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Optimisation de la cinématique d’un profil battant

pour applications aux micro-drones

Mots-clès:

Mirco-drones, vol battu, optimisation numérique, sensibilités, pas complexe

L’optimisation du battement d’un profil d’aile est réalisée par simulations numériques.
L’objectif principal est d’identifier les paramètres de battement capables d’assurer
à un micro-drône de bonnes performances aérodynamiques en termes de forces de
poussée, de portance et de rendement propulsif. Les variables de contrôle sont les
amplitudes des oscillations verticales et de tangage, leur déphasage, leur fréquence,
et l’angle d’incidence moyen. Une fois déterminées, les cinématiques optimales sont
confrontées aux valeurs observées dans la nature.

La méthodologie est basée sur la résolution de l’écoulement autour d’un profil NACA0012
battant. Diverses fonctionnelles coût sont minimisées en fonction de la mission du
véhicule. Leur gradients par rapports aux paramètres cinématiques sont calculés
par la technique des sensibilités et la méthode du pas complexe. Un algorithme de
quasi-Newton permet d’actualiser avec les gradients le mouvement du profil vers un
optimum de la fonctionnelle.

Les résultats montrent la capacité d’un profil optimisé d’aile battante à produire
de grandes forces de poussée et de portance avec un rendement propulsif acceptable.
Pour ce faire, il faut que les oscillations de tangage précèdent celles de translation
verticale par un déphasage de l’ordre de 90◦ et que le nombre de Strouhal soit dans
l’intervalle [0.2,0.4]. Augmenter le nombre de Reynolds a pour effet de réduire les
pertes d’énergie liées à la viscosité et d’augmenter le rendement propulsif. Ce ren-
dement a aussi été accru pour les cas de grandes forces de poussée en incluant des
harmoniques d’ordre supérieur dans les oscillations verticales.



Reduced abstract

Keywords:

bio-inspired robots, flapping foils, numericla optimisation, sensitivity, complex step
derivative

The optimisation of the kinematics of a two-dimensional flapping airfoil is carried
out by numerical simulation to identify flapping parameters capable to ensure high
aerodynamic performances for a micro air vehicle application. Attention is focused
on the lift and thrust and on the propulsive efficiency. The control variables are the
amplitudes of the combined motions of heaving and pitching and the phase angle
between them. Additionally, the flapping frequency and the mean angle of attack
are considered. The optimal kinematics are compared to observations in nature on
birds, insects and fish.

The methodology is based on the solution of the flow field around a NACA0012
airfoil submitted to translational and angular oscillations. Then, the gradients of
the cost functional with respect to the control parameters are evaluated thanks to
the sensitivity technique and the complex step derivative method. The gradients are
subsequently used in a quasi-Newton update algorithm to direct the solution towards
its optimal value.

Results show the ability of optimised flapping airfoils to produce large thrust and
lift, with an acceptable efficiency. This is ensured when the pitching oscillations lead
the heaving ones by a phase angle close to 90◦ and when the Strouhal number of
oscillations is in the range [0.2,0.4]. It is expected that the optimal efficiency would
increase for higher Reynolds number, without much variation in the optimal kine-
matics. Furthermore, the drop in efficiency at high thrust forces may be limited by
including higher order terms in the expression of heaving.
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Abstract

The optimisation of the kinematics of a two-dimensional flapping airfoil is carried out
numerically for a small value of the Reynolds number. The main goal is to identify
flapping parameters capable to ensure high aerodynamic performances for a micro
air vehicle application. Attention is focused on the lift and thrust forces and on the
propulsive efficiency developed from the flapping motion. The control variables are
the amplitudes of the combined motions of heaving and pitching and the phase angle
between them. Additionally, the flapping frequency and the mean angle of attack
are considered. The goals are, first, to find the optimal kinematics of the wing, and,
second, to link these optimal configurations to observations in nature of animals
using flapping motion for their locomotion, such as birds, insects and fish. Once
achieved, the numerical optimisation may be seen as a proof that animals’ motion is
naturally optimised for their environments and the various conditions they encounter.

The methodology is based on the solution of the flow field around a NACA0012
airfoil submitted to translational and angular oscillations. Then, the gradients of
the cost functional with respect to the control parameters are evaluated thanks to
the sensitivity technique and the complex step derivative method. These two ap-
proaches of optimisation can be linked to one another by simple examination of the
equations corresponding to real and complex variables. The gradients are subse-
quently used in a quasi-Newton update algorithm to direct the solution towards its
optimal value.

Once the solver is validated, it is applied for the optimisation of each parameter
separately and then to multi-parameters cases. Results show the ability of optimised
flapping airfoils to produce large thrust and lift forces, with an acceptable efficiency.
This is ensured when the pitching oscillations lead the heaving ones by a phase angle
close to 90◦ and when the frequency of oscillations is such that the Strouhal number
is in the range [0.2,0.4]. Attempts to improve the relatively low efficiency were made
by applying more complex motions, by varying the Reynolds number and by simu-
lating gliding phases. It is expected that the optimal efficiency would increase for
higher Reynolds number, without much variation in the kinematics compared to the
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optimal solution for the small Reynolds number. Furthermore, the drop in efficiency
at high thrust forces may be limited, for average amplitudes of pitching, with the
presence of higher order terms in the expression of heaving. The simple gliding ap-
proach adopted here has not led to a better global efficiency, but has allowed to show
the possibility of animals or vehicles to adopt this type of flight for long stretches of
time.
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French abstract

L’optimisation de la cinématique d’une aile bidimensionelle battante est réalisée
numériquement pour un nombre de Reynolds relativement bas. L’objectif principal
est d’identifier les paramètres de battement capables d’assurer des bonnes perfor-
mances aérodynamiques pour les appliquer au cas d’un micro drone à ailes mobiles.
L’attention est focalisée sur les forces de poussée et de portance et sur l’efficacité
propulsive développées au cours du battement de l’aile. Cette efficacité est définie
comme le rapport des puissances utile à l’avancemenent de l’aile et celle nécessaire à
son battement. Le mouvement de l’aile est décomposable en oscillations de transla-
tion verticale et angulaires de tangage. Les variables de contrôle sont les amplitudes
des oscillations, leur fréquence, le déphasage entre elles et l’angle moyen d’attaque.
Une fois bien définies pour plusieurs types de missions, les cinématiques optimales
sont confrontées aux valeurs observées dans la nature pour des animaux ayant un
mode de propulsion similaire, notamment certaines espèces d’oiseaux, d’insectes et
de poissons. Cette comparaison pourrait être considérée comme une preuve que les
animaux ont naturellement évolué vers des configurations optimales et adaptées à
leur environnement.

La méthodologie est basée sur la résolution de l’écoulement autour d’un profile
NACA0012 soumis à une combinaison de mouvements de translation et de rotation.
Ensuite, les gradients d’une fonctionnelle coût, par rapport aux paramètres de con-
trôle, sont calculés avec la technique des sensibilités et la méthode du pas complexe.
Le choix de la fonctionelle est étroitement lié à la mission du véhicule, favorisant
l’efficacité, et donc l’autonomie, pour les missions de longues durées et les forces, et
donc les manoeuvres, pour les phases à risque. Les gradients sont ultérieurement
utilisés dans un algorithme de quasi-Newton pour actualiser les paramètres dirigeant
la solution vers son optimum.

Une fois validé, le code est appliqué à l’optimisation et l’étude de l’effet de chaque
paramètre séparément et puis des cas d’optimisation multi-paramètres sont réalisés.
Les résultas montrent la capacité d’une aile battante optimisée à produire des larges
forces de poussée et de portance avec une efficacité acceptable. Pour ce faire, il
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faut que les oscillations de tangage précèdent celles de translation verticale par un
déphasage de l’ordre de 90◦ et que le nombre de Strouhal, défini comme le rapport
de la vitesse de battement à celle d’avancement, soit dans l’intervalle [0.2,0.4]. Des
tentatives d’améliorer l’efficacité ont été faites en variant le nombre de Reynolds,
en complexifiant le mouvement de l’aile et en simulant des periodes de vol plané.
L’effet d’un plus grand nombre de Reynolds résulte par des pertes visqueuses moins
importantes et, par conséquence, une meilleure efficacité. Ceci étant, une cinéma-
tique optimale pour une telle configuration l’est aussi pour un faible nombre de
Reynolds avec l’avantage de la réduction du coût des calculs. La chute de l’efficacité
a été aussi limitée pour les cas de grandes forces de poussée et d’amplitude de tan-
gage modérée en incluant des harmoniques d’ordre supérieur dans les oscillations
verticales. L’approche simpliste du vol plané n’a pas apporté une amélioration de
l’efficacité propulsive globale mais a permis de démontrer l’aptitude des animaux ou
des vehicules à utiliser ce mode de vol pour des longues durées.
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Italian abstract

L’ottimizzazione della cinematica di un’ ala bidimensionale che batte è studiata nu-
mericamente per un numero di Reynolds relativamente basso. L’obiettivo principale
è quello di identificare i parametri relativi al battito capaci di assicurare alte caratter-
istiche aerodinamiche, eventualmente per applicarli al caso di un micro aereo senza
pilota con ale mobili. L’attenzione è focalizzata sulle forze di spinta e di portanza
e sull’efficienza propulsiva sviluppata durante il battito dell’ala. Questa efficienza è
definita come il rapporto della potenza utile al movimento dell’ala rispetto a quella
necessaria al suo battito. Il moto dell’ala è decomponibile in oscillazioni di traslazione
verticale e angolare. Le variabili di controllo sono le ampiezze delle oscillazioni, la
loro frequenza, lo sfasamento e l’angolo di attacco medio. Una volta ben definite per
ogni tipo di missione del veicolo, le cinematiche ottimali, esse vengono confrontate ai
valori osservati in natura per animali con simile modo di propulsione, specialmente
per certe speci di uccelli, insetti e pesci. Questo legame puo essere considerato come
una prova che gli animali hanno naturalmente evoluto verso delle configurazioni ot-
timali, adattandosi all’ambiente.

La metodologia è basata sulla resoluzione del flusso intorno ad un profilo NACA0012
sottomesso ad una combinazione di moti di translazione e di rotazione. I gradienti
di un funzionale costo sono calcolati rispetto ai parametri di controllo con la tecnica
delle equazioni di sensibilità e il metodo del passo complesso. La scelta del funzionale
è legata alle missioni del veicolo, privilegiando l’efficienza, e dunque l’autonomia, per
il caso delle missioni a durate lunghe e le forze, e dunque le manovre, per i periodi a
rischio. I gradienti sono poi usati in un algoritmo quasi-Newton per dirigere i para-
metri verso la soluzione ottimale.

Una volta validato, il codice è applicato allo studio dell’effetto di ogni parametro,
preso singolarmente e poi dei casi di ottimizzazione multi-parametrica sono realizzati.
I risultato mostrano la capacità di un battito ottimizzato a produrre grandi forze di
spinta e un’alta portanza, mantenendo un’ accettabile efficienza. Nel caso ottimo,
le oscillazioni angolari precedono quelle di translazione verticale con uno sfasamento
dell’ordine di 90◦, e il numero di Strouhal, definito come il rapporto della velocità

5



di battito a quella di avanzamento, deve essere nell’intervallo [0.2,0.4]. Tentativi di
migliorare l’efficienza sono stati fatti modificando il numero di Reynolds, aumentando
la complessità del moto dell’ala e simulando dei periodi di volo planato. L’effetto
di un aumento del numero di Reynolds risulta in perdite viscose minori e, di con-
sequenza, una migliore efficienza. Allo stesso tempo, la cinematica ottima per una
tale configurazione lo rimane anche nel caso di un numero di Reynolds più piccolo,
col vantaggio di ridurre il costo numerico. La caduta dell’efficienza è stata limitata
per le grandi forze di spinta e le moderate ampiezze di oscillazione angolare inclu-
dendo delle armoniche di ordine superiore nelle oscillazioni verticali. L’approccio
semplificato di volo planato non ha migliorato l’efficienza propulsiva globale pero ha
permesso di dimostrare la capacità degli animali o dei veicoli ad utilizzare questo
modo di volo per durate abbastanza lunghe.



Introduction

Between those who say that man-made products are asymptotically tending towards
their limits of perfection and those who think that we still very far from this limit,
no one disagrees with the fact that any source of inspiration, allowing progress, is
welcome. And what better than nature to get inspired from? 109 years of perpet-
ual and infinite evolution and levels of complexity and efficiency beyond humanity’s
range now and for long years to come. Therefore, and increasingly in the last two
decades, humanity substituted the pure biological studies on animals by the inves-
tigation of the physical mechanisms they develop and the possibility to apply them
to man-made products. Nowadays, even companies which suggests to find biometric
solutions to industrial problems exist.

Since the present PhD thesis is concerned with flapping foils propulsion, the fo-
cus is here on the animals using this type of locomotion, namely some categories
of birds, insects and fish. In the first half of the twentieth century, interest was
triggered by the observation of some animals features. Subsequently, all kinds of
experiments were conducted on animals with three major targets: confirm a given
high performance level, understand what allows the animal to reach this level and
finally try to apply the mechanism on man made vehicles (UAVs for unmanned air
vehicles, AUVs for autonomous underwater vehicles and MAVs for micro air vehi-
cles). The last of these experiments made four godwits (Limosa lapponica) fly their
way into the records book with a more than 10,000 kms non-stop flight between
New Zealand and the Yellow Sea. The godwits, tracked by satellite transmitters,
flew for 8 days at an average speed of 55 km/h without any stop to drink or eat
over the Pacific Ocean in march 2007. This is an example of what nature is able
to perform. An example that would highly interest micro air vehicles designers and
constructors unable to make their prototypes fly for more than few minutes. It may
also interest any human being living in the twenty first century, with a barrel of oil
worth around 100 $ (U.S.A), (for the moment), in a world where more efforts and
investments are injected to prevent pollution and global warming than what it is
done to provide drinkable water to over one billion and a half humans. This example
of natural high level of performance is one of the most recent in a long list. Previous
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Figure 1: The natural Strouhal number for some swimming and flying species (Taylor et al., 2003).

contributions showed, for instance, that birds fly in groups because they are able to
manipulate and control the shed vorticity around them by other animals in a way to
limit the efforts their flight requires (Kvist et al., 2001; Weimerskirch et al., 2001).
Other contributions proved a surprising low drag level for birds (Rayner, 2001) due
to the elasticity of their body and the manipulation of vorticity with their tail and
an excessively high lift level (Ellington and Usherwood, 2001) due to the presence
of a leading edge vortex with delay stall and a very high propulsive efficiency due to
minimal losses in the wake (Rayner, 1988).

Despite the various environments in which animals live and their different constraints,
a large number of authors tried to justify a kind of universal law which governs the
motion and the morphology of a large number of species. The first of these laws
shows that animals move with a St mainly in the range [0.2 − 0.4] (see figure 1)
where St is the Strouhal number, a ratio between the flapping and the forward ve-
locities. Triantafyllou et al. (1993) also proved that numerous species of fish flap
their fins in this same range of Strouhal number. Subsequent works showed that the
choice of these values correspond to configurations with high propulsive efficiency,
i.e. configurations allowing the animal to cross the longest distance with the minimal
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effort and consumption of food. Rayner (1996) treated the case of birds and Bejan
and Marden (2006) generalized this principle to all kinds of living beings (see figures
2 and 3).

body mass (kg)

body mass (kg)

Figure 2: Universal law governing the frequency (top) and the velocity (bottom) of motions of
flying, swimming and running species versus their body mass (Bejan and Marden, 2006).

They proved that the frequency of flapping, the forward velocity, the force developed
by the body and the wing span follow a proportionality law with respect to the body
mass.
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Figure 3: Universal law between the force developed by some species (Bejan and Marden, 2006)
(top) and the wing span of flying animals (Rayner, 1996) (bottom) with respect to their body mass.

The idea of the present work is to show whether by optimising the motion of a flap-
ping airfoil in a way to ensure high propulsive efficiencies, the optimal motion will be
similar to that used by birds in their flight. In other words, a cost functional related
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to the propulsive efficiency is defined and optimised by controlling the kinematics
of a flapping airfoil, and the optimal values are compared to the characteristics of
living animals. The values to be compared are the Strouhal number and other pa-
rameters that will be defined in the following including the phase angle which pilots
the vorticity shedding.

To reach this target, and after a summary of previous contributions on the topic, the
flow around a flapping NACA0012 airfoil is solved numerically for a two-dimensional
low Reynolds number incompressible configuration. Then, the gradient of the cost
functional is evaluated thanks to the sensitivity and complex step derivatives meth-
ods (CSDM). The value of the gradient is used to update the value of the control
parameter by a quasi-Newton algorithm until reaching the optimal value, which is
compared to the values observed in nature in living animals.

The optimal configurations are sought for different conditions including non lifting
cases of fish, lifting cases of birds and high thrust cases. This case of high thrust is
usually associated to a decrease of the propulsive efficiency. Therefore, more sophisti-
cated kinematics, with higher order harmonics, are included in order to overcome this
problem. Finally, the gliding configuration is studied and compared to the complex
mechanisms used by birds during this phase.
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Chapter 1

Flapping airfoils and applications

to MAVs

Introduction

Assuming that oceans and the atmosphere are not the natural environments where
human are supposed to move, the construction of man-made air and underwater ve-
hicles should be inspired by animals. Without arguing on the evolution theory, from
the philosophical point of view, one may imagine that animals optimised, or at least
adapted, their motion and morphology in the course of the millennia in a way to
render their motion more efficient. During the twentieth century, many efforts were
concentrated on the comprehension of the mechanisms developed by animals.

The ability of reducing devices’ sizes, due to electronics, gave human the oppor-
tunity to build prototypes of similar dimensions to birds, fish and, lately, insects.
Nowadays, the challenge is to apply the already understood natural mechanisms on
these prototypes on the one hand, and to pursue the investigation of complex mech-
anisms still not completely unsolved, on the other. This chapter aims at giving a non
exhaustive list of the contributions made in the field of nature-mimicking for robots
propulsion and lift. A special attention is given to the case of micro air vehicle and
to flapping foils which are the basic configuration for the motion of birds and some
types of fish.

1.1 Micro air vehicles

The present section is dedicated to the investigation of micro air vehicles. After giving
their main characteristics and specific constraints, their applications are introduced
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1.1 Micro air vehicles

and the advantage of adopting MAVs, for given types of missions, is highlighted.
Then, a comparison between different wings configurations is made to show that at
bird scale, mobile-wing is more than an option. It is rather the optimal configuration
adopted by animals and developed during millennia of evolution.

1.1.1 MAVs’ definition and applications

MAV is the denomination used for small unmanned air vehicles (UAVs). These
engines became realizable in the last decade and a half due to progress in miniatur-
ization of propulsion and avionics devices. Typically, an MAV has a 15 cm wing-span
and weighs around 100 g with a payload of roughly 20 g, usually a camera or other
sensors. It flies at low altitudes, around 100 m, at a cruising speed of 50 km/h
for a duration between 30 and 60 minutes. These characteristics make MAVs of
similar dimensions than a large number of birds (see figure 1.1). The main applica-
tion of MAVs is to operate in 3-D environments where 3-D refers to dull, dirty and
dangerous. In other words, they are sent to a given location in order to establish
a visual/acoustic contact. This objective can be sought in spying and surveillance
missions in the battlefield, hostage rescue, fire detection or the exploration of hostile
environments including the Martian atmosphere in the future. They are also used
for other types of missions including weather forecast, biological/chemical elements
detection, sowing of fields in agriculture, or communication "relay".

Figure 1.1: A fixed-swept-wing MAV prototype (left) and a bird of close dimensions (right)

Analysing the characteristics and the applications of MAVs allows to identify the
principal constraints to be respected when they are designed:

- Low altitude cruise requires an anti-collision detection system.
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Flapping airfoils and applications to MAVs

- Light global mass implies high manoeuvrability, i.e. spare thrust and lift forces
to overcome wind gusts and harsh atmospheric conditions.

- Small dimensions explains the reason why in MAVs some features are neglected
or sacrificed, namely the autonomy, in order to fit the dimensions and weights
of propulsion and avionics devices available today. Any further reduction in
MAVs size is highly linked to progress in miniaturization of these devices.

- Slow cruising speeds renders MAVs an easy target once they are traced which
imposes the need for real-time data acquisition systems.

1.1.2 MAVs advantages and avionics

The advantages of MAVs are directly related to their characteristics and can be
summarized as:

- Low cost due to the absence of human casualties in case of an MAV loss and
the low production price with respect to UAVs or full-scale military aircrafts.

- Stealth thanks to their small radar’s wet surface, the low temperature they
develop and their silent flight especially for fixed-wing electrically motorised
configuration. However, real time data transfer increases the risk of communi-
cations interception.

- Their low speed and altitude allow better image capturing of the area to ex-
plore, despite making them easier targets once they are located.

- Their easy and fast deployment render them operative in short time including
in maritime and mountainous environment.

These advantages are common to all MAVs. Some specific characteristics of mobile-
wing case will be given when this configuration is compared to the fixed-wing one
(cf. §1.1.3).

On the other hand, MAVs, from design and aerodynamics points of view, are not
only small aircrafts, which means that considering a good airplane and reducing its
dimensions does not lead necessarily to a good MAV. Two main reasons explain this
fact: the first is related to the different aerodynamics for the small Reynolds num-
ber regime used by MAV (discussed in §1.2) and the second is the different mass
breakdown (cf. figure 1.2) and the larger dependence to avionics that MAVs have in
general.
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1.1 Micro air vehicles

The construction of MAVs is rendered possible thanks to the development of mi-
croelectronics and microelectromechanical systems which allowed to incorporate into
the vehicle a variety of computing, communication and sensing functions. The term
avionics is used to denote the set of devices which enables the control of the aircraft.
It includes the processor which pilots the vehicle (automatic pilot or ground-data
processing), actuators which transmit the commands of the processor, the batteries
and the motor, yielding the energy needed for the mission, the sensors which verify
the good response of the vehicle to the pilot commands, the communication device
for data transfer and the payload, usually an infra-red video camera. The mass dis-
tribution in an MAV, with comparison to a civil aircraft, is given in figure 1.2 to show
that, despite progress made, the mass of motors and especially batteries (usually 5
Watts and 9 Volts respectively) is very important representing between 50 and 60 %
of the total mass of the vehicle. Despite this high percentage, autonomy of present
MAVs does not exceed one hour.

To improve this measure of performance, some contributions are dedicated to build
long-life and light batteries exploiting new chemical elements. The other axis of
research is to improve the propulsive efficiency of flight in order to ensure that a
maximal percentage of the energy is usefully employed. This is the reason why
mobile-wing configurations are investigated and the motion of the wing is optimised
in the present work.

35%

20%

20%

15%

10%

Micro air vehicle

20%

10%

25%

30%

15%

Full−scale civil aircraft

Battery/Fuel
Motor
Airframe
Payload
Avionics

Figure 1.2: Comparison of mass breakdown between an MAV (left) and a classical civil aircraft
(right).
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Flapping airfoils and applications to MAVs

1.1.3 Mobile- versus fixed-wing MAVs

Since the early age of humanity, flying as a bird has fascinated humans. Historically,
it was thought that the movement of the wings is the main reason for flying and the
only means to remain airborne, leading to numerous tragic experiences. This idea
was so overspread that Da Vinci (see figure 1.3(b)) and Lilienthal mimicked birds in
their own attempts to fly (Ellington and Usherwood, 2001).

Figure 1.3: A flapping-wing MAV prototype (Ornithopter project, see www.ornithopter.ca) (left)
and a sketch of a flying machine imagined by Leonardo Da Vinci (1452-1519) and based on flapping
wings (right).

Cayley bypassed this assumption in 1799 with his concept of a fixed-wing airplane
and a dedicated propulsion system (Gibbs-Smith, 1953). Hence, and for almost two
centuries, attention was focused on fixed-wing air vehicles. At the human scale, this
configuration is, undoubtedly, the best for three major reasons (Kroo and Kunz,
2001):

- The objective of human-scale aircrafts is to transport from point A to point B
a given mass as fast as possible, and in term of forward speed, fixed wings are
by far more efficient.

- From a pure structural point of view, the management of the movement of a
wing submitted to forces of many tons, especially at the root of the wing where
huge torques are present, constitutes a real challenge. Without mentioning
the resonance problems if the motion has frequency close to the modes of the
structure.
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1.2 Low Reynolds number aerodynamics

- At human scale, fixed-wing flight requires less power than hovering or other
mobile-wing flights. Kroo and Kunz (2001) have shown that the hovering to

fixed-wings ratio of required powers is roughly equal to
(

CL

4

)0.5 L
D

where L, D
and CL are, respectively, lift and drag forces and lift coefficient. For a large
UAV or a civil airplane, L

D
is nearly 35 and CL = 1 leading to a ratio of 17.5

whereas for a small UAV, L
D

is roughly equal to 5 and CL = 0.2 leading to a
ratio of 1.12. The ratio between required powers for flapping and fixed wings
configurations can be less than one for an MAV even if the pure propulsive
efficiency is lower for the mobile wing case (cf. Appendix A). The absence
in nature of flying animals at human scale and the use of flapping wings by
birds of similar size with respect to MAVs seem to confirm the latter statement.

In addition to the smaller power required and a good propulsive efficiency that we
intend to confirm in the present work, the flapping-wing configuration presents the
advantage of a bird-like stealth and a slower forward velocity which allows better
image capturing. As a counterpart, the motion of the wings renders MAV more
noisy and requires a stabilization system for exploitable image capturing.

1.2 Low Reynolds number aerodynamics

Early attempts to design MAVs were inspired by full-scale aircrafts methodology.
However, an MAV is very different from a classical airplane and one cannot consider
a full-scale aircraft and reduces it in a given proportion in order to build a successful
MAV. The reasons for this are the mass breakdown mentioned in §1.1.2 and the
low-Reynolds number aerodynamics both completely different and with a relevant
impact. Due to their small dimensions and low forward speeds, the Reynolds num-
ber for MAVs is roughly between 5×104 and 105 (cf. figure 1.4). Despite the dearth
of studies for the aerodynamics of airfoils for this regime, one can understand that
phenomena as separation bubbles and transition are highly dependent on the value
of the Reynolds number.

Some authors investigated low aspect-ratio airfoils at moderately low Reynolds num-
ber. We can cite the experimental contributions of Zimmerman (1932), Bartlett and
Vidal (1955) and Wadlin et al. (1955), the theoretical works of Hoerner (1965), Ho-
erner and Brost (1975), Bollay (1939), Weinig (1947) and Polhamus (1971) and the
numerical simulations of Smith (1996), Jones and Platzer (1997) and Ramamurti
et al. (2000). Here, we focus on the work of McMasters and Henderson (1980) who
studied the variation of lift and drag on a large range of Reynolds number for fixed
airfoils. They have shown a relevant alteration of aerodynamics coefficients with
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Flapping airfoils and applications to MAVs

both a decrease of lift, a decrease of lift-to-drag ratio and an increase of drag when
the Reynolds number is smaller than 105 (cf. figure 1.5). This result illustrates the
difficulties for MAVs’ regime of Reynolds number and renders legitimate the search
for new approaches, such as the motion of the wing, to overcome this down-shoot
in coefficients, in consideration of the fact that the slow velocity of MAVs and their
light weight require high performances.
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Figure 1.4: Mass (in kg) versus the Reynolds number (based on the chord length and the free
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Figure 1.5: Evolution of the maximal lift coefficient (left) and the minimal drag coefficient (right)
with the Reynolds number for smooth still airfoils (McMasters and Henderson, 1980).
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The other main consequence of such low Reynolds number is the important viscous
effects and their impact on the propulsive efficiency. Usually, when MAVs’ aerody-
namics is investigated numerically, the Reynolds number considered is between 103

and 104, accentuating the viscous effects and leading to smaller values of efficiency
when compared to the values obtained experimentally on airfoils and on animals
such as birds and fish.

1.3 Flapping airfoils

The denomination flapping is usually used for a foil which accomplishes simultane-
ously a translational (heaving) and a rotational (pitching) motion around a point
located on the foil called the pitching centre. Hence, the vertical position of the
pitching centre h∗(t) and the angle between the axis of the airfoil and the horizontal
direction α(t∗) are varied in time (t∗) (cf. figure 1.6(a)), where the superscript ∗

denotes a dimensional variable. The coupling of these two motions is considered to
mimic the motion of birds’ wings and fish fins, normally simulated by monochro-
matic harmonic oscillations of heaving and pitching of the same frequency. MAVs
and birds of similar size are located in a range of reduced frequency versus Reynolds
number where a real dearth exists (cf. figure 1.6(b)).

For some values of the amplitudes and the frequency of oscillations, a flapping air-
foil is able to reverse the classical von Karman street and to produce thrust. In
this case, the wake is formed of clockwise-rotating vortices in the bottom row and
counterclockwise-rotating vortices in the top row (cf. figure 1.7(b)) which induces a
jet-like velocity component in the downstream direction (von Karman and Burgers,
1934). This jet-flow is convectively unstable which means that under the effect of the
harmonic excitation from the airfoil, a staggered array of vortices is formed, moving
downstream. The position of the vortices is inverted in the case of a wake behind
a bluff body producing drag (cf. figure 1.7(a)). The classification of the structure
of the wake was done, historically, with respect to the reduced frequency, fr (Katz
and Weihs, 1978; Ohmi et al., 1990), which measures the residence time of a particle
convecting over the foil chord compared to the period of oscillation. Subsequent
results showed that the classification should be done with respect to the value of
the Strouhal number, St, (Triantafyllou et al., 1991; Anderson et al., 1998; Lai and
Platzer, 1999) defined as the ratio of the velocity of oscillating to the forward veloc-
ity of the airfoil. Recent contributions tried to demonstrate that the classification
cannot be based only on the Strouhal number but also in consideration with the
other kinematics characteristics (Young and Lai, 2007).
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α(t*)

h*(t*)

c*

Figure 1.6: General definition of flapping (left) and reduced frequency range versus Reynolds
number for flying animals and vehicles (right) (Ames et al., 2001).

Classical von Karman street Reversed von Karman street

Figure 1.7: Sketch and experimental results (Jones et al., 1998) of a drag-like (left) von Karman
street and a jet-like reversed von Karman street (right).

The denomination of a producing-thrust-airfoil is ambiguous, because it implies that
the airfoil is not producing drag. However, and during oscillations, the unsteady
horizontal force of a flapping foil experiences positive and negative values. It is the
average value over a period of oscillation which classifies the type of production.
Therefore, and in the remainder of this work, the denomination of an airfoil dom-
inantly producing drag or thrust will be used. Moreover, if a non vanishing mean
angle of attack exists, flapping foil can produce lift forces which is a major differ-
ence with respect to fixed-wing MAVs where thrust and lift are produced separately,
without being completely independent.
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1.3 Flapping airfoils

Historically, the interest in propulsion by mobile wings started with the investigation
of pure heaving motion with the works of Knoller (1909) and Betz (1912) who noted
that the wing encounters an induced angle of attack, which inclines the normal-force
vector forward such that includes both cross-stream (lift) and streamwise (thrust)
force components (Jones et al., 2001). The interest of complexifying the motion was
brought to light by Birnbaum (1924) who identified the conditions that lead to thrust
generation and suggested the use of flapping wings as an alternative propulsive source
to the conventional propeller. This proposition fostered a large interest due to the
observation that the propulsive efficiency of idealized flapping wing is greater than
that of a simplified propeller model which generates a disadvantageous trailing-edge
vortex (Kuchemann and Weber, 1953).

1.3.1 Heaving airfoils

A heaving foil is able to produce thrust under some conditions, namely for values of
the heaving amplitude and the frequency of oscillations leading to a Strouhal number
greater than 0.2 (Ohashi and Ishikawa, 1972; Oshima and Oshima, 1980). During
the downward plunge (cf figure 1.8(c) and 1.8(d)), a clockwise rotating vortex is
generated at the leading-edge of the foil. The subsequent upward motion causes the
formation of a counterclockwise rotating vortex which is deposited below and to the
left of the previous one (cf. figure 1.8(a) and 1.8(b)) . In addition to the separation
from the trailing-edge, a separation occurs also near the leading-edge. The clockwise
rotating vortex merges with the vorticity shed from the trailing-edge and reinforces
it (Freymuth, 1988). The same airfoil, oscillating "slowly", would produce drag.

When the heave amplitude is increased, the airfoil experiences higher thrust for
longer durations along a cycle. However, the propulsive efficiency, defined as the
ratio of the useful-to-total power, decreases. The maximum efficiency occurs when
the flow is fully attached all along the heaving motion, although this maximum oc-
curs usually for insufficient thrust forces. Therefore, it is often preferable to ensure
a large thrust force for a less-than-optimal efficiency. For further increase of the
heaving amplitude, the flow separation at the leading-edge turns into the formation
of a large-scale dynamic stall vortex which is convected downstream and shed in the
wake. For higher amplitudes, secondary leading-edge vortices are generated and the
thrust is increased together with a drop-off in efficiency.
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Figure 1.8: Wake structure for purely heaving airfoil producing thrust for h∗(t∗) = 3c∗

4
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and St = 0.35 during upward and downward plunging, where c∗ is the chord length and St the
strouhal number. The colour scale is for the vorticity field.

1.3.2 Pitching airfoils

Garrick (1936) was the first to show that propulsion is possible with purely pitching
airfoils but only at "high" frequencies. The topology of the flow field is quite similar
to the case of pure heaving: during the pitch-up, a counterclockwise rotating vortex
is formed into the flow whereas during the pitch-down, a clockwise rotating vortex
is deposited to the left and below the first one. Here, the vortex filaments leaving
the trailing-edge break up into small vortices due to the Helmholtz instability, before
these small vortices merge into the main vortices. As in the case of pure heaving, a
weak leading-edge separation is observed which, once shed, interacts constructively
with the trailing-edge vorticity.

The increase of the pitching amplitude creates severe leading-edge separations and
an associated erosion in the propulsive signature of the vortex array. Here again,
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the high propulsive efficiency is related to the presence of attached flow during each
cycle of oscillations and a decrease of the pitching frequency increases the distance
between vortices. Eventually, drag forces become overwhelming and a classical von
Karman street is created.

1.3.3 Combination of heaving and pitching

Despite the fact that both pure heaving and pitching are able to yield thrust, their
combination seems to give the best propulsive conditions. Numerous examples ex-
isting in nature attest to this: the heaving oscillations give rise to low values of
thrust and pitching is required to model well the propulsion of swimming and flying
animal since their combination helps controlling the leading-edge vortex and yields
higher thrust forces (Wang, 2000; Lewin and Haj-Hariri, 2003). Once this means of
propulsion had been identified, attention shifted to the determination of the effect
of each parameter on a given measure of performance in order to optimise it using
theoretical, experimental and numerical tools.

Theoretical contributions included the works of Theodorsen (1935) and Garrick
(1936) who studied small oscillations and linearized theory in an ideal fluid. Subse-
quently, the theory was extended to account for the non-linear and large-amplitude
motions (Lighthill, 1969, 1970; Wu, 1971; Chopra, 1974, 1976). These investigators
demonstrated that, for an oscillating airfoil in an inviscid fluid, the propulsive effi-
ciency tends to 100% when the frequency of oscillations approaches zero. Later on,
the case of the Reynolds number tending to infinity was considered. Under these cir-
cumstances, the viscous effects have a negligible influence on the overall flow except
during the separation process. Hence, the separation at sharp edges is approximated
by the Kutta condition and the free shear layers are replaced by concentrated vortices
(Choi and Landweber, 1990; Guglielmini, 2004) or by vortex panels (Streitlien and
Triantafyllou, 1995; Liu and Bose, 1997; Streitlien and Triantafyllou, 1998). Lately,
Hall and Hall (1996) and Hall et al. (1998) developed a vortex lattice method to
determine the optimal circulation distribution for prescribed values of lift and thrust
and found the unsteady distribution of circulation which minimises the loss of en-
ergy in the wake for both inviscid and viscous cases. The other axis of theoretical
development was the use of the lifting-line theory in the frame of flapping airfoils. A
large number of models were developed (Betteridge and Archer, 1974; Phlips et al.,
1981; Ahmadi and Windall, 1985; Willmott, 1988) despite numerous assumptions
including the neglect of viscous effects and the focus on small-amplitude oscillations
in the frame of linearized equations.
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The difficulty of investigating non-linear unsteady phenomena with the previous ap-
proaches was remedied by a large number of experimental and numerical works on the
topic. McKinney and DeLaurier (1981) studied experimentally the power-extraction
capabilities of a flapping foil and Jones et al. (1998) confirmed experimentally and
numerically their results over a large range of Strouhal numbers. The agreement they
observed in the wake topology is rather interesting since Jones et al. (1998) used a
panel method (inviscid) solver of the flow highlighting the fact that the evolution of
the wake is primarily an inviscid issue. Koochesfahani (1989) studied experimentally
the wake structure behind a flapping foil and found different topologies of the wake
with associated numbers of shed vortices per cycle of oscillations as function of the
amplitude and the frequency of flapping. Triantafyllou et al. (1993), based on the
experimental results of Koochesfahani (1989) and on a linear stability analysis of an
average velocity profile, assumed that optimal efficiency is obtained when an airfoil
flaps at the frequency of maximum spatial amplification of the wake. Experiments
in a water-tunnel confirmed this assumption. Anderson (1996) provided a classifica-
tion of the wake and investigated the effect of the phase angle between heaving and
pitching. Subsequently, Wolfgang et al. (1999a) and Pedley and Hill (1999) focussed
on the separation on sharp edges and its influence on animal propulsion.

Recently, more sophisticated and powerful solvers allowed to perform potential/viscous
flow analyses or a full Navier-Stokes resolution. Isogai et al. (1999) considered the
dynamic stall of a flapping airfoil in a compressible flow with a Mach number equal
to 0.3 and a Reynolds number equal to 105 and showed that the highest efficiency
occurs when the pitch oscillations lead the heaving ones by a phase angle in the range
[80◦, 100◦]. This results has been confirmed by Tuncer and Platzer (2000) and Famp-
ton et al. (2001). Ramamurti and Sandberg (2001) studied a NACA0012 airfoil at
Reynolds number equal to 1100 and 12000 and confirmed that the Strouhal number
is the critical parameter for thrust generation. Lewin and Haj-Hariri (2003) used a
viscous solver to evaluate thrust and efficiency over a wide range of frequencies and
amplitudes reaching the conclusion that high efficiency is related to the generation
of a leading-edge vortex which remains attached during the whole duration of the
oscillations and which reinforces the trailing-edge vortex. Pedro et al. (2003) exam-
ined the topic with their Navier-Stokes solver and an arbitrary Eulerian Lagrangian
moving mesh algorithm. Their numerical visualizations of the flow around the hy-
drofoil allowed to quantify the effect of the flapping parameters. Read et al. (2003)
complexified the motion of the foil by adding high order terms. They highlighted the
importance of the role played by the maximum value of the effective angle of attack
encountered by the foil during its motion and showed that higher harmonics allow to
maintain acceptable efficiencies when large thrust is needed. In a similar framework,
the effect of the angle of attack and its impact on the propulsive performance was
investigated by Hover et al. (2004). They found that a cosine variation of the angle of
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attack yielded both acceptable thrust and efficiency whereas the sawtooth variation
gave the maximal thrust force. More recently, Guglielmini (2004) solved the flow
around a flapping foil and concentrated on thrust generation. She confirmed the ex-
perimental results and especially the interest of positioning the pitching centre at the
third of the chord length, a result found experimentally by Anderson et al. (1998).
In general, the main difference between the experimental and numerical results is
the lower Reynolds number and the two-dimensionality in the numerical case. This
leads to higher viscous effects and a neglect of the trailing vorticity, i.e. the vorticity
parallel to the direction of the motion. The most recent contributions questioned the
positive influence of the leading-edge vortex on high lift mechanism (Shyy and Liu,
2007) and investigated the transition ot turbulence in the frame of flapping airfoils
(Radespiel et al., 2007).

After having explored the wide space of parameters, the interest, at present, is fo-
cused on the determination of the optimal set of parameters for a given measure of
performance. This target was sought in the work of Tuncer and Kaya (2005) where
it was demonstrated that high efficiency is reached for reduced maximum angle of at-
tack of the airfoil, if the formation of large leading-edge vortices is prevented. Their
optimisation was done by computing a cost functional for different values of the
parameters in order to evaluate the gradients, then a steepest descent method was
used to converge towards the optimal values. In the present work, a similar target
is sought and a wider space of control parameters is considered. The gradients are
not approximated: they are computed with two different methods, the sensitivity
technique and the complex step derivative method (cf. §3).

In summary, and from the different contributions mentioned earlier, one can re-
capitulate the important results as follows:

- The critical parameter for the wake topology behind a flapping airfoil, and
consequently the efficiency, is the Strouhal number. High efficiency is observed
when two vortices are shed per period of oscillations. The optimal values of St
are in the range [0.25, 0.35] as observed for many animals (Triantafyllou et al.,
1993).

- The critical value of the Strouhal number which allows reversing the von Kar-
man street leading to a flapping foil dominantly producing thrust is around 0.2
(Anderson et al., 1998).

- A flapping foil in the previous circumstances is more efficient when the leading-
edge vortex remains attached for the whole period of oscillations and once shed
it interacts constructively with the vortex shed from the trailing-edge. The
timing of shedding, and consequently the nature of the interaction, is driven
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by the phase angle between heaving and pitching. Optimal values correspond
to pitching oscillation leading heaving ones by an angle in the range [80◦, 100◦]
(Isogai et al., 1999).

- High order terms allow to reach high thrust without large losses in terms of
propulsive efficiency (Read et al., 2003).

In the remainder of this work, the optimal parameters will be found and related to
the conclusions above by quantitative comparisons and by a description of the flow
field for optimal configurations.

1.4 Birds, insects and fish

Although the level of sophistication in nature is impossible to copy for robots at
present (namely their control systems in harsh atmospheric conditions, the elasticity
of their muscles or the role of feathers/skin), the study of animals characteristics
allows progress in the right direction towards optimised MAVs. The studies can
focus on three features observed in nature: minimisation of energy losses in the
wake, stall delay and drag reduction.

1.4.1 Birds

Rayner (1988) demonstrated that birds use two kinds of gaits: the ring gait for slow
speeds and the continuous vortex gait for cruise (cf. figure 1.9) corresponding to two
ways in which an animal can maximise the sum of the mean horizontal component
of the lift with the negative induced drag while maintaining a vertical component
of lift. Both gaits represent minimum energy states for the wake vortices and are
conditions in which the least induced wake energy is required for momentum trans-
port (Rayner, 2001). The explanation relies in the fact that these gaits maintain the
bound circulation constant which either eliminates the spanwise shed vorticity or
confines it to short periods. Consequently, high induced drag is avoided by prevent-
ing unfavourable interactions between spanwise vorticity behind the trailing-edge
and the bound vorticity on the wing.

The dynamic stall is identified as the mechanism used by animals to achieve high-lift
level (Ellington et al., 1996). During the downstroke, air swirls around the leading-
edge and rolls up into an intense leading-edge vortex which is expected to be laminar
for Reynolds number typical of flying birds. The circulation of the leading-edge in-
creases the bound vortex which allows the wing to travel at high angle of attack for
brief moments, generating extra lift force before stalling. However, the presence of a
transversal flow which stabilises the leading-edge vortex is required. This highlights

27



1.4 Birds, insects and fish

the need of considering three-dimensionality in order to investigate this mechanism.
Three-dimensionality is also indispensable to achieve a constant circulation for the
optimised gaits in the previous mechanism, since in a two dimensional flapping air-
foil, the sole source of thrust is the time-variation of circulation (von Holst and
Kuchermann, 1942; DeLaurier, 1993).

Ring gait Continuous vortex gait

Figure 1.9: Wake vortex structure in the ring gait of birds corresponding to slow-speeds (left) and
the continuous vortex gait used in cruise (right) conditions, both corresponding to minimal loss of
energy in the wake (Rayner, 1988).

There are two main characteristics that render the dynamic stall different from the
classical steady stall (McAlister et al., 1978). The first is that the discontinuity in
lift and moment curves, as function of the angle of attack, occurs for two different
values. The second is the fact that in dynamic stall, the dividing streamline from
the point of zero shear into the wake encloses a narrow boundary-layer-like zone
of reversed flow whereas, in steady stall, the point of separation coincides with the
point of zero shear. The rate of development of the dynamic stall depends on the
kinematics of the airfoil and precisely on the maximum angle of attack (McCroskey
and Pucci, 1981). Hence, if a leading-edge vortex separates during the up-stroke of
the airfoil, the stall is fully developed, whereas a separation when the airfoil reaches
the maximum pitch leads to a less severe partially developed stall.

Birds have complex feathered shapes which do not match with the intuitive low-
drag axisymmetric shape (fusiform) (Hertel, 1966). However, birds seem to be able
to obtain very low drag forces and this fact has been confirmed by wind tunnel ex-
periments on frozen animals which measured 75 % of the drag of a body of the same
size and shape but with smooth surfaces (Maybury, 2000). Hence, feathers do not
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play only a thermoregulation role, they participate to drag reduction probably by
inducing laminar-turbulent transition and by ensuring smooth body outline eliminat-
ing potentially large and dynamic drag forces resulting from wing-body interaction
(Rayner, 2001).

Figure 1.10: Wake behind a bird. Top: shallow regions of reattached separation on the dorsal
surface and at the base of the tail due to the presence of the tail. Bottom: The separation between
the ventral zone and the tail does not reattach leading to a turbulent wake and an increase of the
drag due to absence of the tail (Maybury and Rayner, 2001).

Reduction of drag is also related to the presence of the animal tail. Contrarily to the
intuitive idea that the tail acts as a lifting and a control surface, experiments show
that it plays these roles only at low speeds. In cruise flight, the tail manipulates the
boundary layer controlling separation and transition. It allows to re-attach the flow
separation occurring behind the head of the bird (see figure 1.10). Measurements
confirm this fact since the drag increases by 45 % when the tail is absent.
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The previously evoked characteristics depend closely on three-dimensionality, the
elasticity of the body, the presence of feathers and the ability of the animal to move
its entire body or parts of it in order to manipulate vorticity and reduce losses. The
present two-dimensional study on a rigid airfoil does not pretend to study all the
mechanisms observed in flapping flight. It should be considered as a step towards
the optimisation of man-made vehicles. Once, the optimal kinematics are found and
the basic physical mechanisms completely analyzed, they can be correlated with the
works investigating the elasticity of airfoils (Barut et al., 2006; Albertani et al., 2007)
(showing that the flexibility has the double advantage of adding a relative camber
and reducing the parasite three dimensional effects), the fluid-structure interactions
(Gyllhem et al., 2005; Bozkurttas et al., 2006), the effect of feathers (Bannasch,
2001), or the use of actuators in a closed-loop control conditions.

1.4.2 Insects

The further miniaturizations in avionics devices, which occurred in the last few years,
allowed to build a number of insect-sized prototypes of micro air vehicles (see figure
1.11). This was possible thanks to a large number of contributions which focused on
insects’ flights in the last two decades. The case of insects is quite close to birds’ and
similar mechanisms can be observed. However, three major features can distinguish
insects from birds:

- The size: obviously, the biggest insects have dimensions which are close to
those of the smallest birds but, in general, insects are much smaller than birds
since some of them can have a wing span of more than three meters. The
consequence of this observation is that birds may achieve normal flight with
quasi-steady aerodynamics mechanisms, contrarily to insect where unsteady
effects cannot be neglected.

- Elasticity: birds flap with actively deformed wings with muscles and joints
within the wing surface whereas insects use deformable wings controlled by the
base of the wing.

- Drag reduction: birds are more concerned with drag reduction and the im-
provement of aerodynamics performances. Hence, the mechanism they develop
and their flight is adapted to these constraints whereas the requirements of
insects in this field are less constraining.

On the other hand, insects can hover when momentum and forces balance during
flight. This feature can be mimicked to design very small aerial vehicles for given
missions. However, at this scale, other options , like rotary wings, micro-helicopters
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(cf. figure 1.12) or rotatable tail (Praga et al., 2005), seem more suitable than flap-
ping wings. The reasons are the very high flapping frequencies required (around 150
Hz (Ellington and Usherwood, 2001) still out of reach) to sustain the weight and the
more severe constraints on weight and volume. Hence, any reduction in MAVs’ scale
passes by a better comprehension of insects’ flight.

The leading description of the fluid dynamics for insects’ flight is due to Maxworthy
(1981). The lift generation mechanism in insect flight was investigated by Ellington
(1984) and Spedding (1992). It has been shown that insects generate lift on both
downstroke and upstroke and the examination of wings demonstrated that they are
twisted along their length like a propeller blade since the angle of attack at the wing
base is 10◦ to 20◦ larger than at the wing tip (Ellington, 1984; Willmott and Elling-
ton, 1997). This justifies the use of the blade-element-theory for simple studies of
the aerodynamics of an insect flight.

Figure 1.11: An insect-like micro air vehicle developed in Brigham Young University, Utah, U.S.A.
(left) compared to its source of inspiration, the dragonfly (right).

More recently, experiments and numerical simulations were applied to this configu-
ration and the aerodynamics and precisely the unsteady evolution of forces during
insect flight was explored (Willmott and Ellington, 1997; Liu et al., 1998; Liu and
Kawachi, 1998). Subsequent results (Ramamurti and Sandberg, 2002; Sun and Tang,
2002) confirmed numerically the experimental data by Dickinson et al. (1999). Lately,
much effort was injected into the comprehension of the high unsteady mechanisms
and to model the forces in hovering configurations (Wang et al., 2004; Zuo et al.,
2006; Berman and Wang, 2007). In hovering conditions, the presence of pitching in
the motion of the wings is crucial. A solely heaving airfoil in hovering conditions
turns to a symmetric problem with a vanishing averaged thrust.
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Figure 1.12: The mesicopter: a micro air vehicle prototype based on the rotating wings principle
developed at Stanford university, California, U.S.A. (Kroo and Kunz, 2001).

1.4.3 Aquatic animals

The interest in aquatic animals’ propulsion was fostered by the observations of Gray
(1936) who highlighted the large thrust force developed by a dolphin with respect to
the body mass. This was subsequently termed the "Gray’s paradox" and the effect
was ascribed to the compliant properties of the skin of dolphins. However, the most
recent studies demonstrated that the compliant skin of dolphins plays no role (Fish,
2006). Lighthill (1960) applied the slender body theory of hydrodynamics to trans-
verse oscillatory motions of slender fish revealing the high propulsive efficiency of
fish. Subsequently, further investigations were made on the topic to elucidate Gray’s
paradox (Wu, 1961; Lighthill, 1969; Blake, 1983) and optimal shape problems were
addressed (Wu, 1971). At that time, two-dimensional (Wu, 1961; Siekmann, 1962),
and then three-dimensional (Cheng et al., 1991; Bandyopadhyay et al., 1997) poten-
tial flow models over a thin waving plate were built in order to compare the values of
force coefficients between swimming animals and man-made underwater vehicles (see
figure 1.13). The recent results focused on the generation of thrust by hydrofoils and
on the attempt to reach the propulsive efficiency of swimming animals (Koochesfa-
hani, 1989; Triantafyllou et al., 1991; Gopalkrishnan et al., 1994; Anderson, 1996;
Guglielmini, 2004).

Fish propel themselves in water by generating a transverse wave which moves back-
ward along the body from head to tail. This propulsion can be anguilliform when
the whole body of the fish is flexible or carangiform where the amplitude of the
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wave is significant only on the posterior part of the fish whereas the rest of its body
remains relatively rigid (Blondeaux et al., 2005). This latter case implies that the
thrust generation is almost confined to the caudal fin which can be modelled as a
flapping foil moving with a constant forward speed in an undisturbed free stream.
Hence, the study of the carangiform propulsion of some fish and the flight of birds
can be very close. However, fish are much less concerned by the problem of lift due to
Archimedes’ force. In counterpart, side forces which produce lateral motions should
be addressed. Other less widespread modes of propulsion exist in nature for fish
including rowing with lateral fins and vortex rings mode whereby an aquatic animal
(squid, salps) propels itself by expelling fluid from a tube thus producing vortex rings
(Linden and Turner, 2001).

Figure 1.13: An autonomous underwater vehicle using carangiform propulsion mode developed
in University of Essex, U.K. (left) compared to a fish (right).

Results show that fish use both heaving and pitching to reach high thrust forces
since heaving alone requires frequencies physically unacceptable (Wang, 2000; Lewin
and Haj-Hariri, 2003). Measurements on live animals show that a large species of
fish move such that their Strouhal number is in the range [0.25, 0.35] (Triantafyllou
et al., 1993) and use a phase angle between pitching and heaving close to 90◦. One
may also notice the high aspect ratio of the tail and its flexibility and the ability
of the fish to manipulate ambient vorticity with their caudal fin allowing them to
extract energy that would otherwise be lost in wake (Streitlien et al., 1996).
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Conclusion

The review of past contributions on the study of the propulsion of flying and swim-
ming animals drives us towards clear and precise conclusions that we may summarize
here. If fixed-wing configuration is probably the right one for human scale, flapping-
wing at micro air vehicles’ scale is not just a fantasy. Mobile-wings have the feature
of requiring less power and yielding better performances if the motion is optimised
and if some very complex mechanisms are employed. Even if nobody is able today
to build a "perfect man-made bird", the optimisation of wings’ kinematics is a step
in the right direction.

Therefore, and in the remainder of the present work, the motion of a flapping airfoil
will be studied and optimised in a way to favour sufficient thrust and lift forces with
good propulsive efficiencies. This requires the numerical solution of the flow field
around a flapping airfoil (cf. chapter 2) and an optimisation approach (cf. chapter
3). The interest resides in the fact that once the optimal kinematics are identified,
they can be linked with natural observations and with laboratory measurements.
This link is highlighted especially concerning the role of the Strouhal number and
the effect of its values as mentioned in §1.3.3. The role of the separation and the
interaction between the shed vortices is also emphasized.
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Chapter 2

Problem formulation

Introduction

After having briefly described the context of the present work and the previous con-
tributions related to the topic of propulsion for MAVs/AUVs or birds/fish, we present
here the general formulation of the study. A special emphasis is given for the flow
resolution around a flapping foil, the motivations for optimisation and the tools em-
ployed to achieve this optimisation.

The flow field around a flapping airfoil is nowadays easier to obtain due to a number
of commercial CFD solvers. For instance, one may use OpenFoam1, Overture2 or
Fluent3 even if this latter is quite hard to adapt to mobile surfaces configuration.
OpenFoam (for Open field operator and manipulator) is a partial differential equa-
tions solver based on finite volumes and unstructured mesh. It is written in C++ and
computes solutions for pressure and velocity fields using implicit schemes. Overture
is also a PDE solver in C++. It is object-oriented and based on both finite differences
and volumes. It is well adapted for complex and moving geometries and require the
construction of structured meshes. Despite the high precision of these solvers (when
the mesh is well designed), it is hard to update them for the present study since
modifications in the source files of these solvers are very hard to implement if not
impossible. Therefore, they can be adapted for validation reasons or for preliminary
studies of the wake patterns or separation. But in the case where optimisation is
asked for, the only way of doing it with these kind of solvers is to perform a very large
number of runs and to post-process them. Here, the solution of the flow field around
a flapping airfoil is based on the solver developed by Guglielmini (2004) during her

1www.opencfd.co.uk/openfoam/index.html
2www.lnll.gov/casc/overture
3www.fluent.com

35



2.1 The geometry

PhD thesis. Modifications are done to make it suitable to the configuration studied
here and a solver for the sensitivity equations is developed to evaluate the gradients
and reach the optimal kinematics.

After describing the geometry studied and defining the different reference systems
and transformations used, the scales are introduced enabling to render the equations
of the flow non-dimensional. The choice of the scales is discussed and the vorticity-
stream function formulation is employed with the associated boundary conditions.
The flow solution yields the flow field around the flapping airfoil and the main aero-
dynamic characteristics. At this point, an optimisation approach is built by defining
an objective function which specifies the target to reach, and the tools to fulfil it, in-
cluding choice of control parameters and the methodology of gradients computation.

2.1 The geometry

We address the problem of the numerical resolution of an incompressible flow around
a two-dimensional flapping airfoil at low Reynolds number. Under these conditions, it
is convenient to reduce the dimension of the problem from three variables (u∗, v∗, p∗),
the horizontal and vertical components of velocity and the pressure respectively, to
two variables (ω∗, ψ∗), the vorticity and the stream function respectively defined as:

ω∗ =
∂v∗

∂x∗
− ∂u∗

∂y∗
, u∗ =

∂ψ∗

∂y∗
, v∗ = −∂ψ

∗

∂x∗

where (x, y) are the horizontal and the vertical directions of the laboratory fixed
reference and the superscript ∗ denotes a dimensional variable. The resolution of
the flow in this reference requires to locate the position of the airfoil in the grid
instantaneously in order to impose the unsteady boundary conditions. It would lead
to a model characterised by relatively simple equations but requiring in counterpart
a moving mesh algorithm (Ramamurti and Sandberg (2001), Pedro et al. (2003),
Smith and Wright (2005)). Another approach for numerical resolution of the flow
around moving solid bodies is the immersed boundary technique (Mittal et al., 2005;
Bozkurttas et al., 2005; Blondeaux et al., 2005). The key feature of this approach
is that simulations with complex boundaries, including multiple bodies cases, can
be done on stationary non-body conformal Cartesian grid and this eliminates the
need for complicated remeshing algorithms that are usually employed with conven-
tional body Lagrangian body-conformal methods. However, the immersed boundary
technique method still can be seen as an Eulerian Lagrangian formulation where the
immersed boundary are tracked as real surfaces in a Lagrangian way whereas the
flow is solved on a fixed Eulerian grid (Bozkurttas et al., 2005).
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α(t*)

X

x

y

h*(t*)

x
α

y
α

U*
∞

α
0

Y

c*

λ*

Figure 2.1: Definition of flapping and of the different frame references used.

Here, we write the governing equations in the reference (X, Y ) which moves with the
airfoil, where X is parallel to the airfoil chord length and Y remains perpendicular to
it during the motion (cf. figure 2.1). This approach leads to relatively complicated
equations of the flow but offers the advantage of easy imposition of the boundary
conditions since the position of the airfoil in the moving reference is well-identified.

The airfoil is chosen such as a Joukowksi transformation is possible so as to re-
place the flow resolution around the airfoil by a resolution around a circle of given
radius (cf. Appendix B). However, the airfoil chosen remains, from a geometric
point of view, very similar to a NACA0012 airfoil since the difference in shape is
smaller to 1%, and mainly located near the trailing-edge (cf. figure 2.2). Compar-
isons of lift and drag coefficients, using Fluent solver, for the present airfoil and a
NACA0012 airfoil, have shown small discrepancies on the aerodynamics forces. The
moving reference (X, Y ) is mapped by means of the Joukowski transformation into
the plane (ξ, χ) where a polar coordinates system (r, θ) is defined. A logarithmic
transformation (Braza et al., 1986) is applied for the distribution of points in the
radial direction in order to refine the grid in the boundary layer where large gradi-
ents occur. The case of different possible stretching laws in not investigated, because
it is not the main issue of the present work. Furthermore, this law has proved its
efficiency in the past (Borthwick, 1986), and the validity of the flow solution has
been verified on such a grid on the other (Guglielmini and Blondeaux, 2004). The
impact of this refinement law is addressed in §4.1. More details on reference frames
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and transformations employed can be found in Appendix B and in the Ph.D. thesis
by Guglielmini (2004). A plot of a coarse grid showing the geometry of the grid and
the distribution of points around the airfoil is given in figure 2.3.

Figure 2.2: A Zoomed plot in the vertical direction of the NACA0012 airfoil (dots) and the one
used in the present study (solid line), obtained by means of a Joukowski transformation.

The motion of the airfoil is defined as a combination of heaving and pitching move-
ments. Hence, the vertical position of the pitching centre, the point around which
the airfoil pitches, is varied in time as h∗(t∗). In the present work, the pitching
centre is located at one third of the chord length starting from the leading-edge.
The position of the pitching centre will remain the same for all the simulations of
the present work. Normally, the aerodynamic centre, located close to the quarter of
the chord for a still airfoil, is supposed to be a good location for the pitching centre
knowing that in this point the pitching torque is constant. However, previous results
(Anderson et al., 1998; Guglielmini, 2004) showed that, for a flapping airfoil, the
location adopted here is optimal in terms of propulsive efficiency.

On the other hand, the angle between the frames (x, y) and (X, Y ) is the pitching
angle α(t∗), also variable in time. The velocity at infinity is inclined of a constant
angle α0 with respect to the reference (x, y). This defines the aerodynamic reference
(xα, yα) (cf. figure 2.1) with respect to which the lift and the drag/thrust of the
airfoil should be calculated. When α(t) is periodic in time, α0 turns to be the mean
angle of attack of the airfoil. It is possible to build another formulation in which α0

is included inside the pitching angle α(t) leading to a new set of equations.
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Figure 2.3: Plot of a coarse grid showing the circular form of the computational domain and the
effect of the stretching law in the radial direction.

2.2 The scaling

For the problem of flapping airfoil two scales can be adopted for both length and
time:

- As length scale, one can choose between the airfoil chord or the heaving am-
plitude corresponding to the maximal value of h∗(t∗) reached during oscilla-
tions. In the present study, we aim at optimising the heaving amplitude, which
means that this quantity will be variable. Therefore, the chord of the airfoil c∗

or more precisely the distance λ∗ (cf. Appendix B) is chosen as length scale.
This distance corresponds roughly to the position of the aerodynamic centre
of a NACA0012 airfoil which does not flap. Obviously, a factor of about 4
can be applied and c∗ can be used as a length scale. However, because of the
Joukowski transformation, we prefer to maintain λ∗ as the suitable scale. On
the other hand, the comparison of present results with those of literature are
made upon non-dimensional coefficients, adapting the scaling effects.

- As time scale, the inverse of the frequency of flapping or the ratio of the length
scale to the velocity at infinity U∗

∞ can be used. Both choices present advan-

tages and disadvantages. The choice of
λ∗

U∗
∞

as a scale of time allows to recover

the classical Reynolds number. However, it prevents the consideration of hov-
ering situation wherein the MAV has no forward speed and consequently U∗

∞

vanishes. This problem can be overcome by considering
1

σ∗
as a time scale
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2.2 The scaling

where σ∗ = 2πf ∗ and f ∗ is the frequency of flapping in Hertz. In this case, the
optimisation of the flapping frequency is not straightforward, and includes a
variation of the reduced frequency (as shown below). Another solution for this
problem consists in considering a reference constant frequency σ∗

0 as the inverse
of time scale. In the remainder of this work, the consequences of considering
σ∗, σ∗

0 or U∗
∞ are highlighted.

The third fundamental scale is mass scale and here it is included by the use of the
density of air ρ∗. Based on these three scales, and introducing ν∗, the kinematic
viscosity of air, we can render non-dimensional all flow variables.

t∗ x∗, y∗ u∗,v∗ p∗ ω∗ ψ∗ Re

1

σ∗
λ∗ λ∗σ∗ ρ∗ (λ∗σ∗)2 σ∗ σ∗λ2∗ σ∗λ2∗

ν∗

Table 2.1: Scaling quantities based on the frequency of flapping

If the first scaling is employed, we obtain a Reynolds number Re which depends
mainly on the flapping frequency and will be referred as the flapping Reynolds num-
ber. In table 2.1, σ∗ may be the angular frequency of flapping or a reference constant
value σ∗

0 and the physical frequency of flapping σ∗ is a multiple of it, belonging to
the set of real numbers.

t∗ x∗, y∗ u∗,v∗ p∗ ω∗ ψ∗ Rec

c∗

U∗
∞

c∗ U∗
∞ ρ∗ (U∗

∞)2 U∗
∞

c∗
U∗
∞c

∗
U∗
∞c

∗

ν∗

Table 2.2: Scaling quantities based on velocity at infinity

Thanks to the second scaling, we recover the classical Reynolds number Rec based
on the chord length and the velocity at infinity. A connection between the two pro-
posed scales exists. Therefore, we introduce two important parameters in flapping
foil problems, the Strouhal number, St and the reduced frequency, fr. As mentioned
earlier (cf. §1.3), the values of these parameters are used to determine the flapping
régime. They represent the ratio of the velocity of flapping to flight forward velocity
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and the ratio of the residence time of a particle along the airfoil chord to the period
of oscillations, respectively. Hence, they are defined as:

St =
f ∗A∗

U∗
∞

and fr =
σ∗λ∗

U∗
∞

,

where A∗ is the width wake usually unknown a priori. It is often approximated by
the double of the heaving amplitude ‖ h∗(t∗) ‖ where the norm ‖ . ‖ corresponds to
max(.) for t∗ ∈ [0, T ∗] and T ∗ is the period of oscillations. Under these conditions,
we can give another expression of the Strouhal number and relate it to the reduced
frequency. A relation between the flapping and the classical Reynolds number exists
also through fr as :

St =
σ∗ ‖ h∗(t∗) ‖

πU∗
∞

, St =
‖ h(t) ‖ fr

π
and Rec =

4Re

fr

.

The heave amplitude is considered in the following as a control parameter (see §2.5.2).
Hence, in this case, it is preferable to perform the computations for a constant re-
duced frequency fr rather than a constant Strouhal number. On the other hand,
when the frequency of flapping is optimised, fr will be varied. In both cases, we
impose the classical Reynolds number Rec. Then, in the first case, we impose also
the reduced frequency, and we compute the value of the flapping Reynolds number
which appears in the equations. For a given value of the heaving amplitude, the
Strouhal number can be also recovered and the optimisation is done by updating
the heave amplitude and, consequently, the Strouhal number. In the second case,
we impose the heave amplitude and for a given value of the reduced frequency we
compute the flapping Reynolds and the Strouhal numbers. Optimisation is done by
updating fr and, consequently, Re and St.

From what preceeds, we can notice that there is some kind of hierarchy of the prob-
lem’s parameters, with Rec on a different level than Re, fr or St. The reason for
this choice is the secondary importance of Rec, as shown by Ohmi et al. (1990). The
classical Reynolds number has undoubtedly an effect on the results, especially on the
values of the propulsive efficiency η, defined as the ratio of useful-to-total required
powers. A low value of Rec implies higher viscous effects and as a consequence a
smaller η. However, the conjecture is that the the thrust force depends mainly on
the pressure distribution and the latter is much less affected by the value of Rec

as long as it remains in the range [103 − 105] (Anderson et al., 1998; Guglielmini
and Blondeaux, 2004). In other words, if we optimise the flapping kinematics for
a low Reynolds number, we expect to find the optimal parameters to remain valid
for this range of Reynolds numbers but with lower propulsive efficiency. This un-
derestimation of the propulsive efficiency counterbalances the effect of performing
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two-dimensional simulations: the approach adopted here, neglects a part of the vor-
ticity shed in the wake, namely the trailing vorticity, i.e. the vorticity parallel to
the direction of the flow. Consequently, a 2-D approach is expected to yield higher
values of η than real 3-D cases. However, for low Rec, the viscous effect is dominant.
Therefore, even three-dimensional published numerical simulations failed to appro-
priately quantify the effective efficiency of thrust-producing-foils as argued by Pedro
et al. (2003) due to a small Rec and an overestimation of the viscous forces .

In nature, the wings/fins span (between 10 cm and 3 m for some species of hawks),
the forward velocity (between 0.5 and 15 m/s) and flapping frequency (up to 60
Hz for hummingbirds) observed for birds, insects and fish cover a wide range (see
figures 2(a) and 3(b)). The majority of the numerical simulations performed in the
present work have been done for fr = 0.3665 and Rec = 1100, and consequently,
Re = 100.79. If we refer to figure 1.6(b), the value of fr corresponds to that of small
birds and large insects (the y-axis scale in this figure should be divided by two if
we want to compare, since in Ames et al. (2001)’s work, the reduced frequency is

defined by: fr =
πf ∗c∗

U∗
∞

). However, the Reynolds number used here is quite low for

a bird configuration. It has been chosen because it corresponds to a much used con-
figuration in the literature (Anderson et al., 1998; Ramamurti and Sandberg, 2001;
Pedro et al., 2003; Guglielmini and Blondeaux, 2004). This choice is numerically ad-
vantageous, since the spatial and temporal steps of discretization depend directly on
the value of Rec. A larger value of Rec would be more realistic. For instance, a bird
having a wing of 0.1m chord length, flapping at 3.5 Hz and moving with a forward
speed of 1.5 m/s, gives fr = 0.3665 and Rec = 10274 (assuming a value of the air
kinematic viscosity, ν∗ = 1.46× 10−5m/s2). Since the kinematic viscosity of water is
10 times larger than that of air, our value is more adapted for a fish. However, and
as mentioned before, we assume that the optimal kinematics for Rec = 1100 are not
too far from the optimal values ar a larger Reynolds number, and that the relevant
physical phenomena and mechanisms are captured, at least qualitatively.

2.3 The flow equations

The flow is governed by the system 2.1 which expresses the equations of continuity
and Navier-Stokes in the vorticity-stream function formulation in the polar coordi-
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nate system (r, θ):







∂ω∗

∂t∗
+

1√
J

[

v∗r
∂ω∗

∂r∗
+
v∗θ
r∗
∂ω∗

∂θ∗

]

=
ν∗

J

[
∂2ω∗

∂r∗2
+

1

r∗
∂ω∗

∂r∗
+

1

r∗2
∂2ω∗

∂θ∗2

]

,

∂2ψ∗

∂r∗2
+

1

r∗
∂ψ∗

∂r∗
+

1

r∗2
∂2ψ∗

∂θ∗2
= −Jω∗.

(2.1)

where v∗r and v∗θ are the velocities in the radial and azimuthal directions respectively.
Applying the first scale to these equations leads to the non-dimensional system of
flow equations:







∂ω

∂t
+

1√
J

[

vr
∂ω

∂r
+
vθ

r

∂ω

∂θ

]

=
1

ReJ

[
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2

]

,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= −Jω,

(2.2)

where,

vr =
1√
J

[
1

r

∂ψ

∂θ
−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

vθ =
1√
J

[

−∂ψ
∂r

−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

Dots denote derivation with respect to time t and J is the Jacobian of the Joukowski
transformation which maps the coordinates of the Cartesian plane (X, Y ) into the
plane (ξ, χ) (cf. Appendix B). The same equations can be obtained if the second
scaling is applied, with a main difference though, that in this latter case, Re should
be substituted by Rec.

The first equation in the system 2.2 is solved thanks to an alternate direction im-
plicit (ADI) method which decouples the azimuthal direction from the radial one.
First, a half temporal step is accomplished in the θ direction, leading to a tridi-
agonal linear system solved with a Thomas-like algorithm and periodic boundary
conditions. The tridiagonal system is a direct result of the choice of the discretiza-
tion schemes, here second order centred schemes. A second half step is performed
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for the r direction resulting in a new tridiagonal system, solved with a similar algo-
rithm but with Dirichlet- and Neumann-like boundary conditions in this case. The
Poisson-like equation (∆ψ = −Jω, where ∆ is the Laplacian operator, here in po-
lar coordinates) is solved by a Fourier transform. We assume the two equations to
be uncoupled. Thus, we solve the first equation (referred to as ω equation) for the
value of ψ for the previous temporal step. Then, once ω is evaluated, it is used to
compute ψ, using the second equation (called Poisson-like equation). Details on the
tridiagonal systems, Fourier transformation and algorithms are given in Appendix D.

We associate to the flow equations the flow boundary conditions on ω and ψ. The
conditions on the airfoil express a vanishing velocity for the fluid. This results from
the fact that the numerical resolution is done in the moving reference system fixed on
the airfoil. The relation between the stream function and the radial and azimuthal
velocities allows to reach a condition on ψ on the airfoil. Moreover, the value of
vorticity on the airfoil is evaluated using a Taylor development on one hand, and
the Poisson-like equation between ω and ψ, on the other. For the outflow, three
boundary conditions were tested.

- The first is the one used by Guglielmini (2004) and expresses the fact that
vorticity is constant when progressing in the radial direction near the com-

putational domain limit:

(
∂ω

∂r

)

outflow

= 0. This condition is the easiest to

implement but it is called "perfectly reflecting condition" since it can possibly
reflect back outgoing waves when the shed vorticity reaches the boundary of
the computational domain. This imposes the choice of a large domain and
increases the nodes number and consequently the computational cost.

- The second is proposed by Tezduyar and Liou (1991) and may be seen as a
higher order and less constraining condition than the previous one. It is written

as:

(
∂2ω

∂r2

)

outflow

= 0 and

(
∂2ψ

∂r2

)

outflow

= 0.

It has been reported that this condition allows waves to smoothly leave the
domain at the exit boundary.

- The third, referred to as convective outflow condition is the most realistic.
It expresses the fact that the shed vorticity from the airfoil will cross the
computational domain with a constant velocity equal to the free stream velocity

U0 where U0 is the non-dimensional value of U∗
∞ since U0 =

U∗
∞

λ∗σ∗
=

1

fr

. Hence,

we write that on the outflow boundary:

∂ω

∂t
+ U0

∂ω

∂r
= 0,

∂ψ

∂t
+ U0

∂ψ

∂r
= 0.
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Even if the interest of implementing this condition is concentrated inside a solid
angle behind the airfoil where the wake crosses the computational domain (see
figure 2.4), it is valid for the whole outflow boundary. It allows to reduce the
computational cost by reducing the size of the grid and it remains valid even
if the vorticity shed does not translate with a velocity perfectly equal to U0

(Bottaro, 1990).

undisturbed velocity

convective 
condition

vanishing velocity

Figure 2.4: Location of the imposed boundary conditions.

The validity of the outflow boundary conditions with respect to the computational
domain size is verified in §4.2. More details on the boundary conditions for the flow
equations are given in Appendix E.1.

Finally, ω equation is time-dependent, i.e. solving it requires an initial condition.
The system is advanced in time starting from an initial condition of vanishing vor-
ticity and stream function thanks to a first order upwind scheme split into two
sub-iteration because of the ADI method.

2.4 Direct variables

We denote by direct any variable computed through the resolution of the flow equa-
tions as opposed to gradients (sensitivity and imaginary variables) obtained by solv-
ing the sensitivity and the complex equations (see chapter 3). The problem studied
is highly unsteady which means that all forces and moments are time-dependent.
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Therefore, mean variables are introduced. They correspond to the average value of
a variable over a period of oscillation, T . The superscript ¯ is used to denote this

average since (̄.) =
1

T

∫ T

0

(.)dt.

The main direct variables of interest in the present work are:

- The mean power required to sustain the motion of the airfoil, typically the en-
ergy extracted from the batteries to perform the flapping, if we do not account
for losses. It is defined as:

P̄ = − 1

T

∫ T

0

[

Fy(t)ḣ(t) +Mz(t)α̇(t)
]

dt;

- The mean horizontal force F̄ corresponding to thrust or drag produced by the
flapping airfoil:

F̄ =
1

T

∫ T

0

F//(t)dt;

- The mean vertical force L̄ representing the lift force of the airfoil:

L̄ =
1

T

∫ T

0

F⊥(t)dt;

where F// and F⊥ are respectively the parallel and perpendicular forces with respect
to the velocity at infinity. Obviously, when α0 = 0, they correspond to the horizontal
and vertical forces Fx and Fy in the fixed reference frame (x, y). Looking at the
definition in figure 2.1, we note that negative values of F̄ are associated to an airfoil
dominantly producing thrust whereas positive values refer to drag. Moreover, the
positive values of L̄ correspond to a lifting airfoil. Mz is the pitching torque acting
on the airfoil. We associate to these mean quantities the mean power, thrust and lift
coefficients:

CP =
P̄ ∗

1
2
ρ∗c∗U∗3

∞

=
P̄

2U3
0

, CT = − T̄ ∗

1
2
ρ∗c∗U∗2

∞

= − F̄

2U2
0

, CL =
L̄∗

1
2
ρ∗c∗U∗2

∞

=
L̄

2U2
0

We also define the pressure coefficient, Cpr as: Cpr =
p∗−p∗

0
1

2
ρ∗U∗

∞

where p∗ is the pressure

and p∗0 a reference pressure. The pressure coefficient is not a global variable since
it is computed on a discrete set of points located on the airfoil and corresponding
to the grid nodes. Finally, we introduce the propulsive efficiency as the ratio of the
useful power (used to fly straightforward) to the total required power:

η = − F̄U0

P̄
=
CT

CP
.
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Obviously, the definition of a propulsive efficiency loses interest when the airfoil is
mostly producing drag (η < 0). More details about the expressions of these direct
variables in the moving frame and the relations allowing to compute them from the
variables ω and ψ are given in appendix C.1.

2.5 The optimisation approach

At this point, the questions, which constitute the three components of the optimi-
sation problem, may be addressed. First, what do we want to optimise? In other
words, what is the measure of performance or more generally the "cost functional"
whose optimum is sought? Second, what are we acting on? Or in other words, what
are the "control parameters" to manipulate to reach our target. Third, what method
are we going to use in order to drive the control parameters towards their optimal
values, i.e. what method are we using to "evaluate the gradient" of the cost functional
with respect to the control parameters and to drive it to zero? The investigation of
these three points, one by one, constitutes the core of this section.

2.5.1 Cost functional

The measure of performance to be optimised is directly related to the type of mis-
sion the MAV is expected to perform. The main problem of nowadays MAVs is their
autonomy, typically between 30 and 60 minutes (cf. §1.1.2). This duration is not
sufficient for military spying missions in a battlefield. Hence, one may be tempted,
for such a mission, to optimise the propulsive efficiency. MAVs are also small, slow
and light. This make them very sensitive to gust and harsh atmospheric conditions
in general. Under these circumstances, one may try to ensure a large lift and thrust
in a way to have spare forces for manoeuvring. Besides, thrust, lift and propulsive
efficiency are dependent in a complex way. This illustrates the difficulty of consider-
ing a simple aerodynamic coefficient as the cost functional to be optimised. Actually,
considering η as cost functional may seem suitable. However, it is not the case since
it has been reported in previous contributions (Triantafyllou et al., 1993; Anderson
et al., 1998; Read et al., 2003) that the peak of efficiency is located for small values
of the Strouhal number corresponding to very small values of the thrust insufficient
to move the vehicle. Therefore, it is preferable to seek a sufficient value of the thrust
within an acceptable value of efficiency, exploiting the fact that the curve of η versus
CT decreases typically more or less slowly after the peak value. Considering the
thrust force as a cost functional is not adapted neither, because it can lead to solu-
tion with very poor efficiencies or with very large oscillations. Consequently, in the
present work, we aim at optimising, i.e. minimizing the functional L defined as:

L = β2
P P̄ + β2

F F̄U0 + ǫ2αᾱ
2(t) + ǫ2hh̄

2(t) (2.3)
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where β2
P , β2

F , ǫ2α and ǫ2h are positive coefficients giving different weights to the dif-
ferent components of the cost functional. The four weights can not be reduced to
three by a simple division by one of them because in some computations in the fol-
lowing, these weights will vanish. The first two terms represent a balance between
the required and the useful powers and yield, thus, a link with the propulsive ef-
ficiency. A quadratic functional is not considered to properly account for the sign
of the horizontal force (F̄ < 0 when thrust is produced) avoiding optimal solutions
corresponding to drag producing kinematics. This choice has an impact on the opti-
misation update algorithm discussed in §4.4. A higher weight will be given to thrust
with respect to power (β2

F > β2
P ) to favour an optimal solution with a large thrust.

This also prevents the optimisation process to be driven towards the trivial solution
of a still airfoil requiring vanishing power and producing drag. The last two terms
will be referred to as the cost of the control 4. They are integrated into the cost
functional to avoid optimal solution with very large amplitudes of heaving or pitch-
ing: it is known that the thrust coefficient increases when the heave amplitude and,
consequently, the Strouhal number increases. Hence, adding these two terms ensure
an optimal solution with realistic oscillations preventing large constraints from the
structural dynamics point of view. Furthermore, a larger weight is given to ᾱ2(t)
with respect to h̄2(t) (ǫ2α > ǫ2h) to ensure giving an equivalent weight to these two
terms since the angle α(t) is in radians.

The lift force has not been included in the cost functional because lift depends
mainly on the mean angle of attack α0 and preliminary results showed that optimal
values for efficiency are obtained for non-lifting configurations (α0 = 0). In other
words, if we include lift in the previous cost functional, a local optimum might be
reached for vanishing lift. We thus prefer to seek the optimal kinematics for a non-
lifting configuration and then add a mean angle of attack to ensure a sufficient lift
(cf. §5.6). Furthermore, the cost functional in this form, can be applied to fish
propulsion optimisation, where lift issue is secondary.

In the configuration studied, as long as the classic Reynolds number is constant,
the velocity at infinity U0 is constant as if the optimal performance is sought for a
given translational velocity of the vehicle. Therefore, U0 does not admit variations
and its presence in equation 2.3 ensures a balance between two powers. The physical
configuration in which the velocity of the airfoil depends on its kinematics would be
hard to simulate since it requires a relation of the type: U0 = U0(α0, h(t), α(t), ...).
It would give rise to a more realistic study in which the optimal kinematics may lead
to higher forward speed of the MAV.

4The time average is done for the square of α(t) and h(t). For a dimensional version of equation
2.3, the weights of these two terms have a dimension in a way to have a sum of powers.
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2.5.2 Control parameters

Control, in general, is divided into two categories, passive and active; each one may
be subdivided into two sub-categories of open- and closed-loop. The denomination
of passive control refers to the case where no supplementary energy is injected into
the system in order to control it, as in the case where the shape of the airfoil is
optimised (Amoignon et al., 2006), whereas the term active control is the opposite,
including for instance suction to control disturbances in a boundary layer (Walther
et al., 2001; Pralits and Hanifi, 2003; Airiau et al., 2003). The open-loop control is
the configuration in which the control is imagined and applied to the system, like the
case in which the position and intensity of suction is previously defined and applied,
whereas in closed-loop control, sensors detect the situation of the system in real-time
and adapt the control to the requirements (Alam et al., 2006). In the present work,
we aim at identifying the motion of the wing which gives a good thrust force and an
acceptable efficiency and then applying those kinematics to the MAV. We employ
optimal control theory, however, no classical flow control is done. This work must be
considered as a step towards more sophisticated control systems where the vehicle,
like the animal it is supposed to mimic, adapts its motion to the type of mission or
to the atmospheric conditions.

Here, we impose the motion of the wing by providing analytical expressions for α(t)
and h(t). This is fundamentally different from what is done experimentally by some
authors (Silin et al., 2006) who build elastic wings and put them in a wind tunnel
giving rise to a free undetermined motion of the wings. The imposed kinematics
is supposed to mimic the motion of birds’/insects’ wings and fish fins. Histori-
cally, birds’ flight and fish swimming were modelled by means of simple heaving.
The poor thrust developed in these conditions and its absence in hovering conditions
(Wang, 2000; Lewin and Haj-Hariri, 2003; Guglielmini, 2004) suggested the inclusion
of pitching. This allows a higher thrust production by controlling the leading-edge
vortex formation and development. Recently, in literature, these motions have been
simulated by monochromatic harmonic heaving and pitching oscillations of the same
frequency (Anderson et al., 1998; Read et al., 2003; Pedro et al., 2003; Lewin and
Haj-Hariri, 2003; Guglielmini, 2004). An illustration of such a motion is given in

figure 2.5 for h(t) = c sin(
2πt

T
), α0 = 0◦ and α(t) = −35◦ sin(

2πt

T
+
π

2
).

Here, we formally generalise this motion by writing a sum of harmonics as:
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





h (t) =

N∑

k=1

hk sin(σkt+ τk)

α (t) =
N∑

k=1

αk sin (σkt+ φk)

(2.4)

where hk, αk, τk and φk are heaving and pitching amplitudes and phases respectively,
N is the number of considered modes and σk the angular frequency of oscillation of
each mode. In the case in which σ∗ is the opposite of time scale, σk are integer
numbers equal to k, whereas they are real if a reference frequency σ∗

0 is adopted for
time scale. Such a choice of a sum of harmonics present three major advantages. The
first is that by imposing N = 1, we recover the classical case studied in literature.
Secondly, it allows to simulate a very wide space of motions since a large number of
analytical functions can be projected on an infinite sum of sine functions. Third, it
provides the opportunity to consider higher order harmonics as in Read et al. (2003).
We note that, since the average over one period of α(t) vanishes, α0 is the value of
the angle of attack of the airfoil. Regardless of the value of N , the flapping motion is
periodic in time with a dimensionless period equal to 2π. Thus, the numerical simu-
lations will be carried out for a non dimensional time multiple of 2π representing an
integer number of periods.

t=T/8

t=0

t=T/4

t=3T/8

t=T/2

t=5T/8

t=3T/4

t=7T/8

Figure 2.5: Different position of an airfoil at uniform intervals over a period of oscillation for a
classical flapping motion.

The flapping characteristics are considered as control parameters. Hence, the vari-
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ables α0, hk, αk, φk and τk and the temporal frequency σk for k = 1, N are the
parameters for which the gradients of the cost functional will be computed. Am-
plitudes and phases have a crucial impact on propulsion performances since they
drive the timing of the vortex shedding and propagation in the wake whereas the
average angle of attack is important for lift generation. The letter g will denote in
the following any generic control parameter of the 5N + 1 possible ones.

If we exclude the purely geometric parameters related to the form of the airfoil,
its thickness and/or camber and we focus and the flight conditions, the flapping
airfoil depends on a set of 7 relevant parameters:

- The Strouhal number, classifying whether the airfoil is producing drag of thrust
and in which conditions,

- the heaving amplitude,

- the pitching amplitude,

- the phase angle between heaving and pitching. For N = 1, one angle φ1 or τ1
is sufficient to simulate this phase angle,

- the Reynolds number or equivalently the free stream velocity,

- the mean angle of attack α0 and

- the position of the pitching centre.

According to our choice of control parameters, only the position of the pitching centre
is not controlled since in all simulations, the airfoil pitches around a point located
at one third the chord length . Guglielmini (2004) has shown the positive impact of
considering a pitching centre in this position. This configuration is also adopted in
Anderson et al. (1998), in which a propulsive efficiency as high as 87% is achieved.
Moreover, the effect of the Reynolds number at infinity is briefly studied due to its
secondary role (Ohmi et al., 1990). All the other parameters are directly investigated.
The Strouhal number is related to the frequency of flapping and to the heaving
amplitude. It has not been considered as a control parameter by itself. However, by
controlling the flapping frequency and the heaving, we modify the Strouhal number,
showing its effect.

2.5.3 Evaluating the gradient

The third component of the optimisation problem deals with the technique used
in order to find the optimal control parameters and consequently the optimal cost
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functional. The principle of the technique is very simple. If we consider constant
the other parameters, the cost functional depends on 5N + 1 control parameters.
For its optimal value, the gradient of the cost with respect to any generic control
parameter g should vanish. Thus, the main question is how to evaluate the gradient
of L with respect to g. The simplest and most rudimentary way is to evaluate L for
various values of g and to deduce the gradient by a simple finite differences approach.
The main advantage of this method is avoiding further computations than the strict
solution of the flow equations. However, it is not suited for a large space of parame-
ters. On the other hand, it requires a previous knowledge of the range in which the
optimal values are, in order to vary the parameters inside this range. This technique
of varying the control parameter, one by one, and observing the effect of the measure
of performance is very widespread in literature (Triantafyllou et al., 1993; Anderson,
1996; Isogai et al., 1999; Read et al., 2003; Pedro et al., 2003; Lewin and Haj-Hariri,
2003; Guglielmini and Blondeaux, 2004; Tuncer and Kaya, 2005).

In the present work, a different approach is adopted and the gradients of the cost
functional are evaluated with high precision, rather than approximated. Sensitiv-
ity technique and the complex step derivative method (see chapter 3) are applied.
This methodology enables us to perform a multi-parameters optimisation in a wide
space. Despite the computational cost needed to evaluate these gradients, the high
precision of these two methods and their ability to drive several parameters towards
their optimal values, make them more efficient then what previous contributions has
accomplished.

Conclusions

We address the problem of solving the flow around a two-dimensional flapping airfoil.
A vorticity-stream function formulation is used in a circular computational domain
resulting from the application of the Joukouwski transformation on the airfoil. Once
solved, the flow equations enable us to recover the aerodynamic characteristics of the
flapping airfoil. We propose to optimise these characteristics by acting directly on
the motion of the foil. Hence, a cost functional has been defined: it represents the
objective of producing sufficient thrust and lift with acceptable propulsive efficiency
and without very large oscillations. The control is done on the kinematics of flapping,
a generalised formulation of simple monochromatic harmonic oscillations mimicking
birds’ wings and fish fins motion. The next step consists in writing the equations
which compute the gradients of the objective functional with respect to the control
parameters and to create the solver which estimates them. This is the aim of chapter
3.
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Chapter 3

Gradient evaluation

Introduction

The gradient evaluation is required to drive the control parameters towards their
optimal values. The value of the gradient and its sign indicates, in the case of a
monotonous function, from which side and how far the considered value is from the
optimal one. For a complex functional and flow like those concerned here, this may
not be always true due to the eventual presence of local optima. Nonetheless, a van-
ishing value of the gradient should be found for the optimum, even if it is a local one.

Two techniques are adopted for the estimation of the gradient of the cost func-
tional. The first is the sensitivity technique. It necessitates the solution for the
sensitivity equations obtained by deriving the flow equations. The second is the
complex step derivative method, where the flow equations are solved in the complex
space and the imaginary part of the solution is related to the gradient. While the
complex method is more accurate for a small number of discretization points, both
yield very close results for refined grids. This can be explained by the existence of
a tight relation between these two methods. An alternative to the method based
on the evaluation of sensitivities is the adjoint method, which is also very efficient
for the calculation of gradients and which has been used in recent references (Iollo
and Zannetti, 2000; Bottaro et al., 2006). The adjoint approach has the advantage
of lower memory penalty for a large number of control parameters, with respect to
automatic differentation softwares, for instance. However, a different set of adjoint
equations must be derived and solved for each different cost function. Otherwise,
one may estimate the gradients by a simple finite differences approach. However,
compared to the other three method, this one is slower and less accurate. All these
approaches yield local extrema; global ones can be obtained by stochastic methods,
like genetic algorithms for instance.
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3.1 Sensitivity technique

In what follows, the expressions of the gradients are given for a generic control
parameter g. In practice, for the sensitivity method, the optimisation can be done
for one or many parameters at the same time. In this latter case, the flow equations
are common and the sensitivity equations differ from case to case by a source term.
Computational time may be spared if the gradient for two or more control parame-
ters is evaluated together. Another possibility is to parallelize the computations by
delegating the computations of each gradient to a processor and putting in common
the flow solution. In the case of the complex step method, the computation of sev-
eral gradients at the same time is also possible but filters should be injected into the
equations to distinguish the real terms of the complex terms. This is compulsory
since the non-controlled parameters should be real.

3.1 Sensitivity technique

The basics of the sensitivity technique are described by Gunzburger (1997). The
idea is to compute for a physical variable its sensitivity (total derivative) to a given
parameter. The term of sensitivity is meaningful because it emphasises the idea of
how much the physical variable is sensitive to the parameter, i.e. how much the
physical variable is affected when the parameter is varied?

As far as the cost functional is concerned, the answer of the latter question requires
first to compute the sensitivity of the governing variables (here ω and ψ) with respect
to control parameters and then use them to deduce the cost functional gradient. If
we denote by g a generic control parameter, the sensitivity of ω and ψ with respect
to g will be referred by ω,g and ψ,g. They are evaluated by solving the sensitivity
equations, obtained by deriving the flow equations with respect to g. In practice,
we start by writing the sensitivity equations, we then solve them and finally use the
solution for the computation of the gradient.

3.1.1 Sensitivity equations

We consider the non-dimensional equations governing the flapping airfoil problem
presented in §2.3:







∂ω

∂t
+

1√
J

[

vr
∂ω

∂r
+
vθ

r

∂ω

∂θ

]

=
1

ReJ

[
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2

]

,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= −Jω,

(3.1)
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where

vr =
1√
J

[
1

r

∂ψ

∂θ
−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

vθ =
1√
J

[

−∂ψ
∂r

−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

The derivative of 3.1 with respect to g yields the sensitivity equations of the flow
with respect to a generic control parameter:

∂ω,g

∂t
+

1√
J



vr
∂ω,g

∂r
+
vθ

r

∂ω,g

∂θ
+
∂vr

∂g

∂ω

∂r
+

1

r

∂vθ

∂g

∂ω

∂θ
︸ ︷︷ ︸



 =
1

ReJ

[
∂2ω,g

∂r2
+

1

r

∂ω,g

∂r
+

1

r2

∂2ω,g

∂θ2

]

,

∂2ψ,g

∂r2
+

1

r

∂ψ,g

∂r
+

1

r2

∂2ψ,g

∂θ2
= −Jω,g,

(3.2)
where

∂vr

∂g
=

1√
J

[
1

r

∂ψ,g

∂θ
− ∂

∂g

(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

− ∂

∂g

(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

∂vθ

∂g
=

1√
J

[

−∂ψ,g

∂r
− ∂

∂g

(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

− ∂

∂g

(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

The main difference between flow and sensitivity equations is the source term un-
derbraced in equation 3.2. It depends on the choice of the control parameter among
the 5N + 1 possible ones (cf. Appendix C.2). The computation of the sensitivity
equations require a prior resolution of the flow equations 3.1. However, and due to
the particularity of deriving the product of two terms, the sensitivity equations are
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always linear, which facilitates their resolution. Thus, for a given instant, the solver
treats the flow equation first, then the sensitivity equations before moving to the
next instant. The same numerical approach applied for the flow equation system
is used for the sensitivity system. The two equation are assumed to be uncoupled.
This assumption is valid when the temporal step is small enough, like in the present
work. Hence, the equation for ω,g is solved using the value of ψ,g from the previous
temporal step and then it is injected into the second equation to evaluate the new
value of ψ,g. The same ADI method is applied to the first equation to decouple the
two directions, with first, a half temporal step in the θ direction and then in the r
direction. In each case, we recover a tridiagonal linear system. The tridiagonality
is due to the choice of a second order centred scheme in the discretization. The
linear systems are solved with a Thomas-like algorithms. On the other hand, the
Poisson-like equation (∆ψ,g = −Jω,g, where ∆ is the Laplacian operator in the polar
coordinates) is solved by a Fourier transformation, usually very suitable for handling
this kind of equations. Details on discretization schemes and the associated tridiag-
onal systems and their resolution are given in Appendix D.

The solution of the flow equations provides the fields of vorticity and stream function
in the whole computational domain. Consequently, the rest of the physical variables
can be obtained, including the two components of velocity and pressure. Analyzing
these fields allows to investigate the physical mechanisms which take place inside the
flow. Phenomena like flow separation, leading- and trailing-vorticity can be observed
and their impact on lift, thrust and propulsive efficiency may be studied. The inter-
pretation of the sensitivity fields is not straightforward. These fields have rather a
mathematical sense than a physical sense, since they are the derivative of physical
quantities. They provide a map of the spots where vorticity or stream function (and
consequently velocity components and pressure) are more/less sensitive to the con-
trol parameter g. This implies that it is hard to explain why the optimal kinematics
are optimal by looking at the sensitivity fields. It would be more interesting to use
the sensitivity variables in order to reach the optimal kinematics and then analyze
the physical variables of these optimal kinematics in order to justify the optimality.
Plots of these fields are shown in §5.2 providing the position of the points where
vorticity is most sensitive to the kinematics of the airfoil. These points are, unsur-
prisingly, located near the airfoil’s tips and in its wake.

The boundary conditions for system 3.2 are obtained by the derivation of the bound-
ary conditions of system 3.1 with respect to the control parameter g (cf. Appendix
E.2). They depend, thus, on the choice of the control parameter. In the same way
than the flow equations, the equation for ω,g is unsteady, requiring an initial condi-
tion and time advancement. The condition of vanishing sensitivities at initial time
are imposed. This choice does not affect the final flow fields of sensitivity functions
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once the flow is established. Time advancement is performed with a first order up-
wind scheme. Unlike adjoint methods, where the adjoint system is advanced from
the final towards the initial instant, time advancement in sensitivity and complex
step derivative methods is done in the same way than for the flow equations.

3.1.2 Sensitivity gradient

Once the sensitivity of the vorticity and stream function are evaluated, they are used
to compute the gradient of the cost functional. Formally, the gradient computed with
the sensitivity is similar to any gradient of a multi-variable function. Thus, logically
assuming that the cost functional depends on the flow variables ω and ψ and on the
control parameter (L = L (ω, ψ, g)), the gradient can be expressed as:

dL
dg

=
∂L
∂ω

dω

dg
+
∂L
∂ψ

dψ

dg
+
∂L
∂g

. (3.3)

The last term in equation 3.3 is a classical partial derivative calculated by isolating
the terms inside L which depend on g and applying a partial derivation. The first
two terms on the right hand side of the equations 3.3 are computed by isolating
the terms of L which depend on ω (respectively ψ) and substituting the vorticity
(respectively the stream function) by its sensitivity ω,g (respectively ψ,g) inside these
terms. This justifies the need to solve the sensitivity equations before being able to
evaluate the sensitivity gradient. In our case, the cost functional is a sum of four
terms so what precedes is applied to each of them:

dL
dg

= β2
P

dP̄

dg
+ β2

F

dF̄

dg
U0 + ǫ2α

dᾱ2

dg
+ ǫ2h

dh̄2(t)

dg
(3.4)

Expressing the terms involved in L in the moving reference frame (X, Y ) and isolating
the parts which depend on vorticity, stream function and control parameter, we reach
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the formal expression of the gradient with respect to a generic control parameter g:

2π
dL
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,

(3.5)

where FX , FY and MZ are the horizontal and vertical forces in the moving frame
(X, Y ) and the pitching torque respectively. The detailed expressions of each term in
equation 3.5 and the different values of the derivative terms according to the control
parameter are given in appendix C.2.

3.2 Complex step derivative method

In order to evaluate, in a different manner, the gradient of the cost functional with
respect to the control parameters, we adopt the complex step derivative method
(CSDM). This relatively new method for computing gradients is not very widespread
in literature despite its powerful ability to handle sophisticated computations. The

58



Gradient evaluation

first contribution evoking the use of complex variables to estimate derivatives of real
function seems to be that by Lyness and Moler (1967). However, the fundamentals
of the method were written in the last decade (Squire and Trapp, 1998) and its
application to problems in fluids mechanics has been done only for few years (Vatsa,
2000; Martins et al., 2003) including extensions to the pseudospectral algorithms
(Cerviño and Bewley, 2003).

3.2.1 The principle of the method

The principle of the complex step derivative method can be understood by performing
a Taylor development with a complex step. Normally, to approximate the derivative
of a given functional, one may use a first or a second-order finite differences method:

First-order finite difference:
∂L
∂g

(g, .) =
L(g + δg, .) − L(g, .)

δg
+O(δg),

Second-order finite difference:
∂L
∂g

(g, .) =
L(g + δg, ...) − L(g − δg, ...)

2δg
+O(δg

2

).

Now if instead of a step δg, we apply a complex step iδg, where i is the square
root of -1, we obtain:

Complex Step method:
∂L
∂g

(g, .) =
1

δg
Imag

[

L̃(g + iδg, .)
]

+O(δg
2

),

where Imag refers to the imaginary part and the superscript ˜ indicates that the
functional L is now a complex dependent function. Three major advantages can
be cited for this method. First, its simplicity, since no further computations are
required. It is enough to declare complex all the variables of a given problem and
solve the same equations governing the physical quantities in the complex space and
to adapt the solver (see §3.2.2 for details). The real part of the complex solution
corresponds to the physical solution whereas the imaginary part is the gradient with
respect to the control g. Second, this method is, by construction, of second-order
since the second-order derivative is real and hence is not involved in the imaginary
part of L̃. Third, this method eliminates the cancellation error, a well-known phe-
nomenon in the finite difference method. For a large step δg, the error is dominated
by the truncation error. For a very small step, the error does not tend to zero due to
the vanishing of both numerator and denominator of the finite-difference formulas.
Previous results have shown that there is an optimal step size when applying finite
difference schemes. When the step tends to zero, the error saturates to a value higher
than the one obtained by CSDM (cf. figure 3.1). However, in the present work, the
very high accuracy is not of so-much concern. Therefore, the cancellation error is
not a real issue. A more interesting question to address is the comparison between
first-order, second-order finite difference schemes on the one hand, and the complex
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step derivative method on the other for reasonably, and usual, small steps.

Figure 3.1: Plot of the relative error for skin friction drag of an aircraft in a supersonic laminar
flow versus the step size for finite difference and complex step methods (Martins et al., 2003).

In this optics, we consider the simple function: f(g) = 3 sin(g2) − 2g on the interval
[−π, π] and its derivative f ′(g) = 6g cos(g2) − 2 that we approximate with the three
approaches. In figure 3.2(a), we plot the exact and approximated derivatives for 100
nodes and in figure 3.2(b), we show the relative error.
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Figure 3.2: Comparison between the exact and approximated derivatives (left) and a plot of the
relative error versus the number of discretization points (right).
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Two results should be highlighted from this comparison, the first is that for such a
simple function no cancellation error problem is observed and that as soon as we
exceed 103 discretization points, the second-order finite difference method is as accu-
rate as the CSDM (and obviously, much more than the first-order scheme). Despite
the simplicity of the considered function, this result suggests that for refined grids
second order schemes used in sensitivity methods and complex derivative method
should provide close gradients. This is confirmed by the results of the present study.
The equivalence of results is even less surprising after showing the link between the
two approaches ( cf. §3.3).

3.2.2 Coding tricks

Thirty years were needed after the first contribution mentioning the possibility of
using the complex variables to estimate gradients of real function (Lyness and Moler,
1967) to apply numerically this principle Squire and Trapp (1998). The main reason
is the inability of compilers to deal effectively with complex arithmetic. However, the
procedure for converting an existing real Fortran code into complex one is relatively
simple:

- Declare all the variables as complex adding, for instance, "implicit complex
(a− h, o− z)" in the main program and the subroutines.

- Modify the declaration of variables by substituting double precision to double
complex variables.

- Create a complex equivalent for all the intrinsic routines used. As an example,
the max and min routines should refer to the norm of the complex number.
Furthermore, all trigonometric functions should be defined using complex ex-
ponentials.

- Replace in each unit of the program the real function by its correspondent
complex one.

- Modify the syntax for the logical functions in a way to position the condition
on the real part of the complex number or on its norm. This should be done
for commands such as: if, LE, GT.

- Adapt the format of input and output data to fit with the actual size of the
complex variables.

The main disadvantage of the complex step derivative method is nearly the double
of the original memory of the real code and between 2 and 3 longer duration of simu-
lations. Moreover, the conversion to complex variables requires human intervention,
which may lead to user-induced errors.
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3.2 Complex step derivative method

3.2.3 Application to flapping airfoil

Applying the complex step derivative method to flapping airfoil problem consists in
simply rendering complex the governing flow equations. Hence, we render all the
variables complex (formally, by adding a tilde) and we solve the complex system:







∂ω̃

∂t
+

1√
J

[

ṽr
∂ω̃

∂r
+
ṽθ

r

∂ω̃

∂θ

]

=
1

ReJ

[
∂2ω̃

∂r2
+

1

r

∂ω̃

∂r
+

1

r2

∂2ω̃

∂θ2

]

,

∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r
+

1

r2

∂2ψ̃

∂θ2
= −Jω̃,

(3.6)

where






ṽr =
1√
J

[

1

r

∂ψ̃

∂θ
−
(

˙̃
h(t) sin(α̃(t)) − ˙̃αY

)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

− 1√
J

[(
˙̃
h(t) cos(α̃(t)) + ˙̃αX

)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

ṽθ =
1√
J

[

−∂ψ̃
∂r

−
(

˙̃h(t) sin(α̃(t)) − ˙̃αY
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

− 1√
J

[(
˙̃
h(t) cos( ˜α(t)) + ˙̃αX

)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

(3.7)

The same method used for the flow equations is applied to system 3.6 in the com-
plex space. This illustrates the power of this method, since for a given solver of
a mathematical problem, transforming the variables into complex and solving the
same problem yields the solution and its gradient. The choice of the parameter for
which the gradient is computed is imposed by the expressions of h̃(t) and α̃(t). A
small complex step is added to the control parameter. Hence, for instance, to control
the first heave amplitude harmonic h1, we write that :

h̃(t) = (h1 + iδh1) sin(σ1t+ τ1) +

N∑

k=2

hk sin(σkt+ τk),

and

α̃(t) = α(t) =
N∑

k=1

sin(σkt+ φk).

In the same way, and by adding a small complex step to the control parameter
inside the boundary conditions of the flow equation, we obtain the complex boundary
conditions for system 3.6.
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3.2.4 Complex-step gradient

The gradient of the cost functional L with respect to a generic control parameter
g is simply obtained by computing the complex cost L̃ and isolating the imaginary
part since:

dL
dg

=
1

δg
Imag

[

L̃
]

=
1

δg
Imag

[

β2
P P̃ + β2

F F̃U0 + ǫ2α(α̃)2 + ǫ2h(h̃)
2
]

,

where L̃ = L(g + iδg). The expression of this gradient in the general case is rather
long but straightforward. An example, for the control of hk is given in Appendix
C.3.

3.3 From CSDM to sensitivity

For a "sufficiently" refined grid, the numerical values of gradients are similar with
the sensitivity approach and the complex step method. This is due to a link between
these two methods. As shown below, this link can be brought to light by splitting
the equations of CSDM into real and imaginary parts. Under these conditions, the
real part can be seen as a second order approximation of the flow equations and the
imaginary part corresponds exactly to the sensitivity system. For the sake of clarity,
the relation between the two approaches is demonstrated first for the simple case of
Burgers’ equation, then for the problem of the flapping foil.

3.3.1 Burgers’ equation

Consider the mono-dimensional Burgers’ equation expressed as:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2

where u = u(x, t, .), x ∈ [0, 1] and t ∈ [0, T ] and the associated generic boundary
conditions written as: 





u(0, x) = f0(x),

u(t, x1) = f1(t),

u(t, x2) =
df2(t)

dt
.

We apply the sensitivity method to this equation for the control parameter g. We
denote by ug the sensitivity of u with respect to any variable g upon which u depends.
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3.3 From CSDM to sensitivity

The sensitivity equation is obtained by deriving Burgers’ equation with respect to g:

∂ug

∂t
+ u

∂ug

∂x
+ ug

∂u

∂x
=

1

Re

∂2ug

∂x2

Thus, a system for the flow and sensitivity equations is reached. The flow equations
must be solved first for a temporal step recovering u before using it to solve the
sensitivity system:







∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2

∂ug

∂t
+ u

∂ug

∂x
+ ug

∂u

∂x
=

1

Re

∂2ug

∂x2

(3.8)

Now, apply the complex step derivative method to the same 1D Burgers’ equation
to compute the gradient of u with respect to g. Therefore, the real variable u is
replaced by a complex variable ũ and the following complex equation is numerically
solved in the complex space:

∂ũ

∂t
+ ũ

∂ũ

∂x
=

1

Re

∂2ũ

∂x2
(3.9)

If the complex variable ũ is decomposed into a real part u and an imaginary part
ug as ũ = u + iug, and injected into 3.9, then by separating the real part from the
imaginary one, two equations are recovered:







∂u

∂t
+ u

∂u

∂x
− ug

∂ug

∂x
=

1

Re

∂2u

∂x2

∂ug

∂t
+ u

∂ug

∂x
+ ug

∂u

∂x
=

1

Re

∂2ug

∂x2

(3.10)

The comparison between the systems 3.8 and 3.10 shows a perfect match between the

sensitivity equation and the imaginary part of the csdm method. The term −ug
∂ug

∂x
which renders the flow equation and the real part of the complex equation of the
CSDM method different can be neglected, when δg is small, since a simple Taylor
development applied to the term ũ(g + iδg, .) yields:

ũ(g + iδg, .) = u(g, .) + iδg
∂u

∂g
(g, .) +O

(
δg2
)
− iO

(
δg3
)

= u+ iug

which implies that ug = δg
∂u

∂g
(g, ...)−O

(
(δg)3

)
. Hence, as long as u is a C1 function

having limited derivatives in the whole domain of variables, ug and
∂ug

∂x
are O(δg)
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and the term ug
∂ug

∂x
can be neglected. Thus, when we split the complex variables,

the CSDM turns to be an O
(
δg2
)

approximation of the sensitivity system 3.8.

The correspondence exists also for the boundary conditions. If we conider the case
in which g = t, the boundary conditions for the sensitivity equations are:







∂u

∂g
(0, x) = 0,

∂u

∂g
(t, x1) = f ′

1(t),

∂u

∂g
(t, x2) = f ′′

2 (t).

For g = t, the boundary conditions for the complex equation 3.9 are:






ũ(0, x) = f0(x),

ũ(t̃, x1) = f̃1(t̃),

ũ(t̃, x2) =
df̃2(t̃)

dt
.

By writing t̃ = t + iδt, achieving a Tayloer development and separating the real
and the imaginary parts, we reach the same boundary conditions for both Burgers’
equation and its derivative:







u(0, x) = f0(x),
∂u

∂g
(0, x) = 0,

u(t, x1) = f1(t),
∂u

∂g
(t, x1) = f ′

1(t),

u(0, x2) = f ′
2(x),

∂u

∂g
(t, x2) = f ′′

2 (t).

The same agreement can be found if g is equal to x or any generic parameter on
which u depends.

3.3.2 Flapping airfoil

The same principle may be applied to the problem of flapping airfoil. It has been
shown (cf. §3.1.1) that the system of flow and sensitivity equations can be written
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3.3 From CSDM to sensitivity

as:







∂ω

∂t
+

1√
J

[

vr
∂ω

∂r
+
vθ

r

∂ω

∂θ

]

=
1

ReJ

[
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2

]

,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= −Jω,

∂ωg

∂t
+

1√
J

[

vr
∂ωg

∂r
+
∂vr

∂g

∂ω

∂r
+
vθ

r

∂ωg

∂θ
+

1

r

∂vθ

∂g

∂ωg

∂θ

]

=
1

ReJ

[
∂2ωg

∂r2
+

1

r

∂ωg

∂r
+

1

r2

∂2ωg

∂θ2

]

,

∂2ψg

∂r2
+

1

r

∂ψg

∂r
+

1

r2

∂2ψg

∂θ2
= −Jωg,

(3.11)
where







vr =
1√
J

[
1

r

∂ψ

∂θ
−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

vθ =
1√
J

[

−∂ψ
∂r

−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

,

and







∂vr

∂g
=

1√
J

[
1

r

∂ψg

∂θ
− ∂

∂g

(

ḣ(t) sin(α(t)) − α̇Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

− ∂

∂g

(

ḣ(t) cos(α(t)) + α̇X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

∂vθ

∂g
=

1√
J

[

−∂ψg

∂r
− ∂

∂g

(

ḣ(t) sin(α(t)) − α̇Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

− ∂

∂g

(

ḣ(t) cos(α(t)) + α̇X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.
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The application of the complex step derivative method to this problem, introducing
the complex variables ω̃ and ψ̃ yields the following complex system:







∂ω̃

∂t
+

1√
J

[

ṽr
∂ω̃

∂r
+
ṽθ

r

∂ω̃

∂θ

]

=
1

ReJ

[
∂2ω̃

∂r2
+

1

r

∂ω̃

∂r
+

1

r2

∂2ω̃

∂θ2

]

,

∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r
+

1

r2

∂2ψ̃

∂θ2
= −Jω̃,

(3.12)

where







ṽr =
1√
J

[

1

r

∂ψ̃

∂θ
−
(

˙̃
h(t) sin(α̃(t)) − ˙̃αY

)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

− 1√
J

[(
˙̃
h(t) cos(α̃(t)) + ˙̃αX

)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

ṽθ =
1√
J

[

−∂ψ̃
∂r

−
(

˙̃h(t) sin(α̃(t)) − ˙̃αY
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

− 1√
J

[(
˙̃
h(t) cos( ˜α(t)) + ˙̃αX

)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

Now, all the complex variables are split into real and imaginary parts by writing:







ω̃ = ω + iωg, ψ̃ = ψ + iψg,

ṽr = vr + ivrg, ṽθ = vθ + ivθg,

h̃(t) = h(t) + ihg(t), α̃(t) = α(t) + iαg(t)

so that we obtain the system:
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3.3 From CSDM to sensitivity







∂ω

∂t
+

1√
J

[

vr
∂ω

∂r
+
vθ

r

∂ω

∂θ
− vrg

∂ωg

∂r
− vθg

r

∂ωg

∂θ
︸ ︷︷ ︸

]

=
1

ReJ

[
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2

]

,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= −Jω,

∂ωg

∂t
+

1√
J

[

vr
∂ωg

∂r
+
vθ

r

∂ωg

∂θ
+ vrg

∂ω

∂r
+
vθg

r

∂ω

∂θ

]

=
1

ReJ

[
∂2ωg

∂r2
+

1

r

∂ωg

∂r
+

1

r2

∂2ωg

∂θ2

]

,

∂2ψg

∂r2
+

1

r

∂ψg

∂r
+

1

r2

∂2ψg

∂θ2
= −Jωg.

(3.13)

As discussed for Burgers’ equation, the underbraced terms vrg
∂ωg

∂r
and

vθg

r

∂ωg

∂θ
can

be neglected because their order of magnitude is O (δg2). This leads to the same
equations than flow equations in the system 3.11. Moreover, the terms vrg and vθg

correspond exactly to the terms
∂vr

∂g
and

∂vθ

∂g
in the sensitivity equations. As a

proof for the former statement, we consider, for instance, the case in which we are

controlling the heaving amplitude. Under these conditions, and if we denote
∂ḣ(t)

∂g
by ḣg(t), we obtain:







∂vr

∂g
=

1√
J

[
1

r

∂ψg

∂θ
−
(

ḣg(t) sin(α(t))
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

− 1√
J

[(

ḣg(t) cos(α(t))
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

∂vθ

∂g
=

1√
J

[

−∂ψg

∂r
−
(

ḣg(t) sin(α(t))
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

− 1√
J

[(

ḣg(t) cos(α(t))
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.
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On the other hand,






ṽr =
1√
J

[

1

r

∂ψ̃

∂θ
−
(

˙̃
h(t) sin(α(t)) − α̇Y

)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

− 1√
J

[(
˙̃
h(t) cos(α(t)) + α̇X

)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

ṽθ =
1√
J

[

−∂ψ̃
∂r

−
(

˙̃h(t) sin(α(t)) − α̇Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sinθ

)]

− 1√
J

[(
˙̃
h(t) cos(α(t)) + α̇X

)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

,

(3.14)

and splitting into real and imaginary parts, we find a perfect equivalence since:






vrg =
1√
J

[
1

r

∂ψg

∂θ
−
(

ḣg(t) sin(α(t))
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

− 1√
J

[(

ḣg(t) cos(α(t))
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

vθg =
1√
J

[

−∂ψg

∂r
−
(

ḣg(t) sin(α(t))
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

− 1√
J

[(

ḣg(t) cos(α(t))
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

The equivalence can be demonstrated for the other control parameters and for the
boundary conditions in the same way it has been done for Burgers’ equation. This
explains the reason why gradients computed with both approaches, sensitivity and
complex step methods, are identical. This fact is valid for "sufficiently" refined grids
(see §4.1). The length of the computations is also very close for identical grids. Ob-
viously, one system is solved in the complex method instead of two in the sensitivity
technique, but this single system is complex and the dimension of the problems are
the same. The main advantage of CSDM is its good accuracy for coarse grids. In
this case, there can be a large difference between the gradients, and the complex
step’s gradient is closer to the converged value. In the remainder of this work, and
since all results are done on refined grids, no distinction will be made between the
results obtained with one method or the other.
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Conclusions

The third component of an optimisation problem has been addressed. The compu-
tation of the gradients of the cost functional with respect to the control parameters
has been accomplished with two different approaches. The first requires the solution
of two real systems, the second of one complex system. Simulations have shown
very close results for the two methods. Beyond the fact that the same quantity is
computed in two different manners, a link between the sensitivity method and the
complex step derivative method is brought to light by the decomposition of the com-
plex system into a real and imaginary parts. Under this decomposition, the CSDM
turns out to be a second-order approximation of the sensitivity system of equations.
Having achieved presenting the tools needed to optimise the airfoil kinematics, we
focus now on the numerical aspects and the validation of the solver.
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Chapter 4

Numerical aspects

Introduction

Having established the motivations of the present study and the tools to accomplish
the announced targets, attention shifts to the solver used. The usual topics arising
in all numerical simulations are covered here, ranging from the adequacy of the grid,
to the quality of the boundary conditions to the solver validation. The first point
addresses the consistency of the numerical results by confirming converged results.
The unsteady equations for the flapping airfoil are solved by means of an alternate
direction implicit method. A large number of grids were built and employed to verify
the independence of the results on the mesh. The use of valid and realistic boundary
conditions ensures the elimination of numerical boundary errors which may influence
the quality of the results. This is done a posteriori by the investigation of the flow
fields. The validation of the solver is done by computing the gradient for various
values of the parameters, and thus of the cost functional and verifying the coherence
between the values of the cost functional and its gradient. Once the value of the
gradients is confirmed for an iteration (solving the flow and the gradient equations),
an update algorithm, based on a quasi-Newton method, is implemented to drive the
control parameters towards their optimal values. The aim of this algorithm is to
reach the optimal configuration for the smallest possible number of iterations and
without additional relevant computations.

Moreover, the stability of the numerical simulation depends also on the kinemat-
ics of the airfoil. The cases of high levels of shed vorticity or of small time scales,
due to the presence of motions of high frequencies, require smaller time steps.
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4.1 On the grid adequacy

The grid choice is a fundamental and indispensable issue in every numerical sim-
ulation. The dilemma consists in finding a grid providing accurate results with
acceptable computational time. Two main topics may be addressed: the number of
discretization points and the way in which they are distributed.

As far as the distribution is concerned, a logarithmic law which stretches the points
in the radial direction was adopted. In addition to r0, the radius of the circle ob-
tained when the Joukowski transformation is applied to the airfoil, two radii should
be chosen: Rmax, the radius of the circular computational domain and Rint an inter-
mediate radius within which half of the points in the radial direction are distributed
(see figure 4.2). The refinement of points near the wall, i.e. in the boundary layer
where large spatial gradients subsist, is done by writing z = ln(r + a) where

a =
R2

int − Rmaxr0
Rmax + r0 − 2Rint

.

This choice of a ensures that the cell size near the wall is at least 10 times smaller
than the thickness of the boundary layer approximated by the relations of Stokes
and Blasius. This implies having at least 10 nodes inside the boundary layer. In
practice, and despite the difficulty to identify properly a boundary layer thickness
for a flapping airfoil configuration, the number of points inside this region was at
least threefold the mentioned limit (see figure 4.7(a)). Obviously, different stretching

laws are possible including hyperbolic refinements z =
C1

C2 + C3r2
or z =

C1r

C2 + C3r2

where C1, C2 and C3 are adapted constants. However, these choices have not been
investigated in the present work because the previously mentioned logarithmic law
showed its ability to perform accurate computations with acceptable computational
cost (Braza et al., 1986; Borthwick, 1986; Guglielmini and Blondeaux, 2004). The
effect on the results of the distribution parameters, Rmax and Rint was studied. On
the other hand, and due to the symmetry of the problem in the azimuthal direction,
a uniform distribution law has been employed in the θ-direction. Distributing the
points along the radial direction of a circle ensures the orthogonality of the mesh on
the airfoil surface (see figure 4.1) and this characteristic is usually considered as a
positive quality for the grid.

Concerning the choice of the number of nodes and of the time step choices, Ba-

sic constraints such as ∆t ≤ Re(∆z)2

4
, ∆t ≤ Re(∆θ)2

4
and ∆t ≤ 2

Re|Vmax|2
should

be respected, where ∆z is the spatial step in the radial direction (the radial step in
terms of r is logarithmically variable whereas it is uniform in terms of z), ∆θ is the
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grid step in the azimuthal direction, ∆t is the time step and |Vmax| is the norm of the
maximal velocity vector encountered within the computational domain. These con-
straints ensure that the particle of fluid will remain within the same cell during one
time step (Braza, 1981). Despite being necessary, these conditions are not sufficient.
In addition to being highly unsteady, the flow field of a flapping airfoil, depends
on the kinematics of the airfoil. Configurations with high heaving amplitudes, for
instance, favours intense vorticity shedding, whereas the case of a bad phase angle
between heaving and pitching leads to a non-synchronisation of the shedding. Those
are examples of cases where the constraints on the stability of computations are more
severe. Therefore, a thorough investigation is required and a large number of grids
is considered to study the effect of each parameter.

Figure 4.1: Plot of the mesh topology at the airfoil surface near the leading and trailing edges.

Accepting the logarithmic stretching, the mesh quality depends on five parameters
already mentioned and summarized here:

- Rmax, the circular radius corresponding to the size of the computational do-
main. The choice of this radius is a compromise between the will to limit the
computational cost and to apply physically valid boundary conditions. The
unsteady configuration studied here requires to push the numerical simulations
beyond the time of flow establishment by at least one period of oscillation to
compute the average quantities. In the meanwhile, the shed vorticity propa-
gates towards Rmax. Therefore, a large computational domain or good bound-
ary conditions are needed.

- Rint, the parameter of the stretching law. Half the points in the radial direction
are located between the airfoil and Rint and the other half between Rint and
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Rmax. The value of Rint is a compromise between an accurate resolution of
the boundary layer and of the wake. As mentioned before, a large number
of points should be in the close-wall region, and at the same time the shed
vorticity propagates far in the wake and should be accurately computed (see
figure 4.6). The choice of Rint influences these two aspects.

- Nr, the number of points in the radial direction, since

∆z =
ln(Rmax + a) − ln(r0 + a)

Nr − 1
.

The index on Nr is directed for increasing distance with respect to the air-
foil, i.e. the value 1 of this index corresponds to the airfoil and the value Nr

corresponds to the outflow boundary.

- Nθ, the number of points in the azimuthal direction with ∆θ =
2π

Nθ
. A relation

exists between the accuracy of computations, the computational cost and the
number of radial and azimuthal points.

- NT , the number of time steps in one period of oscillation, with ∆t =
2π

NT
. Here,

2π refers to the non-dimensional value of a period. The value of NT is related
to the stability of the computation since exceeding a given threshold on the
time step, the simulation diverges. This parameter is highly affected by the
kinematics of the airfoil.

A large number of grids were studied by modifying one single parameter from case
to case. A representative set of grids tested is given in table 4.1. They are ordered
by decreasing relative error of the gradient.

For the flapping configuration with N = 1, α0 = 0 h1 = 3 sin(t), α = −35◦ sin(t+
π

2
),

fr = 0.3665 and Rec = 1100, the percentage of error of the thrust force and its gra-
dient with respect to h1 is plotted in figure 4.3. The relative error is with respect to
the very refined grid # 20, considered as a reference case. We note that the number
of points in θ-direction is always a power of two due to the subroutine chosen to
perform the fast Fourier transformation. The choice of showing the error on the
thrust is due to the fact that F̄ seems to be more dependent on the grid than power
P̄ . A large number of grid refinement studies was carried out and in all of them,
the maximal error on the power was smaller than errors on the thrust. On the other
hand, and as mentioned in details in §4.3, the flow solver has been already validated,
which means that the converged values of the thrust are considered correct.
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Figure 4.2: Plot of a coarse grid showing the position of Rint and Rmax (red circles) and the
associated distribution of points.

# Rmax Rint Nθ Nr NT # Rmax Rint Nθ Nr NT

1 45 12 256 250 104 11 60 15 512 500 104

2 45 12 512 250 104 12 60 15 1024 500 104

3 70 20 512 500 104 13 70 20 1024 800 104

4 60 15 512 350 104 14 45 12 1024 500 104

5 30 10 512 300 104 15 45 12 512 500 6 103

6 70 20 1024 600 104 16 45 12 512 500 104

7 45 15 512 500 104 17 45 12 512 500 1.5 104

8 45 12 512 350 104 18 45 12 512 500 2 104

9 70 20 1024 700 104 19 45 12 512 600 104

10 80 25 1024 1000 104 20 100 30 2048 2000 2 104

Table 4.1: The grid parameters for a selection of the tested meshes.

A plot of examples of the distribution of points inside the computational domain is
given in figure 4.4. As expected, the gradient, in figure 4.3, is more dependent on the
grid choice than the direct variable but the grids which estimate the best F̄ (grids
11 and 12) are not the optimal for the gradient estimation (grid 19). The effect of
a large computational domain can be highlighted by observing the bad ranking of
grids 3, 6, 9 and 10. Even if these grids ensure valid boundary conditions (cf. §4.2),
and despite a large number of points, they fail in providing a good approximation of
dF̄

dh1
. Comparing, for instance, grids 5 and 6 shows that considering a small Rmax,

and despite the larger constraints on the outflow boundary conditions, may yield a
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much better accuracy-to-computational cost ratio. This demonstrates that efforts
should be concentrated on small domains and realistic boundary conditions rather
than large domains with heavy costs.
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Figure 4.3: Effect of the grid choice on the relative error (in percentage) for thrust (left) and
its gradient with respect to the heave amplitude (right) for the case N = 1, α0 = 0◦, h1 = 3, τ1 =
0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

The effect of Rint is observed by comparing grid 7 to grids 8 and 16. The more accu-
rate estimation of the gradient with grid 8, despite a smaller number of points, proves
that the good resolution of the boundary layer region is very important. This is even
more clear by looking to the results of grids 7 and 16, which show that good solution
of the boundary layer is preferable to good solution of the wake (see figure 4.4). Ob-
viously, one may think that the quantity compared here is the thrust, directly related
to the pressure on the airfoil, and this may justify the importance of the boundary
layer with respect to the wake. This logic is misleading, because during the ascent
phase of the flow (and gradient) solution, the step forward is done from the outflow
towards the airfoil. Hence, the values inside the boundary layer are far from being
independent from those in the wake. However, the comparison suggests that there
is a bigger influence of the boundary layer and this implies putting enough points
in this region, without exaggerating to prevent the need of a very small time step ∆t.

The effect of the time step arises out of the comparison of grids 15, 16, 17 and
18. The main conclusion is that as long as the stability of the computation is en-
sured, considering a time step smaller than a given threshold, the value of the time
step has no influence on the results. Clearly, for a time step larger than the thresh-
old, the computations diverges, but within the threshold any value is acceptable.
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However, the threshold depends on the kinematics of the airfoil. The cases of large
heaving amplitudes, of small pitching amplitudes and of absence of phase angle be-
tween heaving and pitching require lower time step. A small ∆t is also required
when high order harmonics are considered (N > 1). This is the direct consequence
of having higher frequencies in the motion of the airfoil and consequently the time
scale of the flow field is reduced.
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Figure 4.4: Distribution of the first 200 points in the radial direction for grids 5, 7, 16 and 20.

On the basis of the results above, grids 15-18 seem to give the best ratio of accuracy
to cost. These grids yield also good results when the control of the other parame-
ters is done and for different configurations. The estimation of power and thrust
and their gradients with respect to h1, h2, α1 and φ1 in the case where α0 = 0◦,

h(t) = 2 sin(t) + 0.5 sin(2t) and α(t) = −25◦ sin(t+
π

2
), fr = 0.3665 and Rec = 1100

has been performed for the twenty grids. For all these cases, grid 16 gave acceptable
errors (within 5%) for the gradient and realistic flow fields. Finally, we note that for
these grids no significant differences were observed between the sensitivity and the
complex step derivative method. Differences may be observed for grids less refined
than grid 1 and in this case, the complex step derivative method yielded smaller
errors of roughly 15 %. In the remainder of this work, the grid 16 was adopted and
time step was adapted to the kinematics of the airfoil. This corresponds roughly to
consider a 0.25 million nodes distributed in a domain as big as 11 times the airfoil
chord, with half of them within a 3 chord length distance, and to solve the flow and
gradient equations 10000 times for every period of oscillations.
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4.2 Boundary conditions validity

The relatively large errors observed on small grids and the desire to perform com-
putations physically coherent with the flow and relatively free of numerical errors
shifted our attention towards the boundary conditions. The question should particu-
larly concern the outflow boundary conditions (cf. Appendix E.1). Before answering
this issue, the duration of the simulations should be defined, since as long as the
wake remains far away from the outflow boundary, the validity of the boundary con-
ditions is obvious. Therefore, long-term simulations on grid 16 are performed, and
the evolution of the instantaneous vertical force (lift) and its gradient with respect
to h1 are plotted in figure 4.5.
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Figure 4.5: Evolution of the instantaneous lift force (left) and its gradient (right) with respect
to the heave amplitude h1 for the configuration N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 =
90◦, fr = 0.3665 and Rec = 1100.

The temporal evolution of various quantities for different configurations (including
large oscillations and high order harmonics) showed that the initial transient lasts
one period of oscillation since results are perfectly periodic starting from the sec-
ond period of oscillations. Hence, in the remainder of the present work, numerical
simulations are carried out for two periods and the mean quantities are averaged
on the second one. An exception to this rule is done in §5.6 where very large an-
gles of attack are considered leading to highly unsteady flows, which establish slowly.

The original question can be addressed now: "How valid the boundary conditions
are for t = 4π?" and the answer depends on the grid selection and the choice of the
boundary conditions. We consider the small grid # 5 and the intermediate grid #
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16. The vorticity fields, for these grids, are plotted at the moment where the first
shed vortices reach the outflow boundary (see figure 4.6). This occurs for roughly
t = 12 for grid 5 and roughly t = 18 for grid 16. We note that this value is within the
simulation duration for the small grid on one hand, and that it corresponds to the

same ratio
Rmax

t
= 2.5 = 0.9U0 since U0 =

1

fr

= 2.73, on the other. This yields an

estimation of the forward velocity of propagation of the shed vorticity in the wake.

Figure 4.6: Propagation of the shed vorticity in the wake towards the limit of the computational
domain for grid 5 at t = 12 (left) and grid 16 at t = 18 (right) for the configuration N = 1, α0 =
0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

For the small grid # 5, the condition

(
∂ω

∂r

)

outflow

= 0 is satisfied, even if it is not

perfectly respected, since near the outflow boundary the vorticity tends to a constant
level, close to a vanishing value (see figure 4.8(a)). On the other hand, the condition
of undisturbed velocity equal to free stream velocity is far from being satisfied. In
figure 4.7(a), the horizontal velocity is plotted in the whole computational domain
at t = 2T for grid 5. Furthermore, 4 angles are chosen and the horizontal velocities
are plotted for these angles in figure 4.8(b).

For the angles θ = 70◦ and θ = 145◦, the flow is not perturbed by the airfoil flapping
and the boundary condition is valid. However, for θ = 5◦, the velocity profile is sub-
mitted to a steep down-shoot near the outflow boundary in order to reach the value
of U0 imposed in r = Rmax. This kind of discontinuity affects the validity of the solu-
tion qualitatively in terms of flow fields and quantitatively in terms of aerodynamic
coefficients. To avoid this behaviour, the size of the computational domain should
be increased, paying the price of increased computational costs, or better boundary
conditions, such as convective conditions should be adopted (cf. §2.3).
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4.2 Boundary conditions validity

Figure 4.7: The horizontal velocity field for grid #5 (left) and grid #16 (right) and the radii along
which vorticity and velocity are plotted in figures 4.8 and 4.9, at t = 4π for N = 1, α0 = 0◦, h1 =

3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100. The colour scale is for
u

U0

. Angles

are given with respect to the horitonal axis at y = 0.
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Figure 4.8: Validity of the boundary condition on ω (left) and on ψ (right) for grid #5 at t = 4π
for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100. The
minimal and maximal values of the index on Nr correspond to the airfoil and the outflow boundary,
respectively.

Therefore, the same principle was applied to grid # 16. In figure 4.7(b), the hor-
izontal velocity was plotted for the whole domain for the same configuration than
figure 4.7(a) and at the same instant t = 4π. Beyond the visual observation of a
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less significant influence of the outflow boundary condition, the plot of vorticity and
horizontal velocity along three angles shows a much better validity of the imposed
boundary conditions, including for the most unfavourable angle θ = 13◦. This may
be an explanation of the smaller errors obtained with grids 15-18, and proves that the
large errors of grids 3, 6, 9 and 10 is mainly due to a bad resolution of the boundary
layer and that more points should be used there.

0 100 200 300 400 500
−20

−15

−10

−5

0

5

 

 

index on N
r

ω

θ=−15°

θ=13°

0 100 200 300 400 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

index on N
r

u

U0

θ=−35°

θ=−15°

θ=13°

Figure 4.9: Validity of the boundary condition on ω (left) and on ψ (right) for grid #16 at t = 4π
for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100. The
minimal and maximal values of the index on Nr correspond to the airfoil and the outflow boundary,
respectively.

The other way to avoid this problem is by imposing more realistic boundary condition
in r = Rmax, i.e. a convective condition:

∂ω

∂t
+ 0.9U0

∂ψ

∂r
= 0,

∂ψ

∂t
+ 0.9U0

∂ω

∂r
= 0,

which requires a modification of the Thomas algorithm. The velocity of advection
of the flow structures has been chosen equal to 0.9U0. Different choices modify only
slightly the fields in the vicinity of Rmax.

4.3 Solver validation

The flow solver has been validated by Guglielmini (2004) by comparison to the
experimental results for a fixed airfoil by Guermond and Quartapelle (1997) and
for a flapping foil by Anderson et al. (1998) and Wang (2000). The comparison
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concerned mainly the flow fields, and also the aerodynamic coefficients agreed for
similar Reynolds numbers configurations. Further validations of the flow solver has
been done in the present work by comparison with numerical results from commercial
CFD tools as discussed in §5.6. Here, the validation of the gradient computation was
deeply studied. The principle of the validation is simple: assuming the flow results
valid, the value of the cost function is accurate. Considering the control parameters
one by one and by modifying each of them separately, the minimum of the cost
functional is found and the condition of vanishing gradient is verified. Moreover,
having the value of the cost functional for different values of the parameter, a gradient
may be estimated by simple finite difference approximation.
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Figure 4.10: Plot of the cost functional and its gradient with respect to h1 computed with the
present solver and compared to the approximated second order finite differences gradient (left) and
zoom near the optimal values (right) for N = 1, α0 = 0◦, τ1 = 0◦, α1 = −25◦, φ1 = 90◦, fr = 0.3665
and Rec = 1100.

The solvers validity is tested for the cost functional L defined as:

L = P̄ + 2F̄U0 + 15.14ᾱ2 + h̄2(t)

The choice of the weight for ᾱ2 is related to the desire to give equivalent importance
to the terms of the control cost. The validity of the solver which computes the
gradient with respect to h1 can be analysed on figure 4.10. A very good agreement
exists especially near the optimal value (coinciding with a vanishing gradient), which
is the region of interest for the optimisation problem. Some discrepancies between
the gradient computed with the sensitivity or complex step techniques on the one
hand, and those approximated with finite differences method on the other, exist
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for large heaving amplitudes. These discrepancies seem more related to the mesh
quality rather than to the solver validity. Configurations with heaving amplitudes
larger than the chord length require smaller time step and eventually more refined
grids. Furthermore, the value of the gradient and even the optimal value of h1 are
not sought with 8 or 16 digits. A very accurate computation of the gradient is not
a real issue. The importance is mostly on the sign of the gradient and its vanishing.
Therefore, methods where incomplete gradients are computed flourished in the last
decade (Mohammadi and Pironneau, 2004). In these methods, the terms of the
gradient with high computational cost and small effect on the value of the gradient
are purely neglected, leading to approximate value of the gradient, with the exact
sign though. Hence, the small discrepancies observed here can be accepted.
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Figure 4.11: Plot of the cost functional and its gradient computed with the present solver and
compared to the approximated second order finite differences gradient with respect to τ1 for N =
1, α0 = 0◦, h1 = 3, α1 = −40◦, φ1 = 90◦, fr = 0.3665, and Rec = 1100 (left) and with respect to α1

for N = 1, α0 = 8◦, h1 = 3, φ1 = 90◦, fr = 0.3665, and Rec = 1100 (right).

The same methodology is applied for the other parameters. In figure 4.11(a), the
phase angle τ1 is controlled whereas an example of the control of α1 is shown in
figure 4.11(b). Despite the absence of minimum in the range studied in this latter
case, a very good agreement between the two methods of evaluation of the gradient
persists. This agreement is rather interesting since the considered configuration has
a non vanishing mean angle of attack α0 which renders the flow harder to simulate.
The condition of vanishing gradient is respected for the control of τ1 in figure 4.11(a),
validating the solver. Moreover, theoretical and evaluated gradients coincides except
for the region of large τ1. Flows with very large τ1 are also, from the numerical point
of view, more unstable. They require a smaller time step like in the case of large
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heaving amplitudes.

The numerical problems occurring for large τ1 are found also for small phase an-
gle φ1 when this latter is controlled (see figure 4.12). The reason is related to the
fact that in the case N = 1, one angle τ1 or φ1 is enough to model the phase angle be-
tween heaving and pitching. From the mathematical point of view, this corresponds
to a change of variables since we can move from:

h(t) = h1 sin(t) to h(t) = h1 sin(t+ τ1)

α(t) = α1 sin(t+ φ1) α(t) = α1 sin(t+
π

2
)

by introducing t′ +
π

2
= t+ φ1, which implies that τ1opt =

π

2
− φ1opt. This relation is

verified when comparing figures 4.11(a) and 4.12(a) despite a slightly different pitch-
ing amplitude for the two cases. Obviously, in the case of N = 1, the gradient with
respect to τ1 solver is not indispensable, although it has been written and validated,
in the present section, and will be useful for the high order harmonics configurations.
The discrepancies subsist when a mean angle of attack is included (figure 4.12(b)).
However, in all the cases presented here for the phase angle control, the gradient is
perfectly evaluated in the optimal region and the condition of vanishing is fulfilled
validating the solvers.
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Figure 4.12: Plot of the cost functional and its gradient with respect to φ1 computed with
the present solver and compared to the approximated second order finite differences gradient for
N = 1, h1 = 3, τ1 = 0◦, α1 = −35◦, fr = 0.3665, Rec = 1100 and α0 = 0◦ (left) and α0 = 8◦ (right).
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4.4 Optimisation update

Once the gradient is evaluated for a given value of the control parameter, the normal
question to address is: "how to use the value of the gradient to update the control
parameter towards its optimal value?". A large number of methods exist in literature
to handle this problem. The idea is to limit the number of iterations before reaching
the optimal value. However, the computational cost of this update method must not
exceed what it is spared by limiting the number of iterations. For the flapping airfoil
problem considered here, and in the case in which one parameter is controlled, an
iteration consists in the computation of the flow and sensitivity equations (or the
complex system). We want to reach the optimal parameter performing this iteration
as few times as possible.

The conjugate gradient is one of the most popular and efficient methods. How-
ever, it is suitable for quadratic cost functional and this kind of functional is not
adopted here to account for the sign of the vertical force favouring configurations
dominantly producing thrust. A different version of the gradient conjugate (Polak-
Ribière method) adapted for non quadratic functionals exists but the computational
cost of this method is judged too heavy so as to counterbalance the benefit of the
reduction in the number of iterations. Therefore, two simpler update algorithms are
considered here:

- The steepest descent method: g(n+1) = g(n) − sd∇L(n)
g where sd is a positive

relaxation parameter which can be optimised by further sub-iterations or sim-
ply kept constant. The principle of this method is to perform a small variation
of the parameter when the gradient is small, i.e. when a relative optimum is
being reached. An example of the application of this method to flapping foil
optimisation with an optimal step can be found in Tuncer and Kaya (2005).

- The quasi-Newton algorithm: g(n+1) = g(n) − g(n) − g(n−1)

∇L(n)
g −∇L(n−1)

g

∇L(n)
g . In this

case, a first order finite difference approximation of the second derivative is used
to enrich the search of the optimal direction of update. The denomination
"quasi" refers to the fact that the second derivative is approximated rather
than computed (Newton update algorithm) avoiding relevant supplementary
computations.

The negative signs in the expressions above ensure that a minimum of the functional
is being pursued. These algorithms present the advantage of not requiring any further
computations then those needed to compute the gradient (unless if the relaxation
parameter sd is optimised, alternatively, it is possible to use a small constant step,
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albeit with considerable increase of the number of iterations). Therefore, the quasi-
Newton method turns to be more efficient, because there is no relaxation parameter
to optimise. It cannot be applied starting from the first iteration because it requires
the value of the gradients for two values of the control parameter before indicating
the optimal direction. To overcome this minor difficulty, the steepest descent may
be adopted for the first iteration, or a constant step of the control parameter can be
done between the first two iterations.

An illustration of what precedes is given by optimising, with respect to h1, the
functional:

L = P̄ + F̄ + ᾱ2(t) + h̄2(t);

We consider the case N = 1, h
(0)
1 = 4.25, α0 = τ1 = 0◦, α1 = −25◦, φ1 = 90◦. For the

steepest descent method, the update algorithm employs a constant relaxation step
sd = 0.01, whereas for the quasi-Newton method we use:







g(1) = g(0) − 0.25sign(∇L(0)
g ),

g(n+1) = g(n) − g(n) − g(n−1)

∇L(n)
g −∇L(n−1)

g

∇g(n), for n ≥ 1.
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Figure 4.13: Comparison of the cost function evolution (left) and the number of iterations (right)
between the steepest descent and quasi-Newton algorithms for control parameter update finite
differences gradient for N = 1, α0 = 0◦, τ1 = 0◦, α1 = −25◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

This implies that h
(1)
1 = h

(0)
1 ± 0.25 according to the sign of ∇L(0)

g . Otherwise, the
steepest descent method may be used for this first iteration update. The same mini-
mum for h1 = 0.748 (St = 0.087) is reached after 8 iterations with the quasi-Newton
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methods versus 37 iterations for the steepest descent method (figure 4.13).This dis-
crepancy in performance could be reduced through a better choice of the constant
update step sd or thanks to sub-iterations optimising it but the speed of the quasi-
Newton method is such that it has been the method of choice for all further cal-
culations. The choice of this form of L was done to highlight the importance of
the cost functional and the weights. The optimal solution found here corresponds
to a dominantly drag producing airfoil, whereas multiplying F̄ by U0 and adapting
the weights, leads to an optimum with h1 = 2.03 (cf. figure 4.10(b)) and a thrust
producing flapping airfoil consequently.

Conclusion

The choice of an adequate grid is made by building a 0.256 million nodes mesh dis-
tributed in a circular computational domain of a radius equal to 11 chord lengths.
This grid, with an adapted time step, related to the kinematics of the airfoil, ensures
accurate results and accurate treatment of the boundary conditions for the duration
of the simulation, typically two periods of oscillations.

The gradient solver has been validated and a quasi-Newton descent algorithm is
selected to update the control parameter. Hence, the algorithm of optimisation con-
sists in:

1- Impose initial values for the control parameters.

2- For two periods of oscillations, solve the flow equations at each temporal step.

3- Solve the gradient equation for the same temporal step, using the results of the
flow solution.

4- Compute the average quantities including the cost functional and its gradient.

5- When the gradient vanishes, the parameter is optimal; otherwise, use the value
of the gradient to update the control parameter and continue iterating.

Now that the grid is chosen, the solver validated, the update method approved and
the algorithm of optimisation defined, we move to the exploitation of the solver for
the optimisation of the flapping airfoil kinematics in chapter 5.
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Chapter 5

Kinematics optimisation

Introduction

After writing the equations allowing to solve the flow and estimate the gradient of
the cost functional with respect to the control parameters, after choosing the grids
which ensure good accuracy-to-computational cost yielding physically valid results
and after validating the solvers, attention now turns towards the optimisation of the
kinematics of the flapping airfoil.

The final target being to answer which motion the airfoil should adopt, first of all, the
mechanism by which it produces lift and thrust should be addressed. This requires
to determine the critical Strouhal number beyond which the von Karman street is
inverted and the airfoil stops receiving energy from the flow and starts producing
thrust. Afterwards, the effect of each control parameter is studied. First, focus is
on the amplitudes and the phase angles of monochromatic oscillations for non-lifting
configurations. The reason is due to the higher propulsive efficiency achievable under
these conditions and the possibility to apply the results to fish-like locomotion. The
term flapping foil will be used for statements common for airfoils and hydrofoils.
Then, the mean angle of attack is investigated to ensure a sufficient lift force. Subse-
quently, the optimal configurations, by acting on all the variables of the kinematics
simultaneously, is sought for various cost functionals. The choice of the functionals
covers the possible missions the vehicle should fulfil, ranging from high propulsive
efficiency with sufficient lift and thrust forces to high thrust generation. The op-
timal kinematics are linked to natural observations on the one hand (Triantafyllou
et al., 1993; Taylor et al., 2003; Bejan and Marden, 2006) and to the results obtained
numerically and experimentally by varying the parameters over given ranges (An-
derson, 1996; Lewin and Haj-Hariri, 2003; Pedro et al., 2003; Guglielmini, 2004).
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The decrease of the propulsive efficiency η for high thrust forces is recovered by
including and optimising higher harmonics of the kinematics. In total, five harmon-
ics are considered and the optimisation is done over the odd ones to ensure better
efficiency for high thrust coefficient CT than in the case characterised by monochro-
matic oscillations. The influence of the other parameters (the Reynolds number and
the reduced frequency) is studied to understand the relatively low optimal values for
η obtained in the present study. Finally, a simple gliding configuration is analysed,
showing no increase of the global efficiency. This may imply that the main reason for
gliding is to relax the muscles of the birds; however, more investigations onto gliding
are called for.

5.1 Thrust and lift generation

For adequate kinematics, a flapping airfoil is able to produce both thrust and lift
forces. This is a main difference with respect to the fixed airfoil case, where lift is
generated over the wing and thrust is due to the motor. Here, the motor (electric DC
device) produces the motion of the wing, which generates lift and thrust. However,
as for fixed airfoils, both forces are influenced by the effects of pressure and viscosity.
The thrust generation is due to the momentum injected in the flow resulting from
the acceleration of the fluid around the airfoil, whereas lift is a consequence of a
different pressure distribution between the upper side (suction side) and the lower
side (pressure side) of the airfoil. The symmetry of the motion during upstroke and
downstroke renders double the frequency of the thrust signal. In figure 5.1, the heav-
ing and the pitching position, for a configuration with α0 = 0◦, and the associated
forces and moment acting on the airfoil are plotted. The instantaneous values of
forces and moment correspond to the integral of the pressure distribution and the
viscous effects over the whole airfoil. We note that the positive lift force corresponds
to the period where h(t) decreases (downstroke) associated with a positive pitching
angle.

When a vanishing mean angle of attack is considered, there is no difference be-
tween the forces in the laboratory frame (x, y) and the aerodynamic frame (xα, yα)
and the average lift force vanishes over a period. During the upstroke, a high pres-
sure zone is observed on the suction side of the airfoil and inversely a low pressure
zone is created on the pressure side of the airfoil leading to a negative lift force.
During the downstroke, the mechanism is inverted and an equivalent positive lift
force is generated compensating the previous one. When an angle α0 is included,
the symmetry is broken, like for thrust, and the average value of the vertical force
yields a net positive lift. The symmetry of the lift force when α0 = 0◦, due to the
symmetry of the motion and of the airfoil, may be also observed by looking at the
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pressure coefficient. In figure 5.2(a), the pressure coefficient is plotted for three in-
stants during the upstroke. The Cpr curve is equivalent during the downstroke, with
inverted values for the suction side and the pressure side. As it can be seen in figure

5.1(b), the lift force is negative for t ∈ [2π, 2.5π] (corresponding to
t

T
∈ [0, 0.25]).

Therefore, and despite the upward direction of the vertical axis in figure 5.2(a), the
plot is done in the classical way, with the suction side above the pressure side. On
the other hand, the lift force can be plotted versus the pitching angle as in figure
5.2(b). In this configuration, the viscous effects are negligible for both thrust and
lift.
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Figure 5.1: Temporal evolution of the heave distance and the pitch angle and the associated forces
and torque acting on the airfoil for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr =
0.3665 and Rec = 1100.

The thrust for a flapping airfoil is produced with a similar mechanism than that
described for pure heaving in §1.3.1. During the downstroke, a clockwise rotating
vortex is generated at the leading-edge and it is paired with a counterclockwise ro-
tating vortex shed from the trailing-edge. The position of this pair of vortices in the
wake is such that a jet-like velocity is induced downstream.

A plot of the stream function at t = 2.25π in figure 5.3(a) shows a flow separa-
tion over a large percentage of the suction side of the airfoil. This is coherent with
the plateau of the pressure coefficient observed in figure 5.2(a). On the other hand,
the vorticity field at t = 2.5π in figure 5.3(b) suggests that the bump in the pres-
sure coefficient near the trailing-edge is related to the presence of a counterclockwise
rotating vortex at the pressure side of the airfoil. In the remainder of this chapter,
vorticity field will be used to illustrate the topology of the wake, whereas the stream
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function and the horizontal velocity fields will interfere in the investigation of flow
separation.

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

x

c

Cpr

t=2π
t=2.25 π
t=2.5π

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

 

 

α(t)

Fy

total force
pressure component

Figure 5.2: Pressure coefficient for a non-lifting configuration during the upstroke (left) and
average lift total force and pressure component versus the pitching angle (right) for N = 1, α0 =
0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

Figure 5.3: Stream function at t = 2.25π (left) and vorticity at t = 2.5π (right) fields for a flapping
airfoil with N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

For a vanishing mean angle of attack and for a Reynolds number equal to 1100, the
drag coefficient of the airfoil used here is CD = −CT = 0.12 and it increases for
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increasing mean angle of attack. This value is considered as a reference value for
thrust generation. Therefore, values of CT in the range [0, 0.25] will be considered
as small thrust forces, whereas thrust coefficients exceeding 1 will be referred to as
large thrust forces.

5.2 Sensitivity fields

Figure 5.4: Comparison of the vorticity field (top left) to its sensitivity fields with respect to the
heaving amplitude (top right), the pitching amplitude (bottom left) and the phase angle (bottom

right) during the upstroke at
t

T
= 1.125 for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 =

90◦, fr = 0.3665 and Rec = 1100.
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By solving the sensitivity equations or by isolating the imaginary part of the solution
of the complex system, the fields of ω,g and ψ,g may be investigated. If the computa-
tion of these fields, referred to as sensitivity fields, is indispensable for the gradient
evaluation, their interpretation is not straightforward. As their name indicates, they
point out in which regions of the computational domain, the flow variables are most
sensitive to the control parameter g. They correspond to the fields of the derivative
of the flow variable with respect to the control parameter. In this sense, they should
be considered from the mathematical point of view rather than the physical one. An
example of sensitivity fields of the vorticity ω with respect to heave and pitching
amplitudes and the phase angle is given in figure 5.4.

The topology of the sensitivity fields for the three control parameters are quite
similar: vanishing values where the vorticity vanishes far from the airfoil and non
vanishing values on the surface of the airfoil and in its wake. The main difference
between the three fields is the numerical order of magnitude. The colour scale in
figure 5.4 shows that the pitching amplitude α1 has higher maximal values (and lower
minimal values) with respect to the phase angle φ1. This implies that vorticity in
this configuration is more sensitive to the pitching amplitude.

The regions where maximal (and minimal) sensitivity values occur vary from one
kinematics to another. However, as a general rule, they are naturally located where
vorticity is created and shed. Therefore, they remain close to the airfoil’s leading-
and trailing-edges, highlighting the important role played by the near-wake and by
the tips of the airfoil in generating vorticity. The sensitivity fields of the stream
function are harder to interpret as one can see in figure 5.5. However, the higher
sensitivity to the pitch amplitude with respect to the phase angle subsists.

5.3 Critical Strouhal number

The Strouhal number is a crucial parameter for flapping foils configurations. Its
value indicates whether the foil is dominantly producing drag (small values of St)
or thrust (Triantafyllou et al., 1991) and it correlates to the wake topology, i.e. to
the number of vortices shed per cycle of oscillation and consequently to the flapping
efficiency (Anderson et al., 1998; Lai and Platzer, 1999). For large values of St, a
symmetrical problem results in a non symmetric solution since deflected wakes are
observed (see figure 5.6). The denomination deflected is related to the angle which
exists between the wake and the horizontal direction.
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Figure 5.5: Sensitivity fields of the stream function at
t

T
= 1.125π with respect to the heave

amplitude (left) and the pitch amplitude (right) for a flapping airfoil with N = 1, α0 = 0◦, h1 =
3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

Figure 5.6: Vorticity fields for a deflected wake behind an airfoil flapping at Strouhal number

(St = 0.48) during upstroke at t =
9π

4
(left) and downstroke at t =

13π

4
(right) for N = 1, α0 =

0◦, h1 = 3, τ1 = 0◦, α(t) = 0, fr = 0.5 and Rec = 1100.

The Strouhal number for a flapping airfoil is defined as the ratio of two velocities,
the velocity of flapping versus the velocity of moving forward, and may be written
as:

St =
f ∗A∗

U∗
∞

=
σ∗ ‖ h∗(t) ‖

πU∗
∞

=
‖ h(t) ‖ fr

π
.

where A∗ is the wake width very often approximated by the double of the heave
amplitude. Increasing the Strouhal number of the flapping motion allows to invert
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the von Karman classic street and to produce thrust. The value beyond which this
inversion happens is called the critical Strouhal number. For a two-dimensional
airfoil which oscillates exactly at this critical value, a neutral wake, defined as an
alternance of clockwise and counterclockwise aligned vorticity, is observed (see figure
5.7).

Figure 5.7: Vorticity fields for a neutral wake behind an airfoil flapping at the critical value of
the Strouhal number (St=0.214) during downstroke at t = 3π (left) and upstroke at t = 4π (right)
for N = 1, α0 = 0◦, τ1 = 0◦, α1 = −30◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

For a fixed free stream velocity (and hence constant Reynolds number), St increases
when the flapping frequency increases or when the wake width (due to heaving ampli-
tude) increases. In the present section, we suggest to find the critical Strouhal number
for a monochromatic motion and a fixed reduced frequency fr = 0.3665, acting solely
on the heave amplitude, h1. The tools already defined bring all the elements neces-
sary for these computations. The cost functional is adapted by imposing vanishing
values to β2

P , ǫ
2
α and ǫ2h, and by considering the gradient as 2 F̄∇F̄ . This corresponds

to a cost functional equal to L = F̄
2

. By controlling the heave amplitude, h1, the
optimal value yielding the minimal L (consequently, vanishing horizontal force F̄ ) is
found and the correspondent Strouhal number is identified. What precedes has been
done for various pitching amplitudes α1 in the range [−45◦, 0◦] and various phase
angles φ1 in the range [0◦, 90◦].

For the reduced frequency used here, results in figure 5.8 indicate that for a purely
heaving airfoil, thrust production requires a Strouhal number greater than 0.152 in-
dependently of the phase angle (since φ1 has no influence when α1 vanishes). This
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value is close to that found experimentally by Anderson (1996) (roughly 0.2) at a
Reynolds number equal to 40,000. For a flapping airfoil, thrust production is less
constraining in terms of Strouhal number for small pitching angles, since a minimal
critical Strouhal number of 0.133 is observed for a pitching angle close to −7.5◦ when
a 90◦ phase difference between heaving and pitching is considered. Large pitching
amplitudes require larger Strouhal numbers to reverse the von Karman street. The
critical values increase when the phase φ1 decreases from 90◦ towards 0◦. The inter-
est of considering a phase close to 90◦, confirmed in §5.5, has been highlighted by
Streitlien et al. (1996) and Isogai et al. (1999); this configuration supports the reduc-
tion of flow separation and increases flight efficiency by driving the timing of vortex
shedding from the airfoil tips so that leading edge vortex interacts constructively
with the trailing edge vortex leading to two vortices deposited per flap (Anderson
et al., 1998; Lewin and Haj-Hariri, 2003).
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Figure 5.8: Values of the critical Strouhal for various pitching amplitudes and various phase
angles.

In conclusion, for acceptable pitching angles no thrust production can be observed
for h1 < 1 which corresponds to an airfoil with a heaving amplitude smaller than a
quarter of its chord. If a vanishing phase angle has to be studied, a pitching am-
plitude in the interval [−20◦, 0◦] must be considered. Beyond this range, no thrust
production has been observed. In the same way, and for φ1 = 45◦, there is no pos-
sible thrust production for α1 < −35◦. The critical Strouhal numbers for φ1 = 45◦

are closer to the values for φ1 = 90◦ than to those for φ1 = 0◦. In the remainder of
this work, we will focus on control parameters within favourable ranges for thrust
production.
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5.4 Effect of heaving and pitching amplitudes

The attention shifts in the present section to the effect of the heaving and pitching
amplitudes in the case of monochromatic oscillations. Since the other parameters
should be fixed, a constant phase angle φ1 = 90◦ is imposed. This choice is a
consequence of the results reported in the previous section. In the case N = 1, one
phase angle is sufficient, hence a vanishing phase angle τ1 is considered. Moreover,
for constant values of the reduced frequency fr = 0.3665 and of the mean angle of
attack α0 = 0◦, two sets of computations are done.

- In the first, the pitching amplitude α1 is varied in the range [−45◦, 0◦], with an
increment of 5◦ and the optimal values of h1 are sought.

- In the second, the heaving amplitude h1 is varied in the range [0, 4], with an
increment of 0.5 and the optimal α1 is computed.

The optimisation is done for the cost functional:

L = P̄ + 2F̄U0 + ᾱ2 + h̄2(t)

5.4.1 Optimal amplitudes

The results in figure 5.9 show a linear dependence between the optimal amplitudes
for heaving and pitching in the ranges considered. Controlling a single parameter
may be misleading. Two examples of this may be seen when considering solely one
amplitude as control parameter. The first is that for a vanishing pitching ampli-
tude, the optimal h1 is equal to zero corresponding to an airfoil which does not
flap, the second is that optimal values of h1 obtained for α1 ∈ [−20◦, 0◦] yield dom-
inantly drag-producing configurations (cf. figure 5.8). This may suggest that the
cost functional was poorly chosen. However, deeper investigation of the results con-
tradicts this statement. Even if the motionless configuration is optimal, the value
of the cost functional is not minimal with respect to the values for non-vanishing
pitching amplitudes (see figure 5.10). This implies that if the two amplitudes are
controlled together, the optimal solution will not be the configuration of a still airfoil.

The global minimum of the cost function, over the ranges concerned, when con-
trolling h1 is obtained for the couple (h1, α1) = (2.321,−30◦) yielding a propulsive
efficiency η = 0.398 and a thrust coefficient CT = 0.229. Higher η and CT are ob-
tained for relatively large optimal amplitudes since for (h1, α1) = (3.651,−45◦) we
have η = 0.466 giving rise to CT = 0.601. However, large amplitudes of oscillations
are not desired since they engender high structural constraints. This highlights the
impact of including the last two terms in the cost functional to limit the cost of the
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control.

−45 −40 −35 −30 −25 −20 −15 −10 −5 0

0

0.5

1

1.5

2

2.5

3

3.5

4

α
1

h
1

 

 

Optimal h
1

Optimal α
1

Figure 5.9: Optimal heaving amplitudes (empty circles) and optimal pitching amplitudes (filled
circles) for N = 1, α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.
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Figure 5.10: Values of the cost functional for optimal heaving amplitudes h1 (left) and optimal
pitching amplitudes α1 (right) for N = 1, α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

When controlling α1, the global minimum of the cost functional is obtained for the
couple (h1, α1) = (2.5,−31.91◦), obviously very close to the one obtained by con-
trolling h1. This configuration is characterised by η = 0.423 and CT = 0.28. Here
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again, for large amplitudes, for instance for (h1, α1) = (4,−48.50◦), larger efficiency
and thrust can be recovered (η = 0.485 and CT = 0.90), but the choice of the cost
functional prevents these high-constraints configurations from becoming the global
optimum. The optimal cases with dominantly drag producing flapping airfoils are
also related to the choice of the cost functional and the associated weights. With
the present choice, the optimisation process is directed towards pitching amplitudes
in the range [−35◦,−25◦]. This should be seen as a feature of the considered cost
functional. A deep investigation for α1 ∈ [−20◦, 0◦] has shown that in this range, the
thrust generated is very small and the efficiency really poor for any heaving ampli-
tude. Thus, by converging to drag-producing kinematics leading to larger values of
the cost functional, the choice adopted here avoids a zone of the control parameters
with no practical interest.

The physical reason for the high efficiency in the optimal configuration may be ad-
dressed by comparing the vorticity and the velocity fields to a bad-efficiency config-
uration. Therefore, in figures 5.11 and 5.12 fields are plotted for the case (h1, α1) =
(2.5,−31.91◦) and the configuration (h1, α1) = (4,−5◦) yielding a CT = 0.52 with
a very poor propulsive efficiency η = 8.7%. The symmetry of the motion during
the upstroke and the downstroke leads to fields which are the mirror images of one
another. The bad efficiency is related to the presence of widespread (larger dimen-
sions) vortices and to secondary structures. The more compact and coherent vortices
in the optimal configuration are created with less wasted energy whereas the break
up of shed vorticity increases the loss of energy. In the optimal configuration, the
airfoil "snakes" its way through the fluid, displacing it less in both the horizontal and
vertical direction. This implies a decrease of the horizontal and the vertical forces,
but the decrease in the required power is larger than the decrease of the thrust, and
the efficiency is increased.

The other main reason for the high η is the rate of separation of the flow over
the airfoil during the stroke. The same colour scale is used for the two configurations
in figure 5.12. A large separation bubble can be observed on the pressure side during
the upstroke (and on the suction side, during the downstroke) which increases the
pressure drag forces as for fixed airfoils and thus decreases the thrust forces and
consequently the efficiency.

The two global optimal solutions for heaving and pitching amplitudes control corre-
sponds respectively to values of the Strouhal number of 0.27 and 0.29. The values
are perfectly inside the optimal range St ∈ [0.25, 0.35] as shown by Triantafyllou
et al. (1993) and observed on a very large flying and swimming animals in nature
(Taylor et al., 2003). This confirms the ability of the optimisation approach and the
chosen cost functional to drive the parameters towards physically optimal values,
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encountered in nature.

Figure 5.11: Comparison of vorticity fields during upstroke at
t

T
= 1.125 (top row) and down-

stroke at
t

T
= 1.625 (bottom row) for N = 1, α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665, Rec = 1100

and (h1, α1) = (2.5,−31.91◦) (left) and (h1, α1) = (4,−5◦) (right).

5.4.2 Effective angle of attack

The effect of both amplitudes, and the significance of the linear dependence is studied
by introducing the effective angle of attack γ. For a non flapping airfoil, the angle of
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attack is the real angle between the airfoil and the flow whereas for a flapping one,
the vertical motion induces an angle and the effective angle of attack "seen" by the
airfoil is:

γ(t∗) = α0 + arctan

(

ḣ∗(t∗)

U∗
∞

)

+ α(t∗),

or in non-dimensional form:

γ(t) = α0 + arctan

(

ḣ(t)

U0

)

+ α(t).

The variation in time over one period for two optimal configurations are given in
figure 5.13. We note that in the case α0 = 0◦ and φ1 = 90◦, and thanks to the
properties of the arctan function, each half period can be divided into 2 quarters
where the variation of γ is antisymmetric. Furthermore, the global minimum is
characterised by an effective angle of attack divided into two plateaux (cf. figure
5.13(a)) whereas the other optimal configurations present a number of peaks (cf.
figure 5.13(b)).

The maximal value of γ(t) over one period of oscillation γmax plays a crucial role
since it governs the rate of the flow separation over the foil and consequently, the
thrust generation and the propulsive efficiency. According to the value of the angle,
a flapping airfoil can create thrust or extract power from the flow. In between, it is
said that the wings feathers through the flow without disturbing it. For N = 1, one
may write that:

γmax ≤ α0 + arctan

(
h1

U0

)

+ α1.

As it can be observed in figure 5.13, the two optimal configurations have very close
values of γmax. By extending to the other cases, we notice that all optimal configura-
tions corresponding to thrust generation have a maximal effective angle of attack in
the range [10◦, 12.25◦] as it can be seen in figure 5.14. Hence, the linear dependence
between optimal heaving and pitching amplitudes results in a roughly constant max-
imal value for the effective angle of attack equal to 11◦. This observation is rather
interesting, especially because this value corresponds to a high lift-to-drag ratio and
it is within the stall angle for the same airfoil at the same Reynolds number when
it does not flap, as shown in §5.6. If we admit that γmax plays a similar role than
the angle of attack for a still airfoil, the latter result confirms the fact that optimal
kinematics are directly related to attached flows, as discussed by Tuncer and Platzer
(2000). A summary of the characteristics of the optimal configurations, when con-
trolling the amplitudes, is given in table 5.1.
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Figure 5.12: Comparison of the relative velocity
u

U0

fields during upstroke at
t

T
= 1.125 (top row)

and downstroke at
t

T
= 1.625 (bottom row) for α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665, Rec = 1100

and (h1, α1) = (2.5,−31.94◦) (left) and (h1, α1) = (4,−5◦) (right).

α0 h1 α1 φ1 St γmax CL CP CT η
0◦ 2.321 −30.00◦ 90.00◦ 0.271 10.43◦ 0 0.575 0.229 0.398
0◦ 2.500 −31.91◦ 90.00◦ 0.291 10.81◦ 0 0.492 0.280 0.423

Table 5.1: Optimal kinematics when controlling the heaving and pitching amplitudes for N =
1, fr = 0.3665 and Rec = 1100.
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Figure 5.13: Evolution over one period of the effective angle of attack γ(t) for N = 1, α0 =
0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665, Rec = 1100 and (h1, α1) = (2.321,−30◦) (left) and (h1, α1) =
(3.180,−40◦) (right).
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Figure 5.14: Values of the maximal effective angle of attack for optimal amplitudes for N =
1, α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

5.5 Effect of the phase angle

Here, the effect of the phase angle between heaving and pitching oscillations is stud-
ied. This angle drives the timing of shed vorticity and governs consequently the type
of interaction which occurs between leading-edge and trailing-edge vortices. In the
case N = 1, and as demonstrated earlier, one angle φ1 or τ1 is sufficient to describe
the phase between the two motions. In literature, including the phase angle inside
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the pitching oscillations is the most widespread practice. However, and for solver
validation reasons, the optimal angles τ1 are also computed. Hence, we start by
controlling the angle φ1. The other parameters are maintained constant with the
imposed values of α0 = τ1 = 0◦, fr = 0.3665 and Rec = 1100. Two values are con-
sidered for the heaving amplitude (h1 = 2 and h1 = 3). For each heaving amplitude,
the pitching amplitude α1 is varied in the range [−45◦,−5◦], with an increment of 5◦.
For each of these configurations, the phase angle φ1 is optimised so as to minimise
the cost functional:

L = P̄ + 2F̄U0 + ᾱ2 + h̄2(t)
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Figure 5.15: Values of the optimal phase angles (left) and the associated values of the cost
functional (right) for various heaving and pitching amplitudes for N = 1, α0 = 0◦, τ1 = 0◦, fr =
0.3665 and Rec = 1100 .

Obviously, no optimal φ1 is sought for a vanishing pitching amplitude. Results in
figure 5.15(a) show that for any plausible amplitude for pitching and heaving, the
optimal phase angle is in the range [70◦, 90◦]. This means that the propulsive effi-
ciency is favoured when the motion of the airfoil is such that the maximum angle
occurs for a vanishing heave and viceversa (see figure 2.5). The good influence on
the propulsive efficiency of considering pitching oscillations leading the heaving ones
by an angle roughly equal to 90◦ has been mentioned in previous contributions (Stre-
itlien et al., 1996; Isogai et al., 1999). The physical explanation for this high η is
the mostly attached flow under these conditions since the separation is confined to a
small region near the trailing-edge. The leading-edge vortex remains attached during
the whole stroke and once it is shed is interacts constructively with the vortex shed
from the trailing-edge (see figure 5.16). The optimisation approach used here allows
to find these results with a new methodology and confirms that the cost functional
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adopted is well linked to a high generation of thrust with acceptable propulsive effi-
ciencies.

The global minimum of the cost functional is given for the kinematics (h1, α1, φ1) =
(3,−35◦, 80.5◦) corresponding to η = 0.481 and CT = 0.526 (see figure 5.15(b)). For
the same values of fr, Rec, α0, h1 and α1, the angle φ1 was imposed equal to 90◦ and

the optimal values found for τ1 verified the relation τ1opt =
π

2
− φ1opt. A summary of

the characteristics of the optimal configurations, when controlling the phase angle,
is given in table 5.2.

Figure 5.16: Vorticity (left) and relative horizontal velocity fields
u

U0

(right) during upstroke at

t
T

= 1.125 for an optimised phase angle: N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 80.5◦,
fr = 0.3665 and Rec = 1100.

α0 h1 α1 φ1 St γmax CL CP CT η
0◦ 3.000 −35.00◦ 80.50◦ 0.350 17.55◦ 0 1.093 0.526 0.481

Table 5.2: Optimal kinematics when controlling the phase angle for N = 1, fr = 0.3665 and
Rec = 1100.
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5.6 Lift analysis

In the present section, we focus on the effect of the mean angle of attack α0 and
its influence on the lift force. Regardless of the value of N , the pitching angle
α(t) is periodic in time with a non dimensional period equal to 2π. Therefore, the
average value of α(t) over a period of oscillation vanishes and no average lift is
produced in the absence of a mean angle of attack α0. The average lift force L̄
was not included inside the cost functional for the main reason that the non-lifting
configurations provide better propulsive efficiencies. Lift depends mainly on α0 and
when an average lift force is generated, the power required is increased without
substantial increase (and even decrease in most of the cases) in the thrust force.
This favours flow separation and implies a decrease of η. In other word, if the lift
is linearly added to the cost functional with an associated negative weight, and the
optimisation approach is applied acting on the mean angle of attack, the optimal
values would be reached for a vanishing α0. More complex cost functionals could
be adopted, but the adaptability to the different configurations studied here would
be less straightforward. The main target being to produce high thrust forces with
acceptable efficiency, both for micro air and autonomous underwater vehicles, it is
preferable to study the lift force separately and ensure a sufficient lift force for the
optimal kinematics.

5.6.1 Lift of a flapping airfoil

As shown in §5.3, 5.4 and 5.5, a roughly 90◦ phase angle, a heaving amplitude in
the range [2, 3] and a pitching amplitude in the range [−25◦,−35◦] are optimal. For
these values, the mean angle of attack α0, lift, thrust (or drag) and efficiency are
investigated. Results in figure 5.17(a) show the ability of flapping airfoils to produce
high lift coefficients, since a coefficient as high as CL = 3 can be achieved. Micro
air vehicles are generally light, i.e. very sensitive to harsh atmospheric conditions,
which means that high lift and thrust forces are welcome to enable manoeuvring.
On the other hand, the slow velocity of the micro air vehicle requires a high lift
coefficient to sustain the weight of the vehicle. High values of lift are obtained for
large angles of attack. They are found in the range [24◦, 36◦] when the mean angle of
attack is considered. However, the three configurations (h1, α1)=(2,−25◦), (2,−35◦)
and (3,−35◦) yield the first peak of CL for the same value of γmax = 39◦, whereas
the fourth configuration (h1, α1)=(3,−25◦) yields the first peak for γmax = 48◦. Un-
fortunately, this range of angles for α0 cannot be used since under these conditions
the flapping airfoil does not produce thrust. As shown in figure 5.17(b), when the
mean angle of attack is increased, the von Karman street is not reversed and drag is

produced (CT = − F̄

2U2
0

, i.e. negative values of CT are relative to drag production).
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For the configurations considered, no thrust production is possible beyond α0 = 20◦,
and the drag coefficient increases very fast beyond this threshold reaching values
preventing any practical application of this range. A polar may be plotted for the
case of a flapping airfoil, but special attention should be done to vanishing values of
the horizontal force when the wake is inverted.

In the same way, starting from a vanishing mean angle of attack, the propulsive
efficiency decreases until drag replaces thrust as shown in figure 5.18(a). The good
correlation between the propulsive efficiency and the cost functional is demonstrated
by plotting in figure 5.18(b) the variation of

L = P̄ + 2F̄U0 + ᾱ2 + h̄2(t).

The comparisons between the two configurations for constant α0, and within one
configuration when varying α0, prove that by minimising the cost functional a high
propulsive efficiency is reached. The impact of the weights of the last two terms
corresponds mostly to a shift of the cost functional values, and thus when these
weights will be varied in the following, this good correlation is maintained. The
minimal value of the cost functional obtained for α0 = 0◦ justifies what has been
mentioned earlier about not considering the lift force inside the cost functional.
Hence, in the following, instead of optimising the lift, the optimal kinematics are
sought, imposing a given α0, and the lift force is deduced. Therefore, a first conclusion
is that flapping airfoils are able to produce large lift coefficients for large angles of
attack but it is preferable to consider smaller angles when a reasonable of lift is
sufficient and thrust is produced.

0 5 10 15 20 25 30 35 40 45
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

α
0

 

 

CL

h
1
=2, α

1
=−35°

h
1
=2, α

1
=−25°

h
1
=3, α

1
=−35°

h
1
=3, α

1
=−25°

0 5 10 15 20 25 30 35 40 45
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

α
0

 

 

CT

h
1
=2, α

1
=−35°

h
1
=2, α

1
=−25°

h
1
=3, α

1
=−35°

h
1
=3, α

1
=−25°

Figure 5.17: Lift (left) and thrust/drag (right) coefficients versus mean angle of attack α0 for
N = 1, τ1 = 0◦, φ1 = 90◦, fr = 0.3665, Rec = 1100 and various amplitudes.
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The second topic investigated refers to the stall of flapping airfoil. It is well known
that for a fixed airfoil, the lift coefficient increases almost linearly when the angle
of attack increases. For a given value of the angle of attack, the adverse pressure
gradient on the suction side becomes too strong, and the boundary layer separates
leading to a down-shoot of the lift force. This phenomenon is referred to as static
stall. For the NACA airfoils family used here, and for high Reynolds numbers, it
takes places for a relatively small angle of attack, in the range [12◦, 18◦], according to
the value of Rec. For flapping airfoils, the peak value is obtained for a much larger
angle of attack, and interestingly, the lift coefficient increases after the down-shoot
following the first peak, giving rise to multiple peaks. Numerical simulations have
been carried out for angles of attack as large as 90◦ and lift still can be generated
under these conditions. This result was also observed experimentally by Silin et al.
(2006) who observed a lift force for a flapping airfoil with a 90◦ angle of attack.
However, in their case, the lift coefficient saturated to an asymptotic value after the
first peak, which they also obtained for angles of attack in the range [40◦, 50◦]. This
discrepancy can be related to the elasticity of the wings in their study.
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Figure 5.18: Efficiency (left) and cost functional (right) variation with the mean angle of attack
α0 for N = 1, τ1 = 0◦, φ1 = 90◦, fr = 0.3665, Rec = 1100 and various amplitudes.

5.6.2 Comparison of still and flapping airfoils

The high value of the angle of attack yielding the maximal lift is related to the low
value of the Reynolds number rather than the wing motion. In figure 5.19(b), the lift
coefficient is plotted for the same NACA0012 profile at the same Reynolds number
of Rec = 1100 for α0 in the range [0◦, 90◦] when it does not flap. The maximal
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lift (CL = 1.8) is obtained for α0 = 47◦. The maximal lift-to-drag ratio is equal
to 2.43 and it occurs for α0 = 11◦. We notice that this angle is in the same range
for which the maximum effective angle of attack γmax(∈ [10◦, 12.25◦]) should be, for
the optimal kinematics of the flapping airfoil. The comparison may seem ambitious
since the problems are different; in one case we have an optimal lift-to-drag ratio for
a fixed airfoil optimising the mean angle of attack, whereas in the other, we have
an optimal propulsive efficiency for a flapping airfoil optimising the amplitudes and
consequently the effective angle of attack. However, this fact confirms that γ plays
the same role for a flapping airfoil than α0 for a fixed one. It also proves that the
optimisation of lift-to-drag and the propulsive efficiency are not contradictory, both
being large in case of minimal separations and small losses of energy in the wake.
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Figure 5.19: Lift coefficients at Rec = 1100 for a fixed (left) and flapping (right) NACA0012
airfoil for N = 1, τ1 = 0◦, φ1 = 90◦, fr = 0.3665 and various amplitudes over wide range of angle
of attack α0.

The same range of α0 was investigated in figure 5.19(a) for flapping configurations.
The results were confirmed by computations performed with Fluent for the fixed air-
foil and with the Overture software for the fixed and flapping configurations. A very
good agreement was statistically found for both aerodynamic coefficients and flow
fields confirming that the maximum lift is in the range [40◦, 50◦] for such a low Rec.
The term "statistically" is very important because for such high angles of attack, the
flow around the airfoil is very unsteady and consequently very long to establish to-
wards an unsteady periodic solution. Following the choice of time interval on which
the averaging is done, the lift coefficient may slightly vary. To illustrate the difficulty
of the flow establishment, the temporal evolution of CL is plotted in the case of a
30◦ angle of attack in figure 5.20(a) for the still airfoil. Under these conditions, there
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is no sense to refer to the period of oscillations but the same time scaling, based on
flapping frequency, has been nonetheless chosen for comparison reasons.

For such high angles of attack, two periods of oscillations are not enough to establish
the flow like previously mentioned in §4.2. Even after 6 periods, small discrepancies
may be observed in figure 5.20(a). However, when averaging on such a long dura-
tion, those variations are smoothed and the value of the aerodynamic coefficient is
reliable. The flow is harder to establish for higher angles of attack and for a flapping
configuration as shown in figure 5.20(b). In this case, after 8 periods of oscillations,
perfect periodic unsteady flow is not yet established. Therefore, very long duration
of the simulations (between 12 and 15 periods) were needed for such configurations.
The possibility to smooth even more the lift curves in figure 5.19(a) exists if infinite
time simulations are carried out, but there is no interest in determining the lift with
high accuracy in a range of angles of attack where drag is too large.
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Figure 5.20: Evolution for a NACA0012 of the lift coefficient in time at Rec = 1100 for a fixed
airfoil at α0 = 30◦ (left) and flapping airfoil at α0 = 40◦ (right) for N = 1, h1 = 3, τ1 = 0◦,
α1 = −35◦, φ1 = 90◦, and fr = 0.3665.

In figure 5.21, the velocity fields are plotted for two instants at t = 35 and t = 36
corresponding to high and low lift configurations, and pointed out by two circles in
figure 5.20(a). As one may expect, for such large α0, the flow is separated over a
large majority of the airfoil. However, the position of the separation bubble is closer
to the airfoil at t = 35, when the lift force is small and consequently, more negative
velocities are available near the airfoil surface, influencing both lift and drag forces.
For all these reasons, in the following, lift will be ensured by considering an angle of
attack in the range of [8◦, 12◦], and the optimisation will be carried out by acting on
the other control parameters.
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Figure 5.21: Relative horizontal velocity (
u

U0

) fields for a fixed NACA0012 airfoil at 30◦ angle of

attack at Rec = 1100 at t=35 (left) and t=36 (right).

Figure 5.22: Stream function fields for a fixed NACA0012 airfoil with 30◦ angle of attack at
Rec = 1100 at t=35 (left) and t=36 (right).

The plot of the stream function in figure 5.22(a) shows clearly the presence of a
vortex at the suction side near the trailing edge and which may be linked to the
altered lift force at t = 35.
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5.7 Optimal configurations

After analysing the effect of each control parameter separately, attention shifts now
on the optimal configurations obtained acting on multiple parameters. From the
numerical point of view, the choice was made to solve the flow and the sensitivity
equations for a set of parameters and to use the gradients to update all the parame-
ters together. Another possible approach could be to wait for each parameter until
it reaches its optimal value and then to move to another and then to restart the
process until all gradients vanish, but this approach requires a larger total number
of iterations. Hence, for various forms of the cost functional, the amplitudes and
the phase angle were optimised. The choice of the cost functional is related to the
missions of the vehicle and the possible conditions it may encounter. Therefore, three
main cases are considered.

- The first corresponds to an autonomous underwater vehicle, where lift is not
required and thrust with good propulsive efficiency is the main target (basic
configuration).

- The second is the case of high thrust forces required. This may be useful in
harsh atmospheric conditions (thrust configuration).

- The third is the case of an MAV where both lift and thrust are sought, with
good propulsive efficiency (practical configuration).

As discussed in section 5.6, the mean angle of attack is imposed and the control is
done on the other parameters.

5.7.1 Basic configuration

The best propulsive efficiency is usually obtained for very small thrust forces. There-
fore, we aim at optimising the kinematics of a hydrofoil which may be used for an
UAV to ensure both good thrust force and propulsive efficiency. The mean angle of
attack is imposed equal to zero and the considered cost functional is:

L = P̄ + 2F̄U0 + ǫ2αᾱ
2 + ǫ2hh̄

2(t).

The weights ǫ2α and ǫ2h are set to 15.14 and 1, respectively, to avoid very large ampli-
tudes of oscillations. The value of ǫ2α is obtained by imposing that a heave amplitude
h1 = 4 has the same weight than a pitching amplitude α1 = −45◦ so as to give
equivalent importance to the two terms of the cost of the control. The control is
done in the case N = 1 for fr = 0.3665 and Rec = 1100, by acting on h1, α1 and
φ1. The optimal triplet is (h1, α1, φ1) = (2.82,−32.15◦, 85.45◦), yielding the triplet
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(CT , CL, η) = (0.512, 0, 0.502). The associated Strouhal number is equal to 0.329 in-
side the optimal range observed for a large number of animals in nature as discussed
by Triantafyllou et al. (1993) and Taylor et al. (2003). This proves on the one hand
that animals have naturally the ability to tune their motion to optimal kinematics
and that the cost functional and the optimisation approach employed here, achieve
successfully their principal target.

α0 h1 α1 φ1 St γmax CL CP CT η
0◦ 2.820 −32.15◦ 85.45◦ 0.329 15.45◦ 0 1.020 0.512 0.502

Table 5.3: Optimal kinematics yielding good efficiency with limitation on the cost of the control
for N = 1, fr = 0.3665 and Rec = 1100.

The optimal efficiency and thrust in table 5.3 is directly linked to the reduced flow
separation during the motion of the wing and to the leading-edge vortex which re-
mains attached during the whole stroke, before being shed and interacting construc-
tively with the trailing-edge vortex, as discussed in §5.4 and 5.5.

The relatively small optimal efficiency is related to the low Reynolds number as
discussed in §5.9 whereas the relatively moderate thrust is due to the constraints
imposed on the cost of the control. It can be increased by eliminating the limitation
on the cost of the control. Hence, by imposing ǫ2α = ǫ2h = 0, we reach a new optimal
solution summarized in table 5.4.

α0 h1 α1 φ1 St γmax CL CP CT η
0◦ 3.926 −45.24◦ 83.13◦ 0.458 16.17◦ 0 1.641 0.806 0.491

Table 5.4: Optimal kinematics yielding good efficiency without limitation on the cost of the control
for N = 1, fr = 0.3665 and Rec = 1100.

The consequence of eliminating the cost of the control is large-amplitude oscilla-
tions. However, higher thrust force is obtained without substantial decrease of the
propulsive efficiency.

5.7.2 Thrust configuration

Here, high thrust coefficients are sought both in lifting and non-lifting configurations.
The cost functional used is:

L = (F̄ − F0)
2,
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where F0 is an imposed value of the thrust force. Hence, for a given value of the
thrust coefficient, the associated thrust force is evaluated and the optimisation is
done on h1, α1 and φ1 until the required CT is obtained. The mean angle of attack
is imposed together with fr = 0.3665 and Rec = 1100. A summary of the results is
given in table 5.5.

α0 h1 α1 φ1 St γmax CL CP CT η
0◦ 3.535 −32.12◦ 91.79◦ 0.412 31.25◦ 0 2.320 1.000 0.431
0◦ 4.063 −26.79◦ 87.16◦ 0.474 29.77◦ 0 3.956 1.500 0.341
0◦ 4.512 −33.45◦ 89.68◦ 0.526 26.27◦ 0 5.249 2.000 0.381
8◦ 3.477 −44.73◦ 90.19◦ 0.406 18.39◦ 0.606 1.202 0.500 0.416
10◦ 4.170 −43.59◦ 92.96◦ 0.487 28.24◦ 1.694 2.786 1.000 0.359
10◦ 4.341 −29.54◦ 91.89◦ 0.506 38.95◦ 1.861 5.208 1.500 0.288

Table 5.5: Optimal kinematics yielding imposed thrust coefficients for N = 1, fr = 0.3665 and
Rec = 1100.

When the constraints on the cost of the control are eliminated, higher thrust coeffi-
cients are accessible but the strain, to which the wing is submitted, becomes a real
issue. For such moderately large CT , the propulsive efficiency remains acceptable for
monochromatic oscillations. The values of St and γmax for the optimal configura-
tions are not in the range of high propulsive efficiencies. In nature, animals employ
two modes to optimise either their thrust or their efficiency. In the first mode, the
interaction between the vortices generated by those shed from the flapping surface
(wings or fish fins) is constructive. This implies that body vortices are paired with
wing vortices of the same sign resulting in a stronger reverse von Karman street and
better thrust. In the second mode, the interaction occurs between paired vortices
of opposite signs. Hence, the foil extracts less energy increasing the efficiency. This
refers to the vorticity shed from the body and the moving surface and confusion
should not be made with the constructive interactions of the vorticity shed from
the leading- and trailing-edges of the moving surface. The same principle may be
applied to man-made vehicles. In the part of the mission when the duration of flight
is favoured, the efficiency should be optimised, considering the basic configuration
kinematics. Once the image capturing process is over or when the vehicle is tracked,
kinematics may switch to the thrust configuration, favouring manoeuvring and/or
high forward velocities.

Vorticity and relative horizontal velocity fields are plotted in figures 5.23 and 5.24
for a thrust coefficient CT = 1 at α0 = 10◦. Due to the presence of a non-zero mean

angle of attack, the symmetry is broken and the fields at
t

T
= 1.625 are not perfectly
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5.7 Optimal configurations

the mirror image of those at
t

T
= 1.125.

Figure 5.23: Vorticity fields during upstroke at
t

T
= 1.125 (left) and downstroke at t

T
= 1.625

(right) for an optimised thrust coefficient CT = 1 for N = 1, α0 = 10◦, h1 = 4.170, τ1 = 0◦,
α1 = −43.59◦, φ1 = 92.96◦, fr = 0.3665 and Rec = 1100.

Figure 5.24: Relative horizontal velocity fields
u

U0

during upstroke at t
T

= 1.125 (left) and during

downstroke at t
T

= 1.625 (right) for an optimised thrust coefficient CT = 1 for N = 1, α0 =
10◦, h1 = 4.170, τ1 = 0◦, α1 = −43.59◦, φ1 = 92.96◦, fr = 0.3665 and Rec = 1100.
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Despite the high lift and thrust coefficients, the propulsive efficiency remains accept-
able due to the leading-edge vortex which remains attached during the downstroke
(see figure 5.23(b)) and due to the relatively confined regions or separated flow dur-
ing the upstroke (see figure 5.24(a)). The relatively high γmax for the optimal thrust
cases is not surprising since high thrust is related to large-amplitude oscillations.
Likewise, it is not surprising to observe a decrease of the propulsive efficiency with
respect to the latter case due to a larger region of separated flow.

5.7.3 Practical configuration

The practical solution is the one adapted to a micro air vehicle configuration. It im-
plies sufficient lift and thrust forces, together with good propulsive efficiency. There-
fore, the angle of attack is maintained constant equal to 8◦ and then to 10◦, together
with fr = 0.3665 and Rec = 1100. The values for the angles of attack are chosen
in the range where thrust production is still possible and flow separation is limited,
resulting in good propulsive efficiency. The optimisation is done with respect to the
cost functional written as:

L = P̄ + 2F̄U0 + ǫ2αᾱ
2 + ǫ2hh̄

2(t).

First, the weights ǫ2α and ǫ2h are set to 15.14 and 1, respectively, to avoid very large
amplitudes of oscillations. The optimal results are summarized in table 5.6. The
thrust forces and the propuslive efficiency are moderate in this case.

α0 h1 α1 φ1 St γmax CL CP CT η
8◦ 3.397 −41.15◦ 84.95◦ 0.396 23.10◦ 0.790 1.240 0.516 0.419
10◦ 3.577 −45.47◦ 91.35◦ 0.417 19.95◦ 0.764 1.402 0.572 0.408

Table 5.6: Optimal kinematics yielding good thrust, lift and efficiency with limited oscillations
for N = 1, fr = 0.3665 and Rec = 1100.

Second, vanishing values are given to ǫ2α and ǫ2h eliminating thus the limitations on
the amplitudes of oscillations and giving rise to higher thrust coefficient and eventu-
ally higher propulsive efficiency.

The consequence is slightly larger η and relatively high thrust coefficient and, in
counterpart, large amplitudes both for heaving and pitching as shown in table 5.7.
The Strouhal number observed is not perfectly inside the range used by a large num-
ber of birds. This demonstrates that the motion of animals is adapted to fulfil more
complex criteria then a simple high lift, thrust or efficiency. In addition, they should
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be also able to manoeuvre, "battle" against wind gust, avoid fatigue and all this in
the presence of elastic feathered surfaces which are not taken into account in the
present study. Nonetheless, the optimal configurations described still can be applied
to vehicles achieving the desired performances and further progress can be done con-
sequently by including factors not yet accounted for.

α0 h1 α1 φ1 St γmax CL CP CT η
8◦ 3.957 −45.22◦ 90.85◦ 0.461 24.45◦ 0.874 2.063 0.885 0.429
10◦ 3.756 −46.29◦ 91.25◦ 0.438 22.59◦ 0.786 1.620 0.682 0.421

Table 5.7: Optimal kinematics yielding good thrust, lift and efficiency without limitation on
oscillation amplitudes for N = 1, fr = 0.3665 and Rec = 1100.

5.8 High order harmonics

As observed in §5.7.2, the propulsive efficiency decreases when high thrust forces
are sought. This behaviour is general since the maximum of η occurs often for very
small values of CT and then decreases for larger thrust forces. This explains also why
the optimal CT is relatively low when the high efficiency was favoured in the basic
configuration. The reason is that at high Strouhal numbers, the effective angle of
attack “seen” by the airfoil does not vary sinusoidally anymore and multiple peaks
appear together with sharp variations altering the vortical dynamics in a relevant
way. These irregularities in the effective angle of attack may be eliminated through
modifications to either or both the heaving and the pitching motions. Here, we
consider a correction on the heave in the same way as Read et al. (2003). In their
experimental work, they imposed an effective angle of attack γ(t) and they computed
the super-harmonics components in ḣ(t) which may cancel the undesirable variation
in the pitching angle α(t). They demonstrated that eliminating the multiple peaks
is possible by acting on the odd harmonics, namely the third and the fifth ones.
Here, a different approach, in the same spirit, is done to recover the decrease of η.
First, we impose that the heaving motion is monochromatic and we seek the heaving
amplitude h1 which yields a given thrust force. This work is done for various pitching
amplitudes, and for each one of them, the propulsive efficiency is reported. Then,
the heaving motion is imposed as:

h(t) = h1 sin(t+ τ1) + h3 sin(3t+ τ3) + h5 sin(5t+ τ5),

together with
α(t) = α1 sin(t+ φ1).
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The angles α0, α1, φ1 and τk for k ∈ {1, 3, 5} are imposed and the amplitudes h1, h3

and h5 are optimised to yield a given thrust force as in §5.7.2. This is also done for
various values of the pitching amplitude and the propulsive efficiency is compared to
the monochromatic case.

The impact of the high order terms is to include higher frequencies components
in the foil motion. This renders the numerical stability condition more severe by im-
posing a smaller threshold for the time step and leads to high-frequency oscillations
for the aerodynamic forces (cf. the vertical force in figure 5.25). This is another
reason for limiting the amplitudes of oscillations since very large amplitudes would
lead to a sinusoidal trajectory of the vehicle rather than straightforward motion.

However, the transient is not longer and one period of oscillation remains sufficient
for the flow establishment. Despite the excessively high lift forces in this case, the
average lift coefficient vanishes due to the fact that the mean angle of attack α0 is
zero.
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Figure 5.25: Temporal evolution of vertical force for long simulations with high order harmonics
in the case N = 3, α0 = 0◦, h1 = 3.524, h3 = 0.719, h5 = 0.212, τ1 = τ3 = τ5 = 0◦, α(t) =
−35◦ sin(t+ 90◦), fr = 0.3665 and Rec = 1100.

5.8.1 Optimised high order harmonics configurations

For the case of monochromatic oscillations, figures 5.26 and 5.27 show the variations
of the propulsive efficiency and the thrust coefficient with respect to the Strouhal
number for various pitching angles. As described previously, for a given pitching
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angle, the control is done on the heaving amplitude until a given value of the thrust
is found. This is done for a constant reduced frequency, i.e. the variations of the
Strouhal number are purely due to the variations of h1. While CT increases with
St, η has a maximum for an increasing Strouhal number when the pitching ampli-
tude is varied from −15◦ to −45◦. Higher thrust coefficients are also obtained for
large-amplitude oscillations. For small pitching amplitudes (α1 ∈ [−15◦,−25◦]), and
due to relatively smaller peak value, the decrease of η is very fast preventing the
possibility of using this range of angles in high thrust configurations. The values of
η for high thrust coefficients are better for α1 = −35◦ and especially for α1 = −45◦.
To improve this loss of performance, the high order terms are included.
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Figure 5.26: Variation of the propulsive efficiency (left) and the thrust force (right) with the
Strouhal number for various pitching amplitudes and N = 1, α0 = 0◦, 0◦τ1 =, φ1 = 90◦, fr = 0.3665
and Rec = 1100.

In figure 5.28, the efficiency is plotted versus the thrust coefficient for α1 = −25◦ and
α1 = −35◦, with and without the higher order terms. For α1 = −25◦, results shows
clearly that for CT larger than 1, the odd harmonics yield a better efficiency than the
monochromatic oscillations. The improvement can climb up to 21%, as in the case
of CT = 2.75. The difference is even larger when smaller amplitudes of pitching are
considered (α1 ∈ [−5◦,−15◦]). However, even the improved efficiency for these cases
is too low, which makes non-practical any use of this range. Moreover, the inclusion
of high order terms allows reaching more easily higher CT , since, for instance, in the
case α1 = −25◦, a CT = 3 was not accessible with monochromatic oscillations. The
summary of the kinematics yielding the imposed thrust coefficient for the N = 5
case are given in table 5.8.
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The importance of the amplitude of the higher order terms increases when the re-
quired thrust increases. This implies a higher Strouhal number due to larger maximal
amplitude of oscillations and a higher effective angle of attack γmax. Naturally, the
power required to the engine becomes very important for such thrust forces, but it
is smaller when the higher harmonics are included.
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Figure 5.27: Variation of the propulsive efficiency with the thrust force for various pitching
amplitudes and N = 1, α0 = 0◦, τ1 = 0◦, φ1 = 90◦, fr = 0.3665 and Rec = 1100.

h1 h3 h5 α1 φ1 St γmax CT η
3.247 0.452 0.012 −25◦ 90◦ 0.330 34.67◦ 1.300 0.374
3.505 0.503 0.104 −25◦ 90◦ 0.362 38.75◦ 1.600 0.323
3.589 0.608 0.223 −25◦ 90◦ 0.374 42.32◦ 2.000 0.280
3.670 0.681 0.225 −25◦ 90◦ 0.375 43.25◦ 2.250 0.265
4.102 0.694 0.144 −25◦ 90◦ 0.414 43.43◦ 2.500 0.258
4.241 0.720 0.195 −25◦ 90◦ 0.433 44.70◦ 2.750 0.245
4.352 0.833 0.211 −25◦ 90◦ 0.435 45.96◦ 3.000 0.243

Table 5.8: Optimal kinematics yielding imposed thrust for N = 5 acting on odd harmonics
together with α0 = 0◦ , fr = 0.3665 and Rec = 1100.

The comparison is less advantageous in the case α1 = −35◦ since some high order op-
timised configurations are found they yield a smaller efficiency then monochromatic
oscillations, and since the maximal increase of η , observed in the case of CT = 3,
does not exceed 7% . This is due to the relatively higher efficiency obtained for this
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pitching angle for large thrust forces, highlighted by the slower decrease of η ( cf. fig-
ure 5.27). The other possible reason is the possibility to find a different combination
of h1, h3 and h5 giving rise to the same thrust force but with higher efficiency. The
solutions, summarized in table 5.9, are obtained starting from a given set of initial
values and the optimal result is that having the initial conditions sufficiently close to
the local optimal solution. Despite the fact that starting from different initial con-
ditions yielded always the same optimum, there is no proofs of the uniqueness. The
higher efficiency in this case is due to lower maximum effective angle of attack lim-
iting the flow separation and to values of the Strouhal number closer to the optimal
range.
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Figure 5.28: Influence of the high order terms on the efficiency versus thrust coefficient variations
for α1 = −25◦ (left) and α1 = −35◦ (right) for α0 = 0◦, τ1 = τ3 = τ5 = 0◦, φ1 = 90◦, fr = 0.3665
and Rec = 1100.

We notice that the behaviour of the high order terms is quite similar for these two
angles, with an increasing amplitudes for increasing thrust forces. We may highlight,
for instance, that almost the same heaving motion is needed for both angles to pro-
duce a thrust coefficient equal to 2.5. The inclusion of the higher order terms is even
less interesting in the case α1 = −45◦, where only the case CT = 1.75, yielded a 1.8%
increase of η by passing from 0.443 in the monochromatic case to 0.451 for N = 5.
The associated optimal amplitudes are h1 = 4.032, h2 = 0.703 and h3 = 0.200. The
inclusion of the higher order terms for α(t) and/or the optimisation of the pitching
amplitudes and phase angles is possible, however, the computational cost will be
even more relevant.
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In figure 5.29, the heaving motion h(t) and the associated effective angle of at-
tack γ yielding a thrust coefficient CT = 2.75 at α1 = −25◦ are plotted for both
N = 1 and N = 5. The heaving motion becomes flattened out when high order
terms are included and the norm of the heaving motion, based on the maximal value
reached over a period, decreases implying a smaller Strouhal number closer to the
most efficient range; consequently, a higher η is observed. The effective angle of
attack experiences steepest variations and a multi-peak configuration. This result
is also different from the shape of the effective angle of attack observed when the
heaving and pitching amplitudes were optimised in §5.4. However, in that case, the
optimal cost function was in a range of thrust forces much lower than here, which
may explain this difference.

h1 h3 h5 α1 φ1 St γmax CT η
3.748 0.506 0.017 −35◦ 90◦ 0.330 27.98◦ 1.500 0.443
3.524 0.719 0.212 −35◦ 90◦ 0.352 32.96◦ 2.000 0.367
4.078 0.708 0.140 −35◦ 90◦ 0.410 33.43◦ 2.500 0.370
4.501 0.696 0.103 −35◦ 90◦ 0.456 33.99◦ 3.000 0.358
3.998 0.748 0.496 −35◦ 90◦ 0.437 37.63◦ 3.250 0.283
3.942 0.943 0.438 −35◦ 90◦ 0.401 39.93◦ 3.500 0.277

Table 5.9: Optimal kinematics yielding imposed thrust for N = 5 acting on odd harmonics
together with α0 = 0◦ , fr = 0.3665 and Rec = 1100.
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Figure 5.29: Influence of the high order terms on the heaving motion (left) and on the effective
angle of attack (right).
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This is not in contradiction with what Read et al. (2003) obtained experimentally,
because in their case, γ(t) was imposed and they found that multiple peaks and
sharp variations should be eliminated in α(t). In our case, α(t) is imposed, and the
efficiency increases when the heave motion is smooth and flat. This conclusion, high-
lighted by figure 5.29(a) can be generalised. Therefore, computations of high order
oscillations have been performed (without the optimisation approach) to understand
the influence of heave motion profiles on both thrust and efficiency.

5.8.2 Non-optimised configurations

Here, the heave motion is written more generally as:

h(t) = h1 sin(t) + h2 sin(2t) + h3 sin(3t) + h4 sin(4t) + h5 sin(5t),

together with:
α(t) = −35◦ sin(t+ 90◦).

A sample of the computations performed is given in table 5.10. The last column is
the value of the efficiency for the monochromatic oscillations extrapolated from the
curve for α1 = −35◦ in figure 5.27. The symbol − is given when no such high thrust
forces have been obtained for N = 1.

# h1 h2 h3 h4 h5 St γmax CT η η(N=1)

1 3.40 0 0.50 0 0.1 0.35 28.19◦ 1.32 0.443 0.436
2 2.75 0.50 0.50 0.50 0.50 0.35 39.36◦ 1.94 0.198 0.399
3 4.00 0.95 0.50 0 0 0.50 35.95◦ 2.16 0.307 0.385
4 2.00 0 1.75 0 0.50 0.35 80.61◦ 2.63 0.143 0.356
5 4.50 0 0.75 0 0.20 0.47 36.17◦ 3.30 0.326 0.317
6 4.00 1.00 0.62 0.62 0 0.50 40.22◦ 3.62 0.266 -
7 4.80 0 0.75 0 0.25 0.50 36.80◦ 3.68 0.315 -
8 1 0 1.825 0 1 0.35 94.57◦ 4.85 0.144 -
9 2.70 0 2.70 0 0.5 0.50 89.00◦ 8.89 0.187 -

Table 5.10: Non-optimised kinematics for high order harmonics together with α0 = 0◦, α1 =
−35◦, φ1 = 90◦ , fr = 0.3665 and Rec = 1100.

The comparison of the motion h(t) and γ(t), between the case 1, where the high
order terms increases the efficiency, and cases 2 and 4, where they highly decrease
it, confirms the interest of flat function without multiple peaks (see figure 5.30(a)).
In general, favourable cases are observed when the amplitude of the terms N > 1
are smaller than the fundamental amplitude. Consequently, the higher terms should
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be seen as a correction of the heave motion. When the terms are of the same order
of magnitude, larger thrust forces are generated such as the extremely high value
observed in case number 9. Despite this, the efficiency is very low, like in all the
other cases where γmax exceeds 40◦ see figure 5.30(b). Even if the number of peaks
in the curve of γ(t) is increased with respect to the monochromatic oscillations, it
is clear in figure 5.30(b) that case 1, which increased the efficiency, corresponds to
smoother function (independently from the figure scale).

In conclusion, the high orders terms may be advantageous for small pitching an-
gles, where the decrease of the efficiency is much faster when the thrust increases.
They can also be applied for large amplitudes of pitching oscillations, but in all
cases, higher harmonics should be a small correction of the fundamental, flattening
the heave motion and avoiding a relevant increase to the maximal effective angle of
attack.
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Figure 5.30: Heave motion (left) and effective angle of attack (right) for various high-order
configurations.

5.9 Frequency and Reynolds number effects

The value of the propulsive efficiency reached in the optimal configurations may
seem small since the highest value was roughly 50%, obtained for vanishing mean
angle of attack α0. Furthermore, the thrust coefficients may also seem modest for
configurations supposed to be optimal. This may be misleading by implying that
the optimisation approach is not efficient or that propulsion by flapping foils is not
as reliable as expected. A rebuttal to the second statement can be made by citing
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the numerous experimental measurements accomplished on animals and foils where
flapping resulted in propulsive efficiencies as high as 87% (Anderson, 1996; Read
et al., 2003). On the other hand, two main reasons justify the relatively low maximal
efficiency in the present work. The first is that the maximal efficiency was not at
any moment the real target of the optimisation, i.e. the efficiency was not considered
directly in the cost functional. As discussed in §5.8 and shown in figure 5.27, the
peak of η occurs for low thrust coefficients and a more or less slow decay follows.
Consequently, it is more interesting to set the motion slightly beyond this peak value,
where higher thrust forces are accessible without relevant loss of the efficiency. The
second reason is the low Reynolds number of the present simulations. The value of
Rec = 1100 has been chosen because it is a well documented case in the literature
which requires an affordable computational cost. However, for such a value of the
Reynolds number, the viscous effects are very important and they influence the flow
around the airfoil and the vortical patterns. One consequence of viscosity is the high
angle of attack for which the peak of the lift occurs (cf. figure 5.19) and another
is a lower propulsive efficiency. Moreover, both thrust and efficiency depend on the
physical frequency of flapping, which has been maintained constant in time for the
moment, and should instead be varied. High frequencies of oscillations produce much
larger thrust forces.

5.9.1 Reynolds number effect

Fixing all the other parameters, the Reynolds number is varied in the range [1000,4000]
and the propulsive efficiency is plotted in figure 5.31. Results for the configuration
N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦ and fr = 0.3665 show an
increase of 8.7% of the propulsive efficiency when the Reynolds number increases
from 1000 to 4000. The increase of η is due mainly to the increase of the thrust force
when Rec ∈ [1000, 1500], whereas it is due to the decrease of the required power for
Rec ∈ [1500, 4000].

The higher efficiency is related to more concentrated vortices in the wake. These
vortices are less spread and closer to each others as shown in figure 5.32(a) where
favourable interactions occur between the leading- and trailing-edges vorticity. Nat-
urally, the boundary layer thickness decreases and further increase of the Rec would
transform the wake into a sheet of vorticity.

The variation in terms of CT between the maximal and minimal values for Rec ∈
[1000, 4000] is of the same order of magnitude than the variation of η. Conse-
quently, the natural question to answer is whether the optimal kinematics, found
for Rec = 1100, remains optimal for higher Reynolds number of practical use, since
both the efficiency and the thrust forces depend on the Rec. The answer is probably
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positive. Comparisons in the literature between experiments and numerical simula-
tions for Rec = 40000 and 1000 respectively, showed a much higher dependence of
η with respect to Rec than CT (Anderson et al., 1998; Guglielmini and Blondeaux,
2004). The reason is that the thrust force is related to the pressure distribution
whereas the propulsive efficiency is related to both pressure and viscosity. The con-
jecture is that the pressure fields depend less on the Reynolds number than the
viscous effects as long as Rec remains in the range [103, 105].
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Figure 5.31: Variation of the propulsive efficiency (left) and the thrust force (right) with the
Reynolds number for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦ and fr = 0.3665.

The pressure distributions over the airfoil are plotted for Rec = 1100 and Rec = 3500
in figure 5.33. Here again, and depsite the positive value of the coefficient, the upper
curve corresponds to the suction side. The pressure coefficient experiences higher
values and steepest compressions are observed in the case of high Rec. The plateau
followed by a second compression at the pressure side at t = 1.125T is related to
the presence of a separation bubble which reattaches as one may see in figure 5.32.
The variation in Cpr is in contradiction with the fact that the pressure fields are less
dependent on Rec. A first explanation can be that the size of the investigated range
of Reynolds numbers is limited. Over larger ranges, the variations of η are expected
to be larger reaching roughly the value of 90%, observed experimentally. Over the
same wide range, CT should be less sensitive. The more plausible explanation is that
when Rec is increased, the hierarchy remains respected: if the thrust force for a first
set of parameters is higher than the thrust force for a second set of parameters at
Rec = 1100 this is also true at Rec = 3500, despite the different values of CT together
with a larger η for the larger Rec.
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Figure 5.32: Vorticity and relative horizontal velocity (
u

U0

) fields at
t

T
= 1.125 for N = 1, α0 =

0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦, fr = 0.3665 and Rec = 3500.
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Figure 5.33: Comparison of the pressure coefficient on the airfoil for Rec = 1100 and Rec = 3500
at t = 2π (left) and t = 2.25π (right) for N = 1, α0 = 0◦, h1 = 3, τ1 = 0◦, α1 = −35◦, φ1 = 90◦ and
fr = 0.3665.

No simulations were carried out for Reynolds number larger than 4000 due to their
prohibitive computational cost, but the optimisation for the basic configuration has
been carried out for Rec = 3000. The cost functional is the same with the weights
(1,2,15.14,1) respectively. The time-step was further reduced for this case. Close opti-
mal kinematics are reached since the triplet (h1, α1, φ1)=(2.854,−34.28◦, 83.90◦) has
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been found, yielding CT = 0.532 and η = 0.573. Compared to the case Rec = 1100,
the increase of the propulsive efficiency is qual to 14% whereas the variation on the
thrust force is within 4%.

In conclusion, the optimal configurations found in §5.7 should remain optimal for
higher Reynolds number with the advantage of higher η. Moreover, even without
reaching very high values of η and remaining in the range of 50%−60%, the flapping
flight has advantages over the fixed-wing flight as further discussed in Appendix A.

5.9.2 Reduced frequency effect

The physical frequency of oscillations f ∗ has a direct influence on whether the air-
foil produces thrust or drag and on the general topology of the wake. Two non-
dimensional numbers depend on this frequency. the Strouhal number and the reduced
frequency, defined as:

St =
f ∗A∗

U∗
∞

=
σ∗ ‖ h∗(t∗) ‖

πU∗
∞

=
fr ‖ h(t) ‖

π
, fr =

σ∗λ∗

U∗
∞

.

On the other hand, two Reynolds number were defined and related to each others:

Rec =
U∗
∞c

∗

ν∗
, Re =

σ∗λ2∗

ν∗
, Rec =

4Re

fr
.

Until now, the Strouhal number variations were due to modification of the heave
amplitude and consequently the wake width. Here, the physical frequency of the
motion is varied. This modifies the reduced frequency, and consequently, the Strouhal
number and the flapping Reynolds, while Rec is maintained constant equal to 1100.
This is done for three configurations that have already been optimised in §5.4, 5.5
and 5.7.2 for constant reduced frequency fr = 0.3665.

- Configuration 1: optimised pitching amplitude: α0 = 0◦, h1 = 2.5, α1 =
−31.91◦ and φ1 = 90◦, yielding CT = 0.280 and η = 0.423.

- Configuration 2: optimised phase angle: α0 = 0◦, h1 = 3, α1 = −35◦ and
φ1 = 80.5◦, yielding CT = 0.526 and η = 0.481.

- Configuration 3: optimised thrust force: α0 = 8◦, h1 = 3.477, α1 = −44.74◦

and φ1 = 90.19◦, yielding CT = 0.500 and η = 0.416.

In figure 5.34, the reduced frequency is varied in the range [0, 1]. Results show a large
increase of the thrust coefficient with the reduced frequency, due to an increase of the
Strouhal number, as in figure 5.26(b). The high values reached are very attractive
but the associated efficiencies render them less applicable.
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Figure 5.34: Effect of the reduced frequency on the the propulsive efficiency (left) and thrust
coefficient (right) for Rec = 1100.
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Figure 5.35: Effect of the Strouhal number on the propulsive efficiency by modifying the flapping
frequency.

For small reduced frequencies (fr < 0.3), and for the kinematics imposed here, a
classical von Karman street is produced together with a drag force. Furthermore, the
maximal propulsive efficiency is in the range, fr ∈ [0.3, 0.4]. This justifies the choice
of carrying out the case of constant fr = 0.3665, when the other control parameters
are studied. In terms of the Strouhal number, this corresponds to St ∈ [0.3, 0.4]
close to the optimal range found by Triantafyllou et al. (1993) and used by a many
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animals as shown by Taylor et al. (2003) and Bejan and Marden (2006) (see figure
5.35).

5.10 Gliding

Birds’ flight can be divided into four categories which are flapping, soaring, gliding
and hovering. The main difference between these modes is the number of cycles the
wings achieve per unit of time. Some birds are more adapted to some configurations.
For instance, the hummingbirds are true hoverers, able to flap their wings with a
frequency in the vicinity of 60 Hz to produce enough lift to sustain their weight,
without any forward speed. Eagles and hawks are very good in soaring configura-
tion, since they may use their wings motion occasionally with one or two minutes
between beats. They use the thermal difference of air, rising with warm air and de-
scending with cold one. The gliding configuration is used by a large number of birds,
even though, some species, like albatross, are real gliders since they use the motion
of their wings almost only during landing and take-off. The principle is that the
bird uses its weight to overcome air resistance to its forward motion. The aim is to
cover the maximal distance loosing the smallest possible height. This ratio can reach
one meter of height lost for 20 meters of forward motion on species like the black
vultures. The increase of the forward speed during gliding results in a faster descent.
However, the distance travelled remains almost constant, a result of the principle
of energy conservation and the equilibrium between potential and kinetic energies.
Birds may also gain height during gliding phases due to vertical air columns. This
same mechanism, used by gliders’ pilots, is accessible in presence of hills or thermal
plumes.

In the present section, a non-exhaustive investigation of this mechanism is carried
out. The solver allows to impose the heave and pitching motion of the wing. There-
fore, the flow is solved over an airfoil which performs an alternance of flapping motion
and gliding. A large number of parameters could be taken into account, and eventu-
ally optimised in the future. The most important between them are the duration of
the motion and the gliding phases, the position in which the wing stops to flap and
the way in which it does it. The variation of the bird’s mass of the body can also be
taken into account since gliding birds travel long distances with a stored amount of
energy within their body, a mass that they lose progressively. The first parameter
concerning the duration is governed by the will to avoid the fall down of the bird.
This implies a sufficient forward speed ensuring lift and thrust. Birds are perfect
closed-loop controlled system. They stop their wing in the optimal position avoiding
fast losses of height, forward velocity or lift. They adapt the angle of attack and the
camber of their wings during gliding in a way to accomplish the maximal distance
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before restarting to flap. Here, the bird is supposed to fly with the same velocity
during the flapping and the gliding phases. This means that, for an adequate angle
of attack, the lift force is ensured, but the thrust force of the bird, during the flap-
ping phase, will decrease due to the loss of energy of the drag forces. Therefore, we
may estimate the duration of the gliding phase at a given velocity before the thrust
force vanishes. Furthermore, the airfoil may stop flapping at any position thanks to a
slowing law. In the present work, and since gliding is not the core of this manuscript,
the stop is done impulsively, i.e. with a discontinuity of a kinematic variable. This
discontinuity can be for the acceleration or the velocities following the position of
the still airfoil. Consider the heave and the pitch motion written as:

{

h (t) = h1 sin(t), ḣ (t) = h1 cos(t), ḧ (t) = −h1 sin(t),
α (t) = α1 sin (t+ φ1) , α̇(t) = α1 cos(t + φ1), α̈(t) = −α1 sin(t+ φ1).

If φ1 = 90◦, stopping at t =
π

2
(or t =

3π

2
) implies a discontinuity on the heaving

acceleration and the pitching velocity, whereas stopping at t = π (or t = 2π) leads
to discontinuity on heaving velocity and pitching acceleration. A vanishing value of
φ1 leads to discontinuity on the same variables of heaving and pitching. Preliminary
computations showed a divergence in the case of a discontinuity of the heave velocity.
This corresponds to stopping in the position of a vanishing h(t) where the heaving
velocity is maximal in amplitude. Therefore, the airfoil was stopped at h(t) = ±h1.
Moreover, the position (h(t) and α(t)) were maintained constant during the gliding

duration. Consequently, the angle of attack is constant equal to α0 if we stop at t =
π

2

or t =
3π

2
for φ1 = 90◦. The main target is to estimate the gliding duration and to in-

fer whether the gliding phase increases the global propulsive efficiency of the animal.
Therefore, we consider, for the case N = 1, h1 = 3, τ1 = 0◦, α1 = −35◦, fr = 0.3665
and Rec = 1100, a series of simulation summarized in table 5.11 where Tstop is the
instant when the airfoil stops flapping, Trestart is the instant of in which it restarts
to flap from the same position where it stopped and Tfinish is the final instant, indi-
cating the total duration of the simulation.

CT and η in figure 5.36 are averaged values at the generic time t0 obtained as:

CT (t0) =
1

t0

∫ t0

0

CT (t)dt, η(t0) =
1

t0

∫ t0

0

η(t)dt.

A long time, corresponding to 5 times the flapping duration, is required before the
thrust force vanishes, when the airfoil is moving at a constant forward velocity.
However, it is rather deceiving to observe that the propulsive efficiency drops as soon
as the flapping motion stops. In the gliding phase, the power required for flapping
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vanishes and the non-averaged instantaneous horizontal force corresponds to the
drag of the NACA0012 airfoil at this Reynolds number. Therefore, η is influenced
by both the advantageous effect on the power and the negative effect on the thrust.
In this case, the effect of the drag is dominant, leading to an average decrease of
the propulsive efficiency. This imply that the bird would stop flapping for the only
reason of stopping the consumption of energy and relaxing its muscles. However,
the real configuration is much more complex than those simulated here, since the
angle of attack of the wing, its position and the velocity of the bird are modified and
adapted during the gliding period. A bird would favour during its gliding period the
mean angle of attack yielding the maximum lift-to-drag ratio. On the other hand, a
decrease of the forward velocity implies a decrease of the lift force that the animal
should recover with an increase of the angle of attack to sustain its weight. This
behaviour is also recovered for the case 2, 3 and 4.

Case α0 φ1 Tstop Trestart Tfinish Gliding position
1 0◦ 90◦ 4.5π N/A 20π h(t) = 3, α(t) = 0◦

2 10◦ 0◦ 4.5π 10.5π 20π h(t) = 3, α(t) = −35◦

3 10◦ 90◦ 6.5π 12.5π 20π h(t) = 3, α(t) = 0◦

4 10◦ 90◦ 7.5π 13.5π 20π h(t) = −3, α(t) = 0◦

Table 5.11: List of the gliding configuration simulated for N = 1, h1 = 3, τ1 = 90◦, α1 =
−35◦, fr = 0.3665 and Rec = 1100.
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Figure 5.36: Temporal evolution of the propulsive efficiency (left) and the thrust force (right)
during the gliding phase for Case 1.

133



5.10 Gliding

In figure 5.37, the instantaneous lift and thrust forces are plotted for the whole du-
ration of the simulations. We noted that 8 periods of oscillation time were necessary
before the vanishing of CT . Here, and due to the presence of a mean angle of attack
α0, a shorter time of 6π was considered for gliding. Cases 3 and 4 differ from each
others by a simple time translation of the curves showing the perfect establishment
of a periodic flow after the transients. This is not surprising since the angle of attack
of the airfoil is the same, whether it stops at the maximal or the minimal heave posi-
tion. Case 2 is very different since a vanishing phase angle leads to a maximal angle
of attack equal to α0 +α1 during the gliding phase. Consequently, the lift forces are
much larger during gliding but the drag forces increases to non affordable levels. In
this case, the average horizontal force changes sign even in less than 6π time. This
can be seen as another advantage of considering pitching oscillations which lead the
heaving one by an angle of 90◦, or a consequence of the higher thrust forces reached
in this case.
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Figure 5.37: Temporal evolution of the lift force (left) and the thrust force (right) during the
gliding phase for Case 2, 3 and 4.

This brief investigation of the gliding motion answers the two main questions ad-
dressed. The gliding time can be longer than the flapping time or at least of the
same order of magnitude. On the other hand, it is preferable to stop in the position
where the heaving velocity vanishes and with a very small pitching angle. The lift
in this case is due to the mean angle of attack. In the bird case, α0 is included in-
side α(t) and the stop is done much more smoothly. An optimisation of the various
parameters during gliding could be a very interesting topic, aiming at proving an
increase of the global efficiency.
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Conclusion

The results presented in this section allow to provide answers to the main issues
encountered in flapping airfoils. They showed that the optimisation approach is effi-
cient in driving the control parameters towards their optimal values known in nature
and literature. Hence, they have confirmed the optimal range for the Strouhal num-
ber used by animals. This has been done by modifying the wake width for a constant
flapping frequency and then inversely, by maintaining the wake width and modifying
the flapping frequency. A linear relation is found between the optimal amplitudes
for heaving and pitching, corresponding to a constant effective angle of attack. The
optimal range for the phase angle was also recovered here, in agreement with the
literature. This proves the adequacy of the cost functional adopted. Optimisation
of lift has produced very high lift coefficients. However, the flapping airfoil does not
produce thrust for the associated angles of attack. Therefore, small mean angles
of attack were considered, ensuring sufficient lift and thrust. The multi-parameters
optimisation has led to optimal configurations with high aerodynamic measures of
performances according to the mission of the vehicle. Then, high order harmonics
oscillations have been included to recover the loss of efficiency for high thrust coeffi-
cients. This has been done successfully for average amplitudes of pitching. Finally,
the effect of the Reynolds number and some representative gliding configurations
have been investigated, showing a positive influence on η by increasing Rec and
that, despite the possibility of long periods of gliding, the global efficiency does not
increase with the simple approach adopted.
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Summary and concluding remarks

During the last two decades, the skills and knowledge developed in the frame of
micro aircrafts and animals flights were joined to build man-made vehicles based
on locomotion available in nature. The case of flapping-wing micro air vehicles is
the perfect example of this union between two fields, the final goal being to pro-
duce improved robots. The main motivation is to mimic some levels of performance
not reached yet by fixed-wing vehicles. The ability of birds to fly over very long
distances, without interruptions, inspired the idea of building birds-like locomotion
vehicles. The aim of the present work has been to accomplish a step towards the
improvement of a vehicle autonomy by optimising the flapping motion. Once found,
the optimal parameters are compared to those observed in nature, in order to show
the natural evolution of animals towards optimised configuration. In practice, the
set of optimal kinematics can be then stored in the processor which pilots the vehicle
and used for different phases of the flight, including take-off, landing, cruise and high
speed phases. To reach this target, the principle is to construct an optimisation ap-
proach which yields the optimal parameters, mainly in terms of lift and thrust forces.

A large number of contributions on flapping foils exist in the literature. The ef-
fect of the various parameters has been largely studied by exploring the space of
variation of each. The originality of the present contribution resides in rendering
automatic the search of the optimal kinematics. This implies that one may impose a
given measure of performance and the solver, written during this thesis, will identify
the adequate kinematics. The measure of performance is directly related to the mis-
sion of the vehicle. Therefore, investigations of lift, thrust, propulsive efficiency or
any possible functional combining these measures has been carried out. The other
originality resides in the techniques of optimisation which has been applied to the
flapping airfoil problem, namely the sensitivity approach and the complex step deriv-
ative method.

The principles of the optimisation are based on the direct numerical solution of
the flow field around a flapping airfoil in an incompressible low Reynolds number
configuration. Then, and according to the specific the mission to be accomplished,
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a cost functional is defined and its gradients, with respect to the physical variables
influencing the kinematics, are evaluated. This is done by solving a similar system to
the flow equations (sensitivity technique) or by writing the direct system of equations
in complex space (complex step derivative method). The value and the sign of the
gradients are used to update the control parameters with a quasi-Newton algorithm.
Vanishing gradients ensure the optimum of the cost function and the associated kine-
matics can be applied to the micro air vehicle.

After having summarized the previous contributions, analysed the natural mech-
anisms and described the flapping motion, the pure mathematical problem has been
set by writing its five components: the non-dimensional equations solving the flow
field around the airfoil, the cost functional, the control parameters, the equations
computing the gradient of the cost functional with respect to the kinematics and
the parameters’ update algorithm. The problem is solved in the moving reference
frame which renders the equations more complex, while simplifying the boundary
conditions. The numerical issues have been addresses and a grid yielding a good
accuracy-to-computational cost has been identified. It ensures a physical validity
of the boundary conditions for the duration of the unsteady numerical simulations,
typically equal to two periods of oscillations. It is built with roughly 0.25 million
nodes distributed in a domain equal to 11 chord lengths. Spatial discretization is
done with centred finite differences scheme and time advancement with first-order
upwind scheme, performing between 10000 and 20000 temporal steps for each period
of oscillations.

Sensitivity fields of a variable have a similar topology of the field of this same variable.
They highlight the important role played by the airfoil’s leading- and trailing-edges.
Optimisation of amplitudes showed that the high efficiency is related to limited
separation of the flow during the flapping motion. This is observed through a lin-
ear dependence between the optimal heaving and pitching amplitudes leading to a
roughly constant maximal effective angle of attack in the range [10◦, 12◦]. Optimisa-
tion of the phase angle proved the interest of considering pitching oscillations leading
the heaving ones by an angle in the range [70◦, 90◦] in agreement with the results
of Isogai et al. (1999) and Fampton et al. (2001). This is due to the positive inter-
actions of the vorticity shed by the airfoil leading- and trailing-edges. Investigation
of lift demonstrated the ability of flapping airfoil to produce high lift coefficients.
This is useful due to their light mass and sensitivity to harsh atmospheric conditions
and their relatively slow forward velocity. The peak of lift is observed for relatively
high maximal effective angles of attack in the range [39◦, 48◦]. This is mainly related
to the low Reynolds number used here. The peak of lift-to-drag ratio for the same
airfoil when it does not flap is obtained for an angle of attack equal to 11◦. This
shows a correspondence between the mean angle of attack and the maximal effec-
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tive angle for still and flapping airfoils, respectively. It also shows that lift-to-drag
and propulsive efficiency are favoured by similar conditions. The optimisation of the
non-dimensional frequency of flapping, the Strouhal number (St), has been achieved
by acting on both the physical frequency of flapping and the wake width. Both at-
tempts have yielded an optimal St in the range [0.25, 0.40], close to the values for
optimal efficiency found numerically and experimentally (Triantafyllou et al., 1993)
and widely spread in nature (Taylor et al., 2003; Bejan and Marden, 2006).

Having studied the effect of each parameter separately, a multi-parameters opti-
misation is carried out to find the optimal kinematics for various missions. The
optimisation is always carried out for one single adapated functional by acting on
many parameters, in opposition to a multi-functional optimisation. Results have
demonstrated the ability of a flapping airfoil to fulfil its duties in terms of aero-
dynamic forces production. The real dilemma is to ensure both high thrust and
propulsive efficiency. The first is favoured by large-amplitude oscillations, leading to
high Strouhal number and maximal effective angle of attack, the second is favoured
by small oscillations with minimum flow separation. Additionally, the constraints
acting on the airfoil, such as the limitation on the maximal amplitude of the os-
cillations are contained in the cost functional adopted. Acceptable combinations of
flapping parameters have been identified but the optimal efficiency has been found
smaller than values reported in the literature and observed in nature. Three attempts
were done to increase this maximal efficiency.

First, more complex motions were used, including high order harmonics oscillations.
The effect of this approach is interesting for high thrust coefficients and for moderate
pitching amplitude in the vicinity of −25◦. For larger amplitudes, the decrease of
efficiency is slower for high thrust and the approach is not justified. For smaller
amplitudes, efficiencies and associated thrust coefficients are very poor. Second, the
effect of increasing the Reynolds number, Rec, is analysed. Reducing the viscous
forces improved the efficiency but the prohibitive computational cost prevented the
study of realistic Reynolds numbers. However, it is discussed that the optimal kine-
matics found here would remain valid for higher Reynolds number configurations,
with higher efficiency. This is confirmed by the agreement of the optimal kinemat-
ics with those of the literature obtained experimentally for higher Rec. Third, the
impact of gliding phases was observed by applying very simple alternance law of
flapping and gliding. Results showed the ability of the two-dimensional airfoil to use
gliding for long duration but the global efficiency decreased. This is probably due to
the simplicity of the configuration analysed, since the forward speed and the position
of the airfoil were maintained constant during the gliding phase, whereas in reality
the velocity of the bird is variable and the position of its wing is adapted.
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It may be stated that that the present study has fulfilled its principal objectives.
However, extensions of the present work can be carried out and divided into two
categories. First, the perspectives directly related to the present work, as a deeper
insight of the Reynolds number effect in the same way than Ohmi et al. (1990)
should be done for the optimised configurations. This is valid also for the higher
order harmonics, where the works of Read et al. (2003) can be extended and gener-
alised for better improvements of the efficiency by including higher terms for pitch-
ing motions and by controlling the pitching amplitudes and the phases angles. The
three-dimensional effects should also be addressed. Here, we focused on the case of
a two-dimensional airfoil where no tips vortices and induced drag are included. This
aspect is very important since birds wings and especially fish fins have an aspect
ratio close to one, amplifying the role of the tips. Furthermore, a three dimensional
approach would favour the investigation of the lateral forces and flight stability with
a thorough analysis of the role of torques, which has been mainly neglected in the
present study. Finally, a gliding optimisation may be carried out by controlling the
parameters influencing this phase, precisely the gliding duration, and the position
and behaviour of the wing during this period. Secondly, Other perspectives linked
to the present work but with major variations of the solver may be done. This refers
to taking into account the elasticity, the presence of feathers and their influence on
the shape of the wing tips. Such a study requires the resolution of fluid-structure
interaction problems. It may be done in a compressible flow configuration where a
noise-linked cost functional can possibly be defined and optimised, or in an incom-
pressible solver with noise propagation laws for the far-field. In fact, noise generated
by flapping wings is a real issue due to large fluctuations of the pressure and conse-
quently to unsteady forces on the airfoil. This renders prototypes very noisy, whereas
they are supposed to be stealthy.

In conclusion, the efforts done in various domains should be put together to build, in
the near future, vehicles with better levels of performances and especially with longer
autonomy. Despite still being far away from performances achieved by animals in
nature, things are evolving in the right direction. The proof that animals are still
more evolved than man-made vehicles in this PhD thesis should not be seen as a
pessimist message. The future contributions should probably focus on the elasticity
and its role, the ultimate objective being to build, someday, micro air vehicles with
performances as good as mounting a camera on a living bird.
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Conclusions finales

Durant les deux dernières décennies, les progrès accomplis au niveau des micro-
robots et de la mécanique animale ont été mis en commun pour produire des mirco-
véhicules améliorés. Le cas d’un micro-drone à ailes battants est le parfait exemple de
cette union entre les deux domaines. L’objectif principal étant d’atteindre les hauts
niveaux de performance observés dans la nature chez des animaux ayant une dimen-
sion et un mode de propulsion similaires. En particulier, le but de cette thèse a été de
contribuer à l’amélioration de l’autonomie d’un micro-véhicule en optimisant le bat-
tement de l’aile en terme de forces de poussée, de portance et d’efficacité propulsive.
Une fois identifiée, ces cinématiques optimales sont comparées à ce qu’on observe
dans la nature chez les oiseaux, les insectes et les poissons. Une correspondance en-
tre les deux montrent que les animaux ont naturellement optimisé leur mouvement
de sorte à limiter les pertes d’énergie, leur permettant ainsi de parcourir des distances
maximisées.

Un grand nombre de contributions existe dans la littérature et traite le sujet du
battement d’aile. L’effet de chaque paramètre a été identifié par le balayment dans
l’espace des paramètres. L’originalité de l’étude actuelle réside dans l’automatisme
de la recherche des paramètres optimaux. Pour chaque phase ou mission du micro-
drone correspond une fonctionnelle coût à qui correspond une cinématique optimale.
Ainsi, pour la croisière, l’efficacité propulsive peut être avantagée alors qu’un accent
est mis sur la poussée dans les phases d’accélération. L’autre originalité provient de
l’utilisation de techniques nouvelles comme la sensibilité et le pas complexe dans le
cadre de l’optimisation du battement d’une aile.

Le principe de l’optimisation est basé sur la résolution numérique de l’écoulement
autour d’un profile d’aile soumis à des oscillations de translation et de rotation com-
binées à un faible nombre de Reynolds. Par la suite, et suivant l’objectif requis, une
fonctionnelle coût est définie et son gradient par rapport aux paramètres de contrôle
est calculé. Le contrôle est réalisé notamment sur les amplitudes des oscillations,
leur déphasage et leur fréquence. Enfin, le signe et la valeur du gradient permet à
travers un algorithme du type quasi-Newton d’actualiser la valeur du paramètre de
contrôle jusqu’à ce que la valeur optimale soit atteinte. La simulation numérique est
effectuée sur un maillage d’environ 0.25 million de mailles distribuées dans un do-
maine circulaire de rayon supérieur à 11 cordes et dont la moitié et dans un cercle de
rayon inférieur à 3 cordes. L’aspect instationnaire du problème exige une résolution
temporelle avec 10000 à 20000 pas de temps requis pour chaque période d’oscillation.

L’optimisation des amplitudes a montré que la haute efficacité propulsive est re-
liée au cas de séparation minimale de l’écoulement durant le battement du profile.
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Ceci est confirmé par une valeur maximale de l’angle d’attaque effectif "vu" par l’aile
et qui doit rester dans l’intervalle [10◦, 12◦]. D’autre part, des oscillations angulaires
qui précèdent celles verticale d’un angle dans l’intervalle [70◦, 90◦] a un impact positif
sur le rendement en accord avec les résultats de Isogai et al. (1999) et Fampton et al.
(2001). Ceci est notamment dû à une interaction constructive entre le tourbillon du
bord d’attaque qui reste attaché durant presque tout le cycle du battement avant de
venir renforcer le tourbillon du bord de fuite.

En outre, un profil d’aile battue est capable de produire des larges forces de por-
tance et même si l’angle de portance maximale pour une aile battue à faible nombre
de Reynolds est assez élévé, l’angle donnant un rapport de portance et traînée maxi-
mal pour un profil fixe est de 11◦. Comparant cette valeur à l’intervalle optimale pour
le maximum de l’angle d’attaque effectif pour une aile battue montre que les 2 angles
jouent le même rôle et que l’optimisation de la portance et celle de la poussée sont
complémentaires nécessitant une réduction des zones de séparation de l’écoulement.
D’autre part, l’optimisation de la fréquence adimensionelle du battement a montré
qu’en terme d’efficacité propulsive, l’intervalle optimal est celui qu’on observe chez
un grand nombre d’êtres vivants, à savoir un nombre de Strouhal entre 0.25 et 0.40
en accord avec Taylor et al. (2003) et Bejan and Marden (2006).

Après avoir étudié l’effet séparé de chaque paramètre, une optimisation multi-paramètres
a été realisée pour des objectifs liés à la poussée, la portance et le rendement. Un
compromis doit être trouvé vu que l’augmentation de la poussée s’accompagne par
une chute plus ou moins rapide de l’efficacité propulsive. Un moyen de réduire cette
chute est d’inclure les termes d’ordre supérieur dans les oscillations de translation.
Ceci a été fait avec succès dans le cas d’une amplitude de tangage dans le voisi-
nage de −25◦. D’autre part, le cas d’un plus grand nombre de Reynolds a permis
d’augmenter le rendement en limitant les pertes visqueuses. En revanche, les varia-
tions sur la cinématique optimale en augmentant le nombre de Reynolds sont assez
limitées. Enfin, une étude simpliste du vol plané a permis de démontrer l’aptitude
d’un profile battant à adopter cette configuration durant une longue durée avant que
sa poussée ne s’annule. Cependant, le rendement global n’a pas été amélioré durant
cette phase.

Dans le futur, cette configuration de vol plané peut être étudiée en considérant
l’ensemble des paramètres présents notamment le ralentissement du véhicule ou
l’animal durant cette phase et la manière dont l’animal arrête son battement et
le reprend. En outre, le cas d’une aile tridimensionnelle serait plus réaliste notam-
ment à cause du rapport d’aspect des ailes chez les animaux qui rendent les effets de
bord trés importants. Enfin, cette étude peut être correlée à d’autres contributions
traitant l’élasticité des ailes, la forme des plumes ou la manipulation de la vorticité
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pour réaliser à l’avenir des meilleurs vehicules.
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Appendix A

Comparison of fixed- and

mobile-wing powers

Kroo and Kunz (2001) compared the power required for a forward flight of a full-scale
aircraft with fixed wings and for hovering conditions at small scale. They showed
that hovering requires substantially more power than does forward flight at human

scale since a fixed wing aircraft needs to produce a thrust equal to
W ∗

L∗

D∗

whereas a

mobile-wing aircraft require a thrust equal to W ∗, where W ∗ is the weight of the
aircraft, L∗ its global lift force, D∗ the global drag force and the superscript ∗ de-
notes a dimensional quantity. This implies that if the wing lift-to-drag ratio is small,
the difference between the required powers for forward and hovering flights is less
significant.

The power required by a fixed-wing aircraft to maintain its level flight is:

P ∗
fixed =

T ∗U∗
∞

ηp
=

[
W ∗

L∗

D∗

] (
2W ∗

ρ∗S∗

0
CL

)0.5

ηp

and the power required for hover is:

P ∗
hover =

T ∗V ∗
h

M
=

[W ∗]
(

W ∗

2ρ∗S∗

0

)0.5

M

where T ∗ is the thrust force, U∗
∞ the forward speed of the fixed-wing aircraft, ηp the

propulsive efficiency of the aircraft propeller, ρ∗ is the air density, S∗
0 a reference

surface, CL the lift coefficient, V ∗
h the induced velocity in hover and M the rotor

figure of merit. Hence, the ratio of these two powers is:
(

P ∗

W ∗

)

hover(
P ∗

W ∗

)

fixed

=
[(L∗/D∗)ηp(W

∗/2ρ∗S∗
0)

0.5]

[M(2W ∗/ρ∗S∗
0CL)0.5]

.
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So if we consider the same density of air and the same reference surfaces, this ratio
becomes: (

P ∗

W ∗

)

hover(
P ∗

W ∗

)

fixed

=
L

D

(
CL

4

)0.5
ηp

M
.

Moreover, if the rotor figure of merit and the propeller efficiency is of the same order
of magnitude (roughly between 0.75 and 0.8), we reach the relation:

(
P ∗

W ∗

)

hover(
P ∗

W ∗

)

fixed

L

D

(
CL

4

)0.5

.

Hence, for an MAV of 15-cm wing span a lift-to-drag ratio L
D

= 5 and a lift coefficient
CL = 0.2, a hovering vehicle would require only 12% more power than the fixed wing
device; whereas for a full scale prototype, L

D
= 35 and CL = 1 which implies that

hovering require 17.5 times the power needed for straightforward flight.

We address now the configuration of straightforward flight on both a full scale aircraft
and a flapping-wing MAV. We can show that a flapping-wing configuration requires
less power than a fixed-wing one and that even if the pure propulsive efficiency is
lower. The latter statement does not mean that flapping-wing is less efficient. It
means that due to flapping, the thrust generated by the wing counterbalance its
drag and there is no need for supplementary power from the motors to overcome
this drag like in the fixed-wing configuration. Consider the case of forward flight
with a constant velocity for the two configurations. A constant velocity implies a
vanishing acceleration, and thus a balance of forces. Hence, neglecting the drag due
to interactions of body and wings, we have:

For fixed-wing configuration: Tfixed = Dwing +Dbody

For flapping-wing configuration: Tmobile = Dbody

where T refers to the thrust developed by the vehicle in each configuration and
D denotes the drag. Now and for simplification, assume that the drag of the body
is the same when the MAV flaps or not. This leads to:

TfixedV0 = TflappingV0 +DwingV0,

where V0 is the constant forward velocity of the vehicle in both cases. If we denote by
ηflapping and ηfixed the propulsive efficiencies, we can substitute the latter equation
by :
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Comparison of fixed- and mobile-wing powers

ηfixedPfixed = ηflappingPflapping + Pwing,

where P is the power supply. This implies that:

Pflapping

Pfixed

=
ηfixed

ηflapping

− 1

ηflapping

Pwing

Pfixed

If we assume typical performances of the fixed-wing configuration, where ηfixed = 0.8
and the power dissipated to overcome the wing drag almost 0.3 of the total required
power, the latter equations implies that a flapping efficiency ηflapping = 50% is enough
to have a comparable required powers in the two cases. This shows that even if the
flapping efficiency is lower, the required power is still smaller in this configuration.
However, experimental data proved that the efficiency of flapping can be as high as
roughly 90%. Consequently, in addition to higher efficiency, the ratio of the required

powers
Pflapping

Pfixed
becomes equal to 0.55.

Obviously, this demonstration is rendered simple by a lot of arguable assumptions.
Nonetheless, it still provides an idea about the benefit of flapping-wing configuration.
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Appendix B

Reference systems and

transformations

(x, y) is the laboratory fixed reference, (X, Y ) the moving reference related to the
motion of the airfoil whereas (xα, yα) is the aerodynamic reference. The relation
between these frames is:







X = xα cos(α(t) − α0) + (yα − h(t)) sin(α(t) − α0),

Y = −xα sin(α(t) − α0) + (yα − h(t)) cos(α(t) − α0).
(B.1)

To obtain the relations between the frames (x, y) and (X, Y ), it is enough to impose
α0 = 0 in the above equations.







xα = X cos(α(t) − α0) − Y sin(α(t) − α0),

yα = h(t) +X sin(α(t) − α0) + Y cos(α(t) − α0).
(B.2)

By assuming the airfoil to be a Joukowski profile, the domain around the airfoil is
mapped outo the field external to a circle of radius r0 = λ + e + s by means of the
transformation: 





X = ξ + λ2 ξ − e

(ξ − e)2 + χ2
+ d− e

Y = χ− λ2 χ

(ξ − e)2 + χ2

(B.3)

where λ, d and e are distances which depend on the chord length of the airfoil, the
position of the pitching centre and the thickness of the airfoil respectively, whereas
s is a small value which allows to round off the trailing-edge of the airfoil. The
dimensionless values for all computations where taken as λ = 1, d = 0.667, e = 0.075
and s = 0.038 when the scale length is λ∗ such as λ∗ = 0.248c∗ and c∗ the dimensional
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Reference systems and transformations

chord length of the airfoil. This value corresponds roughly to the position of the
aerodynamic centre of the airfoil. The Jacobian which allows the transformation
between the (X, Y ) and (ξ, χ) is expressed as:

J = 1 +
1 − 2 (ξ − e)2 + 2χ2

[
(ξ − e)2 + χ2

]2 .

A polar reference (r, θ) is used in the Joukowski plane with:

{
ξ = r cos θ,
χ = r sin θ.

(B.4)

A logarithmic law (Braza et al., 1986) is introduced to refine the radial distribution
of points in the radial direction as to ensure a better resolution near the airfoil:

z = ln(r + a)

with a =
R2

int − Rmaxr0
Rmax + r0 − 2Rint

, where Rmax is the radius of the computational domain

and Rint an intermediary radius such that half of the points in the radial direction
are between the airfoil and Rint. The effect of the choice of these radii is discussed
in §4.1. This value of a ensures that the dimensional grid size close to the body
is always 10 times smaller than the approximated thickness of the boundary layer
computed by Stokes and Blasius formulae (Guglielmini, 2004). This is confirmed by
the study of the flow fields in order to evaluate the number of grid nodes inside the
boundary layer (cf. §4.1). The numerical resolution is done in the (z, θ) frame.

The derivative of equations B.1 and B.2 allow to find the relation between veloc-
ities in different references. We denote by (u, v), (uα, vα) and (U, V ) the components
of velocity in the laboratory, aerodynamic and moving reference frames, respectively.
Under these conditions:






uα = (U − α̇(t)Y ) cos(α(t) − α0) − (V + α̇(t)X) sin(α(t) − α0)

vα = (U − α̇(t)Y ) sin(α(t) − α0) + (V + α̇(t)X) cos(α(t) − α0) + ḣ(t)
(B.5)

Here again, (u, v) can be obtained by imposing α0 = 0.
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Appendix C

Details of the flow and sensitivity

equations

C.1 Flow equations

The dependence of the direct variables upon the control parameters can be writ-
ten explicitly when expressing these variables in the airfoil-related reference frame
(X, Y ). We write the direct variables as follows:

- Mean power:

P̄ = − 1

T

∫ T

0

[

FX(t) sin (α(t)) ḣ(t) + FY (t) cos (α(t)) ḣ(t) +Mz(t)α̇(t)
]

dt,

- Mean horizontal force:

F̄ =
1

T

∫ T

0

[FX(t) cos (α(t) − α0) − FY (t) sin (α(t) − α0)] dt,

- Mean vertical force:

L̄ =
1

T

∫ T

0

[FX(t) sin (α(t) − α0) + FY (t) cos (α(t) − α0)] dt,

where T is the non-dimensional period of oscillation (= 2π), FX , FY and Mz are
respectively the horizontal and vertical forces in the airfoil related frame (X, Y ) and
the torque acting on the airfoil. These quantities depend on the pressure and velocity
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Details of the flow and sensitivity equations

gradients at the foil surface through the relations:







FX =

∫ 2π

0

(

−p∂Y
∂θ

+
2

Re

[
∂Y

∂θ

∂U

∂X
− 1

2

∂X

∂θ

(
∂U

∂Y
+
∂V

∂X

)])

dθ,

FY =

∫ 2π

0

(

p
∂X

∂θ
+

2

Re

[
1

2

∂Y

∂θ

(
∂U

∂Y
+
∂V

∂X

)

− ∂X

∂θ

∂V

∂Y

])

dθ,

MZ =

∫ 2π

0

p

(

X
∂X

∂θ
+ Y

∂Y

∂θ

)

dθ

+

∫ 2π

0

2

Re

[

−X∂X

∂θ

∂V

∂Y
+

1

2

(

X
∂Y

∂θ
+ Y

∂X

∂θ

)(
∂U

∂Y
+
∂V

∂X

)

− Y
∂Y

∂θ

∂U

∂X

]

dθ,

where U and V are the velocity components in theX and Y directions. The resolution
of the flow equations (2.2) allows to determine the vorticity and stream function fields
and consequently the velocity and pressure fields. The pressure is recovered from the
equation:

p(θ) = p0 +

∫ θ

0

(
∂p

∂X

∂X

∂θ
+
∂p

∂Y

∂Y

∂θ

)

dθ,

where p0 is a reference pressure and







∂p

∂X
=

[

α̈(t)Y + α̇2(t)X − ḧ(t) sin(α(t))
]

+
1

Re

[
∂2U

∂X2
+
∂2U

∂Y 2

]

,

∂p

∂Y
=

[

−α̈(t)X + α̇2(t)Y − ḧ(t) cos(α(t))
]

+
1

Re

[
∂2V

∂X2
+
∂2V

∂Y 2

]

.

Derivatives of the velocity components can be expressed in terms of the stream
function as:







∂U

∂X
= −∂V

∂Y
=

1

J2

[

cos 2θ
∂X

∂ξ

∂Y

∂ξ
+

sin 2θ

2

(
∂Y

∂χ

∂X

∂ξ
+
∂Y

∂ξ

∂X

∂χ

)]
∂2ψ

∂r2
,

∂U

∂Y
+
∂V

∂X
=

1

J2

[

cos 2θ

((
∂X

∂χ

)2

−
(
∂X

∂ξ

)2
)

− 2 sin 2θ
∂X

∂χ

∂X

∂ξ

]

∂2ψ

∂r2
,

whereas the Laplacian of U and V are written in terms of the vorticity as:







∆U =
1

J

∂X

∂χ

[

cos θ
∂ω

∂r
− sin θ

r

∂ω

∂θ

]

− 1

J

∂X

∂ξ

[

sin θ
∂ω

∂r
+

cos θ

r

∂ω

∂θ

]

,

∆V =
1

J

∂Y

∂χ

[

cos θ
∂ω

∂r
− sin θ

r

∂ω

∂θ

]

− 1

J

∂Y

∂ξ

[

sin θ
∂ω

∂r
+

cos θ

r

∂ω

∂θ

]

.

151



C.2 Sensitivity equations

C.2 Sensitivity equations

C.2.1 The gradient terms

The derivatives included in the gradient are computed through the following relations
obtained by the derivation of the relations in §C.1 with respect to the generic control
g :







∂FX

∂ω

dω

dg
= −

∫ 2π

0

(
∂p

∂ω

dω

dg

)
∂Y

∂θ
dθ,

∂FX

∂g
= −

∫ 2π

0

(
∂p

∂g

)
∂Y

∂θ
dθ,

∂FY

∂ω

dω

dg
=

∫ 2π

0

(
∂p

∂ω

dω

dg

)
∂X

∂θ
dθ,

∂FY

∂g
=

∫ 2π

0

(
∂p

∂g

)
∂X

∂θ
dθ,

∂Mz

∂ω

dω

dg
=

∫ 2π

0

(
∂p

∂ω

dω

dg

)(

X
∂X

∂θ
+ Y

∂Y

∂θ

)

dθ,
∂Mz

∂g
=

∫ 2π

0

(
∂p

∂g

)(

X
∂X

∂θ
+ Y

∂Y

∂θ

)

dθ,







∂p

∂ω

dω

dg
=

∫ 2π

0

−∂X
∂θ

1

ReJ

([

−∂X
∂χ

cos θ +
∂X

∂ξ
sin θ

]
∂ω,g

∂r
+

1

r

[
∂X

∂χ
sin θ +

∂X

∂ξ
cos θ

]
∂ω,g

∂θ

)

dθ

+

∫ 2π

0

∂Y

∂θ

1

ReJ

([
∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

]
∂ω,g

∂r
− 1

r

[
∂Y

∂χ
sin θ +

∂Y

∂ξ
cos θ

]
∂ω,g

∂θ

)

dθ,

∂p

∂g
=

∫ 2π

0

∂

∂g

(

α̈(t)Y + α̇2(t)X − ḧ(t) sin(α(t))
) ∂X

∂θ
dθ

+

∫ 2π

0

∂

∂g

(

−α̈(t)X + α̇2(t)Y − ḧ(t) cos(α(t))
) ∂Y

∂θ
dθ,







∂MZ

∂ψ

dψ

dg
=

∫ 2π

0

(
2

ReJ2

)(

X
∂X

∂θ
− Y

∂Y

∂θ

)[

cos 2θ
∂X

∂ξ

∂Y

∂ξ
+

sin 2θ

2

(
∂Y

∂χ

∂X

∂ξ
+
∂Y

∂ξ

∂X

∂χ

)]
∂2ψ,g

∂r2
dθ

+

∫ 2π

0

1

Re

(

X
∂Y

∂θ
+ Y

∂X

∂θ

)
1

J2

[

cos 2θ

((
∂X

∂χ

)2

−
(
∂X

∂ξ

)2
)

− 2 sin 2θ
∂X

∂χ

∂X

∂ξ

]

∂2ψ,g

∂r2
dθ,
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Details of the flow and sensitivity equations

and







∂FX

∂ψ

dψ

dg
=

1

Re

∫ 2π

0

2

J2

∂Y

∂θ

[

cos 2θ
∂X

∂ξ

∂Y

∂ξ
+

sin 2θ

2

(
∂Y

∂χ

∂X

∂ξ
+
∂Y

∂ξ

∂X

∂χ

)]
∂2ψ,g

∂r2
dθ

− 1

Re

∫ 2π

0

1

J2

∂X

∂θ

[

cos 2θ

((
∂X

∂χ

)2

−
(
∂X

∂ξ

)2
)

− 2 sin 2θ
∂X

∂χ

∂X

∂ξ

]

∂2ψ,g

∂r2
dθ,

∂FY

∂ψ

dψ

dg
=

1

Re

∫ 2π

0

2

J2

∂X

∂θ

[

cos 2θ
∂X

∂ξ

∂Y

∂ξ
+

sin 2θ

2

(
∂Y

∂χ

∂X

∂ξ
+
∂Y

∂ξ

∂X

∂χ

)]
∂2ψ,g

∂r2
dθ

+
1

Re

∫ 2π

0

1

J2

∂Y

∂θ

[

cos 2θ

((
∂X

∂χ

)2

−
(
∂X

∂ξ

)2
)

− 2 sin 2θ
∂X

∂χ

∂X

∂ξ

]

∂2ψ,g

∂r2
dθ.

C.2.2 The kinematics

Solving the sensitivity equations, computing the boundary conditions and evaluating
the gradient requires to compute a number of derivatives which depend on the choice
of the control parameter. In the previous section, we kept the generic parameter g for
all computations. Here, the derivatives for different choices of g are given. All these
derivatives can be deduced from 6 fundamental ones corresponding to the derivatives
of h(t), ḣ(t), ḧ(t), α(t), α̇(t) and α̈(t). We recall that:







h(t) =
N∑

k=1

hk sin(σkt+ τk), α(t) =
N∑

k=1

αk sin(σkt+ φk),

ḣ(t) =

N∑

k=1

hkσk cos(σkt+ τk), α̇(t) =

N∑

k=1

αkσk cos(σkt+ φk),

ḧ(t) = −
N∑

k=1

hkσ
2
k sin(σkt+ τk), α̈(t) = −

N∑

k=1

αkσ
2
k sin(σkt+ φk).

Case 1: g = hk or g = τk






∂ (h(t))

∂hk

= sin(σkt+ τk),
∂ (h(t))

∂τk
= hk cos(σkt+ τk),

∂
(

ḣ(t)
)

∂hk
= σk cos(σkt+ τk),

∂
(

ḣ(t)
)

∂τk
= −hkσk sin(σkt+ τk),

∂
(

ḧ(t)
)

∂hk
= −σ2

k sin(σkt+ τk),
∂
(

ḧ(t)
)

∂τk
= −hkσ

2
k cos(σkt+ τk).
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C.3 CSDM equations

In this case, the derivatives with respect to g of the terms involving α(t) or its
temporal derivatives vanish.

Case 2: g = αk or g = φk







∂ (α(t))

∂αk
= sin(σkt+ φk),

∂ (α(t))

∂φk
= αk cos(σkt+ φk),

∂ (α̇(t))

∂αk
= σk cos(σkt+ φk),

∂ (α̇(t))

∂φk
= −αkσk sin(σkt+ φk),

∂ (α̈(t))

∂αk
= −σ2

k sin(σkt+ φk),
∂ (α̈(t))

∂φk
= −αkσ

2
k cos(σkt+ φk).

Here, the derivatives with respect to g of the terms involving h(t) or its temporal
derivatives vanish.

Case 3: g = σk






∂ (h(t))

∂σk

= hkt cos(σkt+ τk),

∂
(

ḣ(t)
)

∂σk
= hk cos(σkt+ τk) − hkσkt sin(σkt+ τk),

∂
(

ḧ(t)
)

∂σk
= −2hkσk sin(σkt+ τk) − hkσ

2
kt cos(σkt+ τk),

and 





∂ (α(t))

∂σk
= αkt cos(σkt+ φk),

(∂α̇(t))

∂σk
= αk cos(σkt+ φk) − αkσkt sin(σkt+ φk),

∂ (α̈(t))

∂σk

= −2αkσk sin(σkt+ φk) − αkσ
2
kt cos(σkt+ φk).

C.3 CSDM equations

In the present section, we yield the relations allowing to compute the gradient once
the complex system 3.6 is solved. The example of heaving amplitude control is con-
sidered. The case of another parameter is similar with more or less computations
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Details of the flow and sensitivity equations

due to the development into complex exponentionals required for trigonometric func-
tions, if we consider for example the case of τk or φk. However, the general case of
a generic parameter g is hard to formulate due to the presence of filters indicating
which parts are really complex. We write that:

dℓ

dhk
=

1

δhk
Imag

[

ℓ̃
]

=
1

δhk
Imag

[

β2
P P̃ + β2

F F̃U0 + ǫ2α(α̃)2 + ǫ2h(h̃)
2
]

=
1

δg
imag

[

β2
P P̄ (hk + iδhk) + β2

F F̄ (hk + iδhk)U0 + ǫ2hh
2 (hk + iδhk)

]

.

(C.1)
The last term in the latter equation is the simplest to evaluate, it reads as:

ǫ2h
∂h̄2(t)

∂hk
= ǫ2h

1

δhk
imag

[
∑

m6=k

hm sin(σmt+ τm) + (hk + iδhk) sin(σkt+ τk)

]2

= ǫ2h

N∑

m=1

2hm sin(σmt+ τm) sin(σkt+ τk)

On the other hand, using the relations for the flow equations (cf. Appendix C.1), we
reach:

−2πP̄ (hk + iδhk) =

∫ 2π

0

[

FX(h̃(t)) sin(α(t)) ˙̃h(t) + FY (h̃(t)) cos(α(t)) ˙̃h(t) +Mz(h̃(t))α̇(t)
]

dt

2πF̄ (hk + iδhk) =

∫ 2π

0

[

FX(h̃(t)) cos(α(t)) − FY (h̃(t)) sin(α(t))
]

dt,

with,

h̃(t) =
∑

m6=k

hm sin(mt+ τm) + (hk + iδhk) sin(kt + τk)

=
N∑

m=1

(hm + iδmkδhm) sin(mt+ τm)

where δmk 6= 0 only when m = k.

Furthermore, we express the force components and the torque in terms of the velocity
components and the pressure as:

FX(h̃(t)) =

∫ 2π

0

(

−p(h̃(t))
∂Y

∂θ
+

2

Re

[
∂Y

∂θ

∂U

∂X
(h̃(t)) − 1

2

∂X

∂θ

(
∂U

∂Y
+
∂V

∂X

)

(h̃(t))

])

dθ,
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C.3 CSDM equations

FY (h̃(t)) =

∫ 2π

0

(

p(h̃(t))
∂X

∂θ
+

2

Re

[
1

2

∂Y

∂θ

(
∂U

∂Y
+
∂V

∂X

)

(h̃(t)) − ∂X

∂θ

∂V

∂Y
(h̃(t))

])

dθ,

MZ(h̃(t)) =

∫ 2π

0

p(h̃(t))

(

X
∂X

∂θ
+ Y

∂Y

∂θ

)

dθ

+

∫ 2π

0

2

Re

[

−X∂X

∂θ

∂V

∂Y
(h̃(t)) +

1

2

(

X
∂Y

∂θ
+ Y

∂X

∂θ

)(
∂U

∂Y
+
∂V

∂X

)

(h̃(t)) − Y
∂Y

∂θ

∂U

∂X
(h̃(t))

]

dθ.

On the other hand, the pressure should be expressed as:

p[θ, h̃(t)] = p0 +

∫ θ

0

(
∂p

∂X
(h̃(t))

∂X

∂θ
+
∂p

∂Y
(h̃(t))

∂Y

∂θ

)

dθ.

p0 is a reference pressure and







∂p

∂X
(h̃(t)) =

[

α̈(t)Y + α̇2(t)X − ¨̃
h(t) sin(α(t))

]

+
1

Re

[
∂2U

∂X2
+
∂2U

∂Y 2

]

(h̃(t)),

∂p

∂Y
(h̃(t)) =

[

−α̈(t)X + α̇2(t)Y − ¨̃
h(t) cos(α(t))

]

+
1

Re

[
∂2V

∂X2
+
∂2V

∂Y 2

]

(h̃(t)),

where,







∆U(h̃(t)) =
1

J

∂X

∂χ

[

cos θ
∂ω

∂r
(h̃(t)) − sin θ

r

∂ω

∂θ
(h̃(t))

]

− 1

J

∂X

∂ξ

[

sin θ
∂ω

∂r
(h̃(t)) +

cos θ

r

∂ω

∂θ
(h̃(t))

]

,

∆V (h̃(t)) =
1

J

∂Y

∂χ

[

cos θ
∂ω

∂r
(h̃(t)) − sin θ

r

∂ω

∂θ
(h̃(t))

]

− 1

J

∂Y

∂ξ

[

sin θ
∂ω

∂r
(h̃(t)) +

cos θ

r

∂ω

∂θ
(h̃(t))

]

,

and






∂U

∂X
(h̃(t)) = −∂V

∂Y
(h̃(t)) =

1

J2

[

cos 2θ
∂X

∂ξ

∂Y

∂ξ
+

sin 2θ

2

(
∂Y

∂χ

∂X

∂ξ
+
∂Y

∂ξ

∂X

∂χ

)]
∂2ψ

∂r2
(h̃(t)),

[
∂U

∂Y
+
∂V

∂X

]

(h̃(t)) =
1

J2

[

cos 2θ

((
∂X

∂χ

)2

−
(
∂X

∂ξ

)2
)

− 2 sin 2θ
∂X

∂χ

∂X

∂ξ

]

∂2ψ

∂r2
(h̃(t)).

ω(h̃(t)) and ψ(h̃(t)) are the solutions of the system 3.6.
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Appendix D

Discretization

The flow and sensitivity equations are discretized before being numerically solved.
The vorticity (respectively sensitivity of vorticity) equation is solved using an ADI
(Alternating Direction Implicit) discretization method where a temporal step be-
tween n and n+ 1 is subdivided into two sub-steps, the first implicit in θ between n
and n+ 1

2
and the second implicit in z between n+ 1

2
and n+1. Centred schemes are

used to discretize the derivatives leading for each sub-step to a tridiagonal system
more easily resolvable. The stream function equation (respectively the sensitivity of
the stream function) is a Poisson-like equation and therefore its resolution is done
using a Fourier transformation. This appendix gives the details about the discretiza-
tion and the resolution of the equations. In the following, g denotes one generic
control parameter, whereas, and for the sake of simplicity, Ω (= ω,g) and Ψ (= ψ,g)
denote the sensitivity of the vorticity and of the stream function, respectively.

The equations are written in the (t, z, θ) reference frame where z is defined by
z = ln(r + a) allowing to introduce a logarithmic stretching of the grid for a better
resolution of the high gradients near the wall. The parameter a depends on the
distribution of points inside the computational domain, so it is constant for a given
grid. Hence, we have:
∂

∂r
=

1

ez

∂

∂z
and

∂2

∂r2
=

1

e2z

(
∂2

∂z2
− ∂

∂z

)

.

D.1 The flow equations

D.1.1 The vorticity equation

The non-dimensional equation for vorticity reads:

∂ω

∂t
+

1√
J

[
vr

ez

∂ω

∂z
+
vθ

r

∂ω

∂θ

]

=
1

ReJ

[
1

e2z

∂2ω

∂z2
+

a

re2z

∂ω

∂z
+

1

r2

∂2ω

∂θ2

]

(D.1)
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D.1 The flow equations

Half step, implicit en θ

Starting from the initial condition of vanishing vorticity, we solve this equation pro-
gressing in time. This implies that when computing the instant n+1, the solution at
time step n is known. For the first half step implicit in θ, we write the θ derivatives
at the instant n + 1

2
and the z derivatives at the instant n. On the other hand, the

terms involving vr and vθ depend on ψ, computed once the vorticity is known, which
means that when computing the instant n+ 1

2
, these velocities are known only until

time n. Obviously, the multiplication of a term written at t = n with another written
at t = n + 1

2
can be tolerated if the temporal step ∆t is small enough.

ωn+ 1

2 − ωn

∆t
2

+
1√
J

[
(vr

ez

)n
(
∂ω

∂z

)n

+
(vθ

r

)n
(
∂ω

∂θ

)n+ 1

2

]

=

1

ReJ

[

1

e2z

(
∂2ω

∂z2

)n

+
a

re2z

(
∂ω

∂z

)n

+
1

r2

(
∂2ω

∂θ2

)n+ 1

2

]

Using a classic centred scheme for the first and the second order derivatives, and
isolating the unknown terms on the left hand side of the equation, we obtain for the
node (i, j) where i is the index on θ and j on z:

ω
n+ 1

2

i+1,j

[

rRe
√
J∆θvn

θ

2
− 1

]

+ ω
n+ 1

2

i,j

[

2r2JRe (∆θ)2

∆t
+ 2

]

+ ω
n+ 1

2

i−1,j

[

−rRe
√
J∆θvn

θ

2
− 1

]

= ωn
i,j+1

[

−
√
Jr2Re (∆θ)2 vn

r

2ez∆z
+

(
r∆θ

ez∆z

)2

+
ar (∆θ)2

2e2z∆z

]

+ωn
i,j

[

2r2JRe (∆θ)2

∆t
− 2

(
r∆θ

ez∆z

)2
]

+ωn
i,j−1

[√
Jr2Re (∆θ)2 vn

r

2ez∆z
+

(
r∆θ

ez∆z

)2

− ar (∆θ)2

2e2z∆z

]

(D.2)
This equation can be seen as a tridiagonal system of the form:

A(i)ω(i+ 1) +B(i)ω(i) + C(i)ω(i− 1) = D(i)

for i = 1, Nθ, where A(1) = C(Nθ) = 0 and Nθ is the number of discretization points
in the azimuthal direction. The term D(i) is known because it has been computed
at the previous time step. This system is solved by a Thomas-like algorithm with
the periodic boundary conditions which ensures that ω(t, θ = 0, z) = ω(t, θ = 2π, z).
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Discretization

This kind of algorithm converges when the diagonal of the system is dominant,
i.e. when |B(k)| ≥ |A(k)| + |C(k)| for k = 2, Nθ and |B(1)| > |C(1)| and |B(Nθ)| >
|A(Nθ)|. The principle of the algorithm is to perform two steps: a descent step,
followed by an ascent one.

Descent: β1 = B(1) and βk = B(k) − A(k)
C(k − 1)

βk−1

, for k = 2, Nθ

γ1 =
D(1)

β1

and γk =
−A(k)γk−1 +D(K)

βk

, for k = 2, Nθ

Ascent: ω(Nθ) = γNθ

ω(k) = γk −
C(k)

βk

ω(k + 1), for k = Nθ − 1, 1

When periodic conditions are imposed, the system dimension is increased by 2 to
become Nθ + 2 and the solution is a linear combination between the solution of the
system of dimension Nθ and a part which accounts for the periodicity (Hirsch, 1988).

Half step, implicit en z

The previous half temporal step is completed by another half step between t = n+ 1
2

and t = n+1 by alternating the implicit direction, i.e. this time, implicit scheme are
used for the z derivatives. Hence, in the equation (D.1) the z-derivatives are written
at the instant t = n + 1 whereas the θ-derivatives are written at t = n+ 1

2
:

ωn+1 − ωn+ 1

2

∆t
2

+
1√
J

[
(vr

ez

)n
(
∂ω

∂z

)n+1

+
(vθ

r

)n
(
∂ω

∂θ

)n+ 1

2

]

=

1

ReJ

[

1

e2z

(
∂2ω

∂z2

)n+1

+
a

re2z

(
∂ω

∂z

)n+1

+
1

r2

(
∂2ω

∂θ2

)n+ 1

2

]

.
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D.1 The flow equations

Using the centred schemes for the first and second order derivatives, we obtain:

−ωn+1
i,j+1

[

−Re
√
Jez∆zvn

r

2
+ 1 +

a∆z

2r

]

+ ωn+1
i,j

[

2e2zJRe (∆z)2

∆t
+ 2

]

−

ωn+1
i,j−1

[

Re
√
J∆zvn

r

2
+ 1 − a∆z

2r

]

= −ωn+ 1

2

i−1,j

(
ez∆z

r∆θ

)2
[

−
√
JrRe∆θvn

θ

2
− 1

]

+ω
n+ 1

2

i,j

(
ez∆z

r∆θ

)2
[

2JRer2 (∆θ)2

∆t
− 2

]

− ω
n+ 1

2

i+1,j

(
ez∆z

r∆θ

)2
[√

JrRe∆θvn
θ

2
− 1

]

.

(D.3)
Equation D.3 is a tridiagonal system under the form:

−A(j)ω(j + 1) +B(j)ω(j) − C(j)ω(j − 1) = D(j) (D.4)

for j = 1, Nr where A(1) = C(Nr) = 0 and Nr the number of discretization points
in the radial direction. Here, another Thomas algorithm (Hirsch, 1988) is used to
take into account the different boundary conditions, since we impose a Dirichlet-like
condition on the airfoil and a Neumann-like condition on the outflow boundary. The
same condition of predominance of the main diagonal is also required here. The
method postulates the existence of two vectors E and F such as the solutions of the
system can be related to one another as:

ω(k) = Ekω(k + 1) + Fk ⇒ ω(k − 1) = Ek−1ω(k) + Fk−1. (D.5)

Substituting the relations D.5 inside the generic form of the tridiagonal system D.4
we reach:

ω(k) =
A(k)

B(k) − C(k)Ek−1

ω(k + 1) +
D(k) + C(k)Fk−1

B(k) − C(k)Ek−1

. (D.6)

Identifying the equations D.6 and D.5 leads to:

Ek =
A(k)

B(k) − C(k)Ek−1
, Fk =

D(k) + C(k)Fk−1

B(k) − C(k)Ek−1
. (D.7)

If we dispose of ω0, the value of vorticity on the airfoil boundary (Dirichlet condition),
we can write that ω(1) = E1ω(2) + F1 = ω0. This implies that E1 = 0 and F1 = ω0.
Thanks to the relations D.7, the values of Ek and Fk can be computed during this
descent phase for k = 2, Nr −1. The remaining question is how to compute the value
of the vorticity on the airfoil ω0. This question will be addressed in Appendix E.1.

To initiate the ascent phase, we need to express the value of ω(Nr) in terms of ENr−1

and FNr−1. This expression is computed through the condition on the outflow bound-

ary. Suppose we have the Neumann condition
∂ω

∂z
= 0. This means that to first order
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Discretization

ω(Nr−1) = ω(Nr). At the same time, we have that ω(Nr−1) = ENr−1ω(Nr)+FNr+1,

reaching finally ω(Nr) =
FNr−1

1 − ENr−1

. The values of ENr−1 and FNr−1 are obtained

with the descent phase and not by simple identification (which may lead to ENr−1 = 1
and FNr−1 = 0). Starting from the value of ω(Nr) and thanks to the relation D.5,
all the values of ω can be computed.

D.1.2 The stream function equation

The Poisson-like equation for the stream function reads:

1

e2z

∂2ψ

∂z2
+

a

re2z

∂ψ

∂z
+

1

r2

∂2ψ

∂θ2
= −Jω. (D.8)

The solution for ψ at time step n + 1 is computed once the value of ω at the same
step is known, itself computed with the value of ψ at t = n. A Fourier transforma-
tion is well adapted for such a kind of equations. Hence, exploiting the periodicity
the θ direction, we use a Fourier-series development for ψ and Jω in the azimuthal
direction by writing:







ψ (θ, z) =

Nθ∑

k=−Nθ

ψk(z)e
ikθ

J (θ, z)ω (θ, z) =

Nθ∑

k=−Nθ

Fk(z)e
ikθ

(D.9)

Fk is the Fourier transform of Jω known, through an FFT, and k the wave number.
Injecting the previous developments in equation D.8 and exploiting the orthogonality

between the different modes we reach a set of
Nθ

2
ordinary differential equations:

1

e2z

d2ψk

dz2
+

a

(ez − a)e2z

dψk

dz
− k2

(ez − a)2
ψk = −Fk (D.10)

This reduction by two of the system dimension is the advantage of the fast Fourier
transformation when Nθ is suitably chosen. Centred schemes are used to evaluate
these derivatives yielding:

ψk,j+1

[

1 +
a∆z

2r

]

− ψk,j

[

2 +

(
ez∆zk

r

)2
]

+ ψk,j−1

[

1 − a∆z

2r

]

= −Fke
2z (∆z)2

(D.11)
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D.2 The sensitivity equations

Thus, we obtain a complex tridiagonal system under the form:

−A(j)ψ(j + 1) +B(j)ψ(j) − C(j)ψ(j − 1) = D(j) for j = 1, Nθ,

where A(1) = C(Nθ) = 0. This tridiagonal system is solved with the same algorithm
used for the implicit step in z. However, in this case, we impose two Neumann-like

conditions (see Appendix E.1) corresponding to the values of
∂ψ

∂θ
on the airfoil and

on the outflow boundary.

D.2 The sensitivity equations

As far as the sensitivity equations are concerned, the Poisson-like equation is exactly
identical to the Poisson-like equation of the flow, whereas the sensitivity of the vor-
ticity equation has a source term which can be included in the right hand side of the
tridiagonal systems.

D.2.1 The vorticity sensitivity

If we denote by Ω and Ψ the sensitivity of vorticity and stream function respectively,
we have:

∂Ω

∂t
+

1√
J

[
vr

ez

∂Ω

∂z
+
vθ

r

∂Ω

∂θ

]

+
1√
J

[
1

ez

∂vr

∂g

∂ω

∂z
+

1

r

∂vθ

∂g

∂ω

∂θ

]

︸ ︷︷ ︸

SΩ

=

1

ReJ

[
1

e2z

∂2Ω

∂z2
+

a

re2z

∂Ω

∂z
+

1

r2

∂2Ω

∂θ2

]

(D.12)

The difference with respect to the flow equations is the underbraced source term SΩ.
It depends on the choice of the control parameter.

Half step, implicit in θ

The same method used for the flow equations is applied here. The term source
can be evaluated at the time step n or at the subsequent step. However, the former
possibility accelerates the computations since the solution for the sensitivity problem
is done in the same time than the flow resolution: the left hand side coefficients of the
tridiagonal system are identical for the flow and sensitivity equations. If we solve the
sensitivity at the same time, we spare the memory needed to store these coefficients
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Discretization

or to recompute them. Therefore, we write:

Ωn+ 1

2 − Ωn

∆t
2

+
1√
J

[
(vr

ez

)n
(
∂Ω

∂z

)n

+
(vθ

r

)n
(
∂Ω

∂θ

)n+ 1

2

]

+
1√
J

[
1

ez

(
∂vr

∂g

)n(
∂ω

∂z

)n

+
1

r

(
∂vθ

∂g

)n(
∂ω

∂θ

)n]

=

1

ReJ

[

1

e2z

(
∂2Ω

∂z2

)n

+
a

re2z

(
∂Ω

∂z

)n

+
1

r2

(
∂2Ω

∂θ2

)n+ 1

2

]

Using the classical centred scheme for the first and the second order derivatives, and
isolating the unknown terms at the left hand side of the equation, we obtain for the
node (i, j) where i is the index on θ and j on z:

Ω
n+ 1

2

i+1,j

[

rRe
√
J∆θvn

θ

2
− 1

]

+ Ω
n+ 1

2

i,j

[

2r2JRe (∆θ)2

∆t
+ 2

]

+ Ω
n+ 1

2

i−1,j

[

−rRe
√
J∆θvn

θ

2
− 1

]

= Ωn
i,j+1

[

−
√
Jr2Re (∆θ)2 vn

r

2ez∆z
+

(
r∆θ

ez∆z

)2

+
ar (∆θ)2

2e2z∆z

]

+Ωn
i,j

[

2r2JRe (∆θ)2

∆t
− 2

(
r∆θ

ez∆z

)2
]

+Ωn
i,j−1

[√
Jr2Re (∆θ)2 vn

r

2ez∆z
+

(
r∆θ

ez∆z

)2

− ar (∆θ)2

2e2z∆z

]

−
(√

Jr2Re (∆θ)2
)[(∂vr

∂g

)n(
∂ω

∂r

)n

+
1

r

(
∂vθ

∂g

)n(
∂ω

∂θ

)n]

︸ ︷︷ ︸

Sn

Ω

(D.13)
Here again, we have a tridiagonal system under the form:

A(i)Ω(i + 1) +B(i)Ω(i) + C(i)Ω(i− 1) = D(i),

for i = 1, Nθ where A(1) = C(Nθ) = 0 that we solve with the same algorithm used
for tridiagonal system with periodic boundary conditions as for the flow equations.
The source term Sn

Ω is discretized by writing:

(
∂vr

∂g

)n(
∂ω

∂r

)n

+
1

r

(
∂vθ

∂g

)n(
∂ω

∂θ

)n

=
1

ez

(
∂vr

∂g

)n(
∂ω

∂z

)n

+
1

r

(
∂vθ

∂g

)n(
∂ω

∂θ

)n

=
1

ez

(
ωn

i,j+1 − ωn
i,j−1

2∆z

)(
∂vr

∂g

)n

+
1

r

(
ωn

i+1,j − ωn
i−1,j

2∆θ

)(
∂vθ

∂g

)n
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D.2 The sensitivity equations

where

(
∂vr

∂g

)n

= − 1√
J




∂
(

ḣ(t) sinα(t) − α̇(t)Y
)

∂g

(
∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)




− 1√
J




∂
(

ḣ(t) cosα(t) + α̇(t)X
)

∂g

(
∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)




+
1

2r
√
J∆θ

[
Ψn

i+1,j − Ψn
i−1,j

]

and

(
∂vθ

∂g

)n

= − 1√
J




∂
(

ḣ(t) sinα(t) − α̇(t)Y
)

∂g

(
∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)




− 1√
J




∂
(

ḣ(t) cosα(t) + α̇(t)X
)

∂g

(
∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)




− 1

2ez
√
J∆z

[
Ψn

i,j+1 − Ψn
i,j−1

]

Half step, implicit in z

In this second half temporal step between time instants n+ 1
2

and n+ 1, an implicit
scheme is applied to the z derivatives:

Ωn+1 − Ωn+ 1

2

∆t
2

+
1√
J

[
(vr

ez

)n
(
∂Ω

∂z

)n+1

+
(vθ

r

)n
(
∂Ω

∂θ

)n+ 1

2

]

+
1√
J

[
1

ez

(
∂vr

∂g

)n(
∂ω

∂z

)n

+
1

r

(
∂vθ

∂g

)n(
∂ω

∂θ

)n]

=

1

ReJ

[

1

e2z

(
∂2Ω

∂z2

)n+1

+
a

re2z

(
∂Ω

∂z

)n+1

+
1

r2

(
∂2Ω

∂θ2

)n+ 1

2

]

.
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Discretization

Using the centered scheme for the first and second order derivatives we obtain:

−Ωn+1
i,j+1

[

−Re
√
Jez∆zvn

r

2
+ 1 +

a∆z

2r

]

+ Ωn+1
i,j

[

2e2zJRe (∆z)2

∆t
+ 2

]

−Ωn+1
i,j−1

[

Re
√
J∆zvn

r

2
+ 1 − a∆z

2r

]

= −Ω
n+ 1

2

i+1,j

(
ez∆z

r∆θ

)2
[√

JrRe∆θvn
θ

2
− 1

]

+Ω
n+ 1

2

i,j

(
ez∆z

r∆θ

)2
[

2JRer2 (∆θ)2

∆t
− 2

]

− Ω
n+ 1

2

i−1,j

(
ez∆z

r∆θ

)2
[

−
√
JrRe∆θvn

θ

2
− 1

]

−
(
ωn

i,j+1 − ωn
i,j−1

)

(√
JReez∆z

2

)(
∂vr

∂g

)n

−
(
ωn

i+1,j − ωn
i−1,j

)

(√
JRee2z (∆z)2

2r∆θ

)(
∂vθ

∂g

)n

︸ ︷︷ ︸

Sn
z

(D.14)
The last two terms are the source term Sn

z . This system is solved with the same
algorithm than the flow equation by including the source term on the right hand
side. Here, the Dirichlet-like boundary condition on the airfoil and the Neumann-
like boundary condition on the outflow are computed by the derivation of the flow
boundary conditions with respect to the control parameter (cf. Appendix E.2).

D.2.2 The stream function sensitivity

The sensitivity equation for the stream function is identical to the equation for the
stream function. The same methodology as before is followed:

1

e2z

∂2Ψ

∂z2
+

a

re2z

∂Ψ

∂z
+

1

r2

∂2Ψ

∂θ2
= −JΩ, (D.15)

Ψ for the n+1 step is computed once the value of Ω is known at n+1, itself computed
through the value of Ψ at t = n. A Fourier-series development for Ψ and JΩ in the
θ direction is applied:







Ψ (θ, z) =

Nθ∑

k=−Nθ

Ψk(z)e
ikθ,

J (θ, z) Ω (θ, z) =

Nθ∑

k=−Nθ

Fk(z)e
ikθ.

(D.16)

The set of ordinary differential equations with known right hand side, is in this case:

1

e2z

d2Ψk

dz2
+

a

(ez − a)e2z

dΨk

dz
− k2

(ez − a)2
Ψk = −Fk (D.17)
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D.2 The sensitivity equations

We use centered scheme to evaluate this derivatives and we obtain the system:

Ψk,j+1

[

1 +
a∆z

2r

]

− Ψk,j

[

2 +

(
ez∆zk

r

)2
]

+ Ψk,j−1

[

1 − a∆z

2r

]

= −Fke
2z (∆z)2

Thus, we obtain a complex tridiagonal system of the form:

−A(j)Ψ(j + 1) +B(j)Ψ(j) − C(j)Ψ(j − 1) = D(j),

for j = 1, Nθ, where A(1) = C(Nθ) = 0. The system is solved with the same algo-
rithm than the stream function equation. Two Neumann-like boundary conditions

on
∂Ψ

∂θ
on the airfoil and on the outflow are used. They are obtained by derivation of

the boundary conditions of the stream function equation with respect to the control
parameter (cf Appendix E.2).
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Appendix E

The boundary conditions

If we refer to Appendix D, the value of the vorticity (and its sensitivity) on the
airfoil should be computed to initiate the descent phase of the Thomas algorithm
in the z implicit half step. Furthermore, the derivatives with respect to θ of the
stream function (and its sensitivity) should be evaluated on the airfoil and on the
outflow boundary. Since the equations are solved in the moving frame, the airfoil
is still and the velocity of the fluid on the airfoil should vanish in this referential.
On the other hand, for a sufficiently large computational domain, the velocity is not
disturbed and is equal to the free stream velocity. The expression of these boundary
conditions for the flow equations and sensitivity equations represent the aim of the
present appendix.

E.1 Flow boundary conditions

The radial and azithumal velocities are related to the stream function by the relations
E.1 valid for the whole computational domain:

vr =
1√
J

[
1

r

∂ψ

∂θ
−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

,

vθ =
1√
J

[

−∂ψ
∂r

−
(

ḣ(t) sin(α(t)) − α̇(t)Y
)( ∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)

−
(

ḣ(t) cos(α(t)) + α̇(t)X
)( ∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

.

(E.1)
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E.1 Flow boundary conditions

E.1.1 The vorticity equation

The value of ω(θ, z0) is sought, where z0 = ln(r0 +a) and r = r0 is the position of the
airfoil (cf. Appendix B). We start by expressing ω in terms of ψ and its derivatives
thanks to the Poisson-like equation:

ω(θ, z0) =
1

J

[

1

e2z0

(
∂2ψ

∂z2

)

(θ,z0)

+
a

r0e2z0

(
∂ψ

∂z

)

(θ,z0)

+
1

r2
0

(
∂2ψ

∂θ2

)

(θ,z0)

]

. (E.2)

The second order derivative

(
∂2ψ

∂z2

)

is approximated with a first order finite differ-

ences scheme (Thom, 1928; Roache, 1972) as:

(
∂2ψ

∂z2

)

(θ,z0)

=
2 (ψ(θ, z0 + ∆z) − ψ(θ, z0))

∆z2
− 2

∆z

(
∂ψ

∂z

)

(θ,z0)

+O(∆z),

and the derivatives

(
∂ψ

∂z

)

and

(
∂2ψ

∂θ2

)

are evaluated from equation E.1. On the

airfoil surface, the radial and tangential velocities vanish, i.e.:

1

ez0

(
∂ψ

∂z

)

θ,z0

= −
[(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

(θ,z0)

+

[(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

(θ,z0)

,

and

1

r0

(
∂2ψ

∂θ2

)

(θ,z0)

= − [(rα̇(t)J)](θ,z0)

−
[(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂ξ
sin θ − ∂2X

∂ξ∂θ
cos θ − ∂X

∂χ
cos θ − ∂2X

∂χ∂θ
sin θ

)]

(θ,z0)

−
[(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂ξ
sin θ − ∂2Y

∂ξ∂θ
cos θ − ∂Y

∂χ
cos θ − ∂2Y

∂χ∂θ
cos θ

)]

(θ,z0)

.
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The boundary conditions

Injecting the last three relations in equation E.2, we finally obtain:

ω (θ, z0) = α̇(t) − 2 [ψ (θ, z0 + ∆z) − ψ (θ, z0)]

(∆z)2e2z0J (θ, z0)

+
1

J (θ, z0) ez0

(

− 2

∆z
+
a

r0

)[(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

(θ,z0)

+
1

J (θ, z0) ez0

(

− 2

∆z
+
a

r0

)[(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

(θ,z0)

+
1

r0J (θ, z0)

[(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂ξ
sin θ − ∂2X

∂ξ∂θ
cos θ − ∂X

∂χ
cos θ − ∂2X

∂χ∂θ
sin θ

)]

(θ,z0)

+
1

r0J (θ, z0)

[(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂ξ
sin θ − ∂2Y

∂ξ∂θ
cos θ − ∂Y

∂χ
cos θ − ∂2Y

∂χ∂θ
sin θ

)]

(θ,z0)

.

(E.3)

E.1.2 The stream function equation

Since ψ is developed into a Fourier-series in θ, it is practical to write the conditions

on
∂ψ

∂θ
at z = z0 and z = zmax, with z0 = ln(r0 + a) and zmax = ln(Rmax + a)

(cf. Appendix B). Therefore, we write
∂ψ

∂θ
= f(t)g(θ) and we compute the Fourier-

transformation of the right hand side:

f(t)g(θ) =

Nθ∑

k=−Nθ

Gk(t)e
ikθ.

On the other hand,

∂ψ

∂θ
=

Nθ∑

k=−Nθ

ikψk(z, t)e
ikθ,

leading to

ψk(z, t) =
Gk(t)

ik
.

Hence, we need to express the function f(t)g(θ) at z0 and zmax and compute its
Fourier transformation.
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E.1 Flow boundary conditions

Wall boundary condition

The radial velocity vr must vanish on the airfoil, at z = z0 (cf. equation E.1):

1

r0

(
∂ψ

∂θ

)

z0

=
(

ḣ(t) sin(α) − α̇(t)Y
)(∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)

z0

+
(

ḣ(t) cos(α) + α̇(t)X
)(∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)

z0

.

Hence, at the wall,

(
∂ψ

∂θ

)

(θ,z0)

= r0

[(

ḣ(t) sin(α) − α̇(t)Y
)(∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

(θ,z0)

+ r0

[(

ḣ(t) cos(α) + α̇(t)X
)(∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

(θ,z0)

= f(t)g(θ).

(E.4)

Outflow boundary condition

At the outer limit of the computational domain, we want to impose a velocity which
is not perturbed by the presence of the airfoil, equal to the free stream velocity.
For an airfoil having an angle of attack equal to α0 and a pitching angle α(t), the
velocities in the moving frame are:







U = uα cos(α(t) − α0) +
(

vα − ḣ(t)
)

sin(α(t) − α0) + Y α̇(t),

V = −uα sin(α(t) − α0) +
(

vα − ḣ(t)
)

cos(α(t) − α0) −Xα̇(t).
(E.5)

On the other hand, we have:







U =
∂ψ

∂Y
− ḣ(t) sin(α(t) − α0) + Y α̇(t),

V = − ∂ψ

∂X
− ḣ(t) cos(α(t) − α0) −Xα̇(t),

(E.6)

which implies:







∂ψ

∂X
= uα sin(α(t) − α0) − vα cos(α(t) − α0),

∂ψ

∂Y
= uα cos(α(t) − α0) + vα sin(α(t) − α0).

(E.7)
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The boundary conditions

In the particular case in which uα = U0 and vα = 0 and applying the relation between
the derivatives in the moving frame (X, Y ) and the Joukowski one (χ, ξ), and then
between (χ, ξ) and the polar frame (r, θ) we reach:

∂ψ

∂θ
= rU0 cos (α− α0)

[
∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

]

−rU0 sin (α− α0)

[
∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

]

.

Hence, at z = zmax:

(
∂ψ

∂θ

)

(θ,zmax)

= RmaxU0 [cos (α− α0)]

[
∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

]

(θ,zmax)

,

− RmaxU0 [sin (α− α0)]

[
∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

]

(θ,zmax)

= f(t)g(θ).

(E.8)

E.2 Sensitivity boundary conditions

E.2.1 The sensitivity of the vorticity

The same method applied in Appendix E.1.1 to the vorticity boundary condition can
be employed here for the boundary conditions of the Ω-equation. This includes a
use of a Taylor development and the relations between the derivatives of the velocity
with respect to the control parameter g and Ψ (cf. Appendix D.2). Since the radial
and azimuthal velocities vanish on the airfoil, their derivatives with respect to g
vanish also, leading to the value of Ω(t, θ, z0). However, this value can be obtained
easily, if we apply directly the derivation, with respect to g, to the vorticity boundary
conditions:

Ω (θ, z0) =
∂

∂g
(α̇(t)) − 2 [Ψ (θ, z0 + ∆z) − Ψ (θ, z0)]

(∆z)2e2z0J (θ, z0)

+
1

J (θ, z0) ez0

(

− 2

∆z
+
a

r0

)[
∂

∂g

(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂χ
cos θ − ∂X

∂ξ
sin θ

)]

(θ,z0)

+
1

J (θ, z0) ez0

(

− 2

∆z
+
a

r0

)[
∂

∂g

(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂χ
cos θ − ∂Y

∂ξ
sin θ

)]

(θ,z0)

+

[
1

r0J

∂

∂g

(

ḣ(t) sin(α(t)) − α̇(t)Y
)(∂X

∂ξ
sin θ − ∂2X

∂ξ∂θ
cos θ − ∂X

∂χ
cos θ − ∂2X

∂χ∂θ
sin θ

)]

(θ,z0)

+

[
1

r0J

∂

∂g

(

ḣ(t) cos(α(t)) + α̇(t)X
)(∂Y

∂ξ
sin θ − ∂2Y

∂ξ∂θ
cos θ − ∂Y

∂χ
cos θ − ∂2Y

∂χ∂θ
sin θ

)]

(θ,z0)

(E.9)
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E.2 Sensitivity boundary conditions

E.2.2 The sensitivity of the stream function

The boundary conditions for Ψ may be computed with the same principle used for
ψ boundary conditions or they can be directly deduced by a derivation with respect
to the control parameter g.

Wall boundary condition
(
∂Ψ

∂θ

)

(θ,z0)

= r0

[
∂

∂g

(

ḣ(t) sin(α) − α̇(t)Y
)(∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

)]

(θ,z0)

+ r0

[
∂

∂g

(

ḣ(t) cos(α) + α̇(t)X
)(∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

)]

(θ,z0)

= f(t)g(θ).

(E.10)

Outflow boundary condition
(
∂Ψ

∂θ

)

(θ,zmax)

= RmaxU0
∂

∂g
[cos (α− α0)]

[
∂X

∂ξ
cos θ +

∂X

∂χ
sin θ

]

(θ,zmax)

− RmaxU0
∂

∂g
[sin (α− α0)]

[
∂Y

∂ξ
cos θ +

∂Y

∂χ
sin θ

]

(θ,zmax)

= f(t)g(θ).

(E.11)
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