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Abstract

This research introduces an adjoint-based method for two types of studies aimed at
maintaining laminar flow over swept aerodynamic surfaces: determining manufacturing
tolerances subject to wavy excrescences and shape optimization to delay boundary
layer transition. While focusing on a natural laminar flow airfoil, the methodology and
algorithm are generalized to any case. The consideration of swept wings necessitated the
implementation of a 2.5D transformation, with validation results provided. The growth
of convective unstable disturbances is computed by solving Euler, boundary layer, and
parabolized stability equations. The gradient of the kinetic energy of disturbances in
the boundary layer with respect to surface grid points is calculated by solving adjoints
of the governing equations. The utilization of sensitivity analysis information varies
depending on the specific study under consideration.
For specific flight conditions, the steepest ascent method (GA) is employed to identify
the waviness profile that induces a specific increase in the maximum value of the
N -factor, ∆N . Numerical simulations utilize the NLF(2)-0415 airfoil across varying
angles of attack, Reynolds numbers, and Mach numbers to examine their effects on
computed tolerances. Angles of attack between −1.00◦ and 1.75◦, Reynolds numbers
between 9 × 106 and 15 × 106, and Mach numbers between 0.45 and 0.6 are considered
for waviness profiles with different ranges of wavelengths.
In the transition delay study, the optimal airfoil profile shape is determined using the
steepest descent method (GD). To parameterize the shape of the gradient and find
the optimal perturbation of the surface, the projection onto the space of Hicks-Henne
bump functions is proposed, along with some simple shape smoothing approaches.
This section of the work focuses on the development of computational algorithms,
presenting the codes. Results obtained are also discussed. The presented methodology
demonstrates promising potential but further efforts are required to fully exploit its
capabilities for the given problem.
For both studies, the use of the SLSQP optimization algorithm is also proposed to
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perform constraint optimization with minimum L2-norm of geometry deformation;
however, results are not yet available.



Abstract

Questa ricerca introduce un metodo basato sulle equazioni aggiunte per due tipi di
studi mirati a mantenere il flusso laminare su superfici aerodinamiche rastremate:
determinazione delle tolleranze dimensionali di profili ondulati e del loro impatto sullo
sviluppo dei disturbi, e ottimizzazione della forma della superficie al fine di ritardare
la transizione dello strato limite. Pur concentrandosi su un profilo alare NLF, la
metodologia e l’algoritmo sono generalizzabili a qualsiasi casistica. La considerazione
di ali rastremate ha reso necessaria l’implementazione della trasformazione 2.5D, i cui
risultati di validazione sono forniti. La crescita delle perturbazioni convettive instabili
è calcolata risolvendo le equazioni di Eulero, dello strato limite (BLE) e di stabilità
(PSE). Il gradiente dell’energia cinetica delle perturbazioni nello strato limite, calcolato
rispetto ai punti di discretizzazione della superficie del profilo, è calcolato risolvendo
le equazioni aggiunte. In base allo studio considerato, le informazioni provenienti
dall’analisi di sensitività vengono impiegate di conseguenza.
Utilizzando il metodo della salita più ripida, cioè del gradiente (GA), viene identificato
il profilo ondulato che provoca un aumento specifico del valore massimo del N -factor,
∆N . Le simulazioni numeriche utilizzano il profilo alare NLF(2)-0415 considerando
angoli di attacco (∈ [−1.00◦, 1.75◦]), numeri di Reynolds (∈ [9 × 106, 15 × 106]) e
numeri di Mach (∈ [0.45, 0.6]) variabili; lo scopo è quello di esaminare, seguendo un
approccio parametrico, l’effetto di ciascuno di essi nella determinazione delle tolleranze
dimensionali. Inoltre, vengono presi in considerazione diversi valori della lunghezza
d’onda delle ondulazioni della superficie.
Nello studio del ritardo nella transizione dello strato limite, si utilizza il metodo
della discesa più rapida del gradiente (GD) per determinare la forma ottimale del
profilo alare. Si propone di sfruttare le informazioni fornite dal gradiente calcolando
le ampiezze delle perturbazioni geometriche come proiezione dello stesso nello spazio
delle funzioni Hicks-Henne. La sezione dedicata a questo studio si concentra sullo
sviluppo dell’algoritmo computazionale, presentando la metodologia e commentando le
sezioni di codice sviluppate. Solamente alcuni risultati preliminari vengono presentati.



iv

Il metodo implementato dimostra un potenziale promettente, ma ulteriori sforzi sono
necessari per sfruttarne appieno le capacità nel contesto specifico del problema.
Per entrambi i problemi viene inoltre proposto l’utilizzo dell’algoritmo di ottimizzazione
SLSQP per derivare la superficie di interesse, minimizzando nel contempo la L2-norm;
i risultati relativi a questo metodo non sono ancora disponibili.
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Introduction

In the 21st century, the imperative to reduce aircraft-specific fuel consumption (SFC) is
paramount, driven by economic, operational, and ecological considerations. A notewor-
thy target, set by the Advisory Council for Aviation Research and Innovation in Europe
(ACARE), aims for a 75% reduction in CO2 per passenger kilometer emissions by 2050
compared to 2000 levels, sparking a technological race among companies. While some
strategies like enhanced propulsion efficiency and weight reduction through advanced
materials are already in play, others, such as the open-rotor with contra-rotating
propellers, remain on the drawing board.
Natural laminar flow (NLF) design emerges as a promising technology to soon reduce
SFC for larger aircraft. The potential to mitigate drag lies in achieving the laminar
flow regime, given that friction drag constitutes a significant portion (40–60%) of a
high-subsonic airplane’s total drag. The effectiveness of NLF technology could result in
a 7–16% reduction in total drag, contingent on achieving a 40% laminarization on key
surfaces. Meeting the demands for maintaining the NLF regime involves considerations
ranging from limited sweep angles and favorable pressure gradients to airfoil nose-radius
limitations and high-lift compatibility.
Recognizing the significance of employing NLF airfoils, it becomes imperative to
comprehend the factors that promote boundary layer transition over them. This
understanding allows for the identification and potential mitigation of adverse effects,
or the establishment of a margin of tolerance away from critical conditions. An analysis
of this kind can be developed through two different approaches: imposing constraints
on the realization of well-known NLF airfoil profiles found in literature, or, starting
from the state-of-the-art NLF profiles, by defining an appropriate methodology and
leveraging information available from a comprehensive study of boundary layer stability
to define new profile shapes capable of ensuring improved aerodynamic performance.
Roughly speaking, these are the foundational concepts upon which this work has been
developed and conducted. These ideas, which may seem obvious, open up various
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scenarios considering the infinite number of variables involved in a problem similar to
this. In the following more details are provided to allow the reader to better understand
the focus of this work.
Regarding the initial point we discussed, the necessity for high surface quality standards,
which encompass factors such as roughness, rivet protrusions, and waviness, cannot be
overstated as these factors are always present in the real applications. Operationally,
considerations such as in-flight contamination, anti-icing maintenance, turbulence levels,
and noise also come into play. Throughout the 1980s and 1990s, various companies
conducted experimental trials, including wind tunnel studies, in-flight examinations,
and flight testing initiatives. These endeavors underscored the feasibility of achieving
laminar flow, with some investigations even demonstrating success while wearing pro-
tective gloves. Despite technological advancements enabling manufacturers to deliver
smoother surfaces for maintaining NLF, the presence of inevitable irregularities during
assembly, such as waviness, gaps, and steps, can significantly affect transition locations,
thereby impacting the performance of NLF designs. Manufacturers face the challenge
of determining permissible dimensions for surface irregularities to prevent sudden tran-
sitions to turbulence. Extensive literature delves into criteria for acceptable irregularity
dimensions during transition, with studies by Fage, Carmichael, Crouch, Perraud, Wie,
and Malik providing both empirical relationships and numerical computations.
The work of Moniripiri et al., [1], introduces a physics-based numerical framework
designed to determine manufacturing tolerances for smooth waviness on NLF surfaces.
The identification of critical waviness profiles, which significantly influence boundary
layer transition, is essential for establishing these tolerances. Such waviness profiles
can be identified through an optimization process employing gradient-based methods.
The approach used is similar to the one outlined by Amoignon et al., [2], to compute
gradients of perturbation energy within the boundary layer concerning surface deforma-
tion, utilizing an adjoint-based method. The maximum allowable surface deformation,
minimizing the L2-norm, and inducing a specific increase in disturbance amplification,
has been determined through unconstrained optimization using the gradient ascent
(GA) method, as well as constrained optimization employing the sequential least squares
programming (SLSQP) algorithm.
Although the described work is extensive and thorough, it has the limitation of consid-
ering parallel flow conditions, specifically flow over a rectangular wing without sweep
angle. Since aeronautical applications typically involve solutions with non-rectangular
wings, it was decided in collaboration with the author to incorporate the treatment
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of sweep angle into the available codes, thus accounting for cross-flow conditions as
well. At the end of this study, it will be possible to compare the impact of dimensional
tolerances and therefore assess their importance based on the specific application under
consideration.
In reference to the study concerning the search for new NLF geometries capable of
delaying boundary layer transition, it was decided to implement an optimization al-
gorithm that closely resembles the structure proposed by Moniripiri et al., namely
the approach based on the adjoint method defined by Amoignon et al.. This study
can therefore be seen as the opposite application of what was done in [1]. In particu-
lar, the impact of dimensional tolerances can be considered the worst-case scenario
condition, while the definition of a new promising geometry serves as the best-case
scenario condition. This is because the aim is to consider the disturbance responsible
for boundary layer transition and leverage the sensitivity analysis to find an optimized
geometric shape that reduces disturbance development and preferably damps it to
ensure greater boundary layer stability. The idea is to find the ideal NLF shape
modification that dumps the disturbance by solving an unconstrained optimization
problem with gradient descent (GD) method and a constrained problem using SLSQP
algorithm. The implementation mentioned was carried out taking into account both
disturbances typical of parallel flow conditions and those of cross-flow conditions.
The absence of publications regarding studies of this kind in the literature suggests
that this study can be seen as a first attempt to shed light on the idea just presented.
Obviously, moving into new territory, the final outcome is by no means guaranteed,
and the unexpected challenges that the study may encounter are numerous.
Thus, to summarize, in this work two distinct studies are introduced, sharing a common
approach in workflow setup and utilizing similar numerical codes. To ensure clarity
and coherence for the reader, the thesis is divided into three parts.
The first part addresses relevant theoretical aspects in general. The second and third
sections constitute the core of the work, focusing on describing the methodologies
employed, the codes used and developed and presenting the results for both studies
conducted and validation test of the algorithm used. In the third part, more emphasis
is given to the results related to the tolerance study, as the transition delay study
requires further investigation and only some preliminary results are currently available.
Finally, conclusions are presented in the last section.





Part I

Section One





Chapter 1

Governing equations

In the realm of fluid dynamics, governing equations stand as the foundational framework
for studying the behavior of fluids. These equations encapsulate the principles dictating
the motion and interactions of fluid elements within a given system.
At the core of fluid dynamics lies the continuity equation, expressing the conservation of
mass as fluid particles traverse space and time. Simultaneously, the momentum equation,
derived from Newton’s second law, unveils the intricate relationship between the forces
acting on a fluid and the resulting acceleration. Complementing the momentum
equation, the energy equation delves into the transfer and transformation of energy
within a fluid system. Whether accounting for the internal energy of the fluid or
incorporating external forces, this equation encapsulates the thermodynamic intricacies
influencing fluid behavior.
In the context of incompressible flows, where density variations are negligible, the Navier-
Stokes equations emerge as the cornerstone, amalgamating the principles of conservation
of mass and momentum. Presented in both conservative and non-conservative forms,
these equations lay the groundwork for simulating and analyzing a wide array of fluid
phenomena.
In compressible flows, governing equations extend to include additional considerations,
such as the conservation of energy and the equation of state, reflecting the impact of
varying density and temperature on fluid behavior.
Given the focus of this thesis, it is also crucial to distinguish between two extremes in
fluid analysis: viscous and inviscid fluid conditions. In inviscid flow, the assumption of
complete absence of viscosity simplifies the equations of motion, facilitating a more
straightforward analysis. Conversely, viscous flow considers the effects of viscosity,
accounting for boundary layers and internal resistance.
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1.1 Inviscid Region

1.1.1 Euler Equations

The Euler equations govern the flow of an inviscid compressible fluid, expressing the
conservation of mass, momentum, and energy. In steady state, the integral form for
any fixed region V with boundary ∂V is given by

∫
∂V

f · n̂ dS = 0, (1.1)

where, n̂ is the outward-oriented unit normal of the control volume V , and f is a matrix
of tensors

f =


ρu

ρu ⊗ u + Ip
u(E + p)

 , (1.2)

where E, the total energy per unit volume, is related to pressure p, density ρ, and
velocity u. Assuming the law of perfect gas for ideal fluids, E is given by

E = p

γ − 1 + 1
2ρu

2. (1.3)

At the walls, the impermeability condition is expressed as

u · n̂ = 0. (1.4)

The fluid state, described in terms of conservative variables, is denoted by w, where
m = ρu. Primitive variables are also employed in the subsequent derivations and are
denoted by v. Their definitions are

w =


ρ

m
E

 , v =


ρ

u
p

 . (1.5)

To solve equations (1.1)–(1.4) for the flow around an airfoil, a finite sub-domain
Ω is defined and artificial boundary conditions have to be specified and typically
farfield boundary conditions are used. We utilize the ADflow solver to solve equations
(1.1)–(1.4) along with boundary conditions at the farfield. ADfow is a finite-volume
structured multiblock and overset mesh solver that is available under an open-source
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license and can solve the Euler, laminar Navier–Stokes, and Reynolds Averaged Navier
Stokes (RANS) equations using a second-order-accurate finite-volume approach for the
spatial discretization.

1.2 Viscous region

1.2.1 Boundary layer equations

The flow field under consideration in this study is the boundary layer on a swept wing
with infinite span. The solution is obtained by solving the mass, momentum, and
energy conservation equations for a viscous compressible fluid. These equations are
expressed in an orthogonal curvilinear coordinate system with streamwise, spanwise,
and wall-normal coordinates denoted as x1, x2, and x3, respectively. A curvilinear
length element is defined as ds2 = (h1dx1)2 + (h2dx2)2 + (h3dx3)2, where hi are the
scale factors. In the context of an infinite swept wing flow problem, the scale factors
h1 and h3 are set to unity. The total flow field, denoted by qtot, is decomposed into
mean (q̄) and perturbation (q̃) parts, as

qtot(x1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t) (1.6)

where q̄ ∈ [U, V,W, p, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃]. Here, U , V , and W represent
the streamwise, spanwise, and wall-normal velocity components of the mean flow,
respectively. T denotes temperature, ρ density, and p stands for pressure. The
lowercase variables correspond to disturbance quantities. The equations are formulated
for a quasi-three-dimensional mean flow with negligible variation in the spanwise
direction. The evolution of convectively unstable disturbances is investigated within
the framework of nonlocal stability theory.
All flow and material properties are made dimensionless with respect to reference
quantities and in the following, dimensional quantities are denoted by the superscript
∗. To maintain the treatment as general as possible, let’s denote the reference length
scale as l∗0, which can be defined a priori, for example, in terms of a fixed streamwise
position x∗

0 and the corresponding reference flow quantities at that location. Following
the description provided above, it is possible to define the reference length scale as
l∗0 =

√
ν∗

0 x∗
0

U∗
0

. In the case of referring to the flow around an airfoil, it is possible and
common to set the reference length as the chord dimension, i.e. l∗0 = c, and the free
stream characteristics of the flow as reference flow quantities (usually indicated with
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"∞" and "̄ "). Regarding pressure, is made non-dimensional with twice the dynamic
pressure.
The Reynolds, Mach and Prandtl numbers are then formulated as

Re = l∗0U
∗
0

ν∗
0

M = U∗
0√

RγT ∗
0

Pr =
c∗

pµ
∗
0

κ∗

(1.7)

respectively. Here, R signifies the specific gas constant, ν represents the kinematic
viscosity, µ dynamic viscosity, γ denotes the ratio of specific heats, cp is the specific
heat at constant pressure and κ is heat conductivity.

1.2.2 Mean flow equations

The dimensionless boundary-layer equations governing the steady viscous compressible
mean flow on an infinite-span swept wing, expressed in primitive variable form, are
presented as follows:

1
h1

∂(ρU)
∂x1

+ ∂(ρW )
∂x3

= 0, (1.8)

ρU

h1

∂U

∂x1
+ ρW

∂U

∂x3
= − 1

h1

dpe

dx1
+ 1
Re

∂

∂x3

(
µ
∂U

∂x3

)
, (1.9)

ρU

h1

∂V

∂x1
+ ρW

∂V

∂x3
= 1
Re

∂

∂x3

(
µ
∂V

∂x3

)
, (1.10)

cp
ρU

h1

∂T

∂x1
+ cpρW

∂T

∂x3
= 1
RePr

∂

∂x3

(
κ
∂T

∂x3

)

+ (γ − 1)UM
2

h1

dpe

dx1
+ (γ − 1)µM

2

Re

( ∂U
∂x3

)2

+
(
∂V

∂x3

)2
 .
(1.11)

According to the boundary layer assumptions, the pressure remains constant in the
direction normal to the boundary layer, thus denoted as p = pe(x1), considering the
variables with subscript e are evaluated at the boundary layer edge. The equation of
state can then be expressed as:

γM2pe = ρT, (1.12)
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and the streamwise derivative of the pressure is given as

dpe

dx1
= −ρeUe

dUe

dx1
. (1.13)

Denoting the dimensional free-stream velocity as Q∗
∞ and the sweep angle as Λ, for a

given pressure distribution described by the pressure coefficient:

Cp = p∗ − p∗
∞

1
2ρ

∗
∞Q

∗
∞

2 , (1.14)

the values at the boundary layer edge are determined as follows:

pe = pe

p∞

1
γM2 , Te =

(
pe

p∞

) γ−1
γ

,

ρe =
(
pe

p∞

) 1
γ

, Ue =
√
Q2

e − V 2
e ,

(1.15)

where
pe

p∞
= 1 + 1

2CpγM
2, Q2

e = 1 + 1 − Tecp∞
(γ−1)

2 M2
, Ve = Qe sin Λ. (1.16)

Here, we utilize the assumptions of an inviscid, steady, and adiabatic flow, where the
total enthalpy remains constant along a streamline, and the isentropic relations are
applied to establish the relationship between total and static quantities. We define
a domain ΩB for equations (1.8)–(1.11) such that x1 ∈ [XS, X1], x2 ∈ [Z0, Z1], and
x3 ∈ [0,∞). The no-slip condition is enforced for the velocity components, while the
adiabatic wall condition applies to the temperature. In the free stream, the streamwise
and spanwise velocity components, as well as the temperature, assume their respective
values at the boundary layer edge:[

U, V,W,
∂T

∂x3

]
(x1, 0) = [0, 0, 0, 0], ∀x1 ∈ [XS, X1],

lim
x3→+∞

[U, V, T ](x1, x3) = [Ue, Ve, Te](x1), ∀x1 ∈ [XS, X1].
(1.17)

These nonlinear equations undergo an iterative solution process. Starting from equations
(1.8) through (1.11), we obtain the solution Q̃ = (U, V, T ) by applying the boundary
condition mentioned above for a given W value. Next, Equation (1.8) is integrated
in the wall-normal direction to determine W . Convergence is achieved when the
relative change in the wall-normal derivative of the streamwise velocity component at
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the wall falls below a predefined threshold. In the subsequent treatment, we adopt
Q = (U, V,W, T ) as the solution for the boundary layer state.

1.2.3 Disturbance equations

The perturbations are assumed to be a combination of time and spanwise periodic
waves functions as

q̃(x1, x2, x3, t) = q̂(x1, x3)Θ(x1, x2, t), (1.18)

where the wave function Θ is defined as

Θ(x1, x2, t) = exp
[
i
(∫ x1

X0
α(x′) dx′ + βx2 − ωt

)]
. (1.19)

In equation (1.19), α represents the complex streamwise wavenumber, β denotes the
real spanwise wavenumber, and ω stands for the real disturbance angular frequency.
Disturbances are introduced into the mean flow at a streamwise position denoted as
X0, indicating that the disturbances begin to amplify from this location. Based on
boundary layer approximations, it is possible to assume a scale separation of Re−1

between the weak variation in the x1-direction as well as between the wall-normal and
streamwise mean velocity components. Further, it is assumed that ∂/∂x1 ∼ O(Re−1)
and W ∼ O(Re−1). As explained in the work of Bertolotti et al. [3], by incorporating
the assumption outlined in equation (1.18) into the linearized governing equations
and retaining terms up to order O(Re−1), a set of nearly parabolic partial differential
equations is derived. These equations, known as the Parabolized Stability Equations
(PSE), are presented here in the compact version:

Aq̂ + B
∂q̂
∂x3

+ C ∂2q̂
(∂x3)2 + D 1

h1

∂q̂
∂x1

= 0, (1.20)

defining q̂ = [ρ̂, û, v̂, ŵ, T̂ ]T . The coefficients of the matrices A, B, C, and D are not
reported here in order to keep the theoretical treatment concise, but can be found in
Pralits et al. work, [4].
Equation (1.20) is defined in a domain ΩP such that x1 ∈ [X0, X1], x2 ∈ [Z0, Z1], and
x3 ∈ [0,∞), and its boundary conditions are given by

[
û, v̂, ŵ, T̂

]
(x1, 0) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1],

lim
x3→+∞

[
û, v̂, ŵ, T̂

]
(x1, x3) = [0, 0, 0, 0], ∀x1 ∈ [X0, X1].

(1.21)
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To remove the ambiguity arising from the x1-dependence of both the amplitude and
wave function in the hypothesis introduced by equation (1.18), and to maintain a slow
streamwise variation of the amplitude function q̂, the so called auxiliary condition
reported below is introduced:

∫ +∞

0
q̂H ∂q̂

∂x1
dx3 = 0. (1.22)

In Equation (1.22), the superscript H denotes the complex conjugate transpose. Equa-
tion (1.20) is integrated downstream with an initial condition set at x1 = X1, given
by local stability theory. At each streamwise location x1, the streamwise wavenumber
α is iterated until the auxiliary condition, namely equation (1.22), is satisfied. After
a converged streamwise wavenumber has been obtained, the spatial growth rate, σ,
based on the disturbance kinetic energy, E, can be calculated from the relation

σ = −αi + ∂

∂x1

(
ln
(√

E
))
, (1.23)

where αi is the immaginary part of α, and energy is defined as:

E =
∫ +∞

0
ρ̄
(
|û|2 + |v̂|2 + |ŵ|2

)
dx3. (1.24)

Finally, the growth rate, also known as the N -factor, which is a measure of integrated
growth of perturbations and can be used to predict the transition location using the
so-called eN −method, can be calculated based on its kinetic energy as:

NE =
∫ X

Xn1
σ dx1, (1.25)

where Xn1 is the lower branch of the neutral curve, where disturbance amplification
starts to grow, namely where σ = 0. A recent review about the relationship between
the eN -method and transition location is available in the work of Van Ingen [5].
If the set of equations mentioned above (a combination of Euler, BLE, and PSE
equations) is properly implemented in a numerical scheme, it allows for a stability
analysis of the boundary layer over a given wing section. In the works of Hanifi et al.
[6] and Pralits et al. [4] this implementation has been done, and they can be used as
references to find all the numerical schemes employed in this study, along with further
detailed derivations.





Chapter 2

Objective function and sensitivity
analysis

The choice of the objective function is closely tied to the nature of the study being
conducted. One of the goals of this research aims to utilize gradient-based optimization
techniques to determine the surface waviness profile that minimizes the L2-norm
while inducing a specific increase in perturbation amplification. This increase could
potentially trigger the premature transition of the boundary layer, leading to an
undesirable rise in viscous drag. Such an effect would manifest as a reduction in the
laminar region of the wing, effectively shifting the location of the laminar-turbulent
transition further upstream. Therefore, selecting an objective function that captures
these physical phenomena is paramount.
As already mentioned, this case study can be seen as the opposite of the best-case
scenario, which is the second goal of this work. In this scenario, the aim is to search for
the optimal wing profile configuration to delay the boundary layer transition. Although
the ultimate goal of the two distinct studies is diametrically opposed, we can recognize
a significant overlap in the theoretical definition of the optimization problems. In
particular, it is observed that in both contexts, the objective function J is chosen to
quantify the growth of perturbations within the domain.
In these kind of studies one common choice is to measure the kinetic energy of a certain
disturbance at a downstream position, say Xf . This can be represented mathematically
as:

Ef = 1
2

∫ Z1

Z0

∫ +∞

0
q̃HM q̃h1 dx2 dx3

∣∣∣∣∣
x1=Xf

(2.1)
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where M = diag(0, 1, 1, 1, 0), which, following the definitions given above, implies that
the disturbance kinetic energy is calculated from the disturbance velocity components.
If the position Xf is chosen as the upper branch of the neutral curve, then the
measure can be related to the maximum value of the N -factor of a given disturbance.
Additionally, if the N -factor of the measured disturbance is the first to reach the
transition N -factor, then the position can be associated with the onset of laminar-
turbulent transition. However, it is not clear a priori that minimizing such a measure
will dampen the chosen or other disturbances in the entire unstable region, especially
if different types of disturbances are present, such as Tollmien-Schlichting (TS) and
cross-flow (CF) waves. Considering that our study focuses on the flow over a swept
wing, it is common for both TS and CF waves to be present simultaneously.
An alternative approach is to measure the kinetic energy as the streamwise integral over
a defined domain. Using this method, several different disturbances can be considered,
each with their respective maximum growth rate at different positions. The size of
disturbances, denoted by K, superimposed on the mean flow at an upstream position
X0, can be measured by their total kinetic energy as:

EK = 1
2

K∑
k=1

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
q̃k

HM q̃kh1 dx1 dx2 dx3. (2.2)

Here, Xms and Xme represent the first and last streamwise positions between which
the disturbance kinetic energy is integrated (where the perturbation exists), providing
the opportunity to evaluate EK within a streamwise domain within [X0, X1].
The kinetic energy of a single specific disturbance over a selected region, i.e. the
integration of the growth of the disturbance over the region itself, is denoted by E1. In
this case, this quantity integrated into a defined region serves as the chosen measure.
Mathematically, this objective function is formulated as:

J(q̃,X) = E1(q̃,X) = 1
2

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
(|ũ|2 + |ṽ|2 + |w̃|2) dx1 dx2 dx3, (2.3)

where the fact that kinetic energy is an explicit function of the velocity components
of the chosen perturbation is highlighted. Moreover in equation (2.3) can be seen the
dependence from the vector of nodal coordinates, X. The amplitudes of disturbances
used to compute the objective function are solutions of PSE equation (1.20) for a
specific mode, identified by the parameters α(Xms), β, and ω.
By analyzing the envelopes of N -factor curves, we identify the most amplified mode
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among various modes characterized by different ω and β values and utilize the distur-
bance amplitudes of that mode to compute the objective function.
At this juncture, optimizing the objective function J with respect to design variables,
using gradient based method, entails calculating the sensitivity of the objective function
with respect to these design variables. Here, we compute the gradient of our objective
function, J with respect to the design variables a as

∇aJ = ∂J

∂Q
× ∂Q
∂pe

× ∂pe

∂a
, (2.4)

where the first term on the RHS is given by the adjoint of PSE, the second term by
the adjoint of BLE and the last term by the adjoint of Euler equations; we employ the
adjoint method to efficiently compute the gradients.
Given the specialized nature of this approach, the following sections outline some of
the most important steps of the derivations to enable the reader to fully comprehend
the methodology used.

2.1 Derivation of the gradient

According to equation (2.3), the objective function computed for a single disturbance
E1 explicitly relies on the solution of the PSE (equations (1.20)–(1.22)), denoted as q̃,
and on the vector of nodal coordinates X, representing the discretization points of the
Euler mesh. Hence, we can express this dependency as follows:

J ≡ J(q̃,X). (2.5)

Depending on the specific study under consideration, whether we’re examining worst-
case or best-case scenarios, our objective is to either maximize or minimize J , as defined
in equation (2.5). Therefore, in both scenarios, calculating the gradient is essential to
determine the most promising direction for iterative movement towards achieving the
optimal condition. The latter is expressed here as:

Aq(q̃,Q,X) = 0, (2.6)
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where equation (2.6) is defined for given X and Q. The mean flow Q is a solution of
the BLE (1.8)–(1.11), denoted here as

AQ(Q,w,X) = 0, (2.7)

which is defined for a given X and w. Finally, the inviscid flow w is the solution of the
Euler equations (1.1)–(1.4), denoted

Aw(w,X) = 0. (2.8)

Following what Pralits et al. had done in their work [4], for the derivation of adjoints it
is convenient to introduce the functions JX , JQ, and Jw, which are simply the objective
function (2.5) in which various intermediate quantities are regarded as independent
variables. The definitions of these intermediate functions are:

Objective function: Vq × VX → R
{q̃,X} J(q̃,X)

Subject to equation (2.6): VQ × VX → R
{Q,X} JQ(Q,X) ≡ J(q̃(Q,X),X)

Subject to equations (2.6)–(2.7): Vw × VX → R
{w,X} Jw(w,X) ≡ JQ(Q(w,X),X)

Subject to equations (2.6)–(2.8): VX → R
X JX(X) ≡ Jw(w(X),X)

The coordinates of the mesh nodes, denoted as X, are obtained through a mesh
movement algorithm based on the displacements y of the nodes on the airfoil, i.e.,
X ≡ X(y), as elaborated in Section 3. The displacements are controlled by parameters
a, such that y ≡ y(a). To facilitate analysis, given a function JX of the variable X,
it’s convenient to define Jy and Ja as follows:

Jy(y) = JX(X(y)), (2.9)

Ja(a) = Jy(y(a)). (2.10)

Summarizing the main aim of this treatment, our focus lies in optimizing the objective
function J constrained by equations (2.6)–(2.8) in terms of the design parameters a
employing a gradient-based approach. This requires the computation of the gradient
∇Ja, derived from ∇JX . The efficiency of our approach stems from the adept compu-
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tation of ∇JX utilizing the adjoint method.
In the subsequent discussion, we assume that q̃ ∈ Vq, Q ∈ VQ, w ∈ Vw, and X ∈ VX ,
where Vq, VQ, Vw, and VX are vector spaces equipped with inner products ⟨·, ·⟩q, ⟨·, ·⟩Q,
⟨·, ·⟩w, and ⟨·, ·⟩X , respectively. Additionally, we assume that all mappings are differen-
tiable. For instance, ∂Aq

∂q̃ represents the linearization with respect to q̃ of the mapping
Aq at the given state {q̃,Q,w,X}. Notations (∂Aq

∂q̃ )−1 and (∂Aq

∂q̃ )∗ denote the inverse
and the adjoint of the linearized mapping (∂Aq

∂q̃ ), respectively. Finally, (∂Aq

∂q̃ )δq̃ denotes
the application of ∂Aq

∂q̃ on δq̃.

2.2 Sensitivity of PSE

For arbitrary variations {δQ, δX} ∈ VQ × VX , of {Q,X} in PSE, the first variation
in the solution, denoted as δq̃ and belonging to Vq, is determined by the sensitivity
equations:

∂Aq

∂q̃
δq̃ = −∂Aq

∂Q
δQ − ∂Aq

∂X
δX. (2.11)

Moreover, for any variations {δq̃, δX} ∈ Vq × VX , the first variation of the objective
function J is defined as:

δJ =
〈
∂J

∂q̃
, δq̃

〉
q

+
〈
∂J

∂X
, δX

〉
X

, (2.12)

where ⟨·, ·⟩q and ⟨·, ·⟩X denote the inner products in Vq and VX respectively. In the
following, δq̃ is the solution of the sensitivity equations (2.11), leading to a revised
expression for (2.12):

δJ =
〈
∂J

∂q̃
,

(
∂Aq

∂q̃

)−1 (
−∂Aq

∂Q
δQ − ∂Aq

∂X
δX

)〉
q

+
〈
∂J

∂X
, δX

〉
X

, (2.13)

where, for q̃ being the solution of (2.6) and δq̃ being the solution of (2.11), the
definition of JQ results in:

δJQ = δJ. (2.14)

The gradient of the functional JQ is ∇JQ = {∂JQ

∂Q ,
∂JQ

∂X } and resides in the vector space
VQ × VX , such that for all {δQ, δX} in VQ × VX , we have:

δJQ =
〈
∂JQ

∂Q
, δQ

〉
Q

+
〈
∂JQ

∂X
, δX

〉
X

. (2.15)



20 Objective function and sensitivity analysis

By employing the adjoint operator ∂Aq

∂q̃
in expression (2.14) and utilizing (2.15), we

derive:

δJQ = −
〈(

∂Aq

∂Q

)∗
(∂Aq

∂q̃

)−1
∗

∂J

∂q̃
, δQ

〉
Q

−
〈(

∂Aq

∂X

)∗
(∂Aq

∂q̃

)−1
∗

∂J

∂q̃
, δX

〉
X

+
〈
∂J

∂X
, δX

〉
X

.

(2.16)

This expression can be further manipulated using the definitions of the adjoint operators
(
∂Aq

∂q̃

)∗

q∗ = ∂J

∂q̃
(2.17)

Hence, by introducing the adjoint state q∗ satisfying the system we conclude that:

∂JQ

∂Q
= −

(
∂Aq

∂Q

)∗

q∗

∂JQ

∂X
= ∂J

∂X
−
(
∂Aq

∂X

)∗

q∗.

(2.18)

The cost for obtaining the gradient of JQ is reduced to one solution of the system
equation (2.17) and two matrix-vector products as shown in (2.18).

2.3 Sensitivity of BLE

For arbitrary variations {δw, δX} ∈ Vw ×VX of {w,X} in the BLE equation (2.7), the
first variation of the solution of the BLE is denoted δQ ∈ VQ, and is defined by the
sensitivity equations:

∂AQ

∂Q
δQ = −∂AQ

∂w
δw − ∂AQ

∂X
δX. (2.19)

Furthermore, from the definition (2.15) and the expression of the gradient (2.18), for
arbitrary variations {δQ, δX} in VQ × VX , the variation δJQ is

δJQ =
〈

−
(
∂Aq

∂Q

)∗

q∗, δQ
〉

Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗

q∗, δX
〉

X

. (2.20)
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In the following, δQ is the solution of the sensitivity equation equation (2.19). The
variation δJQ is expressed, making use of equation (2.20) and equation (2.19), as

δJQ =
〈

−
(
∂Aq

∂Q

)∗

q∗,

(
∂AQ

∂Q

)−1 (
−∂AQ

∂w
δw − ∂AQ

∂X
δX

)〉
Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗

q∗, δX
〉

X

.

(2.21)

And, for Q solution of equation (2.7) and δQ solution of equation (2.19), the definition
of Jw yields

δJw = δJQ. (2.22)

The gradient of Jw is the vector {∂Jw

∂w ,
∂Jw

∂X } in the product space Vw × VX such that for
all {δw, δX} in Vw × VX , we have

δJw =
〈
∂Jw

∂w
, δw

〉
w

+
〈
∂Jw

∂X
, δX

〉
X

. (2.23)

Using the adjoint of the inverse linearized BLE operator (∂AQ

∂Q )−1 in equation (2.21),
δJw is expressed as

δJw =
〈

−

(∂AQ

∂Q

)−1
∗ (

∂Aq

∂Q

)∗

q∗,−∂AQ

∂w
δw − ∂AQ

∂X
δX

〉
Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗

q∗, δX
〉

X

.

(2.24)

Using the adjoints of ∂Aq

∂w and ∂Aq

∂X , the equation of δJw reported above can be rewritten
as

δJw =
〈(

∂AQ

∂w

)∗
(∂Aq

∂Q

)−1
 (∂Aq

∂Q

)
, δw

〉
w

+
〈(

∂AQ
∂X

)∗
(∂AQ

∂Q

)−1
 (∂Aq

∂Q

)
, δq

〉
X

+
〈
∂J

∂X
−
(
∂Aq

∂X

)
, δX

〉
X

.

(2.25)

(
∂AQ

∂Q

)∗

Q∗ =
(
∂Aq

∂Q

)∗

q∗. (2.26)
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∂Jw

∂w
=
(
∂AQ

∂w

)∗

Q∗,
∂Jw

∂X
= ∂J

∂X
−
(
∂Aq

∂X

)∗

q∗ +
(
∂AQ

∂X

)∗

Q∗. (2.27)

The use of adjoint equations limits the cost for obtaining the gradient of Jw to solving
the systems equation (2.17) and equation (2.26), as well as four matrix–vector products:
one to ’assemble’ the right-hand side of the adjoint system equation (2.26) and three
to obtain the final expression equation (2.27).

2.4 Sensitivity of Euler equations

For arbitrary variations δX ∈ VX of X in the Euler equation (2.7), the first variation of
the solution of the Euler equation is denoted δw ∈ Vw, and is defined by the sensitivity
equation. The sensitivity equation is given by:

∂Aw

∂w
δw = −∂Aw

∂X
δX. (2.28)

Furthermore, for arbitrary variations {δw, δw} in Vw × VX , the first variation of the
functional Jw is expressed from the gradient (2.27):

δJw =
〈
∂AQ

∂w

∗
Q∗, δw

〉
w

+
〈
∂J

∂X
− ∂Aq

∂X

∗
q∗ + ∂AQ

∂X

∗
Q∗, δX

〉
X

. (2.29)

In the following, δw is the solution of the sensitivity equation (2.28), which enables us
to rewrite expression (2.29) as:

δJw =
〈
∂AQ

∂w

∗
Q∗,−∂Aw

∂w

−1∂Aw

∂X
δX

〉
w

(2.30)

+
〈
∂J

∂X
− ∂Aq

∂X

∗
q∗ + ∂AQ

∂X

∗
Q∗, δX

〉
X

, (2.31)

and, for w solution of (2.7) and δw solution of (2.28), the definition of JX yields:

δJX = δJw (2.32)

The gradient of JX is the vector ∇JX in the space VX such that for all δX in VX we
have:

δJX = ⟨∇JX , δX⟩X (2.33)



2.4 Sensitivity of Euler equations 23

The adjoint of the linearized Euler operator is used in (2.31) to express δJX (2.32) as:

δJX =
〈
∂Aw

∂w

−1∗∂AQ

∂w

∗
Q∗,−∂Aw

∂X
δX

〉
w

+
〈
∂J

∂X
− ∂Aq

∂X

∗
q∗ + ∂AQ

∂X

∗
Q∗, δX

〉
X

(2.34)

The adjoint instead of the linear operator ∂Aw

∂X is used in (2.34) and leads to:

δJX =
〈
∂J

∂X
− ∂Aq

∂X

∗
q∗ + ∂AQ

∂X

∗
Q∗, δX

〉
X

(2.35)

−
〈
∂Aw

∂X

∗∂Aw

∂w

−1∗∂AQ

∂w

∗
Q∗, δX

〉
X

. (2.36)

The method of adjoint is again applied as we define an adjoint state w∗, here solution
of the system:

∂Aw

∂w

∗
w∗ = ∂AQ

∂w

∗
Q∗. (2.37)

This enables us to give expression for the gradient in expression (2.33):

∇JX = ∂J

∂X
− ∂Aq

∂X

∗
q∗ + ∂AQ

∂X

∗
Q∗ − ∂Aw

∂X

∗
w∗ (2.38)

The total cost of this gradient evaluation is three adjoint systems (2.17), (2.25), and
(2.37), and five matrix-vector products: two for the assembly of the right-hand sides of
the systems (2.25) and (2.37), and three for the final expression (2.38).





Chapter 3

Adjoint equations

It has been already mentioned that the efficient method for computing the sensitivities
is the adjoint method. The cost of solving an adjoint equation is comparable to the
cost of solving the governing equation. Once the adjoint solution is obtained, the
sensitivities to any number of parameters can be obtained with little effort.
In principle, two distinct methods exist for deriving these adjoint equations. The first
method, sometimes referred to as the discrete approach or discretize-then-differentiate,
involves deriving the adjoint equations from the discretized set of state equations.
Conversely, the second method, known as the continuous approach or differentiate-then-
discretize, entails deriving the adjoint equations from the continuous state equations.
Subsequently, the continuous adjoint equations undergo discretization, typically follow-
ing a similar procedure as the corresponding state equations.
The preceding discussion has led us to derive the expression of the gradient ∇JX ,
which, as displayed in equation (2.38), depends on the adjoint states of the PSE (2.17),
the BLE (2.25), and the Euler equations (2.37), namely q∗, Q∗, and w∗.
The adjoints of the BLE and PSE were derived using a continuous approach by Pralits
et al. in [4]–[7]–[8] and Amoignon et al. in [2], as implemented in the codes used.
Detailed derivations of the adjoint equations can be found in their respective studies
cited above. For the adjoint of the Euler equations, we utilize instead the discrete
adjoint implementation provided by ADflow developers.
In order to avoid verbosity regarding the treatment of the adjoints, only the brief
notes reported above are provided here, omitting mathematical details. For details on
the adjoint of the Euler equations implemented in ADflow, readers can refer to the
comprehensive work by Kenway et al. [9](especially in AppendixA). This work also
includes a review of adjoint methods available in literature, discussing their advantages
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and disadvantages. The choice of particular TransformationAD 1 method for partial
derivative computation and Krylov as the adjoint solver in ADflow is discussed in
detail. It is important to note that the flow solver used here, namely ADflow code,
differs from that used by Pralits et al. in their previous optimization studies.

1Automatic Differentation (AD) focuses directly on the computer code and uses the fact that
any code consists of a sequence of elementary arithmetic operations. These operations can then be
differentiated to create differentiated versions of the code that compute derivatives using the chain
rule. There are two derivative computation modes for AD: forward and reverse. Both use the same
chain rule but accumulate the derivatives in different directions. In forward mode AD, the input
variables of interest are specified and the derivatives with respect to those variables are accumulated
in the forward direction, together with the execution of the original code. In reverse-mode AD, on the
other hand, the outputs of interest are specified and the derivatives of those outputs are accumulated
backward. Before this reverse accumulation is performed, however, the original code must be run
(forward) and all intermediate variables must be stored for use in the reverse accumulation.
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Chapter 4

Methodology

As mentioned in the introduction, the goal of this work is to use sensitivity analysis
for optimization studies applied to the shape of NLF airfoils. In Part I, the theoretical
framework for deriving sensitivity analysis has been presented, highlighting the sig-
nificant reduction in computational cost achievable by employing the adjoint method,
specifically discussed in Chapter 3. At this point, it is important to clarify the solution
scheme actually followed, and this is done schematically in Figure 4.1.

Figure 4.1 Flowchart for calculating the gradient.

Computational steps can be summarized as follows:

1. solve Euler equations to find pressure distribution Cp on the airfoil surface;

2. solve compressible BLE using the distribution of Cp as input, and compute the
mean flow quantities inside the boundary layer;

3. solve compressible PSE inside the boundary layer;

4. solve adjoint PSE (APSE);
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5. solve adjoint BLE (ABLE) to find sensitivity with respect to pressure distribution,
∇PeJ ;

6. solve adjoint Euler equations to find sensitivity with respect to design variables,
∇zJ ;

7. use sensitivity, ∇zJ , to update the geometry.

In this solution scheme, as presented in Section I, two distinct regions of the flow are
considered: the solution of the Euler equation for the external flow and the solution of
the BLE in regions where the viscous effects of the flow cannot be neglected as they
dominate the physics of flow development. Solutions of this type are commonly referred
to as coupled viscous-inviscid, and the literature extensively discusses the potential
and accuracy of this method. In this regard, in the work of Amoignon et al. [10], a
numerical test was performed to evaluate the accuracy of the gradient computation in
the framework of coupled solution, using adjoint approach.
In the connection between the inviscid and viscous solution, two significant issues
greatly affect the precision of the gradients. Firstly, the grid resolution typically
employed to yield outcomes using the Euler equations proves inadequate to achieve
converged results with the stability equations. Secondly, the derivation process of
the adjoint equations raises concern. While the adjoint Euler equations stem from
the discretized Euler equations, the accuracy of gradients computed via this method
ought not to hinge on the grid resolution. Conversely, the derivation of the ABLE and
APSE relies on the continuous approach, possibly implicating the accuracy of gradients
obtained through this route on grid resolution.
Moreover, Amoignon et al. in their work, [10], stated that solving the gradient based
on the discretized problem is a critical issue in optimization because of difficulties
related to low accuracy, such as finding descent directions even far from the optimal
design, are quite common. Indeed, the derivation of the adjoint of the discretized
Euler equations involves an approximation by not linearizing the coefficients of the
second-order artificial dissipation1. Despite the limitations just highlighted, based on
the results of the same authors’ observations, we can say that, by using a sufficiently
accurate grid, the presented solution algorithm is accurate.
To summarize, the approach aims to derive the mean flow by solving the boundary-layer

1Second-order artificial dissipation is a numerical technique used in CFD to stabilize the solution
of PDEs governing fluid flow by dissipating spurious oscillations or numerical instabilities that may
arise, particularly near discontinuities or shock waves. It specifically refers to a type of dissipation
that is proportional to the second spatial derivative of the solution.
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equations. The mean flow solution, together with the coordinates, acts as input for the
stability equations. The solutions of the adjoint equations corresponding to the stability
and boundary-layer equations are then utilized as input for the adjoint equations of
the Euler equations. The final gradient is computed by coupling these three systems of
adjoints. From the adjoint equations of the boundary-layer equations, an expression for
the partial derivative of the objective function with respect to the pressure distribution
on the edge of boundary layer (pe)is obtained. Similarly, from the adjoint equations of
the Euler equations, an expression for the gradient with respect to design variables is
derived.

4.1 Codes used

For this study, it became necessary to utilize several codes, some of which are open-
source and publicly available, while others were developed in-house. Performing
optimization routine requires that these different codes can operate sequentially, ensur-
ing that the output produced by one code is executable by the next. The installation of
the various required modules (in Fortran and Python) is inherently tricky, and thus, fol-
lowing the guidance provided at the link https://mdolab-mach-aero.readthedocs-hosted.
com/en/ latest/ index.html in the installation section has proven beneficial. This ap-
proach helps to prevent conflicts between different module versions.
The framework employed in this work can be seen, in part, as an extension of the
MACH-Aero framework developed by the Multidisciplinary Design Optimization Labo-
ratory (MDO) Lab, from the University of Michigan. Specifically, they share the same
flow equation solver. As previously mentioned, the first step is to find the pressure
distribution, Cp, on the airfoil surface by solving the Euler equations. To accomplish
this, we utilized the ADflow code (for more details, refer to [11]) , which serves as a
3D structured compressible Euler and RANS finite-volume solver. To enhance the
solver’s robustness, we employed the approximate Newton–Krylov solver implemented
in ADflow (for more details, refer to [12]) .
Noting the pressure distribution around the profile, some in-house codes are employed
for solving the compressible flow equations and stability equations within the boundary
layer. Regarding these steps, in Table 4.1, the codes used are mentioned. As seen
in Table 4.1, the computation of mean flow within the boundary layer is carried out
using the BL3D code, which takes as input the pressure distribution around the airfoil
obtained by solving the Euler equations. The code has been developed to account for

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/index.html
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/index.html
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Table 4.1 In-house codes employed for computing mean flow quantities and perform
stability analysis within the boundary layer.

Equations
solved

Code
Direct solution Adjoint solution

BLE BL3D ABL3D
PSE NOLOT ADNOLOT

non-parallel flow conditions, allowing for the consideration of cross-flow components
that may arise on wings with non-zero sweep angles, as in the case study considered in
this work.
The details regarding the NOLOT code are extensively covered in [13], and for this
reason, they are not reiterated here. The code is utilized for solving compressible Parab-
olized Stability Equations (PSE) and has been developed to consider compressibility,
surface curvature, and non-parallel effects within the boundary layer, encompassing all
conditions that may occur in the study of flow around the airfoil.
After solving all direct equations, we will proceed to solve the adjoint equations in re-
verse order: firstly, the adjoint of the PSE (APSE) will be solved using the ADNOLOT
code, followed by the adjoint of BLE (ABLE) using the ABL3D code. Both APSE
and ABLE are adjoint codes of the previously mentioned codes, and their reference
documentation is [4]. After solving the adjoint equations within the boundary layer,
the adjoint of the Euler equations is solved using the open-source code ADflow [9].
At the end of this chain, upon solving the adjoint of the Euler equations, we obtain
the desired gradients. Hence, sensitivity analysis can be performed to modify the
geometry and achieve the variations desired in the objective function. The complete
set of options used in the various aforementioned codes is provided for completeness in
the corresponding Appendix at the end of this work.



Chapter 5

Flow case

The objective of this study is to implement an optimization calculation referring to
the infinite swept wing condition. The infinite swept wing problem is a classical
aerodynamic problem used to study the flow over a wing with an infinite span. This
simplified configuration allows the analysis of fundamental aerodynamic phenomena
without the complexities introduced by wingtip effects and finite span. In this problem,
the wing is assumed to have an infinite span in the chordwise direction, meaning
that the flow conditions at any given chordwise location are identical. Typically,
the wing is modeled with a uniform cross-section along the chord, and the flow is
assumed to be two-dimensional in the plane perpendicular to the chord. This problem
is particularly interesting in the field of aerodynamics due to its relevance to real-
world aircraft configurations, especially high aspect ratio wings found in many modern
aircraft designs. Researchers use the infinite swept wing problem to investigate various
aerodynamic characteristics, such as lift and drag distributions, spanwise flow patterns,
and the effects of sweep angle on aerodynamic performance. The insights gained from
studying this simplified problem can then be applied to more complex configurations
to improve aircraft design and performance.
The reason for considering this type of problem is to extend the preliminary study
conducted by Moniripiri et al. [1] to the case of a non-zero sweep angle, Λ. This
involves considering not only the typical TS instabilities of a rectangular wing but
also the cross-flow instabilities that occur in the flow around tapered wings. The
subsequent objective of this work is to implement a new optimization algorithm to
delay the transition of the boundary layer on tapered wings by appropriately modifying
the wing profile shape, since wings with this configuration are widely used in general
aviation planes.



34 Flow case

Since boundary conditions significantly influence the results of the study, the developed
algorithm has been kept as generalized as possible so that it can accommodate different
flow conditions with minimal implementation effort. It’s worth noting the ease with
which the geometry of the considered wing (baseline airfoil coordinates, Λ, etc.) and
consequently the properties of the employed mesh can be modified.
In this specific case, the NLF(2)-0415 airfoil, designed for commuter aircraft applications,
was selected for analysis to potentially compare the results of Moniripiri et al. obtained
for Λ = 0◦ with those reported here for Λ ̸= 0◦. This airfoil is optimized for natural
laminar flow, making it interesting to assess how surface waviness may affect boundary
layer stability characteristics, in addition to attempting to modify its surface to pursue
the benefits of delaying the transition of the boundary layer.
As a purely informative note, some preliminary simulations regarding the study of
boundary layer transition were also conducted for the NLF Mj3 airfoil. This decision
was made because a similar study, albeit following an experimental approach, was
conducted at TU Delft, yielding satisfactory results. Building on this observation, the
initial intention was to partially recreate what was highlighted by the Dutch colleagues,
while attempting to optimize the profile’s performance. However, since the results of
their study have not yet been made public, a comparison would not have been possible,
albeit certainly interesting. Nevertheless, since the development of this algorithm still
needs to be refined, the results related to the Mj3 profile are not published here; in
any case, this once again, confirms the high flexibility of the developed algorithm.
For the investigation of flow conditions, a parametric study approach was adopted
to analyze and compare the most influential variables. The selected flight conditions
were defined by specifying the values of Mach number, M , Reynolds number, Re, and
the angle of attack, AoA, in the numerical codes. Additionally, the thermodynamic
properties of the air were computed for an altitude of 9600m, following the U.S.
Standard Atmosphere 1976, [14].
In the results sections, the specific flow conditions utilized will be detailed. The
computational domain, employed for solving the Euler equations, along with the AoA,
and the boundaries (xms and xme) delineating the region on the airfoil used for stability
analysis and optimization, are depicted in Figure 5.1. It’s important to note that a
C-domain grid structure was employed, typical for studies involving sharp trailing-edged
airfoils; this allows the utilization of a structured mesh. A farfield boundary condition
encompasses the domain, while a no-penetration boundary condition is enforced on
the airfoil surface. Although Figure 5.1 presents a 2D cross-section, it is important to
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(a) Schematic representation of computa-
tional domain. (b) Mesh of computational domain.

(c) Representation of computational domain.

Figure 5.1 Computational domain and meshes.

emphasize that the actual mesh utilized is three-dimensional, as ADflow is a 3D CFD
solver. Thus, the domain is extruded in the spanwise direction with one volume cell.
Regarding the choice of boundary conditions, it’s noteworthy to observe the following:
the desired flow condition resembles that of an infinite sweep problem, necessitating the
use of periodic boundary conditions on the domain’s sides instead of the conventional
symmetric boundary conditions. This approach allows for consideration of spanwise
invariance while maintaining the angle Λ condition and ensuring rigor in defining
the incoming and outgoing flow surfaces. However, during the implementation of
simulations, it was observed that periodic boundary conditions are not implemented
within the ADflow code. Therefore, after suitable geometric transformation, symmetric
boundary conditions were employed. Further details regarding this transformation are
provided in Section 5.1.
Concerning other aspects of the mesh, a structured grid with 1198 grid points (598
volume cells) on the airfoil surface was utilized. The total mesh comprised 69,201
volume cells generated using the Construct2D mesh generator code [15]. The mesh
dimensions depicted in Figure 5.1a are not to scale; the values of the dimensions (dim1,
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dim2, dim3) were set relative to the chord length, c (unitary dimension), with respective
values of 150c, 170c, and 140c. It’s important to highlight that, for the purpose of
validating the adjoint implementation, a mesh with 792 grid points (395 volume cells)
on the airfoil was employed to mitigate computational costs. However, the finer grid
(with 1198 grid points on the surface) was utilized for all other simulations conducted
in this study.

5.1 Transformation 2.5D

In Chapter 5, we discussed the necessity of considering the transformation of the
geometric coordinates of the airfoil due to the absence of periodic boundary conditions
in ADflow. Specifically, we need to transition from the streamwise coordinates, which
are the conventional coordinates used to describe the wing geometry (i.e., considered
in the direction of the undisturbed flow), to the coordinates in the direction referred to
as normal-to-chord, i.e., in the direction normal to that defined by the wing’s leading
edge. Obviously, in the case where the angle Λ is zero, the two directions coincide. In
this way, employing symmetric boundary conditions, it will be possible to bypass the
limitation of the chosen CFD solver, while still considering the desired flow conditions.
For clarity, refer to Figure 5.2, which illustrates the reference problem and where the
aforementioned coordinate systems, streamwise (x, y, z) and normal-to-chord (x′, y′, z′),
are shown. For completeness, the definition of the curvilinear abscissa s and the
curvilinear coordinate system (ξ, η, z) are also provided, the latter of which is not
particularly relevant to our discussion; the infinitesimal coordinate ds is instead defined
as ds = dx2 + dy2 + dz2.
Therefore, it is necessary to introduce the transformation. Actually, two types of

transformations are possible, which are subsequently reported in mathematical formula:

x → x cos Λ
z → z

,


x → x

z → z

cos Λ
. (5.1)

In the treatment performed, it was chosen to use the transformation on the right as
reported above; however, the same result could have been obtained using the other
proposal. At this point, it is necessary to transform the quantities of the flow appropri-
ately, in particular:
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Figure 5.2 Representation of the infinite swept wing problem studied with their
respective coordinate systems used. Please note that in this figure, the y-z axes (and
the corresponding rotated ones) are inverted compared to the rest of the treatment.

Q2D = Q cos Λ
M2D = M cos Λ

(5.2)

where the quantities without subscript refers to the variables of the actual three-
dimensional flow, while the subscript 2D refers to the flow conditions corresponding to
the actual ones but considered in such a way that it is possible to apply the symmetric
boundary conditions. The rigorous definition of these quantities is of fundamental
importance for a correct execution of the study, as the output of interest of the simula-
tion in ADflow is the pressure distribution, Cp, which will be used as input data in the
BL3D code for solving the equations within the boundary layer, and this obviously
depends on the velocity field around the profile. Here it is noted that BL3D is capable
of considering non-parallel flow conditions, so with Λ different from zero; this means
that after having calculated the solutions of Euler, it is possible to return to the
streamwise coordinate system.
So the calculation of Cp must account for the wing’s sweep angle, as depicted in the
following equations:

Cp2D
= p− p∞

1
2ρ∞Q2

2D

= p− p∞
1
2ρ∞Q2

1
cos2 Λ = Cp

1
cos2 Λ

Cp = Cp2D
cos2 Λ

(5.3)

Referring to the NLF(2)-0415 airfoil already mentioned, in Figure 5.3a, we want to
show the transformation of the coordinate system just mentioned; as observed, the
geometry in the direction normal to the chord has a greater thickness compared to
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the streamwise one. The procedure just described, which allows to switch from the
aerodynamic performance of a straight wing to those of a wing with sweep angle, in
the literature is also known by the name of 2.5D transformation; further information
regarding this can be found in [16], where the treatment is also extended to the case of
wings with sweep and taper (2.75D transformation).

(a) Representation of the NLF(2)-0415 airfoil profile in streamwise and
normal to chord coordinates at AoA.

(b) Representation of the NLF(2)-0415 airfoil profile in streamwise and
normal to chord coordinates at AoA = 2◦ for both cases. The normal to the
chord geometry is obtained by rotating the original one by the angle AoA
and then applying the transformation described by Equations 5.1. The
observed ∆ angle originates from the transformation if the corrective factor
of the angle of attack for passing from AoA to AoA2D is not considered
(refer to Equations 5.3).

Figure 5.3 Graphical visualization of the 2.5D transformation described in Section 5.1
with reference to the NLF(2)-0415.

It is worth noting that the transformation just described is not sufficient to ensure
that the flow conditions in the two different coordinate systems are equivalent. It is
observed that, by introducing a non-zero AoA, rotating the coordinates of the original
airfoil, i.e., giving incidence to the flow, and then transforming them as described in
Equations 5.1, results in the creation of a ∆ angle, as illustrated by way of example in
Figure 5.3b for the NLF(2)-0415 airfoil. Following simple algebraic steps, it is possible
to introduce the correction for AoA, while maintaining a strict correspondence:
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AoA → AoA2D

AoA = arctan
[
z

x

]
AoA2D = arctan

[
z/ cos Λ

x

]
= atan

[tanAoA
cos Λ

] (5.4)

For greater clarity, Figure 5.4 shows an illustration of the solution process followed.
Despite the considerations mentioned above, throughout the following, reference is
always made solely to the streamwise flow quantities, as they are the ones that actually
matter for comparative studies with other results, etc., since the other quantities have
been introduced only to bypass the ADflow limit.

Figure 5.4 Flowchart of the coupled solution method in the streamwise and normal to
chord directions.





Chapter 6

Algorithms for finding
manufacturing tolerances

In this Section, we describe the methodology used to calculate dimensional tolerances,
which we defined at the outset of this study as the worst-case scenario condition. The
approach follows the philosophy developed by Moniripiri et al. [1].
To identify manufacturing tolerances, the largest permissible waviness profile with the
minimal L2-norm of surface deformations that could potentially trigger premature
transition due to waviness on the airfoil has to be defined. Roughly speaking, the
waviness profile mentioned is the one that will induce first transition at a particular
position of the chord if compared with other surface deformations with the same
L2-norm. Once this waviness profile is established, manufacturing tolerances can be
computed accordingly. This profile is derived through solving an optimization problem
utilizing gradient-based methods. As mentioned extensively previously, in this study,
the calculation potential of the adjoint method is employed to compute gradients.
To determine the allowable waviness profile, actually, two different optimization prob-
lems are solved: an unconstrained optimization employing gradient ascent (GA) method
and a constrained optimization using sequential least squares programming (SLSQP).
Here, it has been decided to consider two different optimization approaches in order to
compare the capability of both methods to find the waviness profile we are interested
in. In particular, it is noted that the GA method has the advantage of solving the
optimization problem with a good ratio between accuracy and time for computing
the solution, despite not achieving the optimal solution. The GA approach, in fact,
approximates the solution closely to the optimum. On the other hand, the SLSQP
has the peculiarity of finding the optimal solution but with the cost of requiring much
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more time to reach convergence.
By definition of the algorithm, SLSQP performs multiple function evaluations in the
process of searching for a new direction; SLSQP is time-consuming when compared
with the GA, where function evaluation is performed only once between each new
gradient computation. Obviously, the comparison between two optimization algorithms
has to take into account the computational cost of function evaluation which is com-
monly quite high in fluid flow simulation, i.e., CFD. In our case, whereas we recur to
viscous-inviscid coupled solution and the cost of computations is not extremely high,
we can easily notice the difference in time solution. The subsequent sections describe
these optimization problems and the algorithms employed to solve them.

6.1 Gradient ascent method (GA)

The methodology presented in the flowchart in Figure 6.1 provides an overview of
the approach. The sensitivity of kinetic energy with respect to surface grid points
(∇zE(z)) for the baseline airfoil is established through the steps delineated in Figure
5.4. Initially, employing NOLOT code to perform stability analysis, the growth history
of the most unstable mode over the airfoil is determined, presenting the N -factor
curve, which serves as a monitoring metric in the algorithm. Afterward, an appropriate
increase in the maximum N -factor value, denoted as ∆N , is determined based on the
critical N -value employed in the design of the NLF airfoil. Once ∆N is established, the
waviness profile aimed at augmenting the maximum N -factor by ∆N units is obtained
by incrementally moving in the direction of the gradient of E. Note that there is no
objective function to be minimized in this approach. The GA algorithm employed to
find the waviness profile can be expressed as:

zn+1 = zn + γ
∇zE(zn)

max|∇zE(zn)| . (6.1)

Here, zn represents the vector of the airfoil’s surface nodal vertical coordinates at
iteration n, and γ denotes a small step size. It should be noted that at each iteration,
the step that we take in the direction of the gradient is ∇zE(zn)

max|∇zE(zn)| . This results in an
optimal deformation in a local sense, as the gradient shows the direction of maximal
increase of E for each iteration; however, as will be shown later, such local optima
could not lead to an optimal deformation in a global sense after several iterations.
In this algorithm the expected value for ∆N represents both the input and the
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convergence criterion.
In section 6.1.1, we describe the process of projecting the gradient onto a specified
waviness profile and taking sufficiently small steps in the gradient direction to derive
the new waviness profile. Subsequently, the algorithm updates the geometry and grid
utilizing the IDWarp package (refer to [17]) to solve all direct and adjoint equations
for the newly modified airfoil and determines the new gradient. This iterative process
continues until the convergence criterion ∆N is attained.
It is noteworthy that as the airfoil shape changes at each iteration, the most amplified
disturbance mode within the boundary layer may also change. Hence, as an option,
the algorithm can identify the most unstable mode for the corresponding geometry at
each iteration and solve all equations based on the newly updated mode. Moniripiri
in his work highlighted that the geometric changes induced during the optimization
process are typically very small. Consequently, the parameters of the most unstable
modes tend to remain relatively unchanged throughout iterations. Therefore, updating
the mode for each iteration is often unnecessary, leading to significant time savings in
performing the optimization calculations. Even though this observation might have
been predictable, it was necessary to verify it numerically, as it was done.

Figure 6.1 Algorithm for finding the waviness profile for a target ∆N using GA method.
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6.1.1 Gradient projection

At this point, it’s worth noting that the wavelengths of potential waviness on airfoils
typically stem from the manufacturing process and the structural composition, partic-
ularly with composite panels, along with induced deformations due to the presence
of numerous rivets on the surface. Following this observation, it appears logical to
introduce a kind of control parameter related to the wavelengths, aiming to constrain
the possible deformation of the airfoil’s surface. To achieve this, we perform a projection
of the gradient onto a specific basis. In this particular approach, at each iteration, we
project the gradient onto a basis of k sine Fourier modes, expressed as:

(∇zE)pr =
k∑

n=1

[
bn sin

(
nπ(x − xms)
xme − xms

)]
, (6.2)

where bn in the coefficient of the nth Fourier mode considered, and it is calculated as

bn = 2
xme − xms

∫ xme

xms

∇zE(x) sin
(
nπ(x − xms)
xme − xms

)
dx, (6.3)

In Equation 6.3, x is the vector of surface nodal coordinates along the chord.
For the NLF(2)-0415 used in this work, it has been decided to consider xms = 8%
and xme = 70% of the chord to discard sensitivity where numerical issues corrupt the
results; thus, only the meaningful part of the airfoil is considered. To ensure that
displacements at the extremes of the domain [xms, xme] are always zero, effectively
eliminating forward- or backward-facing steps on the airfoil, only half of the Fourier
basis has been chosen. Specifically, the sine basis is utilized, as it is zero at the extremes.
After projecting the gradient, we use (∇zE)pr in the algorithm.

6.2 SLSQP method

In this Section, we present how to derive the solution of the optimization problem
using the SLSQP algorithm from the SciPy library in Python. The SLSQP algorithm,
based on Kraft’s work [18], determines a local search direction by solving the second-
order local approximation of a cost function that satisfies the constraints [19]. We
propose this approach because, as previously highlighted, relying solely on the gradient
direction as in GA method does not assure achieving the profile with the minimum
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L2-norm necessary to reach the specified ∆N . To overcome this limitation, we solve
a constrained optimization problem to ensure that the solution with the minimum
L2-norm value is obtained. The surface of the airfoil is be parameterized using k sine
Fourier bases, which also determines the minimum wavelength of waviness on the
surface as

z = z0 +
k∑

n=1

[
bn sin

(
nπ(x − xme)
xf − xms

)]
. (6.4)

In SLSQP approach the Fourier coefficients, bn, are considered as design variables and
they are found as the solution to the following optimization problem:

min
∆z∈R

J = ∆z1
2 + ∆z2

2 + ...+ ∆znp
2

with respect to b1, b2, ..., bk

subject to E = Etarget = ERE0

(6.5)

Here, J represents the objective function, which corresponds to the L2-norm of the
deformations. ∆zi = zi − z0,i denotes the vertical surface deviation of the ith node on
the surface. np stands for the number of surface grid nodes to be modified. E represents
the kinetic energy of disturbances in the boundary layer, while Etarget denotes the
target kinetic energy of disturbance in the boundary layer, which corresponds to a
specific ∆N . Additionally, E0 represents the kinetic energy of disturbances in the
boundary layer for the clean baseline airfoil, and ER signifies the ratio between these
two.
To solve (6.5) using SLSQP, it is necessary to compute the gradients of the objective
function and constraint with respect to design variables, i.e., dJ

dbn
and dE

dbn
. The gradient

dJ
dbn

can be derived analytically, employing the chain rule, from the definition of the
objective function in (6.5) and the parameterization of the surface (6.4)

dJ

dbn

= dJ

dz

dz

dbn

. (6.6)

Also, dE
dbn

can be calculated using the chain rule from gradients of the kinetic energy
of perturbation with respect to surface deformation dE

dz
, which is obtained from the

adjoint method, and dz
dbn

as
dE

dbn

= dE

dz

dz

dbn

. (6.7)

Once dJ
dbn

and dE
dbn

are calculated, they are passed to the optimizer to find the optimal
values for the Fourier modes amplitude, represented by the design variables bn. Subse-
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quently, the waviness profile is reconstructed using Equation 6.4.
One of the major differences between this approach and gradient ascent is that in
gradient ascent, the target ∆N serves as both the input and stopping criterion for the
algorithm. While the algorithm progresses in the direction of the gradient of the kinetic
energy of perturbations, it monitors the value of ∆N at each iteration until the desired
value is reached. In the SLSQP approach, however, we cannot directly use the target
∆N as a constraint because we calculate the gradient of kinetic energy, not the N -factor,
with respect to surface deformation. Additionally, we need to pass the gradient of the
constraint with respect to the design variables to the optimizer. Therefore, we need to
establish a correlation between the target ∆N and its corresponding kinetic energy of
the domain (Etarget). This correlation can be determined through trial and error by
selecting a specific Etarget and examining the resulting ∆N , or it can be approximated
from the results of the gradient ascent method. In this study, the second approach is
feasible since we have the results from the GA method. Therefore, it seems reasonable
to pursue this.

6.3 Manufacturing tolerances definition

The waviness profiles obtained through GA and SLSQP algorithms represent the largest
allowable profiles, characterized by the minimum L2-norm of surface deviations when
using the second mentioned, which will increase the maximum growth of convective
instabilities by a predefined amount, defined as ∆N .
Largest allowable profile with minimum L2-norm of surface deviations implies that any
other waviness profile with the same L2-norm is not as worse as that case in terms of
amplifying the instabilities inside the boundary layer. A definition of the tolerance in
terms of the L2-norm of surface deviations of the largest allowable deformation profile
with respect to the clean airfoil is available in the literature, and its form is as follows:

htol =
√

1
(xme − xms)

∫ xme

xms

(∆zi)2 dx (6.8)

where the surface nodal vertical deformation, calculated using both optimization
methods previously presented, for each point in the interval [xms, xme] is denoted with
∆zi. Obviously, in Equation 6.8, only one flight condition in terms of angle of attack,
Reynolds, and Mach number is considered, as well as only one k number of Fourier
modes.



Chapter 7

Algorithms for transition delay of
BL through geometric optimization

This study aims to define a methodology for shape optimization of an airfoil to delay
boundary layer transition, which can also be described as the best-case scenario. The
analysis can be conducted starting from any baseline geometry, but it is particularly
interesting when applied to a natural laminar flow airfoil.
To define the optimal geometric shape, a methodology very similar to that presented in
Chapter 6 is employed, which involves solving a gradient-based optimization problem
based on the adjoint equations, as explained earlier. As presented for the tolerance
study case, in this study, two problems are solved to determine the optimal shape: an
unconstrained problem using the gradient descent (GD) method, and a constrained
optimization problem using SLSQP. The reasons for these choices are the same as
those presented in Section 6, so we will not repeat ourselves.

7.1 Gradient descent method (GD)

The idea behind the approach is very similar to the one proposed in Section 6.1, as
can be seen by comparing the previous scheme reported in Figure 6.1 with the one of
the current study depicted in Figure 7.1. After using the NOLOT code for performing
stability analysis and determining the growth history of the mode we are interested in,
namely the N -factor curve, our aim is to decrease the maximum value of the N -factor
to dampen this unstable mode and attempt to delay the transition of the boundary
layer. In contrast to what was done for the worst-case scenario, here we aim to decrease
the N -factor from its initial value. To adapt the algorithm already implemented for the
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other case, we can set a negative value for the target change in N , ∆N . This accounts
for the fact that we are examining the best-case scenario.
After selecting ∆N by taking small steps in the opposite direction of the gradient,
aiming towards the minimum of the objective function, i.e. kinetic energy E, we can
find the optimal shape. Unlike what was presented in Section 6.1, here our goal is to
minimize the objective function because it is directly linked to the phenomena that
trigger the transition of the boundary layer. The sensitivity of energy with respect to
surface grid points, ∇zE, for the baseline airfoil is determined again using the steps
outlined in Figure 5.4.
The perturbed geometry for the purpose of transition delay is determined by:

zn+1 = zn − γ
∇zE(zn)

max {|∇zE(zn)|} (7.1)

where the formulation is identical to the one in Equation 6.1, except for the direction
in which we are moving, which is defined by the minus sign in front of the step size γ,
which is assumed to be positive. In Equation 7.1, n represents the number of iterations.
As previously mentioned, since the gradient is calculated for each iteration, indicating
the direction of maximum decrease of the kinetic energy for the corresponding iteration,
this optimization scheme leads to a locally optimal deformation. Hence, we also propose
considering the SLSQP optimization algorithm to aim for a globally optimal solution.
The methodology is the same as presented in Section 6.1: subsequent iterations continue
until the convergence criterion ∆N is reached, and for each iteration, the IDWarp
package is utilized to create a new grid considering the updated airfoil geometry.
Since the geometry changes from one iteration to the next, the stability analysis within
the boundary layer could result in a different most amplified disturbance mode. To
address this, the NOLOT code can be run for each iteration, considering a different
perturbation mode for each iteration.
While the steps mentioned above are largely the same as in the worst-case scenario,
it is crucial to note that the main difference between the two studies lies in how the
output of the sensitivity analysis is used to update the geometry. This is explained in
the following sections.
The projection of the gradient is necessary to smooth the output of the adjoint loop
and parameterize it appropriately, both for creating a surface geometry with physical
meaning and for ensuring the shape of the final solution can be reproduced during
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manufacturing processes. After projection, the gradient information is used to move
by a sufficiently small step in the locally optimal direction.

Figure 7.1 Algorithm for finding the surface shape for transition delay of the boundary
layer using GD method.

7.1.1 Gradient projection

A powerful technique for shape parameterization in aerodynamic optimization was
introduced by Hicks and Henne in the 1970s, [20]. They advocated using a series of
smooth functions to deform the initial geometry. The different Hicks and Henne (H-H)
functions can be chosen such that only specific regions are refined, while the rest of
the object to be optimized remains virtually undisturbed. The main advantage is that
fewer design variables are needed to provide an adequate design space. Another benefit
compared to the mesh point approach is that the computed gradient always remains
smooth. This ensures that the successive surface shapes remain smooth. On the other
side, one of the few disadvantage of the these functions is that they are not orthogonal,
and they are unable to represent the complete set of continuous functions that vanish
at limits of the domain of definition, wheres they tend to zero at the ends. Thus, they
do not guarantee that a solution, for example, of the inverse problem for a certain
target pressure distribution will necessarily be attained.



50 Algorithms for transition delay of BL through geometric optimization

Specifically, following the idea of Hicks and Henne, the geometry modification can be
described as a weighted sum of smooth sine bump functions as illustrated below:

f(x, a, h, t) = a
[
sin(πx)

log(0.5)
log(h)

]t

= af0(x, h, t), (7.2)

where a, h, and t are the parameters defining the shape of the function itself while
x is the vector of coordinates where the function is defined. Specifically, the above-
mentioned parameters control respectively the maximum value of the function, the
point in the domain x where the bump takes its maximum value, and the width of the
bump itself. In the more general definition, these parameters are to be understood as
vectors, and the nth function obtained by considering the corresponding nth component
of the vectors a, h, t, can be rewritten as follows:

fn(x, an, hn, tn) = an

[
sin(πx)

log(0.5)
log(hn)

]tn

= anf0,n(x, hn, tn). (7.3)

Figure 7.2 Shape of Hicks-Henne bump functions for different values of parameters a,
h, and t.

In this case, we can obtain a series of functions that define a space onto which quantities
such as the gradient can be projected for parameterization. Thus, for example, in the
case presented here, this limits the shapes that the new geometry could assume to
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some extent. In Figure 7.2, a series of H-H bump functions are shown, illustrating how
the function varies with respect to two of the parameters on which these functions
depend. As can be seen, the functions exhibit a rather peculiar behavior: by keeping all
parameters fixed except one, the shape of the function does not remain invariant. Just
for clarity, in Figure 7.2, note that fixing the parameter t, although related to the width
of the function, does not strictly constrain it as other parameters vary. This aspect
must be taken into account when numerically implementing the problem, especially
when it is desired to specify the parameters defining the shape of the function in
relation to geometric reference quantities, such as the chord length of the airfoil.
Our goal is to utilize gradient information to define the amplitude of the bump functions,
which have been chosen as the basis for sensitivity projection; for this reason, the
parameters an in Equation 7.3 are set equal to one, essentially assuming a unit maximum
value for the H-H functions we are dealing with. The projection of the gradient will
provide us with the amplitudes, indicating in a sense the similarity between a space
defined by a certain number of chosen bump functions and the shape of the function
∇zE. The choice of the H-H function space, essentially the dimension of the vectors
a, h, t, in a way constrains the problem; for these reason it is required a systematic
solution approach which consider different parameter sets in order to evaluate which
among these sets effectively represents achieving the condition of optimality (while
remembering that in the use of the gradient-based approach, optimally condition
intrinsically does not represent the global optimum). Regarding this aspect, to identify
the optimal solution, we might be interested in selecting the geometry that minimizes
the objective function while simultaneously ensuring the minimum L2-norm from
baseline configuration.
The projection of the gradient onto a basis of k predefined H-H functions is performed
as

(∇zE)pr =
k∑

n=1
bnf0,n(x, hn, tn) =

k∑
n=1

(
bn

[
sin(πx)

log(0.5)
log(hn)

]tn
)
, (7.4)

where the coefficient of each bump function, bn, is calculated as

bn =
∫ xme

xms

∇zE(x)f0,n(x, hn, tn)dx =
∫ xme

xms

∇zE(x)
[
sin(πx)

log(0.5)
log(hn)

]tn

dx. (7.5)

In Equations 7.4–7.5, x denotes the vector of surface nodal coordinates along the
chord. The Fourier basis projection carried out in Section 6.1.1 holds advantages over
the one performed here using the H-H functions. Firstly, as previously stated, the
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chosen functions do not become null at the boundaries of the domain, although they
approach zero. The issue may arise due to the parameters defining the shape of the H-H
functions, which are intended to be specified in terms of the characteristic dimensions
of the airfoil profile being optimized, namely the chord length c. However, we aim to
modify only a segment of the profile surface, precisely from xms to xme. This could
lead to complications for certain combinations of parameters h, t, especially when
the x-coordinate at which the function reaches its maximum is positioned near the
domain boundaries [xms, xme]. This situation might result in a discontinuity between
the unaltered and modified segments of the profile, thereby causing convergence issues
in solving the equations within the boundary layer using the BL3D code. An additional
issue may arise when using an overlap of multiple closely spaced H-H functions; in such
cases, sharp convex-shaped regions may be created that, instead of delaying, promote
the transition of the boundary layer. In this regard, it has been proposed to consider, in
problematic cases, not the overlap of the H-H functions as initially proposed in Equation
7.4, but rather their envelope, ensuring that not only the chosen functions for parameter-
ization are smooth, but also their composition. What explained could be represented by

(∇zE)pr = envelope
{

k∑
n=1

bnf0,n(x, hn, tn)
}
. (7.6)

Therefore, unlike the Fourier basis projection, it is necessary to manually verify whether
the set of parameters for the chosen H-H functions is optimal to ensure that the gradient
∇xz in the vicinity of xms and xme is smooth (as well as the curvature, second derivative)
and the global shape is reasonable. These aspects make the generalization of the study
to any flow conditions and airfoil geometry considerably complex, essentially due to
the behavior that ∇zE can exhibit. Deeper studies are required in this regard to find
the optimal way to utilize the information from the sensitivity analysis and employ it
most effectively to move towards the optimal solution as fast as possible.
As for the tolerance study, for the NLF(2)-0415 airfoil utilized, xms = 8% and xme = 70%
of the chord are designated to exclude the front portion where sensitivity is highly
spiky, and the rear portion where the BL3D code fails to converge due to separated
flow.
Subsequent to the gradient projection, we employ (∇zE)pr in the algorithm.



7.2 SLSQP algorithm 53

7.1.2 Gradient smoothing

In this section, a more rudimentary approach of utilizing the gradient information is
presented, which has the advantage of being much more direct but also the disadvantage
of not constraining, in a sense, the possible shape of the new profile that will be
used in the subsequent iteration of the optimization process until convergence. The
proposal is to employ a smoothing function to make the shape of ∇zE as physical as
possible and apply it directly to define the new geometry. There are several smoothing
functions available in the literature; however, it is necessary to consider only those
that allow eliminating oscillations while at the same time not altering the overall
trend of the sensitivity so as not to modify the information provided by the gradient
itself. Some examples of functions available in the literature and already implemented
within numerical codes are Savitzky-Golay Filtering, Moving Average Filtering, Local
Regression Smoothing (refer to [21]). These functions are particularly flexible as they
have various adjustable parameters that regulate how the filtering operation modifies
the data compared to the original ones.
For this treatment, an in-house smoothing function has been used, which has the
peculiarity of generating a particularly rounded curve without altering the overall trend
of the original one. Indeed, it has been observed that this latter one, compared to the
previously mentioned functions, allows for a better output. The in-house function is
an iterative weighted averaging filter as the smoothing function is applied iteratively
for the number of times specified as an input parameter; this function is presented
directly in the Section 8.3 dedicated to the numerical implementation of the same.
Again, the region of interest of the profile is included between xms and xme. At the
end of the smoothing operation, we employ (∇zE)smth in the algorithm.

7.2 SLSQP algorithm

The implementation of the SLSQP algorithm for the study of transition delay exactly
overlaps with what was presented in Section 6.2, therefore, to avoid repetition, we refer
directly to that section.
Of course, what will change is the parameterization of the airfoil geometry compared
to what was proposed in 6.4. It indeed takes the form as follows:

z = z0 +
k∑

n=1

(
bn

[
sin(πx)

log(0.5)
log(hn)

]tn
)
. (7.7)
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The implementation of this algorithm within the SciPy library of Python can indeed
be used somewhat as a black box once the principle of operation of the algorithm and
how the objective function, design variables, and constraints should be defined are
understood. In the study of transition delay, these quantities are entirely analogous
to the worst-case scenario; the only difference will be that, since the objective is to
dampen the most unstable mode, the final kinetic energy of the system, E, used as a
constraint in the optimization problem will be lower than the energy corresponding to
the baseline geometry. The design variables will still represent amplitudes, but in this
case, they will be those of the chosen H-H functions for the projection instead of the
Fourier modes. In conclusion, the objective function, J , remains unchanged, which is
the L2-norm of the deformation added to the baseline airfoil. Therefore, it is possible
to refer directly to Equation 6.5.
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Code developing

In this Chapter, the codes developed during the project that enabled the implementation
of the study are presented. It was decided to include the description of the scripts
within the thesis itself rather than solely listing them in the Appendix. This decision
was made because writing the scripts consumed a significant portion of the internship
period, and therefore they are to be considered as one of the main activities that were
carried out.
Specifically, the tasks related to code development required writing scripts in Python
and Bash languages. Below is a description of the codes used for the implementation
of the optimization algorithm. Scripts are reported in Appendix A.

8.1 Mesh generation

The initial stage of the numerical simulation requires mesh generation to solve the
fluid flow equations, specifically the Euler equations, as outlined in Section 1.1. To
overcome the limitation of the boundary conditions available in ADflow, in Section 5.1,
the need for performing the 2.5D transformation of the baseline profile coordinates
was discussed in case a non-zero sweep angle, Λ, was desired. Since the aim of the
work was to develop a workflow as general as possible, the possibility was considered
that the baseline profile geometry could be provided either in the form of a matrix
containing the coordinates (x, y, z) in a .dat file or in three-dimensional format within
a .cgns mesh file. Based on this observation, the algorithm was developed so that
the 2.5D transformation is performed automatically depending on the file provided as
input containing the geometry.
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8.1.1 Construct2D

For mesh generation, the open-source code Construct2D [15] was used as it allows
extremely rapid generation of C-grid or O-grid meshes around airfoil profiles. The
code was chosen because the quality of the meshes it produces is very good, especially
considering that this work deals with the coupled solution of the viscous-inviscid
problem, i.e., solving Euler for the flow region outside the boundary layer, therefore
extreme grid refinement is not required. Additionally, Construct2D allows the creation
of three-dimensional meshes with unit dimension in the span direction, which is suitable
for studying the infinite-swept-wing problem intended to be addressed here, considering
that ADflow is a 3D solver and thus requires a three-dimensional grid.
In Code A.1, an excerpt of the entire code in Bash language to be execute for opti-
mization studies is provided. In lines 10-22, the extension of the input file is checked,
which, as mentioned, can be either .dat or .cgns; the file name is provided by the user
in the initial section of the complete code, along with all other simulation parameters.
In case the format of the input file is different from those allowed, an error message is
displayed to interrupt the execution of the algorithm. Depending on the file extension,
Code A.2 or Code A.3 is executed for the execution of the coordinates transformation,
which ore commented in Sections 8.1.2 and 8.1.3, respectively.
In line 28, the number of discretization points of the profile surface is counted by
counting the number of rows (ignoring possible header rows), as this value is used by
Construct2D for mesh generation. Specifically, in lines 29-43, the configuration files
for grid creation are updated; in Appendix B, the above-mentioned files are reported
so that their structure and the type of input variables considered can be understood.
Here, only some parameters are considered; it is recommended to refer to the code
documentation for more details on the other parameters.
The variable nwke corresponds to the number of grid nodes in the wake region, in the
flow direction, and at line 39, the number of points on the profile in the nsfr variable
is taken into account. The definition of these variables is essential for the correct
creation of the mesh as the information contained in info_split.txt depends on what
has been set in the grid_options.in file. The number of points in the wake region is
determined in the code, considering that the last point on the horizontal wake line
departing from the trailing edge (TE) is the first, while the one on the TE is one
plus the number of grid points (nwke) specified in the grid_options.in file. This point
can also be considered as part of the lower surface of the airfoil after accounting for
the points on the airfoil in counterclockwise order, corresponding to nwke+1 plus the
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number of points on the airfoil. In the info_split.txt file, the last number in the first
row represents the final point on the wake line coinciding with the trailing edge (TE),
while the last number in the second row indicates the number of points coinciding with
the TE as part of the lower surface.
In lines 45-50, the Construct2D code is executed, taking as input the aforementioned
files as well as the file containing the profile coordinates in the normal-to-chord direction,
in order to obtain the corresponding mesh, as specified in Section 5.1. An important
note to prevent errors: the coordinate file provided to ADflow must necessarily contain
a header line (#) as the first line, due to the operation of the Construct2D code.
Subsequently, still using the file info_split.txt, the mesh file in .plot3d format is
translated into .cgns format and divided into three different zones using the cgns_utils

tool, so that it can be used in ADflow. The type of boundary condition used during the
simulation on each of the six faces of the newly created zones is specified by passing
the info_bc.txt file, reported in Appendix B; in this file, it is possible to understand
the correspondence of each boundary condition with the respective surface of the mesh,
considering also that some faces are shared by adjacent regions.

8.1.2 Transformation 2.5D from .cgns file

In Code A.2, the Python code for the 2.5D transformation starting from the coordinates
provided in the .cgns mesh file is presented. Lines 4-18 load the necessary modules
for extracting the coordinates from the mesh file and pass the values of the variables
required for the transformation, which are specified in the .sh script from which the
following Python code is launched. To ensure that there is a mesh file inside the
targeted folder, the coordinate extraction procedure is enclosed within an if condition;
if the file is not found, the execution of the algorithm is terminated. If the file is present,
the coordinates are extracted using the appropriate Python function implemented
within the ADflow code, called .getSurfaceCoordinates(). At this point, the surface
coordinates are saved in a file .dat, and in lines 45-47, the scaling factor is applied. It
is noteworthy at this stage that for the mesh creation with Construct2D, we need a
two-dimensional geometry file, while the function used to extract the coordinates from
the mesh object, being generally three-dimensional, provides us with the coordinates of
the profile at both ends along the spanwise coordinate. Therefore, to consider only one
slice of the mesh in lines 49-52, only the coordinates corresponding to the minimum
spanwise coordinate are considered (at the root); this procedure is correct in the case
where the mesh from which the coordinates are extracted refers to a rectangular wing
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without geometric twist; otherwise, it must be appropriately corrected. Before saving
the modified coordinates in the .dat file, the second and third columns are swapped;
this last step must also be checked, particularly by comparing the lift index variable
specified within the ADflow code (in Coupling*.py files) with the actual orientation of
the mesh.

8.1.3 Transformation 2.5D from .dat file

In Code A.3, we’re essentially doing the same thing as in Section 8.1.2, but using a
.dat as input file, containing coordinates organized in columns (x, y, z) in the format
of the well-known Xfoil code (refer to [22]), for a wing section only. If the reference
profile is available in Xfoil or if one desires to enhance the geometry discretization by
increasing the number of nodes on the surface, it is advisable to use the mentioned code
as it interpolates the data to create a smoothed geometry. The geometry refinement
procedure can also be performed if the input file is in .cgns format, as seen in the
previous section, since .dat files are generated that can be easily read by Xfoil. The
structure of Code A.3 is very similar to that of Code A.2, the operations are essentially
the same, although different functions are used; therefore, they will not be commented
on again.

8.2 Smoothing function

In this section, we comment on Code A.4, written in Python, in which the smoothing
function mentioned in Section 7.1.2 is implemented. The smoothing function is designed
to be used both to make the Cp and the geometry smoother, as both play a crucial role
in the implementation of the adjoint method, which is particularly sensitive to sudden
variations in the gradient of these quantities. Naturally, the smoothing operation
modifies the original values, so it is necessary to evaluate the introduced variation each
time and determine whether it is acceptable or not.
The input file for Code A.4 is geo.dat_1001, which contains the solution from ADflow,
specifically geometry and Cp in the streamwise direction, as they have been properly
subjected to the inverse 2.5D transformation, considering that BL3D requires this
format. At lines 20-21, the coordinates (x, y) are redefined accordingly, as the smoothing
function relies on the definition of the curvilinear abscissa s.
The myfilter in-house smoothing function is defined between lines 26 and 39. This
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function implements an iterative smoothing filter used to make a series of data,
represented by y, smoother. The function then executes an outer loop to iterate the
smoothing process the number of times specified by the variable n. Within this loop,
two nested loops are executed to iterate through all the rows and columns of the matrix
y. For each row of y, except for the first and last one, weighting factors ds1 and ds2 are
calculated using the s values in the previous and next rows. The values of the current
row of yout are updated using a weighted average of neighboring values, with weights
based on the factors ds1 and ds2. At the end of the iterations, the function returns
the yout array containing the smoothed data. In summary, this function applies an
iterative process to reduce noise in the data while maintaining the general trend of
the original data. The parameter that controls the degree of smoothing applied to
the data is represented by the variable n. As n increases, signifying the number of
iterations to perform, the effect of the filter becomes more pronounced, leading to a
greater reduction in noise in the data.
The quantity to which the smoothing operation is applied is selected using the variable
smooth_quantity, which in turn is defined in the input parameters section of the .sh

code from which Code A.4 is launched.
At the end of the code, in lines 52-56, the recalculated variable values using myfilter

are overwritten to the original file.
The function presented in Code A.4 is also suitable for smoothing the gradient operation
described in Section 7.1.2. It is well-suited for this task as it minimally perturbs the
behavior of ∇zE, while avoiding the introduction of non-physical oscillations in the
resulting geometry. This ensures that the boundary layer development in subsequent
iterations is not compromised.

8.3 Sorting function

In this section, we comment on Code A.5, which represents a revision of a function
previously used in the algorithm by Moniripiri et al., aiming to make the code more
concise and understandable. The function was written by the supervisor Hanifi.
The purpose of Code A.5 is to rearrange the solution file from ADflow, specifically
extracting only the solution points from the stagnation point to the trailing edge (TE)
of the airfoil. This section of the airfoil is the only one relevant for the execution of the
BL3D code to solve the equations within the boundary layer, given the studies we are
conducting. As illustrated in Chapter 4, it is necessary to provide the BL3D code with
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the pressure distribution Cp and the geometry of this specific region as input data.
After loading the Python modules and the necessary variables, in lines 20-21 the last
line of the solution file of ADflow is removed because the code considers the TE twice,
once as belonging to the upper surface and once to the lower surface. Consequently,
it reports the solution twice, which would cause problems in reorganizing the file. In
lines 25-27, the stagnation point is identified, which corresponds to the point where
the flow velocity is zero and the pressure becomes maximum. Once the index of the
corresponding row of the matrix is known, it is possible to distinguish the upper surface
from the lower surface based on this point. Lines 30-47 perform this operation; in
particular, it is observed that once the solution is divided into two subgroups, it is
necessary to verify that the solution being considered is indeed the one of interest.
Specifically, we are interested in the extrados of the profile, so it is sufficient to take the
subgroup of the solution in which the geometry increases the value of the z coordinate
in the immediate vicinity of the stagnation point while moving in the direction of the
flow. From line 50 until the end, the files are saved in the desired formats, with each of
them containing in the header the parameters of most interest for the simulation being
considered.

8.4 Gradient projection on H-H bump functions

In this section, we present Code A.6, which has been written to implement in Python
what is described in Section 7.1.1. Neglecting the initial part where the modules are
loaded, in lines 17-18, zero_LE and norm_TE are defined, which are subsequently used
to define the region for normalizing sensitivity, the output of the adjoint ADflow. In
particular, zero_LE corresponds to xms defined in Section 7.1.1 (xme is instead defined
in the script Modify_mesh.py, which is not shown here, and it is executed after the
projection to incorporate the modifications into the previous geometry). The input file
is sens_cut.dat and contains for each node of the mesh on the profile the corresponding
values of ∇zE, for a fixed spanwise coordinate (similarly to what was done in Section
8.1.2). In lines 25-34, the H-H function is defined, in a manner entirely analogous to
what was presented analytically in Equation 7.3. In the numerical implementation, the
parameter names correspond to those reported in Section 7.1.1 except for the vector x,
which is renamed as n; there is an additional parameter SF, which is, however, neglected
by setting it to one. The output of the function is the vector b, which contains the
discretized values of the H-H function for each point of the domain where it is defined,
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particularly considering the width.
At this juncture, it is important to recall that the parameters that characterize
these types of functions are associated with their width, position of the maximum,
and amplitude. However, it has been observed that the relationship between these
parameters and the shape of the function is not strictly defined.
Considering this fact, it is then necessary to define a certain methodology to uniquely
relate the width to the parameter t, specified as a ratio of the chord of the airfoil.
Furthermore, it is also noted that the shape of the function varies with the variation of
a single parameter while keeping the others fixed. This fact complicates the numerical
implementation slightly because it requires discretizing the set of parameters to be
considered and through two nested for loops, find which combination of discretized
parameters comes closest to the desired one. These operations are performed between
lines 37-76; specifically, at line 37, the step with which to discretize the definition
domain of the H-H functions is defined. In lines 38-48, arrays representing the desired
parameters of the H-H function to be used for gradient projection are defined. As
explained in Section 7.1.1, it is interesting to consider the sum of different bump
functions and evaluate the amplitude of each of them. The implementation in Code
A.6 allows for considering any number of H-H functions.
At line 40, a threshold value is defined to relate the parameter h to the actual width of
the function. It is assumed that the width of the function is defined at the coordinates
where it takes a value equal to 1 × 10−5, considered sufficiently small to be practically
zero. After finding the parameter h in lines 65-67, the error between the set value and the
one resulting from the numerical discretization of the space of H-H functions considered
is evaluated. It has been verified that the average relative error, in percentage, obtained
with this threshold method is always very low, less than 1%.
The outermost for loop ends with the definition of each individual H-H using the newly
calculated parameters. This operation is repeated for the desired number of functions,
which is the length of the vectors a, h, and t. At line 74, the various H-H functions are
collected, each organized into column vectors.
The definition of these functions above can be considered practically continuous since
the discretization step is very small, allowing for a smooth definition. From lines
78 to 88, the H-H function values are calculated for the discretization points of the
mesh where the solution has been computed in the codes (ADflow, BL3D and PSE).
Interpolation is employed to determine these values.
From lines 90 to 131, the core of the code is implemented, where the sensitivity is



62 Code developing

projected onto the space of previously defined H-H functions. Lines 96-99 implement
Equation 7.5 to calculate the amplitude of each function, utilizing the numpy.trapz

function for integration over the discretized domain, accounting for variable integration
steps. This integration process is nested within a for loop to accumulate the different
amplitude coefficients in the bn_values variable.
Subsequent lines, up to 126, are dedicated to saving the coefficient values into a single
.dat file, properly labeled for tracking during various optimization iterations. Equation
7.4 is executed between lines 128-131.
As observed in Section 7.1.1, various methods can be employed to overlap the H-H
functions, one of which is considering the envelope.
It is now important to note that the values resulting from the sensitivity analysis are
particularly high, around ±107÷10. Consequently, even projecting the gradient onto the
bump functions yields extremely high values. Therefore, normalization is used to scale
down the gradient values, making them more manageable and limiting their magnitude,
while still preserving the information contained within them. These operations are
carried out in lines 134-138, neglecting sensitivity values outside the region that we
want to modify. In conclusion, the rest of the code is dedicated to saving the calculated
values in an appropriate format.
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Section Three





Chapter 9

Algorithm validation

Before proceeding to the presentation of the results, it is necessary to validate the
solution algorithm used. The introduction of this Chapter aims to demonstrate the
reliability of the output of the various codes, with particular reference to the sections
implemented during the development of this work. In addition, some considerations
about the limitations of the method used are presented, as well as the issues we
encountered during its usage and the way in which these were addressed.

9.1 Validation of 2.5D transformation

In Section 5.1, the need to perform the 2.5D coordinate transformation was introduced
to bypass the absence of periodic boundary conditions within the ADflow code. To
validate this transformation, two airfoils were considered: specifically, the NACA 0012
and the RAE 2822. For these airfoils, previously validated results were available,
considering a non-zero sweep angle Λ, specifically 45◦ and inviscid conditions (Euler
solver). The reference results were obtained using the Edge software, which allows
setting periodic boundary conditions for the mesh. One might wonder why the studies
were not conducted using the aforementioned code; the reasons are related to the desire
to utilize an open-source code such as ADflow, along with the adjoint method version
implemented within it.
Figures 9.1 show the obtained results; as can be observed, the matching is perfectly
achieved. Therefore, the introduced procedure can be considered validated for any
airfoil geometry.
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(a) Pressure coefficient Cp for the NACA 0012
airfoil profile. Flow conditions: M = 0.3,
AoA = 0◦.

(b) Pressure coefficient Cp for the RAE 2822
airfoil profile. Flow conditions: M = 0.73,
AoA = 2.79◦.

Figure 9.1 Validation of the 2.5D transformation presented in Section 5.1 by comparing
the results obtained with the ADflow code to the reference results obtained with the
Edge code, for two different airfoils. The colors of the curves in the left panel match
the ones in the right panel. The results reported in the two panels share the following
flow conditions: inviscid flow, pref = 40540.2 Pa, Tref = 300 K and Λ = 45◦.

9.2 Grid convergence study

In this section, a convergence study of the mesh is conducted to ensure the meaningful-
ness of the results obtained from the optimization problem. It is well-known that the
result of CFD simulations strongly depends on the number of points used for discretiz-
ing the domain of interest, and that increasing the number of points will asymptotically
converge towards a certain value that needs to be appropriately validated, for example
by resorting to experimental results if available. As the number of points increases,
the computational effort also increases, meaning the time required to converge to the
solution effectively increases. Therefore, the objective is to identify the number of grid
points beyond which it is not sensible to proceed, as it would result in an increase in
computational time to achieve the same degree of accuracy. Since an optimization
study is being conducted, in this work, in addition to the computational effort of a
single simulation, it is necessary to consider that this operation is iterated a certain
number of times, so even seemingly negligible reductions in time can be significant in
reality.
The sensitivity to the number of discretization points is crucial to consider in this work.
The BL3D and NOLOT codes, along with their adjoints, can face convergence chal-
lenges if the grid refinement is excessive. This situation might result in non-convergence
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scenarios. Conversely, when solving the Euler equations for the outer flow, it is essential
to avoid geometries with few points and sharp edges. The absence of the boundary
layer (inviscid flow) amplifies sensitivity to these issues and flow separation can occur.

Table 9.1 Comparison of lift coefficient Cl and computation time values for four different
meshes characterized by the number of points on the specified surface for the NLF(2)-
0415 airfoil profile. Flow condition M = 0.5, and Λ = 45◦.

N. surface grid points 798 998 1198 1598

Cl 1.0591 1.0592 1.0593 1.0594
Time [sec] 741 746 784 825

In Table 9.1, the values of the lift coefficient Cl and the computational time for four
different meshes for the NLF(2)-0415 airfoil profile under the same flow condition
M=0.5, Λ = 45◦ are reported. The outer dimensions of the mesh were kept the same
(refer to Chapter 5 and Figure 5.1a), as the issues that could arise concern the BL3D,
NOLOT and PSE codes, which are sensitive to the number of discretization points of
the profile and not the grid points of the whole considered volume. As can be observed,
by increasing the values of Cl, numerical convergence is achieved; in any case, the
variation is significantly small, considering only the 4th decimal digit is changing. In
Figure 9.2, the pressure distribution Cp for the four considered meshes is reported; since
Cl essentially derives from the integration of the pressure coefficient Cp, it is observed,
as mentioned earlier, that the different curves are perfectly overlapping, suggesting
that convergence has been reached. In Figure 9.3a, the first and second derivatives of
the coordinate z with respect to the coordinate x are reported to highlight some of the
characteristics that guided the choice of the number of grid points to be used in the
optimization studies carried out. As can be observed, the first derivative is practically
insensitive to the number of discretization points considered; actually in the case of low
number of discretization points near LE the magnitude tend to increase a lot because
of rough definition of curvature. It is important to note the behavior of the curvature,
i.e. the second derivative, as it plays a significant role in the codes used for boundary
layer stability analysis. In this regard, it is worth mentioning that within the NOLOT
code, a curvature correction function has been utilized, which takes into account the
deviation of the abscissa traced on the surface of the profile from the straight abscissa,
as well as the tendency for the dimensions of the sides of the cells to increase when
moving away from the airfoil along the normal direction.
A completely analogous reasoning can be made regarding Cp; in Figure 9.3b, the
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respective values for the four different mesh configurations just mentioned are shown.
It is essential to consider the sensitivity of the pressure coefficient (and its derivatives)
to the number of discretization points, as the input of the codes responsible for solving
the equations within the boundary layer is the geometry of the airfoil profile as well as
the Cp coefficient. Therefore, in order for the adjoint solution to be manageable, i.e.
smooth behaviour, it is necessary to control both parameters.
Considering the results reported, the mesh with 1198 grid points on the surface was
chosen as it proved to be the one with the best compromise between accuracy, com-
putational times, and sensitivity of geometry and pressure coefficient derivatives to
the number of points. Despite the good trend shown in Figure 9.3b, to ensure suffi-
ciently smooth first and second derivatives of the pressure coefficient, the smoothing
function described in Section 8.2 was employed; the variation of the results following
the introduction of the aforementioned function was controlled and validated.

Figure 9.2 Pressure coefficient Cp for the four meshes used. Flow conditions M = 0.5,
Λ = 45◦, and NLF(2)-0415 airfoil profile. Colours match with the legend in Figures 9.3.
For each case only one result is reported every ten, for better readability.
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(a) In the top panel, the variation of the first derivative of the upper geometry, dz
dx , of the

NLF(2)-0415 airfoil profile is shown as a function of the number of discretization points
considered. In the bottom panel, the second derivative or curvature of the airfoil geometry,
d2z
dx2 , is reported for a limited section of the chord, highlighting the spiky behavior.

(b) In the top panel, the variation of the first derivative of the upper pressure distribution,
dCp

dx , of the NLF(2)-0415 airfoil profile is shown as a function of the number of discretization
points considered. In the bottom panel, the second derivative of Cp, d2Cp

dx2 , is reported for a
limited section of the chord, highlighting the wavy trend.

Figure 9.3 Sensitivity analysis of the first and second derivatives of the NLF(2)-0415
airfoil geometry and the pressure coefficient Cp concerning the refinement of the mesh
used for optimization calculations.
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9.3 Gradient validation

9.3.1 Numerical instabilities in ∇pe
E computation

It is well-known that the Parabolized Stability Equations (PSE) are not fully parabolic
equations, see Haj-Hariri [23] and an elliptic behavior, coming from the gradient of
the disturbance pressure, still exists in the equations. Consequently, if the step size in
the streamwise direction is too small, the solution will show strong oscillations and
eventually diverge. Li and Malik [24] presented a limit for the step-size restriction, valid
when a first-order backward Euler scheme is used. They also showed that dropping
the streamwise derivative of pressure in the primitive variable formulation1, and the
derivative of streamwise wavenumber in the stream-function formulation, reduces
the step-size restriction considerably. However, this would not remove the ellipticity
completely and dropping these terms can affect accuracy of solution for some flows.
Andersson et al. [25], showed that by adding a term proportional to the truncation
error to the first-order backward Euler scheme one can remove the step-size restriction.
However, in some crossflow cases the multiplying factor may become too big and
solution may be affected.
In some cases of crossflow perturbations studied here, we observed that though for a
given streamwise step-size the growth rates did not show any oscillatory behavior, the
gradient ∇peE showed a strong oscillatory behavior. We found that by removing the
terms originated from ∂p̂

∂x
in PSE and their adjoint we could remove these oscillations

while the stability results remain unaffected. Note that in the current work, we use
density instead of pressure as one of primitive variable. This means that

∂p̂

∂x
= 1
γM2

∂

∂x

(
ρ̂ T̄ + ρ̄ T̂

)
. (9.1)

Figures 9.4 show an example, where results for a crossflow mode with β = 3611.03 m−1

and f = 682.690 Hz is presented.
Since a smooth behavior of ∇peE is crucial for obtaining a usable sensitivity of kinetic

energy with respect to design variables, ∇zE, in order to reduce its variability in
slope, we chose to apply to it the smoothing function already presented in Section 8.2.
In Figures 9.5, the trends of the energy gradient with respect to the two quantities

1For incompressible flows, the governing equations may be represented either in primitive variables or
by using other formulations obtained by eliminating the pressure gradient (e.g., vorticity-streamfunction
formulation). On the other hand, for compressible flows, primitive variables offer a natural and the
only choice.
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(a) ∇peE as a function of the dimensionless
streamwise coordinate, considering both the
case where the term ∂p̂

∂x is neglected and
where it is included. Strong numerical os-
cillations are highlighted for ∂p̂

∂x ̸= 0.

(b) σE as a function of the dimensionless
streamwise coordinate; the two overlaid cases
match perfectly, indicating that ∂p̂

∂x = 0 can
be considered, thus circumventing instability
issues in gradient computation.

Figure 9.4 Validation of the approximation introduced in the calculation of the gradient
∇peE by setting ∂p̂

∂x
to avoid numerical oscillation issues in solving the PSE using the

NOLOT code. The colors on the left panel correspond to those in the legend of the
right panel.

of interest are shown, before and after smoothing. The trends we are referring to
were obtained after a certain number of iterations. The parameters of the simulations
corresponding to the mentioned results are not important in this context, as the trend
we want to comment on here is entirely generalizable, having occurred in each of the
studied cases. As observable, despite a minimal variation in the curve after smoothing
(with a consequent reduction in variability), there is a significant improvement in the
trend of ∇zE. It is important to note that the application of the selected smoothing
function, although slightly modifying the numerical values treated, does not alter the
overall trend and therefore does not corrupt the results obtained from the sensitivity
analysis; if this had not occurred, it would certainly not have been correct to consider
it.
The latter operation clearly holds more relevance in the context of studying transition
delay rather than tolerance study; in the former scenario, as outlined in the implemen-
tation detailed in Section 8.4, correctly positioning the bumps based on the values
assumed by ∇zE is crucial. Otherwise, the result may be exactly the opposite of
what is expected. Thus, having regions of x/c where the sign of ∇zE is clear becomes
important.
Conversely, in the case of a tolerance study, this consideration holds less significance.
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Here, sensitivity is projected onto the left-hand side of the Fourier basis, which is
periodic. Consequently, only the amplitude is sensitive to the value assumed by the
sensitivity at various distributed points (rather than at a localized one), while the sign
is imposed by the sine function itself.
In simpler terms, when projecting sensitivity onto the space of H-H bump functions, as
in transition delay studies, the computation of the amplitude of the bumps considers
the entire ∇zE profile. However, the sign of each bump is strongly dependent on the
value of ∇zE where the maximum has been positioned (the position of the maximum,
i.e. the sign, is a constraint as it is an input of the optimization process).

(a) ∇peE as a function of x/c before and
after the smoothing operation. A zoomed-in
view is provided for a certain range of x/c
to highlight the oscillations responsible for
undulations in ∇zE.

(b) ∇zE as a function of x/c before and after
applying the smoothing operation to ∇peE.
The improvement in shape is easily notice-
able, as well as the fact that the general trend
remains unchanged.

Figure 9.5 Effect of smoothing operation on ∇peE on the behavior of ∇zE. The colors
on the left panel match the ones in the label reported in rigth panel.

9.3.2 Gradient validation

For validating the gradient calculation, to alleviate computational cost, we opted
to validate under the same conditions employed by Moniripiri et al. in [1]. This
approach allowed us to cross-verify their results while leveraging the outcomes of
finite difference calculations which were employed for validation. Hence, for gradient
validation purposes, we selected the fluid flow conditions and the unstable mode with
parameters as detailed in Table 9.2.
To validate the implementation of the adjoint method, we conducted a comparison
between gradients obtained from the adjoint method and those computed using a
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central finite difference scheme, as described by:(
∂J

∂gk

)
F D

≈ J(q(z + ∆z), z + ∆z) − J(q(z − ∆z), z − ∆z)
2∆gk

. (9.2)

Here, J represents the objective function, q is the state vector, z denotes the surface
nodal coordinate vector of the baseline airfoil, gk is the kth design variable, and ∆z
is the vector of surface deformation resulting from ∆gk. To compute the gradients
using the finite difference method (FD), in Equation 9.2, we must specify gk and the
corresponding ∆z. As mentioned earlier, the design variables in the adjoint method
correspond to all surface grid points. Hence, to compare the gradients from both
methods, selecting the same design variable for FD, i.e., perturbing one point of the
surface mesh grid at a time (gk = zk and ∆z = ∆gkêz), appears to be a reasonable
choice. However, this approach often leads to sharp edges in the mesh, resulting in
sudden changes in pressure distribution and consequently yielding inaccurate and noisy
gradients. To avoid this problem, it is possible to parameterize the surface of the airfoil
as

z = z0 +
N∑

i=1
aif0,i(x, h, t) (9.3)

where f0,i(x, h, t) represent the Hicks–Henne bump functions, as presented in Equation
7.2 (refer to the respective section for the definition of parameters), z and z0 denote
the baseline and perturbed geometry, respectively. The advantage of using the H-H
functions, as mentioned in Section 7.1.1, is related to the smoothness of the functions
themselves. Since our objective is to use FD to find the gradients and compare them
with the ones obtained with the adjoint method, we have chosen to consider the
maximum height of the bump, a, as the design variable. Therefore, in the Equation
9.2 it is assumed gk = ak and ∆z = ∆akf0,k(x, h, t)êz.
In order to calculate the gradient using FD in each of the surface nodal points the
parameter h has to be used to move the position of the bump along the surface; for
each position of the bump, the geometry and grid should be updated. To perform this,

Table 9.2 Flow conditions and parameters (frequency, spanwise, and initial streamwise
wave numbers) of the instability mode used for the gradient validation procedure
calculated with the adjoint method.

Re M AoA [◦] Λ [◦] f [Hz] β [m−1] αxms [m−1]
6×106 0.5 1.25 0 5850 0 600
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the inverse distance method implemented in the IDWarp package has been used.
When using FD, one of the main challenges is to select a suitable step size to achieve a
good compromise in terms of truncation and cancellation errors. This aspect has been
taken into account in the work of Miniripiri et al., where they calculated the gradient
using FD for x/c ranging from 0.15 to 0.60, using a fixed value for the parameter
that controls the width of the bumps and repeated the computation for four different
step sizes (∆a) in the range of 10−7 to 10−4. They observed that FD convergence
was achieved for ∆a = 10−5. The next step involves calculating the sensitivity of
the objective function, namely E, with respect to the same design variable as used
in FD, i.e., the height a of the H-H function. This can be done by computing an
inner product between the gradient and the surface deformation induced by the H-H
functions centered at each surface grid point in turn, as described by the Equation
below: (

∂J

∂ai

)
Adjoint

=
∫

∇zJf0,i(x, h, t) dx. (9.4)

In Equation 9.4, f0,i(x, h, t) represents the bump function with the maximum value
located at the ith grid point in x.
The comparison of ∇zE obtained from the adjoint method and central finite difference
is shown in Figure 9.6; the good agreement between the gradients allows us to validate
the implementation of the adjoint method.

Figure 9.6 Comparison of the gradient obtained using the adjoint and central finite
differences methods for the upper surface of the NLF(2)-0415 airfoil. The flow and
instability mode conditions considered are those reported in Table 9.2.
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9.3.3 Limitations of adjoint-based approximations

Despite the positive outcome of the validation procedure presented in the previous
Section 9.3, [1] introduces a limitation that must be considered in the application of
the adjoint method, failing which may lead to poor accuracy of the results.
Considering the kinetic energy of perturbations, denoted as E, if we aim to approximate
the change (∆E) within the boundary layer resulting from a smooth surface deformation
on an airfoil, we can resort to a Taylor expansion around the baseline airfoil:

∆E = E(z0 + ∆z) − E(z0) ≈ ∂E

∂z
∆z + 1

2(∆z)T ∂
2E

∂z2 (∆z). (9.5)

In this equation, z0 is the clean airfoil surface nodal coordinates vector and ∆z the vector
of surface deformation. The adjoint method allows us to obtain in an advantageous
ways the term ∂E

∂z in the Taylor series representing the first-order term in Equation
9.5. By doing so, higher-order terms beyond the first are neglected, which for some
conditions, however, play a significant role. In particular, in the work of Moniripiri
et al., considering two different bump functions, it is observed that as the height of
the bump is increased, the deviation between the exact and approximated solution
increases. This is due to the fact that the linear approximation is accurate only when
the deformation is sufficiently small, therefore when the geometry deformation does
not induce a change in mean flow and pressure abruptly in the boundary layer, i.e.,
avoiding conditions of stronger nonlinearity. In the study mentioned above, two cases
with bumps of different widths were also investigated. The exact final energy and
∆E were calculated solving Euler, BLE, and PSE using the new deformed geometries.
These results were then compared with those obtained using a first-order approximation
based on Equation 9.5, along with the gradient of the baseline airfoil obtained from the
adjoint method. As already mentioned, increasing the height of the bump increases the
deviation between the exact and approximated solution, but if the bump is wider, the
nonlinearity effects are less significant. It can therefore be concluded that in the case of
larger and narrower deformations, second-order derivatives ∂2E

∂z2 have to be considered.
However, this requires significant computational effort as it involves computing the
elements of the Hessian matrix2. Therefore, to avoid introducing second-order terms,
it was chosen to solve optimization problems introducing small deformations to avoid
nonlinearity effects, albeit at the cost of a greater number of iterations.

2Square matrix containing second-order derivatives of the objective function with respect to design
variables, i.e., the coordinates zi.
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9.3.4 Choice of step size γ for the gradient approaches

A crucial aspect when employing gradient approaches is selecting the step size appro-
priately, denoted here as γ. If γ is chosen too small, convergence will be achieved but
at a sluggish pace; conversely, selecting γ too large can lead to convergence issues due
to the potential influence of higher-order terms in the Taylor series expansion of E,
resulting in deviations from the steepest ascent direction.
To determine the optimal step size, one should compare the final wavy profiles obtained
using different values of γ under identical flow conditions, instability mode, and final
∆N values. Despite considering the same ∆N value for each, employing different
γ values will yield distinct L2-norm values; particularly increasing the step size the
L2-norm will increase as well. Such an analysis was conducted in [1], and drawing
from its findings, γ = 6 × 10−6 m was selected as it reliably ensures convergence to a
consistent solution. Consequently, it is utilized in all gradient ascent calculations.



Chapter 10

Results for tolerances study

The results for the study of dimensional tolerances were obtained following a parametric
approach, considering different flow conditions to identify trends useful in the design
process. The results were obtained considering various Mach numbers, Reynolds
numbers, and angles of attack, while keeping the thermodynamic properties fixed and
equal to those at a flight altitude of 9600 meters, as already mentioned in Chapter 5.
For the stability analysis, the most unstable mode was identified for each of the cases
considered, particularly for the baseline profile NLF(2)-0415, among a wide range of
different feasible modes. In this study, considering the case of a swept wing and having
access to the results obtained by Moniripiri et al. in their study [1] for zero sweep angle,
it was observed that in the former case, the number of instability modes is significantly
higher due to the coexistence of Tollmien-Schlichting (TS), pseudo-cross-flow, and cross-
flow modes. This fact has complicated the selection of the unstable mode to consider
since several of them were eligible to be elected as the most critical. Furthermore,
the impossibility of assuming the boundary layer transition at a well-defined critical
N-factor value, given the high variability of the phenomenon, also complicated the
mode selection. It has already been mentioned that in some cases, a critical N value of
9 can be assumed as a reference, but at the same time, various experimental results
have shown that this value can be considerably lower or higher depending on specific
conditions (geometric shape of the profile and flow conditions). Following this necessary
observation, it is therefore considered appropriate to make the following disclaimer:
the modes chosen for each flow condition were selected based on observations and
comparisons, but this does not exclude the possibility that there may be a mode that
has more pronounced effects on ∆N among the practically infinite number of possible
cases. Tables 10.1–10.2–10.3 report the values of Reynolds number (Re), angle of attack
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(AoA), and parameters for stability analysis, including the frequency (f), spanwise
wave number (β), and the initial value for the complex-value streamwise wave number
(α = αr + iαi) of the disturbance mode selected. All the results reported below were
obtained for a NLF(2)-0415 airfoil profile with a sweep angle condition Λ of 45°, unless
specifically indicated otherwise.

Table 10.1 Parameters used for analysis of different cases. Reynolds number is considered
as a variable parameter while others are fixed.

AoA = 1.25◦, M = 0.5
Re(×106) 9 12 15

f [Hz] 6066.15 9761.95 9106.24
β [m−1] 682.69 608.06 760.26
αr [m−1] 348.92 878.43 736.33
αi [m−1] -2.09 -22.63 -18.38

Table 10.2 Parameters used for analysis of different cases. Angle of attack is considered
as a variable parameter while others are fixed.

Re = 15 × 106, M = 0.5
AoA[◦] -1.00 -0.50 0.50 1.25 1.50 1.75

f [Hz] 6666.22 5650.49 7833.74 9106.24 15515.70 17526.20
β [m−1] 2295.65 2300.24 1138.26 760.26 947.09 1052.75
αr [m−1] -1012.32 -1074.54 224.31 736.33 1295.35 1394.85
αi [m−1] -28.64 -23.69 1.62 -18.38 -1.81 -2.28

Table 10.3 Parameters used for analysis of different cases. Mach number is considered
as a variable parameter while others are fixed.

Re = 15 × 106, AoA = 1.25◦

M 0.45 0.50 0.55 0.60

f [Hz] 10646.60 9106.24 10165.20 9709.12
β [m−1] 1216.96 760.26 754.23 840.66
αr [m−1] 722.87 736.33 726.43 495.35
αi [m−1] 4.04 -18.38 -19.50 -13.40
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Figure 10.1 Pressure coefficient Cp for Re = 15 × 106, M = 0.5 for two angles of attack
as indicated in the legend. It is observed in particular how the regions of APG and
FPG vary as a function of the angle of attack.

10.1 Types of instabilities

As mentioned, the consideration of flow conditions with a non-zero sweep angle compli-
cates the process of selecting the most unstable mode due to the absence of a clear
predominant mode, given the coexistence of Tollmien-Schlichting (TS) and crossflow
modes (CF). However, it is known from the literature that, depending on the flow
conditions considered, TS or crossflow instabilities may be predominant. In particular,
the parameter that plays a fundamental role in this regard is the angle of attack. TS
instabilities tend to dampen in the case of favorable pressure gradient (FPG), while
crossflow instabilities tend to dampen in the presence of adverse pressure gradient
(APG). The distinction between the two types of instability can be made qualitatively
by observing the behavior of the N -factor as a function of the streamwise coordinate,
x, or quantitatively by comparing the value of the wave angle, ψ, with a reference
value. The shape of the N -factor curve for TS instabilities is characterized by a
downward concave parabolic trend, with the maximum point usually located in the
advanced region of the airfoil; these instabilities tend to increase their N -factor value
before decaying due to FPG. In the case of crossflow instabilities, on the other hand,
the N -factor typically has a monotonically increasing trend and therefore reaches its
maximum value at the end of the domain for which the stability analysis is performed.
From the literature, a reference wave angle value ψ of around 70◦ to 75◦ is considered.
Below this range, the instability is classified as TS type, and above it, it is classified as
crossflow type.
In Figure 10.1 is shown the variation of the pressure coefficient Cp for two flow con-
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(a) N -factor curves for the different instabil-
ity modes and envelope curve for the baseline
airfoil as a function of the x/c coordinate.
The most unstable TS mode has been high-
lighted. Flow conditions: Re = 15 × 106,
M = 0.5, Λ = 45◦, and AoA = 1.25◦.

(b) N -factor curves for the different instabil-
ity modes and envelope curve for the baseline
airfoil as a function of the x/c coordinate.
The most unstable CF mode has been high-
lighted. Flow conditions: Re = 15 × 106,
M = 0.5, Λ = 45◦, and AoA = −1.00◦.

Figure 10.2 Comparison of the N -factor trends and envelope curves for two different
flow conditions to highlight and distinguish Tollmien-Schlichting (TS) and crossflow
(CF) instabilities. For the parameters of the highlighted instabilities, refer to Table
10.2.

ditions characterized by the same Re = 15 × 106, M = 0.5 and sweep angle, Λ, but
different AoA ([1.25◦, -1.00◦]). As expected, it is observed that for the condition with
higher angle of attack, i.e., 1.25◦, a region of APG is present near the leading edge,
and consequently, the TS-type modes (characterized by a similarly parabolic N -factor),
as shown in the left panel of Figure 10.2, are predominant. In the right panel CF
modes are dominant due to the absence of adverse pressure gradient; in the first part
of the upper surface the pressure decreases constantly from the stagnation point and
with it the N -factor of cross flow modes tends to increase till the coordinate where the
code is solving, i.e. before separation point (note that separation is before reaching
the maximum value of Cp). The results just mentioned in Figure 10.2 are outputs of
NOLOT code.
For the two highlighted instability modes, which have been considered for the afore-
mentioned flow conditions as most unstable modes for tolerances study, the profile of
the streamwise and spanwise velocity components for three different coordinate values
are shown in Figure 10.3. The analysis of velocity profiles is important because it is
necessary to verify that the modes being considered are indeed related to the physics
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and are not spurious, i.e., they do not exhibit strange oscillations determined by purely
numerical factors. As can be observed, the treated modes have a particularly smooth
variation.
At this point, the values of the previously mentioned wave angle are also available,
which vary with the streamwise coordinate. The values of the angle ψ corresponding
to the coordinates x/c = [0.05, 0.25, 0.5] in degrees are [28.24, 31.63, 28.96] and [74.85,
77.36, 76.75] respectively for AoA 1.25◦ and -1.00◦.
Therefore, this allows us to confidently define that the highlighted mode for the AoA
equal to 1.25◦ a TS-type instability. Conversely, for the negative AoA considered, the
instability is of the CF type since the values of the angle ψ are greater than 70◦ to 75◦.
Having already introduced Figure 10.2, we can make further observations regarding the
selection of the mode to be used for optimization studies. By comparing the N -factor
values for the two different AoA conditions, it is observed that the maximum values
reached are very different even considering the same flow conditions in terms of Re,
Ma, and Λ. In the presence of APG, CF-type instabilities tend to exhibit a more
pronounced growth trend compared to TS modes, thus being responsible for boundary
layer transition. As confirmation of this, focusing solely on Figure 10.2b, it is observed
that the N -factor curves with a similar parabolic trend are all within the envelope
curve, which in turn is shared with the highlighted CF instability.
To conclude, further insight will be provided later regarding the effect of selecting the
most unstable mode to be used in the optimization algorithm on the calculation of
dimensional tolerances, specifically for TS-type instabilities. For this latter type of
instability, indeed, it is observed that for several of them, values of the N -factor close
to what can be considered critical for transition are reached.
Regarding CF-type instabilities as visible in Figure 10.2, it is quite evident which mode
should be considered as the most unstable. In this case, it certainly does not make
sense to consider the maximum value of the N -factor (as in the case of TS-type), since
the maximum, as already observed, is reached at the right limit of the analysis domain,
assuming values of the order of 25 to 30, thus definitely post-transition. Therefore, in
this case, it makes sense to consider the growth trend of the modes near a value of the
N -factor that can be assumed as a limit beyond which the boundary layer transition
occurs; the one that reaches that value first and with the steepest trend is the one to
be considered.
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(a) Profiles of streamwise (left panel) and spanwise (right panel) velocity components for the
TS instability mode highlighted in Figure 10.2a.

(b) Profiles of streamwise (left panel) and spanwise (right panel) velocity components for the
crossflow instability mode highlighted in Figure 10.2b.

Figure 10.3 Comparison of the streamwise and spanwise velocity components for three
different x/c coordinates for the two instabilities highlighted in Figure 10.2, aiming
to demonstrate the physical nature of the Tollmien-Schlichting (TS) and crossflow
(CF) instabilities, rather than being spurious. For the parameters of the instabilities
considered, refer to Table 10.2.
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10.2 Largest allowable deformation profiles

The final deformation profiles, obtained considering the NLF(2)-0415 airfoil as the
baseline geometry for a 45-degree swept wing, and flow conditions of Re = 15 × 106,
M = 0.5, AoA = 1.25◦, are reported. Different numbers of Fourier modes were
considered for introducing wavy shapes on the surface, specifically k ∈ [10, 12, 14, 16].
The results are presented based on the final shape obtained when the change in the
∆N is approximately 2. The results obtained exclusively employing the GA algorithm;
based on the observations of Moniripiri in [1], it does not yield the largest allowable
deformation profiles that minimize the L2-norm for a certain N -factor increment.

Table 10.4 L2-norm values obtained for ∆N ≈ 2 and different number of Fourier modes
(k ∈ [10, 12, 14, 16]). Flow conditions are Re = 15 × 106, M = 0.5, AoA = 1.25◦.

∆N ≈ 2
N. Fourier modes 10 12 14 16

L2-norm(×10−4) [m] 11.0 7.15 6.20 6.48

Considering the L2-norm values reported in Table 10.4, it is evident that as the number
of Fourier modes considered decreases, i.e. the longer the characteristic wavelength
of the undulation, the root mean square deviation increases. Particularly, looking at
Figure 10.4, it is observed that the major contribution to the increase in the L2-norm
is given by the large bumps presented in the upstream position of the chord, where the
boundary layer is thinner and where the influence in disturbing the flow is higher. The
importance of the boundary layer thickness in the growth rate of the disturbance is
well supported by the analysis of the case k = 16, where the L2-norm shows a lower
value compared to k = 10, due to the more pronounced initial perturbation of the
surface, which helps limit the oscillations in the latter part of the profile. It is worth
noting that the introduction of large bumps near the leading edge results in steep
slopes downstream, which significantly influence the pressure gradient distribution.
Finally, it is observed that the case k = 16 presents a slightly higher value of L2-norm
compared to k = 14, and this can once again be attributed to the magnitude of the
first oscillation.
The information regarding the pressure distribution and its derivatives is crucial for
understanding the physical significance of the discussed wavy shapes. The sensitivity
to design variables of kinetic energy, within the boundary layer, depends directly on
the pressure distribution along the airfoil chord. To further clarify this concept, it is
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easier to examine the quantities depicted in the various panels of Figure 10.5 for the
cases k = 10 and k = 16 and conditions Re = 15 × 106, M = 0.5 and ∆N ≈ 2.

Figure 10.4 Largest allowable deformation profiles using γ = 6 × 10−6 for ∆N ≈ 2 at
Re = 15 × 106, M = 0.5, AoA = 1.25◦ considering different numbers of Fourier modes
on the NLF(2)-0415 airfoil; obtained using the GA method. The results are reported
in two separate plots for ease of readability.

Considering that the aim of this study is to investigate the effect of introducing wavy
geometric perturbations (on the upper surface of the airfoil) on the growth of the
N -factor, i.e. on the increase of kinetic energy within the boundary layer, we are
interested in examining the regions where the sensitivity ∇zE is positive. Looking
at the bottom panel in Figure 10.5 and comparing it with d2(−Cp)/dx2 is negative.
This signifies that kinetic energy within the boundary layer tends to increase moving
towards APG regions, and this is physically reasonable. The increase in energy can be
linked to the rise in the N -factor and, consequently, to the increase of the instability
condition of the selected mode, with the potential to trigger transition.
To allow easy readability of Figure 10.5 vertical lines indicating the positions where
d2(−Cp)/dx2 = 0 are reported (the style of the lines match the legend references,
dotted for k = 10), so distinguishing regions where d(−Cp)/dx changes slope sign is
straightforward. The relation described earlier between different quantities reported, is
clearly evident; considering k = 16, in the region preceding x/c ≈ 0.165 delimited by
the first vertical solid line, sensitivity is positive while the second derivative of Cp is
negative. For k = 10, the trend in this region is the opposite, which aligns with the
observations made in Figure 10.4; due to the longer wavelength compared to k = 16,
the top of the first protrusion is reached at a more rearward position, consequently
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delaying the effects that contribute to the increase in energy. Referring back to k = 16,
after x/c ≈ 0.165, as the pressure gradient starts to move towards the favorable type,
i.e., d(−Cp)/dx begins to increase (d2(−Cp)/dx2 is positive), the sensitivity tends to
become negative. This trend is observable across the entire surface of the airfoil. For
k = 10, the first region where ∇zE is positive occurs immediately after x/c ≈ 0.197.
Comparing the numerical values of the derivatives of Cp for the two values of k
considered here, it is evident that as the wavelength of surface oscillations decreases,
the introduced pressure gradients become more critical, as they assume higher values;
this effect is combined with a clearly increased oscillation periodicity. Additionally,
there is a greater sensitivity of energy to changes in profile coordinates in the vertical
direction, as indicated by the significantly higher values of ∇zE. These findings are
consistent with the results of the tolerance calculation discussed later.

Figure 10.5 Effect of the pressure distribution on the gradient for Re = 15 × 106,
M = 0.5, AoA = 1.25◦, ∆N ≈ 2 and k = [10, 16]. Please note that for clarity colors
do not match with the ones in Figure 10.4.
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In Figure 10.6, the envelope of N -factor curves and the instability mode considered
for the baseline airfoil are presented, along with the shape of the N -factor for k = 10
and k = 16 for their respective final wavy configurations; as visible and previously
mentioned, the increment in the considered N -factor, ∆N , is approximately 2. In
addition, it is observed that the trend of the N -factor closely follows the oscillations
of the airfoil surface, allowing the identification of the number of waves introduced
by the Fourier series. Comparing the N -factor trends for the two cases, it is noted
that the presence of the first peak, visible in Figure 10.4, with a similar amplitude but
positioned further forward in the case of k = 16 (and thus characterized by a steeper
slope), results in a more pronounced increase in the growth rate value. As noted above,
disturbances occurring further forward on the surface have more pronounced effects
due to the thinner boundary layer. To confirm this, we can also refer to the number
of iterations required to reach a value of ∆N ≈ 2, as we used the same value of γ to
advance in the direction suggested by the gradient. For k = 10, 150 iterations were
required, while for k = 16, only 95 iterations were needed, which is approximately
one-third fewer.
With reference to Figure 10.6, it is also noteworthy the importance of considering the
selected unstable mode rather than the one corresponding to the maximum at the
right boundary of the stability calculation domain. This choice proves crucial in the
transition process due to the sudden increase occurring near x/c ≈ 0.2.
What one would expect to find employing the SLSQP algorithm under the same
conditions is a further increase in the amplitude of the oscillations in the first part of
the profile, leading to an overall decrease in the root mean square deviation.

10.3 Calculating manufacturing tolerances

In this Section, we are discussing the results obtained from the tolerance study. For
the methodology used to compute tolerances, htol, considering the L2-norm of surface
deviations of the allowable deformation profile with respect to the baseline airfoil
NLF(2)-0415, please refer to Section 6.3.
Since the study lends itself to a parametric analysis aimed at defining a design space,
the results are presented in distinct subsections to clearly illustrate the effect of each
parameter on the obtained dimensional tolerances. In particular, the parameters varied
include Re, M , AoA, as well as the number of Fourier modes considered, k, and the
characteristic parameters of the instability mode under consideration (specific to each
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Figure 10.6 Envelope of the N -factor and evolution of the N -factor corresponding to
the chosen most unstable mode for the baseline airfoil compared to the ones obtained
after reaching ∆N ≈ 2 using gradient ascent method. Conditions are Re = 15 × 106,
M = 0.5, AoA = 1.25◦ and k = [10, 16].

case). We chose to keep fixed the value of the sweep angle Λ, considering that most
civil aviation aircraft exhibit this geometry or a very similar one. Nevertheless, given
the flexibility of the numerical algorithm developed, it is possible to repeat the same
study quite easily.

10.3.1 Effect of Reynolds number and wavelength of waviness

The selection of Reynolds numbers was based on the usual aerodynamic conditions
and mean chords of civil aviation aircraft charactherized by tapered wings operating
at maximum operational speeds, VMO, under ISA conditions. The results has been
obtained for Re = [9, 12, 15] × 106, M = 0.5, AoA = 1.25◦ and k = [10, 12, 14, 16];
Table 10.1 provides information on the values of the parameters f , β, and αms for the
most unstable modes corresponding to the mentioned Reynolds numbers. Note that for
these conditions the unstable modes considered critic are all of the type of TS modes;
for the case Re = 15 × 106 the respective N -factor curve is represented in Figure 10.2a.
Let us consider Figures 10.7–10.9, which depict htol as a function of the increase in
N -factor, utilizing the GA method. It is noted that not all combinations of parameters
have results available up to a value of ∆N = 2.5, as in such cases the number of
iterations performed was very high. Nevertheless, the maximum value of ∆N considered
is determined within the scope of studying a specific case, and in some instances, even
an increase of a single point in the N -factor may suffice. As explained in Section 6.1,
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in the algorithm employed, the value of ∆N serves both as the initial and the stopping
criterion and is chosen "a priori".

Figure 10.7 Evolution of htol for Re = 9 × 106 and different ∆N and k Fourier modes.
Conditions are M = 0.5, AoA = 1.25◦.

Figure 10.8 Evolution of htol for Re = 12 × 106 and different ∆N and k Fourier modes.
Conditions are M = 0.5, AoA = 1.25◦.

In all the mentioned figures, it is possible to observe that the tolerance increases as ∆N
increases. This observation is reasonable because, in a certain sense, it indicates that
by allowing a larger increase in the N -factor, we can relax the tolerance requirements.
Similarly, it suggests that a more pronounced wavy shape is needed to achieve higher
increases in kinetic energy within the boundary layer.
In addition, examining one figure at a time, i.e. keeping Re number fixed, it can be
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observed that for a specific target ∆N , decreasing the wavelength of the undulations
on the airfoil profile (increasing the value of k), leads to stricter tolerances. This is
associated with introducing more pronounced and frequently pressure variations along
the chord.

Figure 10.9 Evolution of htol for Re = 15 × 106 and different ∆N and k Fourier modes.
Conditions are M = 0.5, AoA = 1.25◦.

The observation is more pronounced for low Reynolds numbers, as a higher value of
this parameter results in a thinner boundary layer. In that case, even small surface
deviations have a significant effect on the pressure coefficient distribution, leading to
pronounced growth in disturbances.
Supporting this, let us compare the tolerance values for ∆N = 2: htol = [1.07, 0.56] ×
10−4[m] for Re = 9×106 and htol = [0.86, 0.51]×10−4[m] for Re = 15×106, respectively
for k = [10, 16]. At a fixed Reynolds number, transitioning from higher to lower value
of k yields a percentage reduction in htol of approximately 48% and 41%, respectively
for Re = [9, 15] × 106. To conclude, transitioning from Re = 9 × 106 to Re = 15 × 106

results in a percentage reduction in the allowable value of htol of about 20% and
9%, respectively for k = [10, 16], indicating that the thickness of the boundary layer
significantly influences the definition of the quantity we are evaluating. It is also noted
that as Re increases, the effect of the profile surface wavelength tends to decrease; for
each ∆N , the curves in Figures 10.8–10.9 tend to be closer together compared to what
is shown in Figure 10.7. It is noteworthy that for the case Re = 15 × 106, the observed
trend is slightly violated especially for lower values of ∆N ; however, this is in line with
the fact that the L2-norm presented in Table 10.4 for k = 16 is a little higher compared
to k = 12, k = 14. In these conditions, therefore, the periodicity in the alternation of
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regions with APG and FPG becomes more critical for longer wavelengths.
Considering the properties of the SLSQP method, what we expect when comparing its
results with those obtained using the GA method is a lower value of htol for each value
of ∆N . This expectation arises from the fact that the SLSQP method allows us to
find the waviness surface with the minimum L2-norm, and the tolerances are defined
based on this quantity. Hopefully, these results will be available shortly so that they
can be incorporated into the already reported plots.

10.3.2 Effect of angle of attack

Given the consideration of a non-zero sweep angle, Λ, AoA emerges as one of the
most significant parameters in this study. As outlined in Section 10.1, two types of
instability exist: Tollmien-Schlisting (TS) and crossflow (CF). The prevailing type is
determined by the AoA, which defines the pressure distribution along the chord of the
profile. Each type of instability will exhibit a distinct response to surface disturbances
(waviness of Cp ).
The results reported in this section have been obtained for Re = 15 × 106, M = 0.5,
k = 10, and variable AoA; Table 10.2 provides information on the values of the
parameters f , β, and αms for the most unstable modes corresponding to the different
AoA considered. It is worth noting that for negatives AoA chosen the modes considered
are of the crossflow type while the others are of the TS type. Reference can be made to
Figures 10.2 for an example of the evolution of the N -factor for AoA equal to −1.00◦

and 1.25◦.
Observing Figures 10.10, we can see that, considering positive (or nearly positive) values
of the angle of attack, as it decreases, we expect an increase in manufacturing tolerances,
since the presence of FPG has a stabilizing effect in the boundary layer, requiring larger
waviness amplitudes to cause the same variation in the N -factor. This holds true, but
only if the observation is limited to the values of AoA mentioned; furthermore, this
observation is consistent with the results obtained in [1] by Moniripiri et al. However,
this study, assuming the presence of CF-type instabilities, i.e., considering wing taper,
highlights that in the presence of higher (in absolute value) negative angles of attack,
dimensional tolerances start to decrease again. This fact is related to the sensitivity
of CF-type instabilities to the waviness of the profile surface; in particular, for these
modes the presence of FPG (see Figure 10.1) tends to trigger destabilization effects.
Conversely, for the largest positive angles of attack the tolerance to reach the target ∆N



10.3 Calculating manufacturing tolerances 91

decreases because the APG, especcially close to LE becomes stronger and destabilize
the TS waves resulting in a faster growth in their amplitude.

(a) Evolution of htol as a function of ∆N ,
considering as a parameter the AoA.

(b) Evolution of htol as a function of AoA,
considering as a parameter ∆N .

Figure 10.10 Evolution of htol for different values of AoA, and ∆N . Conditions are:
Re = 15 × 106, M = 0.5 and k = 10.

At this juncture, it is important to remember that the values of ∆N considered for
creating the plot were chosen "a priori". In fact, it should be reminded to the reader
that the tolerance values we refer to, simply correspond to an increase in ∆N and
do not represent the tolerance for which the transition associated with the maximum
N -factor value occurs. The value of N -factor at which the boundary layer transition
occurs, i.e. below which one must stay to preserve laminar flow, is not generally known.
It is important to mention again this assumption because the maximum N -factor
value is very sensitivy to the AoA. Thus here that we are actually considering different
angles, increase in ∆N is the same but the value in absolute sense could be significantly
different.
For clarity regarding what is highlighted here, is useful to consider the following results.
Under the condition AoA = 0.50◦, the clean wing showed a maximum N -factor of
approximately 9.9; conversely, for AoA = −1.00◦, the clean wing exhibited a maximum
N -factor value of approximately 14.2. As mentioned, since the maximum value of htol

calculated using our methodology corresponds to (Nmax,init + ∆N), and Nmax,init is
quite different we are referring to different Nmax for the last iteration (to reach target
∆N). Particularly these values could be lower or higher to the N -factor value assumed
as a reference for the transition in the initial approximate analysis. Regarding this,
the exact NT value is challenging to define, often requiring wind tunnel experiments or
flight tests. The value of NT = 9 is not universal and varies with turbulence intensity
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(flight tests have identified the beginning of transition for NT = 13.5 and NT = 17.2,
among others).
Therefore, once more, keep in mind that the present methodology allows the determi-
nation of manufacturing tolerances based on acceptable ∆N values to be decided by
the aerodynamicist, that will know in advance the maximum expected ∆N that the
geometry can produce.
Referring to the results shown in Figure 10.2, one might wonder why tolerance values
up to ∆N = 2 are not available for some AoAs, especially considering that these
cases correspond to negative values. The reason is actually quite simple; it has been
observed that CF instabilities are much more resistant to destabilization, especially for
AoA = 0.5◦ and require a greater number of iterations to reach the same ∆N value.
So the algorithm was stopped earlier with respect to the other cases.

Figure 10.11 Envelope of the N -factor and evolution of the N -factor corresponding to
the chosen most unstable mode for the baseline airfoil compared to the ones obtained
after reaching the ∆N values outlined in the legend. Conditions are Re = 15 × 106,
M = 0.5, AoA = −1.00◦, and k = 10.

It is also important to consider how ∆N is calculated for this type of instability. Refer
to Figure 10.11 which shows the evolution of the N -factor for three successive iterations
as well as the one for the baseline airfoil profile, for AoA = −1.00◦. Since, as previously
noted, we are not interested in the maximum value of the N -factor at the end of the
domain, we have chosen to define ∆N as the difference in the N -factor evaluated at
the x/c coordinate where the perturbed curves have their first maximum. Note that in
some cases, this maximum is relative and not absolute, as the N -factor could further
increase, but to a lesser rate of growth; it is usually possible to distinguish a point
where the introduction of waviness has the most pronounced negative effect.
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10.3.3 Effect of Mach number

Here, we aim to consider the effect of the Mach number on the variation of the N -factor
curve following the introduction of undulations on the airfoil surface. The findings
presented in this section were obtained for Re = 15 × 106, AoA = 1.25◦, k = 10, and
varying M . Table 10.3 provides details on the values of the parameters f , β, and
αms for the most unstable modes corresponding to the different Mach numbers under
consideration.
Observing Figure 10.10 it can be stated that, as known from the theory, increasing
the Mach number directly impacts the pressure distribution across the entire airfoil.
This augmentation magnifies all existing pressure gradients by a uniform factor, which
can be estimated through subsonic compressibility equations like the Karman–Tsien
equation. As a result, raising the Mach number intensifies the APG caused by the
wavy bumps and this leads to reduced tolerances.

Figure 10.12 Pressure coefficient Cp as a function of the coordinate x/c analyzed for
various Mach number values. Conditions are Re = 15 × 106, AoA = 1.25◦, and k = 10.

In Figures 10.11, the tolerances for AoA = 1.25◦ and Re = 15 × 106 are presented.
Specifically, 10.14 illustrates how compressibility influences htol across four different
Mach numbers, with a target ∆N value of 1.5. The obtained result is not trivial
since, although pressure gradients tend to become more severe, it is also known that
compressibility effects play a positive role in stabilizing TS-type instabilities. In this
regard, reference can be made, for example, to the work of Arnal et al. [26].
Unfortunately, results for different values of k and especially for different values of AoA
are not available. This could have allowed us to assess whether a different periodicity of
the surface would have altered the trends. Additionally, the impact of compressibility
on CF-type instabilities could have been evaluated. Most likely, we would have observed
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a reduction in htol considering the shape of Cp for negative AoA and their sensitivity
to FPG situations.

Figure 10.13 Evolution of htol with respect to ∆N for different values of M . Conditions
are Re = 15 × 106, AoA = 1.25◦, and k = 10.

Figure 10.14 Evolution of htol with respect to M for ∆N ≈ 1.5. Conditions are
Re = 15 × 106, AoA = 1.25◦, and k = 10.

10.3.4 Effect of mode selection

In this section, we aim to assess the influence of the selected instability mode on the
calculation of dimensional tolerances. To conduct the stability analysis, we needed
to designate the modes to be used from a wide range of different feasible modes, and
this would like to be the most unstable one. Identifying the mode of interest can be
challenging; in fact, claiming a mode to be the most amplified among all potential
modes is not entirely accurate, given the impossibility of finding an infinite number
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of instability modes. Once the mode is selected, it will be utilized in PSE equations
as the initial condition. In the PSE approach, unlike in local linear stability analysis,
the streamwise wavenumber is not constant, and the initial mode acts as the starting
condition for solving PSE with a marching algorithm.
Fortunately, it is known from theory that optimizing kinetic energy based on a single
mode affects the growth of numerous disturbances. Consequently, if sensitivities
are derived from the most amplified mode identified, it is anticipated that no other
mode will exceed its amplification during the process. This assertion has also been
demonstrated by Moniripiri et al. in [1]. Consequently, throughout the process, we
opted to maintain the mode constant, as it results in significant computational time
savings.
However, a potential issue in the mode selection process is the existence of multiple
modes with nearly identical maximum N -factors but differing frequencies. Consequently,
various modes could qualify as strong contenders for being considered the most unstable
and, therefore, utilized for computing htol. In that case, a specific mode with slightly
lower maximum N -factor might result in lower tolerances due to resulting pressure
gradients in the final airfoil shape.
We therefore chose to consider three different modes characterized by similar maximum
N -factor values, around 10. Specifically, the results were obtained for the condition of
Re = 15 × 106, M = 0.5, AoA = 1.25◦, and k = 10. For this flow configuration, it has
already been observed that TS-type instabilities dominate.
Below, in Table 10.5, the parameters corresponding to the different instability modes
considered are reported, used in the stability analysis. The evolution of the N -factors
are reported in Figures 10.15. Figure 10.16 shows the tolerances in relation to ∆N

Table 10.5 Parameters used for analysis considering three different instability modes;
flow conditions are fixed as reported in the header of the Table. Please note that the
3rd mode corresponds to the one considered in the results presented in the previous
sections for the mentioned flow conditions.

Re = 15 × 106, AoA = 1.25, M = 0.5
Mode 1st 2nd 3rd

f [Hz] 12050.50 10508.30 9106.24
β [m−1] 1198.05 1198.05 760.26
αr [m−1] 718.70 520.87 736.33
αi [m−1] 1.85 3.01 -18.38

for the three modes considered; it can be observed that the 3rd mode determines the
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(a) Evolution of N -factor and envelope for
all instability modes found from the stability
analysis performed on the baseline geometry.
The three modes considered in the analysis of
this Section are highlighted.

(b) Comparison between the evolution of the
N -factor for the three modes considered before
and after the introduction of waviness in the
profile to achieve ∆N ≈ 2.

Figure 10.15 Envelope of the N -factor and evolution of the N -factor corresponding to
the chosen modes after reaching ∆N ≈ 2 using gradient ascent method. Conditions
are Re = 15 × 106, M = 0.5, AoA = 1.25◦, and k = 10. Parameters are reported in
Table 10.5.

minimum value of htol when compared with the others. It is interesting to compare the
N -factor curves reported in Figure 10.15b with what was just observed; in particular,
the growth of the N -factor for the 3rd mode appears to be the most critical one. This is
because the increase in the parameter occurs over a more extended region, particularly
at the most advanced position where the boundary layer is thinner, potentially resulting
in a more critical effect on the stability of the boundary layer. This reasoning can also
be applied to the first and second modes; following the same logic, the second mode
appears to be more critical than the first, which is confirmed by the calculated values
of htol. Additionally, in this comparison, it is noted that the maximum value of the
N -factor is practically the same. Therefore, when selecting the mode for calculating
tolerances, not only the absolute value of the N -factor but also its growth rate should
be considered. In summary, although the maximum N -factor is the same for either
the first or second most amplified mode, the variation of the N -factor along the chord,
which directly indicates the pressure distribution on the airfoil surface, is different and
should be taken into account. When the second mode is used, the final optimized shape
exhibits a large bump (indicating a large adverse pressure gradient) at the upstream
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position of the chord, where the boundary layer is thinner, resulting in a lower tolerance
compared to when the first mode is used. When the third mode is used, the final
optimized shape exhibits a large bump compered to the second one.
In this section, the aim is to reiterate the importance of mode selection for tolerance
calculation and emphasize the need to carefully consider each individual case, including
the relationship between the increase in the N -factor and the boundary layer transition
if sufficient data are available to accurately define the N -factor limit at which transition
occurs (for a specific profile and flow conditions, refer to what already mentioned in
Section 10.3.2) .

Figure 10.16 Evolution of htol with respect to ∆N for different instability modes
considered. Flow conditions are: Re = 15 × 106, AoA = 1.25◦, M = 0.5, and k = 10.





Chapter 11

Results for transition delay study

In this chapter, some of the preliminary results obtained regarding the transition delay
of boundary layer study are presented. During the development of the numerical
implementation of this study, it became necessary to address various numerical and
theoretical issues (some of which are presented here), significantly slowing down the
progress of the work in order to achieve meaningful and conclusive results. Being a
first attempt to use the developed calculation algorithm, it was not possible to set
up a parametric study like the one proposed in the previous study, i.e., considering
different values for the Reynolds, Mach, angle of attack flow parameters, and type
of instability mode. Given the difficulties of the set study, the approach chosen was
to select a particular flow condition and try to solve the various issues for the said
case with the intention, subsequently, once a satisfactory result was achieved, to try
to replicate the same methodology under different conditions. The following study
draws inspiration from research conducted experimentally at TU Delft, where it was
observed that, in the presence of cross-flow components, the introduction of a suitably
defined bump (protuberance) can delay the boundary layer transition. Although the
results of this study have not yet been published, it is known to have been conducted
under conditions of incompressible flow, at a negative angle of attack, and in the
presence of cross-flow velocity components. However, further details are not available;
for this reason, it has been decided to consider a priori certain flow conditions, deferring
to the future the possibility of setting up an optimization study for the conditions
used by the Dutch colleagues who found that the solution provides improvements
without optimizing its shape. Also, regarding the choice of the baseline wing profile to
optimize, it was decided to follow this strategy, preferring to continue working with the
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NLF(2)-0415 wing baseline profile with a 45◦ sweep angle, in order to leverage some of
the information already obtained from the tolerance study previously presented.

11.1 Sensitivity information

Considering that the purpose of this study is to attempt to delay the transition of
the boundary layer, which can be associated with the effort to reduce energy within
the boundary layer, it is first necessary to determine whether, for the chosen flow
conditions, it is possible to optimize the shape of the selected airfoil profile in order
to delay the transition. This can be done by observing the trend of sensitivity with
respect to the design variables, i.e., ∇zE, and verifying if it takes a negative value in a
certain region. As explained in detail in Chapter 7, in order to minimize the energy
of the system, with a gradient descent algorithm it is possible to make variations to
the baseline geometry following the direction of maximum decrease. Therefore, if the
sensitivity ∇zE takes a negative value, it means that moving in the opposite direction
of the gradient, i.e., introducing a convex bump to the baseline geometry of the profile,
can achieve the desired result confirming the observation of the colleagues from TU
Delft.
In Figure 11.1, the variation of the energy gradient computed with respect to the
vertical coordinate of the baseline profile grid points is shown for the flow conditions
Re = 9 × 106, AoA = 1.25◦, M = 0.5, and the instability mode whose parameters are
listed in Table 11.1. The chosen instability mode corresponds to the CF type as it has
been observed that these are the ones suitable for this type of study. It has already been
observed that crossflow instabilities tend to dampen near APD; therefore, introducing
a bump in a sufficiently advanced position on the profile limits the extent of the region
where pressure decreases. It should be noted that for convenience, reference is made
to flow conditions with positive AoA, although CF-type instabilities are dominant
under negative incidence conditions. However, at this stage of the study, we are not
particularly interested in referring to the most critical instability that triggers transition;
rather, at this phase, we are interested in assessing whether the implemented procedure
effectively results in benefits in terms of instability damping. Only later it will be
appropriate to carefully choose the mode to effectively delay transition. Regarding this,
it is worth noting once again the extreme difficulty in defining a threshold N -factor for
transition, NT , in a general manner; accurate boundary conditions are indeed necessary
to set a reference value, considering turbulence intensity, etc..
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Returning to Figure 11.1, it can be observed that over a sufficiently extended x/c

Figure 11.1 Sensitivity of energy with respect to design variables, ∇zE, for the baseline
airfoil considering the instability mode whose parameters are reported in Table 11.1 is
depicted. Flow conditions are: Re = 9 × 106, AoA = 1.25◦, M = 0.5.

interval (≈ [0.15, 0.50]), ∇zE takes on negative values, suggesting that by introducing a
properly shaped bump, there is indeed the possibility of reducing the objective function,
E. The sensitivity trend displayed has been limited to a confined region because for
x/c values less than 0.15, non-physical oscillations occur, which obviously must be
disregarded. The issue is once again related to what was discussed in 9.3.1, along with
the fact that this region is near the stagnation point, before which BLE and PSE are
not solved along with their corresponding adjoint equations.
For the conditions considered here, there are good chances to optimize the profile

Table 11.1 Parameters of the instability mode used for transition delay analysis
considered in the current section.

Re = 9 × 106, AoA = 1.25◦, M = 0.5
f [Hz] 4352.76
β [m−1] 682.69
αr [m−1] 102.95
αi [m−1] -3.10

shape in order to delay transition. However, it is necessary to verify on a case-by-case
basis whether this is actually the case or not.
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11.2 Considerations on the positioning of bumps

As explained in Section 7.1.1, the sensitivity of the energy calculated with respect to the
design variables, i.e., ∇zE, is projected into the space defined by a predefined number
of Hicks-Henne bump functions. The projection aims to compute the amplitude of each
bump function considered in order to find the optimal shape of the profile that allows
for a reduction in kinetic energy. Once it has been established that sensitivity analysis
highlights the possibility of optimizing the shape, as discussed in the previous section,
it is necessary to consider some precautions in the selection of the bump functions to
be used for the projection operation. It is worth noting that although the shape of
the H-H bump functions is controlled by some parameters, users need to pay attention
when selecting them to avoid encountering unexpected situations. Arbitrarily assigning
values to the parameters of the H-H functions, i.e., not considering the shape of the
bumps after projection for a specific case, in order to generalize the discussion as much
as possible, allows for more prominent highlighting of the issues encountered in the
various simulations conducted.
Figure 11.2 depicts a possible condition that may occur; it is observed that the
combination of parameters defining the peak position and width of the function, i.e., h
and t, as well as the boundaries of the interval x/c in which the gradient information is
utilized, generate an abrupt step that undermines the stability of the boundary layer.
In a condition of this kind, the boundary layer transition is almost certainly triggered,
completely nullifying the benefits that such a study could bring. The problem arises
from the fact that, unlike a preferred basis of functions such as the sine function of
the Fourier basis used in tolerance studies, the H-H bump functions do not necessarily
vanish at the extremes of the interval in which they are defined if their parameters
are specified in terms of a characteristic length (such as the chord of the wing profile).
Consequently, introducing constraints to systematically avoid such situations is not easy
at all, and it is therefore advisable to directly assess at reasonable intervals whether
the algorithm is actually performing as intended.
In addition, another aspect that was not taken into account in Figure 11.2 needs to
be considered. To address this, consider Figures 11.3–11.4; in these figures, the more
complex and interesting case of gradient projection is considered, where instead of
considering a single bump function, a certain set of them is taken into account. In
this case, it is possible to leverage more the information coming from the resolution of
the adjoint equations by defining the amplitude of each bump function; simplistically,
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Figure 11.2 Situation arising from non-optimal positioning of bump functions: forma-
tion of an abrupt step near the leading edge. The peak position, i.e. h value, is set
to 0.15, with a width parameter t of 0.40, and the region of the upper surface of the
airfoil profile considered for modification is within the interval x/c=[0.08, 0.75].

one could say that in this case, it is possible to better replicate the shape of the
gradient. Therefore, it is necessary to consider a methodology that allows deriving a
reasonable and physically meaningful perturbation surface data from the superposition
of the different shapes obtained. Once again, it is necessary to take into account what
was presented in Figure 11.2; it could indeed occur that a single H-H function taken
individually does not create problems regarding abrupt steps at the boundaries of the
geometry modification interval, while the superposition of the different functions could
cause it. Regarding the methodology, reference can be made to the right panels of the
above-mentioned figures, which propose some of the solutions that were considered
during the development of the code for gradient projection. In particular, three
functions are considered: envelope, sum, and spline. The first considers the smooth
curve that can be traced for an oscillating signal, such as ∇zE, outlining the extremes,
the second is simply obtained as the sum of the different functions and subsequent
normalization with the maximum value (in order to obtain a perturbation trend with
unit peak), while the last one is obtained using a spline that connects the points of
the maxima of the individual bump functions. Each of the three solutions presented
has highlighted advantages and disadvantages: certainly, the first two functions are
those that modify the original shape of the bump functions the least. However, it
is not possible to overlook the fact that their composition leads to the formation of
pronounced concave regions that can introduce negative effects on the stability of the
boundary layer. In this regard, the results of the tolerance study come to our aid;
it has been observed that moving towards APG conditions leads to an increase in
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the N -factor, i.e., an increase in the energy of the perturbations within the boundary
layer. Furthermore, shapes of this type can certainly be responsible for the immediate
transition of the boundary layer or even its separation. Given these observations,
the third methodology is proposed, which traces a particularly smooth trend that
approximates the general trend of the individual bump functions (to leverage the
gradient information), while simultaneously avoiding the formation of concavities.
It is interesting to note at this point that it is particularly difficult to select in a general
way which function is best suited for this purpose: the bump functions in Figure 11.3a
are indeed very similar to those in Figure 11.4a; all parameters are unchanged except
for the peak position of the 3rd bump, which changes from x/c=0.6 to 0.55. It is then
noted that a small variation like this can determine very different scenarios; in the first
case, it is quite evident that, in order to try to delay the transition, the spline function
is the most suitable, while in the second case, both the envelope and sum functions
also provide good solutions.

(a) Three different bump functions charac-
terized by the following features, in the or-
der of the legend: h = [0.4, 0.5, 0.6], t =
[0.4, 0.5, 0.4], and amplitudes [0.2, 1, 0.6].

(b) Three different possible curves to con-
sider as compositions of the selected bumps
reported in the left panel for parameterizing
the gradient are proposed: envelope, sum,
and spline curve.

Figure 11.3 A possible situation that may arise during the sensitivity projection of
the objective function with respect to surface deformation, i.e. ∇zE, into the space of
chosen Hicks-Henne bump functions.

It can then be concluded that, in general, the method as developed requires some
supervision from the user in order to consider, for the specific condition for which the
optimization study is being performed, whether the setting of the input parameters
regarding the positioning of the Hicks-Henne bump functions is reasonable or not.
In this section, as already anticipated, bump functions chosen arbitrarily have been
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(a) Three different bump functions charac-
terized by the following features, in the or-
der of the legend: h = [0.4, 0.5, 0.55], t =
[0.4, 0.5, 0.4], and amplitudes [0.2, 1, 0.6].

(b) Three different possible curves to con-
sider as compositions of the selected bumps
reported in the left panel for parameterizing
the gradient are proposed: envelope, sum,
and spline curve.

Figure 11.4 A possible situation that may arise during the sensitivity projection of
the objective function with respect to surface deformation, i.e. ∇zE, into the space of
chosen Hicks-Henne bump functions.

considered; in reality, the intention was precisely to consider the most critical scenarios
that may arise to clearly highlight the issues for which a solution has been sought.

11.3 Example of optimisation cycles

Here are two examples among those considered during the testing phase of the developed
algorithm. The results refer to the same flow condition, namely Re = 9 × 106, M = 0.5,
AoA = 1.25◦, and the crossflow instability is characterized by the parameters reported
in Table 11.1. The solutions obtained for the same flow condition are presented to
highlight, among other aspects, the high sensitivity of the method to the position of
the bumps along the upper surface of the airfoil, an aspect already mentioned in the
previous section.
Consider now Figure 11.5–11.6, corresponding to the solution obtained after placing
three bumps with parameters h = [0.25, 0.36, 0.40] and t = [0.30, 0.35, 0.20], which
define respectively the position of the maximum of the individual function and their
width. The positioning was based on the information from the ∇zE trend shown in
Figure 11.5a; it is observed that they were positioned at x/c coordinates for which
the sensitivity with respect to the design variables is negative. In the same figure, the
trend of ∇zE after a certain number of iterations is also reported, specifically at the
20th and 30th iterations. At this point, the difficulties of implementing the method
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are observed; following the addition of bumps of extremely small sizes (note the scale
of the ordinates in Figure 11.5b), the sensitivity changes from having a particularly
smooth trend where it is clearly evident how the geometry should be modified, to a
rather variable trend. The aspect that complicates all this the most is the fact that,
following the introduction of bumps, in some positions the sensitivity changes from
positive to negative values; therefore it could be possible that at a certain iteration, in
the worst scenario after the second one, the selected location of a bump is, at all, no
longer correct. In Figure 11.5b, the geometric perturbation introduced to the baseline
geometry at the end of the iteration cycle can be seen.

(a) ∇zE as a function of the coordinate x/c
for three different iterations.

(b) Shape of the perturbation of the baseline
airfoil profile for three different iterations.

Figure 11.5 Flow conditions are Re = 9 × 106, M = 0.5, AoA = 1.25◦. The parameters
of the HH bump functions employed are h = [0.25, 0.36, 0.40] and t = [0.30, 0.35, 0.20].
The parameters of the instability mode considered are those reported in Table 11.1.

At this point, let us consider Figures 11.6, which allow us to understand the trend of
the energy, or in particular to infer whether it is decreasing, indicating a damping of
the instability chosen after the introduction of the bumps just presented. In Figure
11.5a, it is possible to observe a reduction in the N -factor at x/c = 0.16, which can be
correlated in a certain way with the positioning of the bump closest to the LE. We
observe a situation very similar to that commented on in the results of the tolerance
study in the previous chapter. In particular, in the presence of APG, the crossflow
instability tends to dampen; this damping can be evaluated, for example, through
the value of ∆N between the current iteration and the initial iteration, as shown in
Figure 11.6b. However, it is necessary to consider that this value of ∆N is calculated
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considering the position where there is the maximum reduction in the N -factor, namely
for x/c ≈ 0.16, and does not consider that at a more advanced position there is an
increase in the same, which would result in a negative variation. Considering the
purpose of this study, the fact just mentioned cannot be neglected, as such an increase
in this parameter to higher absolute values could certainly lead to transition onset. It
is also observed that the N -factor curves tend to overlap after a certain number of
iterations.

(a) N -factor curve as a function of x/c for
three different iterations.

(b) Trend of energy and ∆N as a function of
the number of iterations.

Figure 11.6 Flow conditions are Re = 9 × 106, M = 0.5, AoA = 1.25◦. The parameters
of the HH bump functions employed are h = [0.25, 0.35, 0.40] and t = [0.30, 0.35, 0.20].
The parameters of the instability mode considered are those reported in Table 11.1.

In addition to considering the variation of the N -factor, essential in this calculation
algorithm being the input condition and also its stopping criterion, it is useful to keep
an eye on the energy value. It is observed that the latter decreases monotonically
with the number of iterations, without reaching a plateau condition, which means
that in general terms, the introduced bumps lead to a minimization of the objective
function. However, the decrease is not significant as expected; to reach a satisfactory
final condition multiple parameters have to be adjusted (bump position, overlap mode,
etc.).
We can now consider the results shown in Figures 11.7–11.8, which as already mentioned
refer to the same flow conditions but different positions of the bump functions. In par-
ticular, the parameters of the bumps are: h = [0.20, 0.30, 0.50] and t = [0.30, 0.30, 0.15];
the characteristics of the functions chosen in this second case are therefore very similar
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to those of the previous case. Nevertheless, a quite different trend is observed as the
number of iterations increases. In particular, observing Figure 11.8a, it can be noted
that for this second setting, there is no increase in the N -factor before the introduction
of the first bump, which was highlighted previously. Moreover, the N -factor curves are
always scaled downwards as the iterations progress. However comparing the values
of ∆N in Figures 11.8b–11.8b, in the first case, higher values are recorded; on the
contrary, lower values for the energy are reached.

Figure 11.7 Shape of the perturbation of the baseline airfoil profile for three different
iterations. Flow conditions are Re = 9 × 106, M = 0.5, AoA = 1.25◦. The parameters
of the HH bump functions employed are h = [0.20, 0.30, 0.50] and t = [0.30, 0.30, 0.15].
The parameters of the instability mode considered are those reported in Table 11.1.

As mentioned several times, the results presented in this section, although hinting at
the possibility of optimizing the shape of an airfoil by introducing bumps described
by Hicks-Henne functions, are not particularly satisfying. These brief comments,
however, have been introduced in this work to hint at the numerous challenges that
have been faced and that have required the search for solutions, as generalizable as
possible in order to replicate a similar study under different flow conditions and baseline
geometries. These preliminary results, however, are particularly useful in providing
indications of aspects that require further attention and study. In particular, it will be
necessary to understand why, in some conditions, there is an increase in the N -factor at
positions advanced relative to the bumps introduced; this aspect could be challenging
to understand. Furthermore, these results have highlighted the fact that, since ∇zE in
some cases changes from negative to positive values, the idea of fixing the position of the
bump throughout the optimization cycle, as implemented in the developed algorithm,
may not be the best solution. It may also be necessary to consider other solutions,
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(a) N -factor curve as a function of x/c for
three different iterations.

(b) Trend of energy and ∆N as a function of
the number of iterations.

Figure 11.8 Flow conditions are Re = 9 × 106, M = 0.5, AoA = 1.25◦. The parameters
of the HH bump functions employed are h = [0.20, 0.30, 0.50] and t = [0.30, 0.30, 0.15].
The parameters of the instability mode considered are those reported in Table 11.1.

compared to that proposed here, for defining the shape of the bumps. In reference
to this, the possibility of using a smoothing function to make the gradient of energy
with respect to the z-coordinate physically meaningful and applying it directly to the
baseline geometry has also been considered. Some simulations have been carried out,
but once again, the oscillating behavior of the gradient makes it effectively impossible
to make the optimization cycle completely automatizable; it is indeed required to verify
at each iteration if there.
Certainly, one aspect that can greatly aid the development of the optimization algorithm
is accessing the results of colleagues from TU Delft, thus being able to use their findings
as a starting point for further consideration.





Conclusions

An approach based on the adjoint method was proposed to determine tolerances for sur-
face waviness in the manufacturing of laminar flow (NLF) surfaces. One of the aims of
this study was to extend the previous research conducted by Miniripiri et al., shedding
light on the case of instabilities arising in the presence of tapered aerodynamic surfaces.
The mentioned study exclusively considers 2D instabilities, namely Tollmien-Schlichting
type, as the problem referred to straight-wing configurations, therefore neglecting cross-
flow velocity components. To properly extend the methodology to determine tolerances
for a 3D wing, allowing deformations in both spanwise and chordwise directions, a
comprehensive approach is required, necessitating the solution of the full 3D boundary
layer and stability equations. However, while this approach may be feasible in some
cases, it is significantly complex and computationally expensive. A simpler way to
conduct such a study, albeit approximate compared to the aforementioned approach,
is to assume that waviness occurs only in the chordwise direction; this is the solution
which has been proposed here. To address the full three-dimensionality of the base
flow, it can be handled in a similar manner to when designing and analyzing natural
laminar flow wings. In this scenario, the flow at different wing sections along the
span is treated separately, and a local infinite swept wing approximation is applied.
This is feasible in the work frame already developed because part of the algorithm,
namely codes for solving the boundary layer equations (BLE) and parabolized stability
equations (PSE), are based on an infinite swept approximation and can accommodate
both Tollmien-Schlichting and cross-flow perturbations. In this case, a manufacturing
tolerance could be determined for each span section.
The intention to consider cross-flow velocity components using the open-source ADflow
solver necessitated the implementation of the so colled 2.5D transformation to over-
come the intrinsic limitation related to the absence of suitable boundary conditions.
Specifically, to replicate the case of an infinite swept wing problem, periodic boundary
conditions would have been required. However, due to the necessity of resorting to
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symmetric boundary conditions, the introduction of a local reference system oriented in
the normal-to-chord direction instead of the usual streamwise direction was necessary.
The implementation of this treatment was proposed.
The objective of establishing manufacturing tolerances involves a computational pro-
cess that includes obtaining the inviscid baseflow through the solution of the Euler
equations, and the viscous meanflow by solving the boundary layer equations (BLE) for
compressible flows. The stability of the boundary layer is assessed using the parabolized
stability equations (PSE), and the gradient of the objective function concerning surface
deformations is derived using the adjoint method through the solution of the adjoint
equations corresponding to the Euler, BLE, and PSE.
The methodology for computing the surface waviness tolerance consists of an iterative
gradient-based amplification of the kinetic energy of the boundary layer to find the
wavy profile that causes a specified increase in the N -factor (∆N). The NLF(2)-0415
airfoil from a 45◦ swept wing was chosen as the geometry considered in this study.
However, it is important to underline that the methodology is applicable to any basic
geometry, as the calculation algorithm has been appropriately modified to automate
the mesh and geometry initialization process. This was one of the other objectives
of the work carried out within the scope of this thesis. The results obtained using
the gradient ascent (GA) method, show how tolerances scale with different Reynolds
numbers, where the thickness of the boundary layer plays a significant role in the
final tolerances together with the effect of different wavelengths of surface oscillations
responsible for the level of adverse-favorable pressure gradients. The influence of other
parameters was also considered: Mach number and angle of attack. To select the
range of parameters to consider, typical conditions for aircraft with tapered wings
were taken into account: Reynolds numbers between 9 × 106 and 15 × 106 based on
common aerodynamic chords, Mach numbers between 0.45 and 0.60, and angles of
attack ranging from −1.00◦ to 1.75◦ in order to highlight how the characteristics of
the instabilities vary.
The possibility of utilizing SLSQP has also been presented, which offers the advantage
of being capable of finding the largest allowable deformation profile, with the minimum
L2-norm of surface deformation, albeit at the expense of additional computational time
compared to the GA approach.
However, results regarding this alternative approach were not available at the time of
submitting this work.
The outlined method aims to justify the efforts to constrain manufacturing tolerances
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for NLF surfaces, with waviness shapes oriented along the chordwise direction, which
are utilized in aerodynamic applications. The results from this study are believed to be
particularly interesting during design process, as they allow for a direct link between
the chosen, imposed (for various other reasons, ex. consider MDO1 process), or required
tolerance level, and the effect it has on the boundary layer development, namely the
final ∆N resulting from the manufactured geometry. This will help engineers to be
more confident about their design shape choices and aerodynamic performance.
Using a very similar approach to that proposed for the calculation of dimensional
tolerances, an optimization method for optimizing the shape of a profile to delay
boundary layer transition was then proposed. The methodology involves an iterative
gradient-based reduction of the kinetic energy of the boundary layer to identify the
shape that induces a specified decay of a certain perturbation, which correlates with
the decrease in the N -factor. The approach to performing the flow solution and
stability analysis remained the same as the one previously proposed; even the flow
conditions were equal, once again considering the approximation of the infinite swept
wing problem to avoid dealing with full three-dimensionality. Even the airfoil profile
and the sweep angle of the wing used were the same, i.e. NLF(2)-0415 for 45◦ swept
condition. The main difference lies in how the information from the sensitivity analysis
of the adjoint solution is utilized. Given that the aim of this study is to find a local
shape deformation advantageous for delaying transition, the focus was on introducing
perturbations which reduce energy within the boundary layer, potentially directly
linked to decreasing the N -factor. As the shape of sensitivity with respect to design
variables is typically non-physical, i.e., not directly applicable to geometry, it was
considered to parameterize its shape by projecting it into the space of a certain number
of Hicks-Henne bump functions. The related implementation was proposed, along with
the option of considering a simpler way to utilize information from the adjoint solution
using an in-house smooth function.
Greater attention was paid to the theoretical definition and numerical implementation
of the methodology rather than the analysis of the results, as obtaining promising
results required a greater effort. Nevertheless, the method has shown promise, and
it is planned to continue its implementation in the future to complete the work. In
particular, greater clarity will be needed on the upstream effect of introducing surface
perturbation, where an increase in the N -factor has been highlighted and representing
a condition contrary to the desired outcome. It is known that the physics involved in

1Multidisciplinary design optimization
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boundary layer transition is particularly complex, requiring a more focused approach
and careful attention to all the factors involved. In any case, this work can certainly
be seen as the starting point.
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Appendix A

Code A.1 Bash script for the automatic generation of the mesh with optional 2.5D
transformation of the geometry using the Construct2D code, starting from the profile
geometry in .dat or .cgns file format.

1 # ======================================================================
2 # From UNswept to swept , mesh generation (INIT)
3 # ======================================================================
4 echo "***********************************************"
5 echo "-----------------------------------------------"
6 echo "Init Transformation2.5D/Meshing from streamwise to normal -to-chord

direction"
7 echo "-----------------------------------------------"
8 echo "-----------------------------------------------"
9

10 # Extract the file extension
11 extens i on="${InputFileName##*.}"
12 # Conditions for file extension
13 if [ [ "$extension" == "dat" ] ] ; then
14 PythonScript="coord_from_dat.py"
15 elif [ [ "$extension" == "cgns" ] ] ; then
16 PythonScript="coord_from_cgns.py"
17 else
18 echo "Error: Unknown file extension."
19 exit 1 # Terminate the script with a non-zero exit code
20 fi
21 current_dir=$ ( pwd )
22 cd mesh | | exit 1
23
24 # Run Python script to generate modified coordinates
25 python3 "$PythonScript" "$InputFileName" "$Sweptangle"
26 f i l e_path="coords_swept_${Sweptangle}deg.dat"
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27 num_lines=$ ( awk ’NR > 1 {count++} END {print count}’ "$file_path" )
28 n s f r=$num_lines
29 # Overwrite values in .in file
30 sed − i "s/^\s*nsrf\s*=\s*.*/ nsrf = $nsfr/" "grid_options.in"
31 # Read nwke value from grid_options.in and calculate new value for b
32 nwke=$ ( awk ’/^ *nwke *=/ {print $3}’ "grid_options.in" )
33 index=$ ( ( n s f r+nwake ) )
34 # If command line arguments are provided , use them for num_lines and b
35 if [ $# -eq 2 ]; then
36 num_lines="$1"
37 index="$2"
38 fi
39 n s f r=$ ( ( $ n s f r + $nwke ) )
40 # Increment the value of nwke by 1
41 nwke=$ ( ( nwke + 1) )
42 # Update values in info_split.txt using awk
43 awk −v new_nwke="$nwke" −v new_nsfr="$nsfr" ’NR==1{$3=new_nwke} NR==2{$3

=new_nsfr} 1’ i n f o _ s p l i t . txt > temp . txt && mv temp . txt i n f o _ s p l i t . txt
44
45 const ruct2d <<EOF
46 coords_swept_${ Sweptangle }deg . dat
47 g r id
48 bu f f
49 qu i t
50 EOF
51
52 # Convert plot3d to CGNS format
53 plot3d_to_cgns −f −d naca . p3d NLF_N600_3D. cgns
54 # Split CGNS file and overwrite boundary conditions
55 cgns_ut i l s s p l i t −−s p l i t F i l e i n f o _ s p l i t . txt NLF_N600_3D. cgns

NLF_N600_3D_splited . cgns
56 cgns_ut i l s overwriteBC NLF_N600_3D_splited . cgns info_bc . txt NLF_N600 .

cgns
57 # ======================================================================
58 # From UNswept to swept , mesh generation (END)
59 # ======================================================================
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Code A.2 Python script for performing the 2.5D coordinate transformation starting
from the airfoil geometry into mesh files in .cgns format.

1 # ======================================================================
2 # Import modules
3 # ======================================================================
4 import numpy as np
5 from mpi4py import MPI
6 from idwarp import ∗
7 import sys
8 import matp lo t l i b . pyplot as p l t
9 from math import cos , rad ians

10 import glob
11 # ======================================================================
12 # Input Information
13 # ======================================================================
14 #Load file name
15 fi le_name=sys . argv [ 1 ]
16 #-----------------------------------------------------------------------
17 # Define the swept angle in degrees
18 swept_angle = float ( sys . argv [ 2 ] )
19 # ======================================================================
20 match ing_f i l e s = glob . g lob ( f i le_name )
21 # Check if there are matching files
22 if match ing_f i l e s :
23 name_fi le = match ing_f i l e s [ 0 ]
24 outputDirectory = ’./’
25 # Create a mesh object
26 mesh = USMesh( opt ions={’gridfile’ : f i le_name })
27
28 print ( "*" ∗ 40)
29 print ( f "File {file_name} loaded successfully" )
30 print ( "*" ∗ 40)
31 # Get surface coordinates
32 o r i g i na l_coo rd s = mesh . ge tSur faceCoord inate s ( )
33 print ( max ( o r i g i na l_coo rd s [ : , 0 ] ) )
34 print ( max ( o r i g i na l_coo rd s [ : , 1 ] ) )
35 print ( max ( o r i g i na l_coo rd s [ : , 2 ] ) )
36 # Save surface coordinates to a .dat file
37 output_fi le_path = ’original_coords.dat’
38 np . savetxt ( output_fi le_path , o r i g ina l_coords , fmt=’%.16e’ , d e l i m i t e r

=’ ’ )
39
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40 print ( "*" ∗ 40)
41 print ( f "Init 2.5d coordinates transformation" )
42 print ( "*" ∗ 40)
43
44 # Convert the swept angle to radians and calculate the cosine
45 sca l ing_factor_y = cos ( rad ians ( swept_angle ) )
46 new_coords = or i g ina l_coo rd s . copy ( )
47 new_coords [ : , 2 ] /= sca l ing_factor_y
48
49 # Find the minimum value in the second column to consider only one

airfoil , doing this only root (in .cgns tip and root airfoils)
50 min_y_value = np . min ( new_coords [ : , 1 ] )
51 # Filter rows where the value in the second column is equal to the

minimum
52 f i l t e r e d _ d a t a = new_coords [ new_coords [ : , 1 ] == min_y_value ]
53 # Swap the second and third columns (y and z)
54 f i l t e r e d _ d a t a [ : , 1 ] , f i l t e r e d _ d a t a [ : , 2 ] = f i l t e r e d _ d a t a [ : , 2 ] . copy

( ) , f i l t e r e d _ d a t a [ : , 1 ] . copy ( )
55 # Save surface coordinates to a .dat file with header
56 output_fi le_path = f ’coords_swept_{swept_angle:.2f}deg.dat’
57 header = f "x y_modified z sweep_angle={swept_angle:.2f}"
58 np . savetxt ( output_fi le_path , f i l t e r ed_data , fmt=’%.16e’ , d e l i m i t e r=’

’ , header=header )
59
60 print ( "*" ∗ 40)
61 print ( f "End 2.5d coordinates transformation. File saved" )
62 print ( "*" ∗ 40)
63 else :
64 print ( "*" ∗ 40)
65 print ( f "No files matching name {file_name} found." )
66 print ( "*" ∗ 40)
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Code A.3 Python script for performing the 2.5D coordinate transformation starting
from the airfoil geometry into files in .dat format (x, y, z).

1 # ======================================================================
2 # Import modules
3 # ======================================================================
4 import sys
5 import numpy as np
6 from math import cos , rad ians
7 import glob
8 # ======================================================================
9 # Input Information

10 # ======================================================================
11 # Load file name
12 fi le_name = sys . argv [ 1 ]
13 # ----------------------------------------------------------------------
14 # Define the swept angle in degrees
15 swept_angle = float ( sys . argv [ 2 ] )
16 # ======================================================================
17 def r e a d _ a i r f o i l _ c o o r d i n a t e s ( f i l e_path ) :
18 x , y , z = np . l oadtx t ( f i l e_path , unpack=True , sk iprows =1)
19 return x , y , z
20 def save_modi f ied_coordinates ( f i l e_path , x , y_scaled , z_scaled ) :
21 with open ( f i l e_path , ’w’ ) as file :
22 for xi , y i_scaled , z i_sca l ed in zip (x , y_scaled , z_scaled ) :
23 file . wr i t e ( f "{xi:.15f} {yi_scaled:.15f} {zi_scaled:.15f}\n" )
24 match ing_f i l e s = glob . g lob ( f i le_name )
25 # Check if there are matching files
26 if match ing_f i l e s :
27 name_fi le = match ing_f i l e s [ 0 ]
28 print ( "*" ∗ 40)
29 print ( f "File {file_name} loaded successfully. Init 2.5d coordinates

transformation" )
30 print ( "*" ∗ 40)
31 # Read baseline airfoil coordinates
32 x , y , z = r e a d _ a i r f o i l _ c o o r d i n a t e s ( name_fi le )
33 # y is scaled considering the sweep angle (2.5D transformation)
34 y_scaled = y / np . cos (np . rad ians ( swept_angle ) )
35 output_fi le_path = f ’coords_swept_{swept_angle:.2f}deg.dat’
36 with open ( output_fi le_path , ’w’ ) as file :
37 file . wr i t e ( "# x y_modified z sweep_angle={:.2f}\n" . format (

swept_angle ) )
38 for xi , y i_scaled , z i in zip (x , y_scaled , z ) :
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39 file . wr i t e ( f "{xi:.16e} {yi_scaled:.16e} {zi:.16e}\n" )
40 print ( "*" ∗ 40)
41 print ( f "End 2.5d coordinates transformation. File saved" )
42 print ( "*" ∗ 40)
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Code A.4 Python script for smoothing the desired quantity into the geo.dat_1001 file.
Users can choose between smoothing the Cp and the geometry of the airfoil.

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import sys
4
5 Sweptangle = float ( sys . argv [ 1 ] )
6 smooth_quantity = float ( sys . argv [ 2 ] )
7
8 # Load data from ’geo.dat_1001’
9 geo_data = np . l oadtx t ( ’geo.dat_1001’ , dtype=np . f l oa t64 , sk iprows =3)

10 # Copy the first three lines
11 header_l ines = [ ]
12 with open ( ’geo.dat_1001’ , ’r’ ) as file :
13 for i in range (3 ) :
14 header_l ines . append ( next ( file ) )
15 # Read data from ’header.txt’ and insert it as the second row
16 with open ( ’header.txt’ , ’r’ ) as heade r_ f i l e :
17 header_data = heade r_ f i l e . r e a d l i n e ( ) . s t r i p ( )
18
19 # Calculate x and y
20 x = geo_data [ : , 0 ] ∗ np . cos (np . rad ians ( Sweptangle ) )
21 y = geo_data [ : , 1 ]
22 # Reshape x and y as column vectors
23 x = x . reshape (−1 , 1)
24 y = y . reshape (−1 , 1)
25
26 def m y f i l t e r ( s , y , n ) :
27 s = s . reshape (−1 , 1)
28 imax = len ( s )
29 mmax = y . shape [ 1 ]
30 yout = y . copy ( )
31
32 for j in range (n) :
33 for m in range (mmax) :
34 for k in range (1 , imax−1) :
35 ds1 = ( s [ k ] − s [ k−1]) / ( s [ k+1] − s [ k−1]) ∗ 0 .5
36 ds2 = ( s [ k+1] − s [ k ] ) / ( s [ k+1] − s [ k−1]) ∗ 0 .5
37 yout [ k , m] = ( yout [ k−1, m] ∗ ds2 + 4 ∗ yout [ k , m] + yout

[ k+1, m] ∗ ds1 ) / ( 4 . 0 + ds2 + ds1 )
38
39 return yout
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40
41 dx = np . d i f f ( x [ : , 0 ] )
42 dy = np . d i f f ( y [ : , 0 ] )
43 s = np . concatenate ( [ [ 0 ] , np . cumsum(np . sq r t ( dx∗∗2 + dy ∗∗2) ) ] )
44
45 # Apply myfilter to smooth the respective column of smooth_quantity
46 smth = m y f i l t e r ( s , geo_data [ : , int ( smooth_quantity ) ] . reshape (−1 , 1) , 20)
47 # Create a copy of the original data
48 geo_smoothed = geo_data . copy ( )
49 # Overwrite the third column of the copy with the smoothed values
50 geo_smoothed [ : , int ( smooth_quantity ) ] = smth . f l a t t e n ( )
51 # Save the smoothed data into ’geo.dat_1001’ with headers and inserted

data
52 with open ( ’geo.dat_1001’ , ’w’ ) as f :
53 f . w r i t e l i n e s ( header_l ines [ 0 ] )
54 f . w r i t e l i n e s ( header_data + ’\n’ )
55 f . w r i t e l i n e s ( header_l ines [ 2 ] )
56 np . savetxt ( f , geo_smoothed , d e l i m i t e r=’ ’ , fmt=’%.16f’ )
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Code A.5 Python script for re-organizing the output file of ADflow, geo.dat_1001, to
prepare it as input for BL3D code. It identifies the coordinates of the stagnation point
on the airfoil and separates the upper and lower surface flow solutions.

1 # ======================================================================
2 # Import modules
3 # ======================================================================
4 import numpy as np
5 import sys
6 # ======================================================================
7 # Input Information
8 # ======================================================================
9 iter=float ( sys . argv [ 1 ] )

10 Re=float ( sys . argv [ 2 ] )
11 Mode=float ( sys . argv [ 3 ] )
12
13 header=np . l oadtx t ( ’header.txt’ , dtype=np . f l o a t 6 4 )
14 apreynoldsLength=header [ 0 ]
15 apreynolds=header [ 1 ]
16 apmach=header [ 2 ]
17 apT=header [ 3 ]
18 apSwept=header [ 4 ]
19 # ----------------------------------------------------------------------
20 # Open output file
21 f=np . l oadtx t ( ’geo_all.dat’ , dtype=np . f l o a t 6 4 )
22 f=f [ 0 : − 1 , : ] #exclude duplicated rows (first and last lines)
23 # ----------------------------------------------------------------------
24 # Find stagnation point and trailing edge
25 X=f [ : , 0 ]
26 Cp=f [ : , 2 ]
27 i s t a g = np . argmax (Cp)
28 imax= np . argmax (X)
29 # ----------------------------------------------------------------------
30 # Extract upper and lower surface data. Assumes data in geo_all.dayt is

sorted.
31 f1 =[ ]
32 f2 =[ ]
33 if i s t ag <imax :
34 f1=f [ i s t a g : imax +1 , : ]
35 f 2=f [ i s t a g : −1: −1 , : ]
36 f 2=np . concatenate ( ( f2 , f [ imax + 1 : , : ] ) , a x i s =0)
37 else :
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38 f1=f [ i s t a g : imax : −1 , : ]
39 f 2=f [ i s t a g : , : ]
40 f 2=np . concatenate ( ( f2 , f [ 0 : imax +1 , : ] ) , ax i s =0)
41 # ----------------------------------------------------------------------
42 # Make sure f1 corresponds to data on uppersurface.
43 # It assumes that y-coordinate on upper side increases when moving from

stagnation point.
44 if f 2 [1 ,1 ] − f 2 [ 0 , 1 ] >0 :
45 f0=f1
46 f1=f2
47 f2=f0
48 # ----------------------------------------------------------------------
49 # Writing BL file upper surface
50 f=open ( ’geo.dat_1001’ , ’w’ )
51 f . wr i t e ( "# Lref RE MACH

Tinf Sweep \n" )
52 f . wr i t e ( "%5.16f %20.16f %20.16f %20.16f %20.16f \n" % ( apreynoldsLength ,

apreynolds , apmach , apT , apSwept ) )
53 f . wr i t e ( "# x/Lref y/Lref Cp Cq Tw

\n" )
54 for i in range (np . s i z e ( f1 , 0 ) ) :
55 f . wr i t e ( "%5.16f %20.16f %20.16f %20.16f %20.16f \n" % ( f1 [ i , 0 ] , f 1 [ i

, 1 ] , f 1 [ i , 2 ] , 0 . 0 , 0 . 0 ) )
56 f . c l o s e ( )
57
58 f=open ( ’geo.dat_Nf%d_Re%2.8d_I%2.3d’ %(Mode , Re , iter ) , ’w’ )
59 f . wr i t e ( "# Lref RE MACH

Tinf Sweep \n" )
60 f . wr i t e ( "%5.16f %20.16f %20.16f %20.16f %20.16f \n" % ( apreynoldsLength ,

apreynolds , apmach , apT , apSwept ) )
61 f . wr i t e ( "# x/Lref y/Lref Cp Cq Tw

\n" )
62 for i in range (np . s i z e ( f1 , 0 ) ) :
63 f . wr i t e ( "%5.16f %20.16f %20.16f %20.16f %20.16f \n" % ( f1 [ i , 0 ] , f 1 [ i

, 1 ] , f 1 [ i , 2 ] , 0 . 0 , 0 . 0 ) )
64 f . c l o s e ( )
65
66 f=open ( ’geo.dat’ , ’w’ )
67 for i in range (np . s i z e ( f1 , 0 ) ) :
68 f . wr i t e ( "%5.16f %20.16f %20.16f %20.16f %20.16f \n" % ( f1 [ i , 0 ] , f 1 [ i

, 1 ] , f 1 [ i , 2 ] , 0 . 0 , 0 . 0 ) )
69 f . c l o s e ( )
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70 # ----------------------------------------------------------------------
71 # Writing BL file lower surface
72 #f=open(’geo.dat_1002’,’w’)
73 #f.write("# Lref RE MACH

Tinf Sweep \n")
74 #f.write("%5.16f %20.16f %20.16f %20.16f %20.16f \n" % (apreynoldsLength

, apreynolds , apmach , apT, apSwept))
75 #f.write("# x/Lref y/Lref Cp Cq

Tw \n")
76 #for i in range(np.size(f2,0)):
77 # f.write("%5.16f %20.16f %20.16f %20.16f %20.16f \n" % (f2[i,0],f2[i

,1],f2[i,2], 0.0, 0.0))
78 #f.close()
79
80 print ( ’--------------------------------------’ )
81 print ( ’Cp max:’ , f 1 [ 0 , 2 ] )
82 print ( ’--------------------------------------’ )
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Code A.6 Python script for projecting the sensitivity output of ADflow into the space
of selected Hicks-Henne bump functions for the optimization study regarding the delay
of the transition of the boundary layer over a NLF airfoil.

1 # ======================================================================
2 # Import modules
3 # ======================================================================
4 import numpy
5 import s c ipy
6 import sys
7 import os
8 import matp lo t l i b . pyplot as p l t
9

10 from subproces s import c a l l
11 zeroLE=float ( sys . argv [ 1 ] )
12 normTE=float ( sys . argv [ 2 ] )
13 Nmode=float ( sys . argv [ 3 ] )
14 i t e r a t i o n=float ( sys . argv [ 4 ] )
15
16 iter = i t e r a t i o n
17 zero_LE = zeroLE #position until which we zero the LE sensitivity
18 norm_TE = normTE #position until which we normalize the sensitivity

-> we normalize by the |max_val| between (zero_LE) & (norm_TE)
19
20 sens=numpy . l oadtx t ( ’sens_cut.dat’ , dtype=numpy . f l o a t 6 4 )
21 x = sens [ : , 0 ]
22 sens_raw = sens [ : , 1 ]
23 #--------------------------------------------------------------------
24 # Definition of HH-bump functions
25 def hickshenne (n , a , h , t , SF) :
26 x_new = numpy . l i n s p a c e (0 , 1 , n )
27 m = numpy . l og ( 0 . 5 ) / numpy . l og (h)
28 b = numpy . z e r o s _ l i k e (x_new)
29
30 for i in range ( len (x_new) ) :
31 for j in range ( len ( a ) ) :
32 b [ i ] += SF ∗ a [ j ] ∗ numpy . s i n (numpy . p i ∗ x_new [ i ]∗∗m) ∗∗ t
33
34 return b
35
36 # Input data
37 dx_new = 0.01
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38 h = [ 0 . 1 5 , 0 . 20 , 0 . 2 5 ]
39 target_width = [ 0 . 2 , 0 . 3 , 0 . 2 ]
40 th r e sho ld = 1e−5
41 x_new = numpy . arange (0 , 1 + dx_new , dx_new)
42 t_calc = [ ] # Initialize an empty list to store calculated t values
43 HH = [ ] # Initialize an empty list to store desired bump funtions
44 HH_interp = [ ] # Initialize an empty list to store interpolated bump

funtions
45
46 # Span over lots of t different values to find a good set of parameters

for the bump function desired
47 t_values = numpy . arange (1 , 501 , 1)
48
49 for j in range ( len (h) ) :
50 h_value = h [ j ]
51 de l ta_va lues = [ ]
52
53 for i in range ( len ( t_values ) ) :
54 t = t_values [ i ]
55 y = hickshenne ( len (x_new) , [ 1 ] , h_value , t , 1)
56 # Threshold operation
57 y [ y < thre sho ld ] = 0
58 non_zero_indices = numpy . where ( y != 0) [ 0 ]
59 f i r s t_ index , las t_index = non_zero_indices [ 0 ] , non_zero_indices

[ −1]
60 de l ta_va lues . append ( abs (x_new [ last_index ] − x_new [ f i r s t _ i n d e x ] ) )
61
62 index = numpy . argmin (numpy . abs (numpy . array ( de l ta_va lues ) −

target_width [ j ] ) )
63 c loses t_de l ta_x = de l ta_va lues [ index ]
64 # print(f’The value of delta x closest to {target_width[j]} is: {

closest_delta_x}’)
65 # print(f’Percentage error is: {(abs(closest_delta_x - target_width[j

]) / target_width[j] * 100)}’)
66 t = t_values [ index ]
67 t_calc . append ( t ) # Store the calculated t value in the list
68 # Create the selected bump function considering the position of the

max of the function and width
69 HH_single = hickshenne ( len (x_new) , [ 1 ] , h_value , t , 1)
70 HH. append ( HH_single )
71 # Create the selected bump function considering the position of the

max of the function and width
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72 HH_interp . append (numpy . i n t e r p (x , x_new , HH_single ) )
73 # Transpose HH_interp
74 HH_interp_transposed = numpy . t ranspose ( HH_interp )
75
76 # End of definition of HH-bump functions
77 #--------------------------------------------------------------------
78 #Interpolating data
79 x_ini t = x [ 0 ]
80 x_end = x[ −1]
81 N = len ( x )
82
83 pos_in i t = next ( k for k , va l in enumerate ( x ) if val>zero_LE )
84 pos_end = next ( k for k , va l in enumerate ( x ) if val>norm_TE)
85
86 HH_interp_transposed_f = HH_interp_transposed [ pos_in i t : pos_end+1, : ]
87 x f = ( x [ pos_in i t : pos_end+1]−x [ pos_in i t ] ) /(x [ pos_end]−x [ pos_in i t ] )
88 sens_raw_f = sens_raw [ pos_in i t : pos_end+1]
89 #--------------------------------------------------------------------
90 # Applying H-H bump filter
91 s _ f u l l = numpy . z e ro s (N)
92 s _ f u l l _ s i n g l e = numpy . z e ro s ( (N, len (h) ) )
93 s_se r i e = numpy . z e r o s _ l i k e ( HH_interp_transposed_f )
94
95 bn_values = [ ]
96 for i in range ( len (h) ) :
97 bn = numpy . trapz ( sens_raw_f ∗ HH_interp_transposed_f [ : , i ] , x f )
98 # Append bn to the array
99 bn_values . append (bn)

100 bn_values = numpy . array ( bn_values )
101 print ( "bn_values" )
102 print ( bn_values )
103
104 f i l ename = ’HH_bn_coeff.txt’
105 if iter == 0 :
106 bn_values_with_iter = numpy . i n s e r t ( bn_values , 0 , iter )
107 bn_values_with_iter = numpy . reshape ( bn_values_with_iter , (1 , −1) )

# Ensure it’s a row vector
108 # Generate header with dynamic column names
109 num_coeffs = bn_values_with_iter . shape [ 1 ] − 1
110 header = ’\t’ . j o i n ( [ ’iter’ ] + [ f ’coeff{i}’ for i in range (1 ,

num_coeffs + 1) ] )
111 fmt_str ing = ’%d\t’ + ’\t%.16e’ ∗ num_coeffs
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112 numpy . save txt ( f i l ename , bn_values_with_iter , d e l i m i t e r=’\t’ , fmt=
fmt_string , header=header )

113 else :
114 # Load existing data from file
115 ex i s t ing_data = numpy . l oadtx t ( f i l ename )
116 # Add the iteration number as the first column
117 bn_values_with_iter = numpy . i n s e r t ( bn_values , 0 , iter )
118 bn_values_with_iter = numpy . reshape ( bn_values_with_iter , (1 , −1) )

# Ensure it’s a row vector
119 # Add the new values as the last row
120 al l_data = numpy . vstack ( ( ex i st ing_data , bn_values_with_iter ) )
121 # Generate header with dynamic column names
122 num_coeffs = bn_values_with_iter . shape [ 1 ] − 1
123 header = ’\t’ . j o i n ( [ ’iter’ ] + [ f ’coeff{i}’ for i in range (1 ,

num_coeffs + 1) ] )
124 fmt_str ing = ’%d\t’ + ’\t%.16e’ ∗ num_coeffs
125 # Save the combined data back to the file
126 numpy . save txt ( f i l ename , al l_data , d e l i m i t e r=’\t’ , fmt=fmt_string ,

header=header )
127
128 for i in range ( len (h) ) :
129 s_se r i e [ : , i ] = HH_interp_transposed_f [ : , i ] ∗ bn_values [ i ]
130
131 sum_bumps = numpy . sum ( s_ser i e , ax i s =1)
132
133 #--------------------------------------------------------------------
134 # Create the sum_bumps of bump functions vector with zeros out of the

modify region
135 s _ f u l l [ pos_in i t : pos_end+1] = sum_bumps
136 #--------------------------------------------------------------------
137 # Normalizing the sum_bumps of bump functions
138 s_full_norm = s _ f u l l /max ( abs ( s _ f u l l ) )
139 #--------------------------------------------------------------------
140 #Writting Normalized Filtered Sensitivity
141 f=open ( ’sens_filt_HH_norm.dat’ , ’w’ )
142 for i in range ( len ( x ) ) :
143 f . wr i t e ( "%5.16f %5.16f %5.16f %5.16f\n" % ( x [ i ] , sens_raw [ i ] , s _ f u l l [

i ] , s_full_norm [ i ] ) )
144 f . c l o s e ( )
145
146 f=open ( ’sens.dat’+str ( iter ) , ’w’ )
147 for i in range ( len ( x ) ) :
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148 f . wr i t e ( "%5.16f %5.16f %5.16f %5.16f\n" % ( x [ i ] , sens_raw [ i ] , s _ f u l l [
i ] , s_full_norm [ i ] ) )

149 f . c l o s e ( )
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Code B.1 grid_options.in
1 &SOPT
2 n s r f = 600
3 l e s p = 5.0000000000000002E−003
4 tesp = 5.0000000000000001E−003
5 rad i = 150.00000000000000
6 nwke = 50
7 f d s t = 1.0000000000000000
8 fwkl = 1.0000000000000000
9 fwki = 10.000000000000000

10 /
11 &VOPT
12 name = ’naca’
13 jmax = 100
14 s l v r = ’HYPR’
15 topo = ’CGRD’
16 yp l s = 5.000000000000000
17 recd = 100000.0000000000
18 stp1 = 1000
19 stp2 = 20
20 nrmt = 1
21 nrmb = 1
22 a l f a = 1.0000000000000000
23 e p s i = 15.000000000000000
24 epse = 0.0000000000000000
25 f u n i = 0.0000000000000000
26 asmt = 20
27 /
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28 &OOPT
29 gdim = 3
30 npln = 2
31 dpln = 1.0000000000000000
32 /
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Code B.2 info_bc.txt
1 1 i low BCFarf ie ld f a r f i e l d
2 1 jh i gh BCSymmetryPlane sym
3 1 j low BCSymmetryPlane sym
4 1 khigh BCFarf ie ld f a r f i e l d
5 2 klow BCWallviscous wa l l
6 2 khigh BCFarf ie ld f a r f i e l d
7 2 jh i gh BCSymmetryPlane sym
8 2 j low BCSymmetryPlane sym
9 3 jh i gh BCSymmetryPlane sym

10 3 j low BCSymmetryPlane sym
11 3 ih i gh BCFarf ie ld f a r f i e l d
12 3 khigh BCFarf ie ld f a r f i e l d

Code B.3 info_split.txt
1 1 1 41
2 1 1 640





Appendix C

In the following, we provide an overview of the settings used for the ADflow and
NOLOT codes (for direct and adjoint solution).



142Code C.1 Settings used in the ADflow solver for performing
the simulations (direct and adjoint) presented in this work.
These settings are specified in the codes named Coupling_run_0.py

and Coupling_Script_C2D_adj.py.
# ADflow , mul t ib lock s t r u c t u r e d f low s o l v e r
#
# This code s o l v e s the 3D RANS, laminar NS or Euler equat ions
# on mult ib lock s t r u c t u r e d hexahedral g r i d s .
# This i s a p a r a l l e l executab l e running on 2 p r o c e s s o r s .
# I t has been compiled with the f o l l o w i n g opt ions :
# − Optimized mode .
# − S i z e o f standard i n t e g e r s : 4 bytes .
# − S i z e o f standard f l o a t i n g po int types : 8 bytes .
# − With cgns support
# − With support f o r s i g n a l s .
#
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Al l ADFLOW Options : |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
{ ’ADPC’ : False ,

’ANKADPC’ : False ,
’ANKAMGLevels ’ : 2 ,
’ANKAMGNSmooth’ : 1 ,
’ANKASMOverlap ’ : 1 ,
’ANKCFL0 ’ : 5 . 0 ,
’ANKCFLCutback ’ : 0 . 5 ,
’ANKCFLExponent ’ : 0 . 5 ,
’ANKCFLFactor ’ : 1 0 . 0 ,
’ANKCFLLimit ’ : 100000 .0 ,
’ANKCFLMin’ : 1 . 0 ,
’ANKCFLReset ’ : True ,
’ANKCharTimeStepType ’ : ’ None ’ ,
’ANKConstCFLStep ’ : 0 . 4 ,
’ ANKCoupledSwitchTol ’ : 1e −16,

’ ANKGlobalPreconditioner ’ : ’ a d d i t i v e Schwarz ’ ,
’ ANKInnerPreconIts ’ : 1 ,
’ ANKJacobianLag ’ : 10 ,
’ANKLinResMax ’ : 0 . 1 ,
’ ANKLinearSolveBuffer ’ : 0 . 0 1 ,
’ ANKLinearSolveTol ’ : 0 . 0 5 ,
’ANKMaxIter ’ : 40 ,
’ ANKNSubiterTurb ’ : 1 ,
’ ANKOuterPreconIts ’ : 1 ,
’ANKPCILUFill ’ : 2 ,
’ ANKPCUpdateCutoff ’ : 1e −16,
’ANKPCUpdateTol ’ : 0 . 5 ,
’ ANKPCUpdateTolAfterCutoff ’ : 0 . 0001 ,
’ ANKPhysicalLSTol ’ : 0 . 2 ,
’ ANKPhysicalLSTolTurb ’ : 0 . 9 9 ,
’ ANKSecondOrdSwitchTol ’ : 1e −16,
’ ANKStepFactor ’ : 1 . 0 ,
’ANKStepMin ’ : 0 . 0 1 ,
’ ANKSubspaceSize ’ : −1,
’ ANKSwitchTol ’ : 1000 .0 ,
’ANKTurbCFLScale ’ : 1 . 0 ,
’ANKTurbKSPDebug ’ : False ,
’ ANKUnsteadyLSTol ’ : 1 . 0 ,
’ANKUseApproxSA ’ : False ,
’ ANKUseFullVisc ’ : True ,
’ ANKUseMatrixFree ’ : True ,
’ANKUseTurbDADI ’ : True ,
’ ASMOverlap ’ : 1 ,
’CFL ’ : 1 . 5 ,
’ CFLCoarse ’ : 0 . 7 5 ,
’ CFLLimit ’ : 1 . 5 ,
’ GMRESOrthogonalizationType ’ : ’ modi f i ed Gram−Schmidt ’ ,
’ ILUFil l ’ : 2 ,
’L2 Convergence ’ : 1e −14,
’L2 ConvergenceCoarse ’ : 1e −14,
’L2 ConvergenceRel ’ : 1e −16,
’MGCycle ’ : ’ sg ’ ,
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’ MGStartLevel ’ : −1,
’NKADPC’ : True ,
’NKAMGLevels ’ : 2 ,
’NKAMGNSmooth’ : 1 ,
’NKASMOverlap ’ : 1 ,
’ NKFixedStep ’ : 0 . 2 5 ,
’ NKGlobalPreconditioner ’ : ’ a d d i t i v e Schwarz ’ ,
’ NKInnerPreconIts ’ : 1 ,
’ NKJacobianLag ’ : 10 ,
’NKLS’ : ’ cubic ’ ,
’ NKLinearSolveTol ’ : 0 . 3 ,
’ NKOuterPreconIts ’ : 3 ,
’ NKPCILUFill ’ : 1 ,
’ NKSubspaceSize ’ : 100 ,
’ NKSwitchTol ’ : 1e −07,
’NKUseEW’ : True ,
’NKViscPC ’ : False ,
’ RKReset ’ : False ,
’ TSStab i l i ty ’ : False ,
’ a c o u s t i c S c a l e F a c t o r ’ : 1 . 0 ,
’ adjointAMGLevels ’ : 2 ,
’ adjointAMGNSmooth ’ : 1 ,
’ adjo intDivTol ’ : 100000 .0 ,
’ ad jo intL 2Convergence ’ : 1e −07,
’ ad jo intL 2ConvergenceAbs ’ : 1e −16,
’ ad jo intL 2 ConvergenceRel ’ : 1e −16,
’ adjo intMaxIter ’ : 10000 ,
’ adjointMaxL2 Deviat ionFactor ’ : 1 . 0 ,
’ adjo intMonitorStep ’ : 10 ,
’ a d j o i n t S o l v e r ’ : ’GMRES’ ,
’ ad jo intSubspaceS ize ’ : 100 ,
’ a lphaFol lowing ’ : True ,
’ alphaMode ’ : False ,
’ alt itudeMode ’ : False ,
’ applyAdjointPCSubspaceSize ’ : 20 ,
’ applyPCSubspaceSize ’ : 10 ,
’ approxPC ’ : True ,

’ backgroundVolScale ’ : 1 . 0 ,
’ betaMode ’ : False ,
’ b l o c k S p l i t t i n g ’ : True ,
’ cavExponent ’ : 0 ,
’ cavSensorOf f se t ’ : 0 . 0 ,
’ cavSensorSharpness ’ : 1 0 . 0 ,
’ cavitationNumber ’ : 1 . 4 ,
’ c l o s e d S u r f a c e F a m i l i e s ’ : None ,
’ c o a r s e D i s c r e t i z a t i o n ’ : ’ c e n t r a l p lus s c a l a r d i s s i p a t i o n ’ ,
’ computeCavitation ’ : False ,
’ coupledSo lut ion ’ : False ,
’ cpMinRho ’ : 100 .0 ,
’ cutCal lback ’ : None ,
’ debugZipper ’ : False ,
’ deltaT ’ : 0 . 0 1 ,
’ des ignSurfaceFami ly ’ : None ,
’ d i s c r e t i z a t i o n ’ : ’ c e n t r a l p lus s c a l a r d i s s i p a t i o n ’ ,
’ dissContMagnitude ’ : 1 . 0 ,
’ dissContMidpoint ’ : 3 . 0 ,
’ d issContSharpness ’ : 3 . 0 ,
’ diss ipationLumpingParameter ’ : 6 . 0 ,
’ d i s s ipat i onSca l ingExponent ’ : 0 . 6 7 ,
’ eddyVisInfRatio ’ : 0 . 009 ,
’ equationMode ’ : ’ steady ’ ,
’ equationType ’ : ’ Euler ’ ,
’ eulerWallTreatment ’ : ’ l i n e a r p r e s s u r e e x t r a p o l a t i o n ’ ,
’ e x p l i c i t S u r f a c e C a l l b a c k ’ : None ,
’ f i r s tRun ’ : True ,
’ flowType ’ : ’ ex te rna l ’ ,
’ f o r ce sAsTract ions ’ : True ,
’ f rozenTurbulence ’ : False ,
’ g l o b a l P r e c o n d i t i o n e r ’ : ’ a d d i t i v e Schwarz ’ ,
’ g r i d F i l e ’ : ’NLF_N600 . cgns ’ ,
’ g r i d P r e c i s i o n ’ : ’ double ’ ,
’ g r i d P r e c i s i o n S u r f a c e ’ : ’ double ’ ,
’ in fChangeCorrect ion ’ : True ,
’ in fChangeCorrect ionTol ’ : 1e −12,
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’ i nnerPreconI t s ’ : 1 ,
’ i s o V a r i a b l e s ’ : [ ] ,
’ i s o s u r f a c e ’ : {} ,
’ l i f t I n d e x ’ : 3 ,
’ l i m i t e r ’ : ’ van Albada ’ ,
’ l oadBa lance I te r ’ : 10 ,
’ loadImbalance ’ : 0 . 1 ,
’ l o c a l P r e c o n d i t i o n e r ’ : ’ ILU ’ ,
’ lowSpeedPrecondit ioner ’ : False ,
’machMode ’ : False ,
’ matrixOrdering ’ : ’RCM’ ,
’maxL2 Deviat ionFactor ’ : 1 . 0 ,
’ meshSurfaceFamily ’ : None ,
’ monitorVar iables ’ : [ ’ resrho ’ , ’ cd ’ , ’ c l ’ ] ,
’ nCycles ’ : 200000 ,
’ nCyclesCoarse ’ : 250 ,
’ nFloodIter ’ : −1,
’ nRKReset ’ : 5 ,
’ nRefine ’ : 10 ,
’ nSaveSurface ’ : 1 ,
’ nSaveVolume ’ : 1 ,
’ nSubiter ’ : 1 ,
’ nSubiterTurb ’ : 10 ,
’ nTimeStepsCoarse ’ : 48 ,
’ nTimeStepsFine ’ : 400 ,
’ nearWallDist ’ : 0 . 1 ,
’ numberSolutions ’ : True ,
’ outerPreconIt s ’ : 3 ,
’ outputDirectory ’ : ’ . / ’ ,
’ outputSurfaceFamily ’ : ’ a l l S u r f a c e s ’ ,
’ over lapFactor ’ : 0 . 9 ,
’ oversetDebugPrint ’ : False ,
’ oversetLoadBalance ’ : True ,
’ o v e r s e t P r i o r i t y ’ : {} ,
’ oversetPro jTo l ’ : 1e −12,
’ oversetUpdateMode ’ : ’ f rozen ’ ,

’pMode ’ : False ,
’ part i t ionLikeNProc ’ : −1,
’ part i t ionOnly ’ : False ,
’ p r e c o n d i t i o n e r S i d e ’ : ’ r i ght ’ ,
’ pr intAl lOpt ions ’ : True ,
’ p r i n t I n t r o ’ : True ,
’ p r i n t I t e r a t i o n s ’ : True ,
’ printNegativeVolumes ’ : False ,
’ printTiming ’ : True ,
’ printWarnings ’ : True ,
’qMode ’ : False ,
’ rMode ’ : False ,
’ resAveraging ’ : ’ never ’ ,
’ r e s t a r t A d j o i n t ’ : True ,
’ r e s t a r t F i l e ’ : None ,
’ r e s t r i c t i o n R e l a x a t i o n ’ : 0 . 8 ,
’ s e l f Z i p C u t o f f ’ : 120 .0 ,
’ s epSensorOf f s e t ’ : 0 . 0 ,
’ sepSensorSharpness ’ : 1 0 . 0 ,
’ setMonitor ’ : True ,
’ sk ipAf te rFa i l edAdjo in t ’ : False ,
’ smoothParameter ’ : 1 . 5 ,
’ smoother ’ : ’DADI’ ,
’ s o l u t i o n P r e c i s i o n ’ : ’ double ’ ,
’ s o l u t i o n P r e c i s i o n S u r f a c e ’ : ’ double ’ ,
’ storeConvHist ’ : True ,
’ storeRindLayer ’ : True ,
’ s u r f a c e V a r i a b l e s ’ : [ ’ cp ’ , ’ vx ’ , ’ vy ’ , ’ vz ’ , ’mach ’ , ’ c f ’ ] ,
’ timeAccuracy ’ : 2 ,
’ t imeIntegrat ionScheme ’ : ’BDF’ ,
’ t i m e I n t e r v a l s ’ : 1 ,
’ t imeLimit ’ : −1.0 ,
’ turbResScale ’ : 10000 .0 ,
’ turbulenceModel ’ : ’SA’ ,
’ turbulenceOrder ’ : ’ f i r s t order ’ ,
’ turbulenceProduct ion ’ : ’ s t r a i n ’ ,
’useALE ’ : True ,
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’ useANKSolver ’ : True ,
’ useApproxWallDistance ’ : True ,
’ useBlocket te s ’ : True ,
’ useDiagTSPC ’ : True ,
’ useDissCont inuat ion ’ : False ,
’ useExternalDynamicMesh ’ : False ,
’ useGridMotion ’ : False ,
’ useLinResMonitor ’ : False ,
’ useMatrixFreedrdw ’ : True ,
’ useNKSolver ’ : True ,
’ useOversetWal lSca l ing ’ : False ,
’useQCR ’ : False ,
’ useRotationSA ’ : False ,
’ useTSInterpo latedGr idVeloc i ty ’ : False ,
’ useWallFunctions ’ : False ,
’ useZipperMesh ’ : True ,
’ u s e f t 2SA ’ : True ,
’ ve r i fyExtra ’ : True ,
’ v e r i f y S p a t i a l ’ : True ,
’ v e r i f y S t a t e ’ : True ,
’ v i s 2 ’ : 0 . 2 5 ,
’ v i s 2Coarse ’ : 0 . 5 ,
’ v i s 4 ’ : 0 . 0156 ,
’ viscPC ’ : False ,
’ viscWallTreatment ’ : ’ constant p r e s s u r e e x t r a p o l a t i o n ’ ,
’ v i s c o u s S u r f a c e V e l o c i t i e s ’ : True ,
’ volumeVariables ’ : [ ’ resrho ’ , ’mach ’ , ’ cp ’ , ’ blank ’ ] ,
’ wa l lD i s tCuto f f ’ : 1 e +20,
’ windAxis ’ : False ,
’ wr i t eSo lu t i onEachI t e r ’ : False ,
’ w r i t e S u r f a c e S o l u t i o n ’ : True ,
’ wr i t e Te c p l o t Su r fa ce So l u t i o n ’ : False ,
’ writeVolumeSolution ’ : True ,
’ z ipperSur faceFami ly ’ : None}

−> Alpha . . . 0 .000000
#
# S p e c i f i e d load imbalance t o l e r a n c e 0 .100 achieved .

# Continuing with 0 .001 load imbalance f o r the c e l l s and
0 .002 f o r the f a c e s

#
#
# Grid l e v e l : 1 , Total number o f c e l l s : 69201
#
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

CGNS Sur face Fami l i e s by Boundary Condit ion Type
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Wall Types : wa l l
| In f l ow Types :
| Outflow Types :
| Symmetry Types : sym
| F a r f i e l d Types : f a r f i e l d
| Overset Types :
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| pyADFLOW Warning : |
| ’ z ipperSur faceFami ly ’ opt ion was not g iven . |
| Using a l l wa l l |
| boundary c o n d i t i o n s f o r the z i p p e r mesh . |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Al l IDWarp Options : |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
{ ’ LdefFact ’ : 1 . 0 ,

’ aExp ’ : 3 . 0 ,
’ alpha ’ : 0 . 2 5 ,
’bExp ’ : 5 . 0 ,
’ bucketSize ’ : 8 ,
’ cornerAngle ’ : 3 0 . 0 ,
’ errTol ’ : 0 . 0005 ,
’ evalMode ’ : ’ f a s t ’ ,
’ f i l eType ’ : ’CGNS’ ,
’ g r i d F i l e ’ : ’NLF_N600 . cgns ’ ,
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’ s p e c i f i e d S u r f a c e s ’ : None ,
’ symmTol ’ : 1e −06,
’ symmetryPlanes ’ : None ,
’ symmetrySurfaces ’ : None ,
’ useRotat ions ’ : True ,
’ zeroCornerRotat ions ’ : True}
−> Reading CGNS F i l e : NLF_N600 . cgns

−> Number o f Zones : 3
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

Total Volume Nodes : 140400
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
+−−−−−−−−−−−−−−−−−−−− Symmetry Planes −−−−−−−−−−−−−−−−−−−+
| Point Normal |
| ( 0 .000 1 .000 0 . 0 0 0 ) ( 0 .000 1 .000 0 . 0 0 0 ) |
| ( 0 .000 0 .000 0 . 0 0 0 ) ( 0 .000 −1.000 0 . 0 0 0 ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

Unique Sur face Nodes : 1198
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

Computing Denominator Estimate . . .
Load Balancing . . .
F in i shed Mesh I n i t i a l i z a t i o n .

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Switching to Aero Problem : FIELD |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
−> Alpha . . . 1 .767487
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Al l Modif ied ADFLOW Options : |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
{ ’CFL ’ : 1 . 5 ,

’ CFLCoarse ’ : 0 . 7 5 ,

’L2 Convergence ’ : 1e −14,
’L2 ConvergenceCoarse ’ : 1e −14,
’NKADPC’ : True ,
’ NKJacobianLag ’ : 10 ,
’ NKOuterPreconIts ’ : 3 ,
’ NKPCILUFill ’ : 1 ,
’ NKSubspaceSize ’ : 100 ,
’ NKSwitchTol ’ : 1e −07,
’ ad jo intL 2Convergence ’ : 1e −07,
’ adjo intMaxIter ’ : 10000 ,
’ equationType ’ : ’ Euler ’ ,
’ g r i d F i l e ’ : ’NLF_N600 . cgns ’ ,
’ g r i d P r e c i s i o n S u r f a c e ’ : ’ double ’ ,
’ l i f t I n d e x ’ : 3 ,
’ monitorVar iables ’ : [ ’ resrho ’ , ’ cd ’ , ’ c l ’ ] ,
’ nCycles ’ : 200000 ,
’ nCyclesCoarse ’ : 250 ,
’ nSubiterTurb ’ : 10 ,
’ resAveraging ’ : ’ never ’ ,
’ sk ipAf te rFa i l edAdjo in t ’ : False ,
’ s o l u t i o n P r e c i s i o n ’ : ’ double ’ ,
’ s o l u t i o n P r e c i s i o n S u r f a c e ’ : ’ double ’ ,
’ s u r f a c e V a r i a b l e s ’ : [ ’ cp ’ , ’ vx ’ , ’ vy ’ , ’ vz ’ , ’mach ’ , ’ c f ’ ] ,
’ turbResScale ’ : 10000 .0 ,
’ useNKSolver ’ : True ,
’ volumeVariables ’ : [ ’ resrho ’ , ’mach ’ , ’ cp ’ , ’ blank ’ ] }

#
# Grid 1 : Performing 200000 i t e r a t i o n s , u n l e s s converged

e a r l i e r .
# Minimum r e q u i r e d i t e r a t i o n b e f o r e NK switch :
# 5 . Switch to NK at tota lR o f : 2 .94E−03
#
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Code C.2 Settings used in the NOLOT code for performing the stability analysis (direct
and adjoint) presented in this work. These settings are specified in the code named
psecomp_init.in."
meanflow . dat
20 100 N, ymax
3 i fd im : ( 0 : nodim . , 1 : dim . input , 2 & 3 automatic c h o i c e o f

wavenumbers )
1 mutask ( 1 : suther land , 2 : polynomial )
1 kptask ( 1 : keye , 2 : polynomial )
1 prtask ( 1 : constant , 2 : v a r i a b l e prandt l number )
1 cptask ( 1 : constant , 2 : v a r i a b l e cp )
0 500 20 k 0 , d e l t a_k and number o f k ( k i s t o t a l wavenumber )
0 90 45 f i r s t and l a s t waveangle and number o f s t e p s
25 2e−4 number o f f requency and cut o f reduced f requency ( f o r i fdim >1)
2 10 i s t a r t , i s t e p
2500000 Step lenght f o r f requancy to save ( not used in t h i s v e r s i o n )
1 metask (0= without curvature , 1=with curvacure )
1 Stask (1= p a r a l l e l , 2=n o n p a r a l l e l )

Code C.3 Settings used in the NOLOT code for performing the stability analysis (direct
and adjoint) presented in this work. These settings are specified in the code named
psecomp.in."

1 1 : Dimensional f requency
1 2 : Dimensional wavenumbers

2 3 : Malik ’ s po int d i s t r i b u t i o n
100.00000 Coordinate o f l a s t po int
70.000000 Percentage o f p o i n t s in r e g i o n [ 0 : yp ]
20.000000 Coordinate o f yp

500 4 : Number o f s t a t i o n s in streamwise d i r .
1 Every i ’ th s t a t i o n used only

4 5 : Nonlocal , n o n p a r a l l e l s t a b i l i t y a n a l y s i s
2 I . c . from l o c a l , n o n p a r a l l e l theory
1 F i r s t order backward Euler

1 6 : Constant Prandtl number
1 7 : Constant s p e c i f i c heat
1 8 : Keyes ’ formula f o r kappa
1 9 : One part Sutherland ’ s formula f o r v i s c o s i t y

0 10 : Amplitude f u n c t i o n s not saved
1 11 : Given metr ic

10 12 : Maximum number o f i t e r a t i o n s
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0.10000000E−06 13 : Convergence c r i t e r i o n
meanflow . dat 14 : Meanflow f i l e (max 30 char ) :
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