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Optimal control theory is used to determine the wall transpiratiorsteady blowing/suctigrwith

zero net mass flux capable of attenuating Tollmien—Schlichting waves in a spatially developing
boundary layer. The flow state is determined from the parabolized stability equations, in a linear
setting. An appropriate cost functional is introduced and minimized iteratively by the numerical
solution of the equations for the state and the dual state, coupled via transfer and optimality
conditions. Central to the control is the determination of the wall Green’s function expressing the
receptivity of the flow to wall inhomogeneities. The optimal wall velocity is obtained in few
iterations and a reduction of several orders of magnitude in output disturbance energy is
demonstrated, as compared to the uncontrolled case, for control laws operating both over the whole
wall length and over a finite strip. Finally, white noise disturbances are applied to the optimal wall
velocities already determined, to assess the influence of an imperfectly operating controller on the
final result, and to decide on the practical feasibility of the approach20@1 American Institute

of Physics. [DOI: 10.1063/1.1378035

I. INTRODUCTION Furthermore, if the flow is swepas often occurs in aeronau-
tical applicationg the effect of suction on the cross-flow
The capacity of influencing a given flow to make it be- instability is less understood. The@metime opposing re-
have according to a predetermined goal is clearly an enquirements in the search for the optimal suction distribution
deavor of fundamental as well as technological significanceare to be expressed mathematically as an appropriate cost
In aeronautics much research effort is being spent on findingunctional; then, the optimization problem yields the optimal
feasible ways to manipulate the boundary layers over wingssolution for any desired flow configuration and parameter
fins, and nacelles, to delay transition to turbulence and, corsetting.
sequently, reduce the skin friction, as compared to the un- A somewhat different perspective to control is adopted
controlled situation. Skin friction drag accounts for somehere: rather than focusing on modifications to the mean flow,
50% of the total drag in large civil transport aircraft, and thethe control efforts are aimed at the unstable mode itself. This
ability to reduce it presents clear economic and environmentechnique, which goes by the name of wave cancellation or
tal advantages. The active technology by which the boundarwave superposition, has advantages and disadvantages. The
layer is manipulated to pursue a desired objective is calledhain drawback is that the instability wave must be deter-
laminar flow control(LFC). mined, possibly by micro-sensors positioned in the flow. The
Industrial and academic efforts in LFC so far haveoutput from the sensors must then be fed onto a state evalu-
mainly concentrated on the determination of a steady walhtor that produces an estimate of the wésleape, amplitude
suction distribution capable of delaying the onset of transi-and phasg at which point thelboundary control might op-
tion. A large amount of literature exists, comprehensivelyerate. One of the advantages is that effective control laws
reviewed by Joslirt:> Flow manipulation is one of the areas might be predefined for a variety of instability modes, pos-
in which optimal control theory finds its application: an ob- sibly creating a database that could be rapidly accessed by a
jective functional is specified and manners of extremizing itcontroller. Another advantage is that by acting on a small
are proposed, possibly relying on the determination of sensiorder €) perturbation, only a very small amount of control
tivities or on the solution of an adjoint probletA sensi- energy(order €2) must be provided to efficiently damp the
tivity function is defined as the gradient of the flow state withwave.
respect to a control variabjeln LFC the objective is to Experimental work on the wave superposition concept in
provoke an order one change in the base flow in such a walyoundary layers was initiated at Lockheed by Millihdre
that the new base flow produced is less prone to destabilizgerformed experiments in water and used an oscillating wire
tion. The classical argument is that suction through a porouboth to induce the wave and to suppress it. Subsequent stud-
surface or a slot produces a thinner boundary layer charades employed heating elements, vibrating ribbons’™*
terized by a smaller shape factor, in which the growth ofsound from a loudspeakét? surface deflectioh® and peri-
Tollmien—Schlichting (TS) waves is postponed. On the odic blowing/suction through slots or rows of hofésAll
negative side, a thinner boundary layer has larger skin fricinvestigations achieved some degree of success in reducing
tion, which contradicts the desired goal of drag reductionthe wave amplitude, but none was able to achieve complete
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antiphase control; the primary wave amplitude was reducebe scalarly multiplied by anyarbitrary) wall inhomogeneity

at the most by one order of magnitude and, eventually, thé¢o yield the final amplitude of the instability wave. It is not a
residual disturbance left in the flow brought about transitioncoincidence that these very Green'’s functions are central to
via three-dimensional interaction mechanisms. Hence, the réhe optimal control of the instability, as will be elucidated
alization came about that efforts at damping the primary disbelow.

turbance alone might not suffice for significant transition de-

lay, unless the control was applied right at the beginning of

the primary (-ji.sturbance’s amplification phase. Thjs_ was an HETERMINATION OF THE FLOW DISTURBANCE

early recognition of the importance of the receptivity pro- gTaTe

cess.

In theory, a complete elimination of the primary insta- For the determination of the disturbance state the PSE
bility wave—to significantly postpone transition avoiding the approximation is employed; this technique’s potential for
emergence of three-dimensional interactions—is possiblenonlocal transition prediction studies in simple as well as
Recent theoretical work was conducted by Joslin andnore complex configurations has been demonstrated in a
collaborators*~*® Bewley and Liu!’ Cathalifaud and number of work$!3® The present application is limited to
Luchini,® and Corbett® Joslinet al® determined the opti- the case of two-dimensional TS waves in a Blasius boundary
mal boundary control for nonlinear TS waves in wall- layer; its purpose is to show the feasibility of the control
bounded shear flows by an adjoint method arising from approach and to pave the way to further studies in more
Lagrangian optimization procedure applied to the Navier—ealistic configurations of aeronautical interest, for both LFC
Stokes system of equations. Bewley and'fiused an opti- and wave cancellation approaches.
mal and a robust control approach for the damping of modes The flow is defined in a semi-infinite domain along the
and pseudo-modes in a channel. Cathalifaud and Luéhini directiony normal to the wall, and betweeqy andx; along
focused on the optimal control of streaks in a boundary layerthe streamwise direction; lengths are scaled By
and of vortices developing along a concave wall because of (vx,/U.,)Y? and velocities byJ.., the free-stream veloc-
the Gatler instability mechanism. They adopted a Lagrang-ity, with v the kinematic viscosity. These scales define a
ian approach based on the three-dimensional boundary lay&eynolds number R. The disturbance vedjgprcomprising
equations, an appropriate model when dealing with asympthe velocity vectoi=(u,v) and the pressurp, is decom-
totically elongated(along the streamwise directiprilow  posed into an amplitude part and a time-dependent wave-like
structures. An analogous procedure was followed bypart as
Corbett!® who studied the optimal control of modes and - .
pseudo-modes in two- and three-dimensional boundary lay- ax.y. ) =a(xy)x(x)exd ~iwt],
ers, using the temporal, parallel framework for the stability X
analysis. X(X)=9X+(f

In the present work, the search for optimal boundary
control strategies is performed for a spatially developingwith « the complex wave number and the (rea) wave
two-dimensional boundary layer susceptible to destabilizafrequency. In the following we note witf=xq the spatial
tion by small amplitude TS waves. The approach is based opart of the disturbance. The idea behind this decomposition
the parabolized stability equation®SB;?°~?* this system  stems from Wentzel-Kramers—BrillouiWKB) analysis:
permits a very rapid iterative search of the flow state and ibne part of the disturbandg) is slowly varying inx, while
can be easily extended to deal with nonlinear effects. To outhe other(y) varies rapidly, the two streamwise length scales
knowledge this is the first article dealing with optimal con- being related by a small parameter which can be shown to
trol based on the, by now popular and well-established, PSEcale with the inverse of R. As opposed to the WKB analy-
method. It provides an assessment on the possibilities of theis, different orders in powers of the small parameter are not
PSE of being used in an iterative optimization procedure foseparated, but the first two orders are merged, thus yielding a
instability control purposes. partial differential system which contains the local and the

One important aspect of the optimal control approachnonlocal(to first ordej approximation$?3! The advantage
adopted here is that the initial, forcing condition may beof the approach is that the resulting systésften appropri-
arbitrary. The optimal, distributed control determined will be ately fixed'®) is parabolic and can be solved very effi-
the appropriate one for the initial condition provided, whichciently.
must hence be accurately known. An investigation on the In symbolic form the system reads
receptivity properties of boundary layers constitutes the pre-
requisite step for the search of efficient flow management XLpsi=0
strategies. The adjoint method of receptivity analysis prowith
vides the Green'’s functions which directly quantify the effi-
ciency of given forcing termsgat the wall or throughout the 1 q J
flow) in exciting instability wave$!?>~2°For example, the PSET Mg
forced receptivity to unsteady wall roughness can be prop-
erly defined via one adjoint calculation; the result of the Jwg‘?_“ dy=0. 3)
calculation provides the wall Green’s function which must 0o JX

a(x')dx’) , (1)

X0

2
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The latter equation, the so-called “normalization” condition, tional £. This new functional, which also operates on the real
ensures that the growth of the wave is accounted for in theange, takes directly into account the state equations and the
function y; this condition provides the means of determininginhomogeneousunknown wall boundary condition. There
the unknowne. Different choices can be made with little is no need to include the wall boundary conditiongmor
(order R'1) effect on the growth rate of the instability. the free-stream condition an since these quantities are, by
Overbar denotes complex conjugation, and the full form ofconstruction, not subject to variations. All arguments in this
the matrices is given in the Appendix. new functional are assumed independent of one another. We
Initial conditions can be specified from the local stability have
eigenproblem,

a(x)=ao and q(Xe.y)=0o(y), L(A.0w,a.pNY)=To— Ta.,

although this is not a necessary requirement and Hérbert h
has shown examples on the use of the PSE for algebraicalil)\/lIt
(and transiently growing disturbances.
Boundary conditions, including the control at the wall Ji= Pfxﬁﬁps,gdydx
accomplished via a nonzero, time-harmonic vertical velocity xg J O
[cf. Eq. ()], read

X§ < N
u(x,00=0; ovu(X)=v(X,00x(X)=vyx; lim u(x,y)=0. +on AX) (v (x,0) —vy,) dX
y—oe
. . . . oA . Xf__ oo_(yu
Our prpblem |s_ the de_termlnatlon _of the opt_|ma,L which +f fy(x)f U— dydx+c.c., @)
extremizes a given objective functional, subject to the con- Xo o X

straints provided by the state equations with their initial and

boundary conditions. From the physical point of view, thec.c. denoting complex conjugates.

Simplest thlng one mlght wish to minimize is the disturbance The Comp|ex Vectof)()(,y) and the Comp|ex functions
energy, while providing a bound on the energy required 10 (x) andy(x) are the Lagrange multipliers for the problem;
control the system. A convenient measure of the disturbancgey play the role of adjointor dua) variables for, respec-

energy is tively g, 0,,, anda. A recent study/ has shown thah and\
L are more conveniently written in a manner similar to the
E(x)= ,uu dy. (4 direct variables, i.e., by the introduction of a wave-like part:

The control energyE,, can be simply related to the wall
blowing/suction via

£ [ Buiwox (5) X*(x)=exp{i< [ Focrax

BOXGLY) =POGY)X* (X),  ANX)=N(X)x* (X),

X0 X¢

An objective functional acting on the real range, and
based on the final value of the perturbation energy, can then A necessary condition for a minimum of the Lagrangian
be defined is that its variations with respect to each independent argu-
~ o~ ment vanish; this requirement is expressed by employing
Jo(U,vw, @) =E(Xt)+ BuEw- 6) Frechet differentiation in thégenerig direction da, e.g.,
Clearly otherfmore complexchoices can be made, although
the functional proposed will suffice for the present purposes. g ~ L(a+eda)—L(a)
The real coefficiens,, permits us to scale the relative influ- 9a da=lim .

e—0

€
ence of the two components of the cost. For example, choos-

ing B,,=0 implies that the cost of the controller is not an o )
issue, and the goal is just the minimization of the final dis-  Hence, the variation of the functional reads
turbance energy. This is possibly a sensible choice, given

that the control energy is minute anyway and scales with the L aL 5 aL aL 5 aL 5

square of the disturbance amplitude factor. oL= aq 6g-+ Tow vwt oo dart ap P+ o oA
aL

IIl. OPTIMAL CONTROL THEORY: THE DUAL STATE + ﬁ_y oy=0.

The technique adopted here to solve the minimization
problem is based on the Lagrange multipliers method, as All the different directional derivativethe Lagrangian
discussed, for example, in the recent review article bygradienj given below must vanish; their derivation, which
Gunzburget (see also references thergiThe constrained requires a series of integration by parts to try and factorize
optimization problem is transformed into an unconstrainedhe variationssq, év,,, da, &, o\, and Sy within the inte-
optimization problem for an augmented, Lagrangian func-grals, is tedious but straightforward:

Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2090 Phys. Fluids, Vol. 13, No. 7, July 2001

az:é _fxff x( [aEA+aHB = (9251)]5
7%= ), ), X P g

ay ay*
_ du  dyu
+ —Xfy&JrXfW Su| dydx
fx' [_Aa L% aﬁpﬁr
o | YI[PAZITPD 5 g0

+;)(5v] dx+Xff {xusu—yusu—pBag}y—y,
0
xXdy+c.c.,

L . Xf = —
Tb‘vw=f (Bwowt\) v, dx+c.c.,
IV Xo

L ) X
—5a=IEff Sa dx’
Ja

X0
© (Xi_{ L oL
v f fB( PSEq5a+ PSEqb,a,>
0 Jxg

da da’

dx+c.c.,

Xf—o X
xdxdy—f 'xixv(x,O)U Sadx’

X0 X0

aL

Xi [
(9_5p:Xff ff 5p£ps|:_q dydx+c.c.,
p X 40

oL Xp —
_57\=Xff S\(v(x,0)—v,,) dx+c.c.,
N y

0

9L s xfa_fm_aud dxt
-— = u— X+ C.C.,
’y 7 XO y 0 (9X y

with x:=x(x¢) = x* (X) x(x); Eq=E(x(); anda’=da/dx.
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J(p ‘-x)=fw P a—ﬁ_p‘+‘_3‘ d (16)
P.Gix)= | | PD 5~ 5, PA+pBa| dy.

The matricesd*, B*, C*, andD* in the adjoint PSE are
given in the Appendix, and the subscripbeside a variable
indicates its value at; .

The set of direct equations ony,(@)=(u,v,p,a) and
dual equations ongy)=(u*,v*,p*,y) need to be solved
together with the normalization condition@) and (14)
which allow for the determination af andy. The equations
are coupled via the transfer conditions

U*(Xfiy):O! U*(Xfay):O:

1
P* (Xg,Y)=(xs— Y U(Xs,Y), a7

o0 . d -~ l 0 &U* d
'Yffo u(xs,y)u(xs,y) Y—ﬁfo ox Y - Y,

o

(18

which apply atx; . Equation(18) arises from the integration
of Eqg. (12) weighted byy;q and from Eqs(15) and(16). A
simple order of magnitude analysis shows that
~O(1/R%); y; is chosen equal to zero in the first loop, and
then updated during the iterative process. Equatit@dsand
(18) represent the terminal conditions for the dual system,
which is backward parabolic and for which the only direction
of stable evolution is that of decreasing valuesxofThe
determination of the control is made by the use of the opti-
mality condition[cf. Egs.(11) and (13)]:

1.
vw=— 5 Pw(X), (19)

w

which relates the optimal boundary control to the adjoint
variablep} (x). The latter is precisely the Green’s function

Since all variations are arbitrary, except at boundarieslefining the receptivity of the boundary layer to vertical ve-

where the conditions are fixe@uch as, for example, at

locity disturbances ay=0.2""2%3% A beginning source on

—x,), the different integrals vanish if the following Euler— adjoint PSE for receptivity and control purposes is Fiff®

Lagrange equations are satisfied:

ay X P~ gy

JA*p dB*p o _aZD*p:[Xf_au dyu

2 Y L ox ox

lim u*(x,y)=0,

y—®

u*(x,0)=0, (10)
A= x* (X)p* (x,0)=py(X), (12)
B?pf:()(f_ ’}/f)U(Xf ,y)(l,O,O)T, (12)
)\:_Bwawr (13)
TP PN =
&J(plqvx)szpw:XfUWpWI (14)
Er=J(Pr,dr ;X0 (15)
with

=~ —] (1,007,

IV. THE OPTIMALITY SYSTEM AND ITS ITERATIVE
RESOLUTION

A. The algorithm

The co-state {* ,v*,p*,y) is defined by Eq(8) in the
domain[ xq,x]X[0,¢], by the closure relation om(x) [Eqg.
(14)], by the terminal conditions at; [Eqgs.(17) and (18)],
plus homogeneous boundary conditions €dr at the wall
and fory— oo,

The optimality system linking direct and adjoint equa-
tions can be solved iteratively via a simple gradient method.
The algorithm chosen follows the steps outlined below:

(i) Step 1: Solution of the local stability problem to ini-
tialize the PSE.

(i) Step 2: Iteratiork=1, o{’=0.

(i) Step 3: Solution of the direct stafggs.(2) and (3)]
with inhomogeneougexcept fork=1) wall condition
onv.
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state equations Convergence when 10’
Fixed (B - EEN)/EE | < e
initial Zp | 1) I xp — J=B.Ey+ E;
conditions : T : B--8 SyEy 3
| control #{Peit | *—e g
1 | Transfer
: : conditions: E
! co-state equats ) up=v; =0
| quations ) p} = (Xf _ ’)’j)uf
v =F(ug) 3
S| &)
o) = i) = p(pi + o)
FIG. 1. Schematic of the optimal control algorithm. ]
. . . P 1 L e e ————
(iv)  Step 4: Evaluation of the terminal conditiofjgy) of 0 A B
the dual state via Eq$17) and(18). In (18), the value .

(V)
(vi)

(vii)

A schematic of the algorithm is provided in Fig. 1. Al-
though no efforts are made to optimize the relaxation factor,
p, convergence is very rapid and takes in general few itera-

FIG. 2.

of u* is that at the iteratiok— 1. Fork=1, y; is set 10 | > 3 ‘ 4 5
equal to zero.

Step 5: Solution of the dual staf&gs. (8—10 and
(14)] by backward marching.

Step 6: Update of the blowing/suction distribution by FIG. 3. Behavior of the cost functional and its components during the itera-
the use of the relation tive processF =50, B,y= By, p=3x10"°.

iteration number

=i

1, -
Evp:“(k)ﬂ&o ,
wherep is a relaxation factor; the expression in pa-

renthesis represeni@p to the multiplicative factor tions. The parametes,, is chosen in such a way that the two
B.) the gradient of the costf, with respect to the terms in the cost function do not differ too much.

control o, . Note that step 1 is performed for computational conve-
Step 7: Convergence test on the control energy, i.e., ifiience only: the approach is in principle, capable of handling
|(EX—EX N/EX Y| <eo, then stop, else=k+1,go  the control of arbitrary initial disturbances at the positign

to step 3. The convergence factgy is chosen equal |n the absence of complete information on the state of the
to 10°*. system, i.e., if the initial state is known from noisy flow
measurements alone, it is necessary that the control be insen-
sitive to measurement noise and/or state disturbances. Effec-
tive control algorithms can then be formulated on the basis
of robustcontrol theory, a form for which has been recently
laid down by Bewleyet al®” There, an iterative scheme not
relying on the operator-Riccati setting is proposed that maxi-
mizes a cost functional with respect to the noise. Such a
formulation could be easily implemented onto our algorithm
by inserting an additional step between 5 and 6 to identify
saddle point solutions.

B. The numerics

The equations are discretized by finite differences over a
uniform x-grid and a stretcheg-grid, refined close to the
solid boundary; in the streamwise direction a first-order up-
wind (for the direct problemor downwind (for the adjoint
problem scheme is employed, whereas the normal-to-the-
wall direction is treated by a two-point fourth-order compact
scheme. The free-stream boundary is located ten boundary
layer thicknesses away from the wall. The closure relations

(3) and (14) are enforced at eackh station by a Newton—
Raphson procedure. The code has been validated against
iteration number many of the literature cases; for the simulations reported here

Behavior of the cost functional and its components during the itera-the grid is typically made up by 125 streamwise and 150

tive processf =30, B,= B2, p=3x10"%. normal points.
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TABLE |. Parameters for some of the cases tested. 0 T
__Branch ‘I (natural TS) 3
\\\\\: |

30 350 1750 3.510° 9.34x 10’ N

50 350 1200 1.410 4.54x 104

F=2mfr/U2X10P Ry(Xo) Ry(X;) B B 0r -

E
IOg Func

A. Control distributed over the whole streamwise

V. OPTIMAL CONTROL OF THE BLASIUS FLOW 7 \
domain

Practical application of the technique is demonstrated
here for a flat plate boundary layer forced at a given inflow Ry
sectionx, by a two-dimensional TS wave of small ampli- 00 800 1300 1800
tude. The disturbance wave is imposed somewhat upstrear Rs
of the lower bra.nCh Of the neutral Cur\(branCh ). The FIG. 5. Relative reduction dE with respect to the uncontrolled case, plotted
second observation poiriivhere one _would ideally want t0  ,4ainst the local Reynolds number,R(U..x/»)"2 for F=30 and g,
observe a completely damped wave close to branch Il =g% Ri"and K indicate the location of branch I for the uncontrolled and
where, in the absence of control, the amplification of distur-the controlled cases.
bances terminates. In the first set of results reported here,
control is applied over the whole domain length. i L i o

In Figs. 2 and 3 the evolution of the cost functional streamwise variation oE(x)/E*"{(x), is reported in Fig. 5 ,
within the iterative process is shown, demonstrating the rapi rone of the cases treatgd. The curve dlsplqys a monotonic
convergence towards the minimum @ffor the two reduced decrease of the energy with the distance, until a value of the
frequencies choserf =30 andF=50 (F=1Cf w/R), and Reynolds number denoteq0 Reyond which a plateau is ob-
for the values of3 gi'ven in Table I. The disturbancé energy served, and no further amelioration takes place. Such a value

w . . .
at the final stationx; decreases very rapidly from its original COTeSPonds to an effectively new location of the neutral,
(uncontrolled value EV™ at iteration 1. The producg,E,, branch |, point, as clearly evidenced by Fig. 6 where the

becomes relatively large at convergence, because of the vainer9y normalized with respect to its final uncontrolled vglue
ues chosen for the coefficieft,’s: in fact, with a minimal 'S plotted versus the local Reynolds number. The optimal
amount of control, and for zero net-mass suction and blowSCNtrol strategy has, on the one hand, successfully delayed

ing, the disturbance wave at is reduced by several orders the onset of '_[he instapility and, on the other, induced_su_ch
of magnitude. The effect of the relaxation factor is displayed®"W Perturbation amplitude values as to render them insig-
in Fig. 4. The same final values are obtained for the tWonlflcant. The Reynolds number range of amplification in the

components of the cost but, as expected, the procedure cofresence of F:ontrol is consid_eraply reducgd, so that the en-

verges faster towards the global minimum wheis larger. ergy of the disturbance remains tmy even in cgrrgspondgnce

The relative reduction at each point in the domain, i.e., thepf branch II, at the end of the amplification. It IS '”ter?St'”g
to observe that whereas the branch | neutral p@ist0, with

o spatial growth factor based oB) is essentially shifted
e - downstream, the branch Il point is unaffected by control for

—  J=pE,+E the cases treate(Fig. 7); sufficiently far downstream the
—_——- 191Ew 7
—_——— Ef
+ J= ﬂﬂ,Ew + Ef ] 0
°  BuBw
= E
7 ] Py }
A N PNPNPNY
WWWWW R T _4 L E
ul E(z)
1
DD J og By 6l |
[m]
[m]
[m] 4
[m) . } -8 F 4
2q . )
. Og 3 ——  Uncontrolled N /// //
________________ 200unogned -0 - B Ny / ]
1 1 L 1 1 T ﬂ;] \\\ ///
21 26 31 36 _i2 . T .
300 800 1300 1800
iteration number Rs
FIG. 4. Influence of the relaxation factor; lines correspong 63X 10™* FIG. 6. Energy vs streamwise distance: comparison between uncontrolled
and symbols tp=1x10"%, F=30. and controlled cases;= 30.
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0.010 0
——— Uncontrolled vl
0005 F  ---- £ i 1
___ B !
w // /l __2 |
'
!
0.000 |- R /R /// i
;
o /o E(z)
. 1
// I’I ! 08 E'func 4L
-0.005 LT s K -
-0.010 - 5 | N
— Uncontrolled Xy e "
R ﬂ% N~ L
—_ ﬁw \\ /,’
-0.015 : e
300 800 1300 1800 8 ‘ ‘ ‘
Rs 300 600 900 1200
R;

FIG. 7. Growth rate vs streamwise distance; comparison between uncon-
trolled and controlled caseb,= 30. FIG. 9. Energy vs streamwise distance; comparison between uncontrolled

and controlled case§;,=50.

disturbance wave regains its exponential characterigtiss
observed also in previous studi®simplying that if the an-  energy reduction is marginal; for smallgy, than tested one
nihilation of the wave is not complet@r nearly complete  could hope to drive the disturbance amplitude to zero. On
interaction phenomena taking place downstream might rerpractical grounds this is unfeasible since it would require
der the wave superposition approach purposeless. tuning the wall velocity to a required value with infinite pre-

The advantage of the technique described here is that @ision. As shown in the following, extremely small varia-
does not rely on antiphase wave cancellation but on optimaions in the control velocity produce order one changes in the
control theory: thus, although in the present case the entinal disturbance energy. Figure 9 displays two examples of
result is identical since a single, infinitesimal wave is beingsuccessful instability delay & =50: in one case a four-
considered and an anti-wave is created by the control, therder-of-magnitude reduction in final energy is obtained
approach can be extended to nonlinear instabilities wherécompared to the uncontrolled castn the other the reduc-
simple wave superposition would fail. We note also that thetion is of five orders of magnitude. The modulus of the wall
reduction in disturbance energy by several orders of magnivelocity needed in these two cases is shown in Fig. 10: the
tude achieved here represents a best case, theoretical s€grves can hardly be discerned from one another, demon-
nario. Whereas we would not expect such a result in an actrating the extreme sensitivity of this problem to outer forc-
tual wind tunnel experiment, it is comforting to know that ing. Not unexpectedly, the optimal control velocity peaks
the control found could, in principle, go that far. near branch (of the uncontrolled cagewhich is the position

The influence of the coefficien,, weighting the result of maximum receptivity>*® On the other hand, a harmonic
to the effort expended is shown in Fig. 8; clearly, &g  forcing near(and upstream ofbranch Il would be quite in-

decreases less importance is attached to reducing the cont&ffective because the wave would have little spéoethe
energy and, as a consequence, a smaller B{iE!™ is streamwise sengeo amplify, before the subsequent quasi-

attained. For the largest value tested By the disturbance
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FIG. 8. Link betweeng,, andE; /E{" for the two frequencies tested.

FIG. 10. Modulus of the optimal boundary control for the two cases of

Fig. 9.
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FIG. 11. Optimal control velocity, cases of Fig. 6. FIG. 13. Optimal control velocity normalized by the largest, loeaklocity

disturbance of the uncontrolled case=30. Control energies aré&.
=4.09x10° 1% E2=5.64x10"1% andE3=2.74x10"".

exponential decay. Hence, in this region of very low recep-

tivity the optimal control velocity is of vanishing magnitude.

Figure 11 displays the optimal control for the cases ofB- Control applied at the suction  /blowing strip
Fig. 6; the real part of thécomplex wall velocity illustrates The spatial extent of the control is one issue of rel-
the strong streamwise dependence of the control. This resulf,ance. So far the case has been considered in which the
shows why a completeor nearly completecancellation can \yhole streamwise domain is equipped with actuators which
be achieved in theory, but very hardly in practice. Althoughp|ow and suck fluid in and out of the wall. A more realistic
this constitutes, today, a technological limit for the kind of gcenario, which can be equally well treated by our approach,

active control explored here, current developments in MiCrojs that of a spanwise array of actuators of limited streamwise
and nano-technologies make it realistic to hope for futuréytent: a blowing and suction strip.

actuators to perform with such a degree of precision as to be study has been conducted ot the position and length of
capable of driving an instability wave to amplitudes two or 5 syction/blowing strip to ensure efficient operations. Some
three orders of magnitude smaller than in the absence qgsylts are displayed in Fig. 12 for three cases in which the
control. In such a case the problem encountered by earlgoefﬁciemlgw has been tuned to produce @imos} identi-
experiments and related to nonlinear interactions could bgg| final disturbance energy. A comparative analysis shows
avoided or, at worse, postponed. Hence, the study proposgfat it is advantageous to place the control strip around the
here constitutes the necessary framework for experiments tgost receptive region, i.e., in the vicinity of branch . If, for
be performed once the technology becomes available. some technological reasons, the control system must be set
downstream, the objective may still be reached, but the
blowing/suction mass flowhence the cost of the contjol

s increases, as shown in Fig. 13. In this case, the amplitude of
+== Uncontrolled the wall velocity becomes comparable to the maximum, local
ol —-—  Case 1 (361-1739) / ] . . . .
. Case 2 (734-1016) Va (in x) value of the vertical disturbance velocity of the uncon-
*\ - Caes(u2-1208) 7 ! trolled case; furthermore, the growth rate of the instability
=N / //4 1 displays rather rapid variations close to the limits of the con-
1og 22 N\ 3/ A trol domain. These two occurrences might violate one of the
Epe -8y N, /} i ] underlying assumptions of the PSE, i.e., that of weak non-
\\~\~\\+_,,/// \\// parallelism. Although here the theory is believed to be still
-8 f . tenable, care must be used in applying the present approach
3 to situations where rapid streamwise variations are induced.
-10 -
! C. The effect of small random errors on the control
12 ‘ 2 ‘ , law
300 600 900 1200 1500 1800
Finally, it is of interest to assess the robustness of our
R optimal strategy with respect to random noise forcing in the

already computed wall velocities, i.e., to determine how ef-
FIG. 12. Streamwise development of the perturbation energy. Comparisoficient the control is when randomly perturbed or inaccu-

between the uncontrolled and some controlled casesxdth@main over : ; ; _
which the control is effected is denoted by the pair of numbers 1, 2, or 3: thera'tely defined. The case that led to Fig. 2is used as a refer

corresponding Reynolds number range is indicated in the label to the line€NCE.

F=30. The wall velocity is fixed top%=p

Uw Uyt 5|6W|Mei(p
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0 ‘ — suppression. The methodology is based on the iterative nu-

' — Uncontrolled // merical resolution of direct and adjoint systems of nonlocal
o :8.001 / stability equations, coupled via transfer and optimality con-
BN - e=00 ya 8 ditions.

\ e=01 / Optimal (and robust control theory is reaching such a
o) level of understanding and predictability for flow control
log Ere 6 \\ / - situations that its transposition from theory to laboratory ex-

P S periments is ready. In our work, the control is applied
' N / : through a zero-net mass flux transpiring wall or strip. The
iy AN o ] recent introduction of novel concepts for sensors and actua-
e v tors renders it feasible to conceive the practical realization of
\ the computed control laws in a not-so-distant future in a
1 ‘ ‘ ‘ laboratory environment. Today the limiting point is the ex-
300 600 900 1200 1500 1800 treme sensitivity of the disturbance wave to minute varia-
tions in the control, as exemplified in some of the situations
Bs studied here. This issue requires a very careful analysis of
) . ) the interactions outer flow/actuator.
FIG. 14. Disturbance energy for some cases in which the optimal wall

velocity is randomly perturbed; =30, ,8W=/33V.
APPENDIX: PSE AND APSE MATRICES

The matrices in the two-dimensional operator of E).

wherev,, is the already determined optimal contraland ¢ read

are random numbers verifyinge[0,1] and e[ —, 7], and

e is the relative noise level. Figure 14 demonstrates that, as vV 0 0 & 01
expected, with the increase e@he performance.s.of t_he con- 4=|0 Vv 1|, B=|0 & 0O
troller degrade and the effective branch | position is pushed 0 1 0 1 0 0
upstream. A 10% noise level produces a 100-fold increase in
energy; on the other hand, the final energy value is still four JU JU _ 1
orders of magnitude smaller than in the case without control. Eot X oy o R 0 0
This result is mildly encouraging with respect to accuracy
bounds for actuators. The modulus of the relative wall velocC= 0 ot ﬂ B D= 0o _ E ol
ity is plotted in Fig. 15 for some significant noise levels. o gy R
Because of the way they were built, the random disturbances ia 0 0 0 0 0
are naturally larger near the peakuqf; it is precisely in this
region of high receptivity that an operational system must b&vhere
made to work accurately. _ & i da 2ia
E=1(aU—w)+ E— ﬁa and & =U- ?
VI. CONCLUDING COMMENTS . i
The adjoint PSEEQ. (8)] can be written as
A methodology based on optimal control theory has )
been proposed and validated on some test cases of |nstabllw*_+3* +C+p DF— P — [ﬁ;ﬁ_u_ ‘97’“] (1,0,07,
ay ay? | xe ”ox
0.02 | : - ‘ A*=A;, D*=D,
AN Y —
// ‘\a\ &+ W 0 la
0.015 |- I N , N "
3 J B
/ AT ct= A + —C*= U Y
- /Q \\~ &y IX [ 2 J—
[0 ()] ;//o \\\ t9y &y
[o3me, (2)] 0.01 - / \ ] _
7 N la 0 0
/ \
£ — =0 No H h
// ---- €=001 \ wit
0.005 - 7 o s e=0. N\ 4 . —
;v/' ™ n\“\b\ U EZ | da
: EH=i(aU—w) R R ax
%00 700 800 900 w0 andM* =MT, M a generic matrix.
R; IR. Joslin, “Overview of laminar flow control,” Technical Report No.

NASA/TP-1998-208705, NASA1998.
FIG. 15. Close-up of the modulus of the randomly perturbed control veloc- ?R. Joslin, “Aircraft laminar flow control,” Annu. Rev. Fluid Meci80, 1

ity; F=30, By= 2. (1998.
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