 ~see also references therein!. The constrained
optimization problem is transformed into an unconstrain
optimization problem for an augmented, Lagrangian fu
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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tionalL. This new functional, which also operates on the r
range, takes directly into account the state equations and
inhomogeneous~unknown! wall boundary condition. There
is no need to include the wall boundary condition onu, nor
the free-stream condition onu, since these quantities are, b
construction, not subject to variations. All arguments in t
new functional are assumed independent of one another.
have

L~q,v̂w ,a,p̂,l̂,g!5J02J1 ,

with

J15E
x0

xf E
0

`

p̄̂xLPSEq dydx

1E
x0

xf
l̄̂~x!„xv~x,0!2 v̂w… dx

1E
x0

xf
ḡ~x!E

0

`

ū
]u

]x
dydx1c.c., ~7!

c.c. denoting complex conjugates.
The complex vectorp̂(x,y) and the complex functions

l̂(x) andg(x) are the Lagrange multipliers for the problem
they play the role of adjoint~or dual! variables for, respec-
tively q̂, v̂w , anda. A recent study34 has shown thatp̂ andl̂
are more conveniently written in a manner similar to t
direct variables, i.e., by the introduction of a wave-like pa

p̂~x,y!5p~x,y!x* ~x!, l̂~x!5l~x!x* ~x!,

x* ~x!5expF i S E
xf

x

ā~x8!dx8D G .
A necessary condition for a minimum of the Lagrangi

is that its variations with respect to each independent ar
ment vanish; this requirement is expressed by employ
Fréchet differentiation in the~generic! directionda, e.g.,

]L
]a

da5 lim
e→0

L~a1eda!2L~a!

e
.

Hence, the variation of the functional reads

dL5
]L
]q

dq1
]L
] v̂w

d v̂w1
]L
]a

da1
]L
]p

dp1
]L
]l

dl

1
]L
]g

dg50.

All the different directional derivatives~the Lagrangian
gradient! given below must vanish; their derivation, whic
requires a series of integration by parts to try and factor
the variationsdq, d v̂w , da, dp, dl, anddg within the inte-
grals, is tedious but straightforward:
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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]L
]q

dq5E
x0

xf E
0

`S x f H ]p̄A
]y

1
]p̄B
]x

2p̄C2
]2p̄D
]y2 J dq

1F2x̄ fg
]ū

]x
1x f

]ḡū

]x GduD dydx

2E
x0

xf H x fF p̄Adq1p̄D ]dq

]y
2

]p̄D
]y

dqG
y50

`

1l̄xdvJ dx1x fE
0

`

$x̄ūdu2ḡūdu2p̄Bdq%x5xf

3dy1c.c.,

]L
] v̂w

d v̂w5E
x0

xf
~bwv̄̂w1l̄!d v̂wdx1c.c.,

]L
]a

da5 iE fE
x0

xf
da dx8

2x fE
0

`E
x0

xf
p̄S ]LPSE

]a
qda1

]LPSE

]a8
qda8D

3dxdy2E
x0

xf
l̄ixv~x,0!S E

x0

x

da dx8D dx1c.c.,

]L
]p

dp5x fE
x0

xf E
0

`

dp̄LPSEq dydx1c.c.,

]L
]l

dl5x fE
x0

xf
dl̄~v~x,0!2vw! dx1c.c.,

]L
]g

dg5E
x0

xf
dḡE

0

`

ū
]u

]x
dydx1c.c.,

with x f5x(xf)5x̄* (x)x(x); Ef5E(xf); anda85da/dx.
Since all variations are arbitrary, except at boundar

where the conditions are fixed~such as, for example, atx
5x0!, the different integrals vanish if the following Euler
Lagrange equations are satisfied:

]A* p

]y
1

]B* p

]x
2C* p2

]2D* p

]y2 5H x f

x̄ f
ḡ

]u

]x
2

]gu

]x J ~1,0,0!T,

~8!

lim
y→`

u* ~x,y!50, ~9!

u* ~x,0!50, ~10!

l5x* ~x!p* ~x,0!5 p̂w* ~x!, ~11!

Bf* pf5~x f2g f !u~xf ,y!~1,0,0!T, ~12!

l52bwv̂w , ~13!

]

]x
J̃~ p̂,q̂;x!5 v̂wp̄̂w* 5x fvwp̄w* , ~14!

Ef5 J̃~ p̂f ,q̂f ;xf !, ~15!

with
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
s

J̃~ p̂,q̂;x!5E
0

`F p̄̂D ]q̂

]x
2

] p̄̂

]x
Dq̂1 p̄̂Bq̂G dy. ~16!

The matricesA* , B* , C* , andD* in the adjoint PSE are
given in the Appendix, and the subscriptf beside a variable
indicates its value atxf .

The set of direct equations on (q,a)5(u,v,p,a) and
dual equations on (p,g)5(u* ,v* ,p* ,g) need to be solved
together with the normalization conditions~3! and ~14!
which allow for the determination ofa andg. The equations
are coupled via the transfer conditions

u* ~xf ,y!50, v* ~xf ,y!50,
~17!

p* ~xf ,y!5~x f2g f !u~xf ,y!,

g fE
0

`

u~xf ,y!ū~xf ,y! dy5
1

R E
0

` H ]v*

]x
v̄J

x5xf

dy,

~18!

which apply atxf . Equation~18! arises from the integration
of Eq. ~12! weighted byx̄ f q̄ and from Eqs.~15! and~16!. A
simple order of magnitude analysis shows thatg f

'O(1/R2); g f is chosen equal to zero in the first loop, an
then updated during the iterative process. Equations~17! and
~18! represent the terminal conditions for the dual syste
which is backward parabolic and for which the only directi
of stable evolution is that of decreasing values ofx. The
determination of the control is made by the use of the o
mality condition@cf. Eqs.~11! and ~13!#:

v̂w52
1

bw
p̂w* ~x!, ~19!

which relates the optimal boundary control to the adjo
variable p̂w* (x). The latter is precisely the Green’s functio
defining the receptivity of the boundary layer to vertical v
locity disturbances aty50.27–29,34 A beginning source on
adjoint PSE for receptivity and control purposes is Hill.35,36

IV. THE OPTIMALITY SYSTEM AND ITS ITERATIVE
RESOLUTION

A. The algorithm

The co-state (u* ,v* ,p* ,g) is defined by Eq.~8! in the
domain@x0 ,xf #3@0,̀ #, by the closure relation ong(x) @Eq.
~14!#, by the terminal conditions atxf @Eqs. ~17! and ~18!#,
plus homogeneous boundary conditions foru* at the wall
and fory→`.

The optimality system linking direct and adjoint equ
tions can be solved iteratively via a simple gradient meth
The algorithm chosen follows the steps outlined below:

~i! Step 1: Solution of the local stability problem to in
tialize the PSE.

~ii ! Step 2: Iterationk51, v̂w
(1)50.

~iii ! Step 3: Solution of the direct state@Eqs.~2! and ~3!#
with inhomogeneous~except fork51! wall condition
on v̂.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2091Phys. Fluids, Vol. 13, No. 7, July 2001 Optimal control of Tollmien–Schlichting waves
~iv! Step 4: Evaluation of the terminal conditions~p̂,g! of
the dual state via Eqs.~17! and~18!. In ~18!, the value
of u* is that at the iterationk21. Fork51, g f is set
equal to zero.

~v! Step 5: Solution of the dual state@Eqs. ~8–10! and
~14!# by backward marching.

~vi! Step 6: Update of the blowing/suction distribution b
the use of the relation

v̂w
~k11!5v̂w

~k!2rS 1

bw
p̂w*

~k!1v̂w
~k!D,

wherer is a relaxation factor; the expression in p
renthesis represents~up to the multiplicative factor
bw! the gradient of the costJ0 with respect to the
control v̂w .

~vii ! Step 7: Convergence test on the control energy, i.e
u(Ew

k 2Ew
k21)/Ew

k21u,e0 , then stop, elsek5k11, go
to step 3. The convergence factore0 is chosen equa
to 1024.

A schematic of the algorithm is provided in Fig. 1. A
though no efforts are made to optimize the relaxation fac
r, convergence is very rapid and takes in general few ite

FIG. 1. Schematic of the optimal control algorithm.

FIG. 2. Behavior of the cost functional and its components during the it
tive process;F530, bw5bw

0 , r5331024.
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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r
a-

tions. The parameterbw is chosen in such a way that the tw
terms in the cost function do not differ too much.

Note that step 1 is performed for computational conv
nience only: the approach is in principle, capable of handl
the control of arbitrary initial disturbances at the positionx0 .
In the absence of complete information on the state of
system, i.e., if the initial state is known from noisy flo
measurements alone, it is necessary that the control be in
sitive to measurement noise and/or state disturbances. E
tive control algorithms can then be formulated on the ba
of robustcontrol theory, a form for which has been recen
laid down by Bewleyet al.37 There, an iterative scheme no
relying on the operator-Riccati setting is proposed that ma
mizes a cost functional with respect to the noise. Suc
formulation could be easily implemented onto our algorith
by inserting an additional step between 5 and 6 to iden
saddle point solutions.

B. The numerics

The equations are discretized by finite differences ove
uniform x-grid and a stretchedy-grid, refined close to the
solid boundary; in the streamwise direction a first-order u
wind ~for the direct problem! or downwind~for the adjoint
problem! scheme is employed, whereas the normal-to-t
wall direction is treated by a two-point fourth-order compa
scheme. The free-stream boundary is located ten boun
layer thicknesses away from the wall. The closure relatio
~3! and ~14! are enforced at eachx station by a Newton–
Raphson procedure. The code has been validated ag
many of the literature cases; for the simulations reported h
the grid is typically made up by 125 streamwise and 1
normal points.
-

FIG. 3. Behavior of the cost functional and its components during the ite
tive process;F550, bw5bw

1 , r5331023.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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V. OPTIMAL CONTROL OF THE BLASIUS FLOW

A. Control distributed over the whole streamwise
domain

Practical application of the technique is demonstra
here for a flat plate boundary layer forced at a given infl
sectionx0 by a two-dimensional TS wave of small amp
tude. The disturbance wave is imposed somewhat upstr
of the lower branch of the neutral curve~branch I!. The
second observation point~where one would ideally want to
observe a completely damped wave! is close to branch II
where, in the absence of control, the amplification of dist
bances terminates. In the first set of results reported h
control is applied over the whole domain length.

In Figs. 2 and 3 the evolution of the cost function
within the iterative process is shown, demonstrating the ra
convergence towards the minimum ofJ for the two reduced
frequencies chosen,F530 andF550 (F5106 v/R), and
for the values ofbw given in Table I. The disturbance energ
at the final stationxf decreases very rapidly from its origina
~uncontrolled! value Ef

unc at iteration 1. The productbwEw

becomes relatively large at convergence, because of the
ues chosen for the coefficientbw’s; in fact, with a minimal
amount of control, and for zero net-mass suction and blo
ing, the disturbance wave atxf is reduced by several order
of magnitude. The effect of the relaxation factor is display
in Fig. 4. The same final values are obtained for the t
components of the cost but, as expected, the procedure
verges faster towards the global minimum whenr is larger.
The relative reduction at each point in the domain, i.e.,

FIG. 4. Influence of the relaxation factor; lines correspond tor5331024

and symbols tor5131024, F530.

TABLE I. Parameters for some of the cases tested.

F52p f n/U`
2 3106 Rd(x0) Rd(xf) bw

0 bw
1

30 350 1750 3.53106 9.343107

50 350 1200 1.43104 4.543104
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streamwise variation ofE(x)/Eunc(x), is reported in Fig. 5
for one of the cases treated. The curve displays a monot
decrease of the energy with the distance, until a value of
Reynolds number denoted RI

0 beyond which a plateau is ob
served, and no further amelioration takes place. Such a v
corresponds to an effectively new location of the neutr
branch I, point, as clearly evidenced by Fig. 6 where
energy normalized with respect to its final uncontrolled va
is plotted versus the local Reynolds number. The optim
control strategy has, on the one hand, successfully dela
the onset of the instability and, on the other, induced s
low perturbation amplitude values as to render them ins
nificant. The Reynolds number range of amplification in t
presence of control is considerably reduced, so that the
ergy of the disturbance remains tiny even in corresponde
of branch II, at the end of the amplification. It is interestin
to observe that whereas the branch I neutral point~s50, with
s spatial growth factor based onE! is essentially shifted
downstream, the branch II point is unaffected by control
the cases treated~Fig. 7!; sufficiently far downstream the

FIG. 5. Relative reduction ofE with respect to the uncontrolled case, plotte
against the local Reynolds number Rd5(U`x/n)1/2, for F530 and bw

5bw
0 . RI

unc and RI
0 indicate the location of branch I for the uncontrolled an

the controlled cases.

FIG. 6. Energy vs streamwise distance: comparison between uncontr
and controlled cases,F530.
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2093Phys. Fluids, Vol. 13, No. 7, July 2001 Optimal control of Tollmien–Schlichting waves
disturbance wave regains its exponential characteristics~as
observed also in previous studies15!, implying that if the an-
nihilation of the wave is not complete~or nearly complete!
interaction phenomena taking place downstream might
der the wave superposition approach purposeless.

The advantage of the technique described here is th
does not rely on antiphase wave cancellation but on opti
control theory: thus, although in the present case the
result is identical since a single, infinitesimal wave is be
considered and an anti-wave is created by the control,
approach can be extended to nonlinear instabilities wh
simple wave superposition would fail. We note also that
reduction in disturbance energy by several orders of ma
tude achieved here represents a best case, theoretica
nario. Whereas we would not expect such a result in an
tual wind tunnel experiment, it is comforting to know th
the control found could, in principle, go that far.

The influence of the coefficientbw weighting the result
to the effort expended is shown in Fig. 8; clearly, asbw

decreases less importance is attached to reducing the co
energy and, as a consequence, a smaller ratioEf /Ef

unc is
attained. For the largest value tested forbw the disturbance

FIG. 7. Growth rate vs streamwise distance; comparison between un
trolled and controlled cases,F530.

FIG. 8. Link betweenbw andEf /Ef
unc for the two frequencies tested.
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energy reduction is marginal; for smallerbw than tested one
could hope to drive the disturbance amplitude to zero.
practical grounds this is unfeasible since it would requ
tuning the wall velocity to a required value with infinite pre
cision. As shown in the following, extremely small varia
tions in the control velocity produce order one changes in
final disturbance energy. Figure 9 displays two examples
successful instability delay atF550: in one case a four
order-of-magnitude reduction in final energy is obtain
~compared to the uncontrolled case!, in the other the reduc-
tion is of five orders of magnitude. The modulus of the w
velocity needed in these two cases is shown in Fig. 10:
curves can hardly be discerned from one another, dem
strating the extreme sensitivity of this problem to outer fo
ing. Not unexpectedly, the optimal control velocity pea
near branch I~of the uncontrolled case!, which is the position
of maximum receptivity.28,36 On the other hand, a harmoni
forcing near~and upstream of! branch II would be quite in-
effective because the wave would have little space~in the
streamwise sense! to amplify, before the subsequent quas

n-
FIG. 9. Energy vs streamwise distance; comparison between uncontr
and controlled cases,F550.

FIG. 10. Modulus of the optimal boundary control for the two cases
Fig. 9.
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2094 Phys. Fluids, Vol. 13, No. 7, July 2001 Walther, Airiau, and Bottaro
exponential decay. Hence, in this region of very low rec
tivity the optimal control velocity is of vanishing magnitud

Figure 11 displays the optimal control for the cases
Fig. 6; the real part of the~complex! wall velocity illustrates
the strong streamwise dependence of the control. This re
shows why a complete~or nearly complete! cancellation can
be achieved in theory, but very hardly in practice. Althou
this constitutes, today, a technological limit for the kind
active control explored here, current developments in mic
and nano-technologies make it realistic to hope for fut
actuators to perform with such a degree of precision as to
capable of driving an instability wave to amplitudes two
three orders of magnitude smaller than in the absence
control. In such a case the problem encountered by e
experiments and related to nonlinear interactions could
avoided or, at worse, postponed. Hence, the study prop
here constitutes the necessary framework for experimen
be performed once the technology becomes available.

FIG. 11. Optimal control velocity, cases of Fig. 6.

FIG. 12. Streamwise development of the perturbation energy. Compa
between the uncontrolled and some controlled cases; thex-domain over
which the control is effected is denoted by the pair of numbers 1, 2, or 3
corresponding Reynolds number range is indicated in the label to the l
F530.
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B. Control applied at the suction Õblowing strip

The spatial extent of the control is one issue of r
evance. So far the case has been considered in which
whole streamwise domain is equipped with actuators wh
blow and suck fluid in and out of the wall. A more realist
scenario, which can be equally well treated by our approa
is that of a spanwise array of actuators of limited streamw
extent: a blowing and suction strip.

A study has been conducted ot the position and length
a suction/blowing strip to ensure efficient operations. So
results are displayed in Fig. 12 for three cases in which
coefficientbw has been tuned to produce an~almost! identi-
cal final disturbance energy. A comparative analysis sho
that it is advantageous to place the control strip around
most receptive region, i.e., in the vicinity of branch I. If, fo
some technological reasons, the control system must be
downstream, the objective may still be reached, but
blowing/suction mass flow~hence the cost of the contro!
increases, as shown in Fig. 13. In this case, the amplitud
the wall velocity becomes comparable to the maximum, lo
~in x! value of the vertical disturbance velocity of the unco
trolled case; furthermore, the growth rate of the instabil
displays rather rapid variations close to the limits of the co
trol domain. These two occurrences might violate one of
underlying assumptions of the PSE, i.e., that of weak n
parallelism. Although here the theory is believed to be s
tenable, care must be used in applying the present appr
to situations where rapid streamwise variations are induc

C. The effect of small random errors on the control
law

Finally, it is of interest to assess the robustness of
optimal strategy with respect to random noise forcing in
already computed wall velocities, i.e., to determine how
ficient the control is when randomly perturbed or inacc
rately defined. The case that led to Fig. 2 is used as a re
ence.

The wall velocity is fixed to v̂w
noisy5 v̂w1euv̂wumeiw

on

e
s;

FIG. 13. Optimal control velocity normalized by the largest, localy-velocity
disturbance of the uncontrolled case,F530. Control energies areEw

1

54.09310210, Ew
2 55.64310210, andEw

3 52.7431027.
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2095Phys. Fluids, Vol. 13, No. 7, July 2001 Optimal control of Tollmien–Schlichting waves
wherev̂w is the already determined optimal control,m andw
are random numbers verifyingmP@0,1# andwP@2p,p#, and
e is the relative noise level. Figure 14 demonstrates that
expected, with the increase ofe the performances of the con
troller degrade and the effective branch I position is pus
upstream. A 10% noise level produces a 100-fold increas
energy; on the other hand, the final energy value is still f
orders of magnitude smaller than in the case without cont
This result is mildly encouraging with respect to accura
bounds for actuators. The modulus of the relative wall vel
ity is plotted in Fig. 15 for some significant noise leve
Because of the way they were built, the random disturban
are naturally larger near the peak ofv̂w ; it is precisely in this
region of high receptivity that an operational system must
made to work accurately.

VI. CONCLUDING COMMENTS

A methodology based on optimal control theory h
been proposed and validated on some test cases of insta

FIG. 14. Disturbance energy for some cases in which the optimal
velocity is randomly perturbed;F530, bw5bw

0 .

FIG. 15. Close-up of the modulus of the randomly perturbed control ve
ity; F530, bw5bw

0 .
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suppression. The methodology is based on the iterative
merical resolution of direct and adjoint systems of nonlo
stability equations, coupled via transfer and optimality co
ditions.

Optimal ~and robust! control theory is reaching such
level of understanding and predictability for flow contr
situations that its transposition from theory to laboratory e
periments is ready. In our work, the control is appli
through a zero-net mass flux transpiring wall or strip. T
recent introduction of novel concepts for sensors and ac
tors renders it feasible to conceive the practical realization
the computed control laws in a not-so-distant future in
laboratory environment. Today the limiting point is the e
treme sensitivity of the disturbance wave to minute var
tions in the control, as exemplified in some of the situatio
studied here. This issue requires a very careful analysi
the interactions outer flow/actuator.

APPENDIX: PSE AND APSE MATRICES

The matrices in the two-dimensional operator of Eq.~2!
read

A5F V 0 0

0 V 1

0 1 0
G , B5F j1 0 1

0 j1 0

1 0 0
G

C5F j01
]U

]x

]U

]y
ia

0 j01
]V

]y
0

ia 0 0

G , D5F 2
1

R
0 0

0 2
1

R
0

0 0 0

G ,

where

j05 i ~aU2v!1
a2

R
2

i

R

da

dx
and j15U2

2ia

R
.

The adjoint PSE@Eq. ~8!# can be written as

A*
]p

]y
1B*

]p

]x
1C1p2D*

]2p

]y2 5H x f

x̄ f
ḡ

]u

]x
2

]gu

]x J ~1,0,0!T,

A* 5A; D* 5D;

C15
]A*

]y
1

]B*

]x
2C* 5F j21

]V

]y
0 i ā

2
]U

]y
j22

]V

]y
0

i ā 0 0

G
with

j25 i ~ āU2v!2
ā2

R
1

i

R

dā

dx

andM* 5M̄T, M a generic matrix.
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