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Abstract

Any natural surface is in essence non-smooth, consisting of more or less regular roughness
and/or mobile structures of different scales. From a fluid mechanics point of view, these
natural surfaces offer better aerodynamic performances when they cover moving bodies, in
terms of drag reduction, lift enhancement or control of boundary layer separation; this has
been shown for boundary layer or wake flows around thick bodies. The numerical simulation
of microscopic flows around "natural" surfaces is still out of reach today. Therefore, the
goal of this thesis is to study the modeling of the apparent flow slip occurring on this kind
of surfaces, modeled as a porous medium, applying Whitaker’s volume averaging theory.
This mathematical model makes it possible to capture details of the microstructure while
preserving a satisfactory description of the physical phenomena which occur.

The first chapter of this manuscript provides an overview of previous efforts to model
these surfaces, detailing the most important results from the literature. The second chap-
ter presents the mathematical derivation of the volume-averaged Navier-Stokes equations
(VANS) in a porous medium. In the third chapter the flow stability at the interface be-
tween a free fluid and a porous medium, formed by a series of rigid cylinders, is studied.
The presence of this porous layer is treated by including a drag term in the fluid equations.
It is shown that the presence of this term reduces the rates of amplification of the Kelvin-
Helmholtz instability over the whole range of wavenumbers, thus leading to an increase of
the wavelength of the most amplified mode. In this same context, the difference between
the isotropic model and a tensorial approach for the drag term has been evaluated, to de-
termine the most consistent approach to study these flow instabilities. This has led to the
conclusion that the model that uses the apparent permeability tensor is the most relevant
one. In the following chapter, based on this last result, the apparent permeability tensor,
based on over one hundred direct numerical simulations carried out over microscopic unit
cells, has been identified for a three-dimensional porous medium consisting of rigid cylin-
ders. In these configurations the tensor varies according to four parameters: the Reynolds
number, the porosity and the direction of the average pressure gradient, defined by two
Euler angles. This parameterization makes it possible to capture local three-dimensional
effects. This database has been set up to create, based on a kriging-type approach, a
behavioral meta-model for estimating all the components of the apparent permeability
tensor.
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In the fifth chapter, simulations of the VANS equations are carried out on a macroscopic
scale after the implementation of the metamodel, to get reasonable computing times. The
validation of the macroscopic approach is performed on a closed cavity flow covered with
a porous layer and a comparison with the results of a very accurate DNS, homogenized a
posteriori, has shown a very good agreement and has demonstrated the relevance of the
approach. The next step has been the study of the passive control of the separation of
the flow past a hump which is placed on a porous wall, by the same macroscopic VANS
approach. Finally, general conclusions and possible directions of research in the field are
presented in the last chapter.
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Résumé

Toute surface naturelle est par essence non lisse, elle est constituée de rugosités plus ou
moins régulières et / ou de structures mobiles d’échelles variées. D’un point de vue mé-
canique des fluides, ces surfaces naturelles proposent des meilleures performances aérody-
namiques en termes de réduction de traînée, d’augmentation de la portance ou de con-
trôle du décollement lorsqu’elles couvrent des corps en mouvement. Cela a été notament
prouvé pour des écoulements de couches limites ou de sillage, autour de corps épais. La
simulation numérique d’écoulements aux échelles microscopiques autour des surfaces « na-
turelles » demeure de nos jours encore hors de portée. En conséquence, la thèse a pour
objet d’étudier la modélisation du glissement apparent de l’écoulement sur ce genre de sur-
face, modélisée comme un milieu poreux, appliquant la théorie de la moyenne-volumique
de Whitaker. Ce modèle mathématique permet globalement de représenter en moyenne
les détails de la micro-structure de ses surfaces, tout en conservant une description sat-
isfaisante des phénomènes physiques induits par l’écoulement. Le premier chapitre de ce
manuscrit dresse un panorama des efforts antérieurs portant sur la modélisation de ces
surfaces en précisant les résultats les plus importants issus de la littérature. Le deuxième
chapitre présente la dérivation mathématique des équations de Navier-Stokes en moyenne
volumique (VANS en anglais) dans un milieu poreux. Dans le troisième chapitre est étudiée
la stabilité de l’écoulement à l’interface entre un fluide libre et un milieu poreux, constitué
d’une série de cylindres rigides. La présence de cette couche poreuse est traitée par un
terme de traînée dans les équations du fluide. On montre que l’ajout de ce terme réduit les
taux d’amplification de l’instabilité de Kelvin-Helmholtz sur toute la gamme des nombre
d’onde et ainsi augmente la longueur d’onde du mode le plus amplifié. Dans ce même con-
texte a été calculée la différence entre un modèle isotrope et une approche tensorielle pour
le terme de traînée, afin de déterminer l’approche la plus consistante pour une étude de sta-
bilité de ce type d’écoulement. Cela a mené à la conclusion que le modèle le plus pertinent
est celui utilisant le tenseur de perméabilité apparent. Dans le chapitre suivant le tenseur
de perméabilité apparent est identifié sur la base d’une centaine de simulations numériques
directes, pour un milieu poreux tridimensionnel constitué de cylindres rigides, où le prob-
lème de fermeture est abordé par la méthode VANS. Dans ces configurations ce tenseur
varie en fonction de quatre paramètres : le nombre de Reynolds, la porosité et l’orientation
du gradient moyen de pression définie par deux angles d’Euler. Cette paramétrisation per-
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met de capturer les effets tridimensionnels locaux. Cette base de données ainsi constituée
a permis de créer, une approche de type kriging, un métamodèle comportemental pour
estimer toutes les composantes du tenseur de perméabilité apparente.

Dans le cinquième chapitre sont menées des simulations des équations VANS à l’échelle
macroscopique après implémentation du méta-modèle qui autorise des temps de calcul
raisonnables. La validation de l’approche à l’échelle macroscopique est effectuée sur un
écoulement dans une cavité fermé couverte d’une couche poreuse et une comparaison avec
les résultats d’un DNS très précise, homogénéisés a posteriori montre un très bon accord et
démontre la pertinence de la démarche. L’étape suivante a consisté en l’étude du contrôle
du décollement pour un écoulement autour d’une bosse poreuse par cette même approche
VANS macroscopique. Enfin des conclusions générales et des directions de recherche pos-
sibles sont présentées dans le dernier chapitre.
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Chapter 1

Poroelastic natural coatings

Nature is the source of all true knowledge. She has her own logic, her own
laws, she has no effect without cause nor invention without necessity

- , Leonardo Da Vinci

1.1 Introduction to biomimetics
Usually when we are asked to imagine some fast-moving object as an airplane, a boat or
a car, common sense leads us to think that its surface should be as smooth as possible.
However, if we look around, Nature seems not to agree with the previous statement. In
fact most of the surfaces in Nature are not at all smooth, they almost always present
more or less regular arrangements of discontinuities at various length scales. Since Nature
had a very long time-span to optimize this kind of surfaces we can suppose that they are
the best possible options. One should pinpoint that the non-smoothness of these surfaces
can be connected to some other biological functions rather than to pure fluid dynamics
performance, and of course this can be the case.

An example of natural surface is the shark skin, in figure 1.1 where a segment of the
skin is depicted, as it appears under the microscope.

The enlargement shows that the surface is made up by a series of overlapped denticles,
and experiments show that they can move and interact with the flow. This interaction is
supposed to reduce the shark drag when swimming.

The shark "technology" has somehow been applied by Speedor. This company has
designed famous swimming suits with a surface that mimics the shark skin. Numerous
swimmers have broken several world records wearing this swimming suits. This controver-
sial swimmers’ performance was due to the fact that the swimsuit compressed the body
giving the swimmer a more streamlined shape. Even thought the company has publicized
their product as if it were a synthetic shark skin, Oeffner and Lauder [120] have shown that
the texture of such swimming suits is somehow different from the shark dermal structure.
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Figure 1.1: Microscope enlarged picture of the shark skin.

In their work the authors have performed swimming experiment of a flat plate with dif-
ferent coatings and they did not found significant speed enhancement with a swimsuit-like
surface, but the measurements with real shark skin on the contrary have demonstrated an
appreciable improvement of performances.

Poroelastic surfaces find also applications in aeroacoustics; owls are well known for their
particularly silent flight, especially in the high frequency spectrum. This characteristic is
crucial for the owl in order to capture its preys. Obviously it has inspired the scientific
community to study their feathers’ configuration and shape.

Figure 1.2: Feathers on owl’s wing. Left: trailing edge. Right: leading edge. The differ-
ences in shape and mechanical properties, such as rigidity, between the leading and the
trailing edges, is a consequence of the different flow regimes in the wing.

Several authors have shown promising results in characterizing the acoustic properties
of the owl’s skin and their physical mechanisms. In particular Lilley [95] presented three
main characteristics of the owl, which can suppress its airborne noise: i) the comb shaped
feathers in the leading edge, ii) the fringe at the trailing edge, iii) the presence of numerous
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"filaments" in the bottom surface of wings and legs.
Another example is described in the work by Jaworski and Peake [82] who studied the

acoustic scattering problem of a poroelastic half-plane encountering an incident plane wave.
This configuration, a simplified owl’s wing, explains how the properties of this surface can
suppress the noise. They concluded that the combined effects of elasticity and porosity
can produce a weaker noise amplification.

Recent computational simulations performed by Chen et al. [38] confirm that the leading
edge shape of the feathers truly suppresses noise and enhances the lift generation.

Another example of bioinspired aerodynamic surfaces is the butterflies’ wing. In figure
1.3 the surface of a "Peacock butterfly" is enlarged in order to show the multiple scales
involved. The wing structure present firstly a series of overlapped scales similar to the
shark, but if we look closely it can be observed that each scale has a complicate permeable
structure.

(a) Magnification 50x (b) Magnification 1000x (c) Magnification 5000x

Figure 1.3: Particular of a Peacock butterfly wing, taken with a Scanning Electron Micro-
scope. Images from wikimedia.org

Slegers et al. [146] have studied the effect of such porous structure on the flight per-
formance of butterflies. Using cameras to measure the kinematics of their flight, they
can measure their efficiency to "climb" (i.e. generate lift) and the stroke amplitude and
frequency. The authors conclude that the porous structure of their wing gives a boost in
climbing efficiency of 30%. This result clearly stresses out the importance of the poroelastic
coating of the wings. Even though the butterfly flight aerodynamic is extremely complex,
it is clear that the peculiar structure of the wing’s surface is critical for their aerodynamic
performances, as also Srygley and Thomas [148] had confirmed.

The last example concerns super-hydrophobic surfaces. These surfaces, such as that of
the lotus leaf, are water repellent, i.e. water can slide over them with less resistance, because
of the surface’s low wettability. This behavior is caused by the microscopic structure which
forms the surface (see figure 1.4). In reality the roughness elements are arranged in a quasi-
regular way, in order to be able to capture air pockets that rest within the "valleys". These
air inclusions provoke an effective slip at the air-liquid interface that causes skin friction
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Figure 1.4: (a) Scanning electron microscopy (SEM) image showing the structure of a lotus
leaf, (b) higher order of magnification on the single protuberance forming the surface and
(c) water drop with high contact angle, attaining an almost spherical shape. Images from
Stratakis et al. [149].

reduction. They also change the contact angle of the droplets. The work of Bottaro et al.
[21] summarizes some of the above super-hydrofobicity aspect and their applications.

Interested readers can find more examples of biomimetics and broaden the above key
aspect in Bhushan [19] and Tropea and Bleckmann [152].

1.2 Riblets and shark-skin surfaces

We have shown that natural surfaces can be an inspiration to find strategies in solving
many problems concerning aerodynamics. In the following we especially focus on drag
reduction.

It is known that the total drag contribution can be separated into different components
and the classical decomposition is between viscous drag (sometimes referred to as skin
friction) and pressure drag. ∫

Aσ
[(pI · nσ) · n‖︸ ︷︷ ︸

pressure drag

+ τ · n‖︸ ︷︷ ︸
viscous drag

] dA, (1.1)

where the shear stress τ , for incompressible and newtornian fluid flow, is defined as:

τ = µ
(
∇v +∇Tv

)
· nσ

In (1.1) Aσ is the solid interface of some body where a no-slip condition is usually applied
and nσ is its outward normal unit vector to the solid interface Aσ, and n‖ is the unit vector
parallel to the fluid direction.
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The shear stress for incompressible and newtonian fluid flow in the turbulent case is often
defined as:

τt = (µ+ µt)
[
∇v +∇Tv

]
· nσ (1.2)

where µt is the turbulent viscosity and v is the temporal average velocity. This section is
about the existing ways to reduce the viscous part of the drag working only on the surface
texture.

1.2.1 Riblets

Most of the industrial applications involve turbulent flows, and as a results there is a lot of
research that aims to reduce skin friction in this regime. Table 6.3.1 in the book of McLean
[106] includes a wide list of techniques already been proposed on the problem. As the same
author pinpoints, the most effective and, probably the most practicable solution, is the
surface texture known as riblets. Riblets are alternating ridges aligned in the streamwise
flow direction and regularly arranged, as figure 1.5 shows. These surfaces are capable
to align the turbulent flow along the mean flow direction, smoothing the fluctuations of
the crossflow in the viscous sublayer. The turbulent momentum transfer is reduced as a
consequence of reducing these fluctuations close to the surface. In the same manner the
surface experiences a lower skin friction.

The viscous drag reduction correlates well with the spacing between the ridges expressed
in wall units, s+. The typical shape of the ∆τ/τ0 − s+ relation is depicted in figure 1.6,
where the vertical axis shows the drag reduction against s+. This general shape of the
curve, in which the skin friction decreases in a certain range of spacing and then increases
as the ridge spacing increases, is caused by a competition between the capacity of riblets
to obstruct lateral fluid flow and the increase of penetration of high speed vortices inside
this manufactured wall irregularity.

This last physical explanation of the riblets’ performances is presented in the schematics
1.7, where the gray areas show high skin-friction regions caused by the downwash motion
generated by the near-wall vortices. It is clear that, when the riblets are too large, the
vortices can penetrate inside the groove and increase the skin friction, due to a larger
area exposed to the local velocity. On the contrary, when the riblets are smaller, the high
speed vortex only hits the tip of the ridges, so that, only a small local area of the surface
experiences high-shear stresses.

The slope ms of the curve in figure 1.6 can be predicted by linear stability theory
(either in laminar and turbulent cases changing the definition of base flow) or by means of
empirical correlations(see, e.g., García-Mayoral and Jiménez [62]).

Computing the performance of such surfaces can be expensive, since the most reliable
quantitative theory for such problems consist of direct numerical simulations (DNS) or
experiments. However there is one theory, besides the already cited expensive ones, that
uses the concept of protrusion height, shown in figure 1.5, to correlate the shape of these
protrusions to the drag reduction (cf. Luchini et al. [96]). In this way the protrusion
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Figure 1.5: Schematics of the protrusion height concept. The mean velocity profiles for
the stream-wise and crossflow velocities are shown. In presence of a ridge it is possible to
extrapolate the point of zero velocity from the velocity gradient outside the riblet; finding
respectively, the streamwise protrusion height hps and the cross-flow protrusion height hpc.
Image from Bechert et al. [16].

height is defined as the vertical distance between the riblet top ridge and the point of zero
velocity, extrapolated from the constant velocity gradient outside above the protrusions.
It appears that the difference of protrusion heights (hps−hpc) correlates very well with the
drag reduction. The two quantities can be computed with a simple Stokes problem over
the local geometry of the grooves.

Another important characteristic of riblets is that they are robust in off-design condi-
tions, such as in presence of yaw (misalignment between flow and riblets ridges) and tip
ridges erosion (García-Mayoral and Jiménez [61]).

Besides some very specific application such as sailing competitions (the hulls of the
USA challengers in the America’s Cup 1987 and 2010), the massive use of this technology
is still in question. Producing such surfaces in a larger area, like the roof of a car or the
wing of an airplane, can be an issue for a routine use, because riblets size needs to be very
small to be effective. The riblets need also to be cleaned after each use otherwise some
residue (like insect or vegetation) can modify the roughness of the surface and reduce their
effectiveness.

Anyhow, riblets-like surfaces have been observed in Nature for many years, for example

14



Figure 1.6: Example of drag reduction relation to the ridge spacing. The maximum perfor-
mance is normally around s+ = 15, the picture shows also that when the riblet are really
tightely spaced the laminar case is retrieved. On the contrary when the riblets are far away
from one another their performance is comparable to the rough plate case. τ0 is the wall
stress in the case of a smooth flat plate. Image from Jimenez et al. [83].

Martin and Bhushan [103] found that skimmer birds (Rynchops) have riblets like grooves
in their beak, since they fly with it under the water surface to catch fishes. However, as
already introduced, the most clear example of such natural surfaces is represented by the
shark skin.

1.2.2 Shark skin

In their review, Dean and Bhushan [46] present the status of the shape optimization that
has been done on the riblets trying to mimic the typical sawtooth shape seen on shark
skin, showing that improvements of such geometries over the classical ones has yet to be
achieved. Shape optimization on riblets geometry has been studied by Bechert et al. [16],
showing that just few percents can be gained compared to the base line geometry.

There are, actually, some controversial results in the literature stating that surfaces,
with actual shark skin replica, can indeed increase drag. Boomsma and Sotiropoulos [20]
performed some simulations on actual shark skin denticles using the immersed boundary
method. These authors simulated various arrangements of the denticles and they found
that, in some configurations, the actual drag increases up to 40%. This can be a clue that
the shark skin does not work with the same mechanism as riblets do.

Experiments on such geometries are available in the literature (Bechert et al. [15]). The
authors built a synthetic surface, made by artificial shark denticles fixed on top of springs.
They have shown that, even with the introduction of surface elasticity, the actual drag was
increased. However, they pinpointed that the actual shark flow regime was not steady in
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Figure 1.7: Two different sizes of riblets are shown when interacting with a sublayer vortex.
In gray it is represented the area where friction is important. Clearly when both sizes are
comparable the surface experience a larger friction and the performance is lowered. Image
from Choi et al. [39].

the experiments performed, and they speculated that the excellent swimming performance
of the shark comes from the separation control that flexible denticles can operate during
the periodic oscillating flow that the swimming generates.

In addition an experiment using DPIV on a NACA profile covered with actual skin
samples of "Isurus oxyrinchus" mako shark, has been performed by Lang et al. [92], con-
firming that the flexibility of sharks denticles provides the passive flow control needed to
avoid early separation. In fact, the experiments have proven that for angles of attack larger
than 15◦ the flow reversal was almost completely avoided. The same authors noted that
different geometries of the denticles can be found in various parts of the shark body, and
these differences can be important since flow conditions can change from the head to the
tail. Motta et al. [113] performed a detailed collection of flexibility and scale measurement
of different shark species that can be valuable for future studies.

Again, swimming experiments from Oeffner and Lauder [120], who used a flat plate
covered with real shark skin, confirmed the previous flow control mechanism. They had also
made some conjectures about possible thrust enhancing, controlled by the same denticles,
that can move away the leading edge vortex.

Also Itoh et al. [80] showed that movable rugosities can outperform riblets. They
measured the drag reduction of a seal fur (that present fibrous movable surface) against a
riblet surface in an experimental channel. Their results are show in figure 1.8 in which it
is visible that seal fur can outperform rigid riblet performance by 5% in a certain span of
Reynolds numbers.

Compliant surfaces can, in reality, move accordingly to the surface pressure gradients
along the boundary layer and so respond to the pressure fluctuations over the surface itself.
This mechanism is already known to be beneficial in delaying the transition to turbulence
and many authors have presented theoretical and experimental evidence on the effectiveness
of this solution (Carpenter [35], Bushnell et al. [30]).

In conclusion, we have seen that, in order to reduce turbulent skin-friction drag, riblets
and natural surfaces use various mechanisms such as: sublayer vortices interaction, com-
pliance and separation control. Such solutions have proven to be effective in various cases
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Figure 1.8: Performance comparison between a riblet surface against a seal fur. The drag
reduction has been computed as: DR% = ∆τ

τ0
%. Image from Itoh et al. [80].

mostly related to the viscous component of the drag. In the next section we introduce
another class of solutions that try to act mostly on the pressure component.

1.3 Permeable surfaces

As permeable surfaces we indicate permeable coatings that usually have a significant thick-
ness; in contrast to riblets, in which the vertical extension outside the wall is limited. In
this case the flow can penetrate deep into the porous surface and generate complex interac-
tion mechanisms. The next sections presents an overview of the most notable applications
of such permeable surfaces.

1.3.1 Bluff bodies

There is some experimental evidence that, in the laminar regime, generation of some slip
velocity at the interface between the permeable surface and a fluid, can decrease the skin
friction (Beavers and Joseph [14]). However, in the turbulent case it seems that the in-
stabilities developing at the interface can cause a drag increase up to 40% (Jimenez et al.
[83]; Breugem et al. [24]); this instability mechanism is further explained in section 1.5. It
is important to observe that the permeable surfaces cited in the above references are all
rigid.
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The pressure contribution to the drag is usually the most significant one in bluff bodies
applications, and even in highly streamlined body it is around 10% of the total drag.
Researchers have tried to find a way to modify the pressure distribution around a bluff
body to reduce the associated resistance, and also to damp the force oscillations on the
body (drag and/or lift).

The pressure drag on a bluff body depends mostly on the difference between the low
pressure on the rear part of the body, where there is usually a separated flow region, and
the high pressure in the forward part. This idea is sketched in figure 1.9 where two different
pressure distributions are shown; the black one represents the classical solid body, and the
green one is the one with a porous layer at the back of the body.

Figure 1.9: Diagram showing an example of angular pressure distribution around a cylinder
for viscous flow. The black line is the case of a solid body, the green one is the modified
pressure when a porous layer is present on the rear. Image from Klausmann and Ruck [85].

The favorable increase of pressure in the rear point is due to the low speed laminar flow
in the porous media that is ejected in the back region where separation takes place. Even
in very high speed turbulent flows, the fluid inside the permeable surface exhibits a very
high energy loss due to the strong dissipation that the medium provides, resulting in a low
speed flow ejected downstream of the body.

The permeable interface, producing a slip velocity, can modify the boundary layer
that develops above it producing less shear and vorticity, modifying also the stability
characteristics of the flow. The instability around a cylinder is due to the shear layer that
forms in the top part of the body, when the flow starts to decelerate. This shear layer
exhibits a Kelvin-Helmholtz-type instability that develops in the classical Von-Karman
wake.

These two hypothetical mechanisms has been tested using numerical simulations by
several authors: Bruneau and Mortazavi [27] [28], Bhattacharyya and Singh [18], Naito
and Fukagata [115] and Mimeau et al. [110]. These works studied the flow around some
classical two dimensional bluff bodies (cylinder, square cylinder, Ahmed body section, 3D
hemisphere) with the addition of a porous layer.
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These works show some very promising results, like: decrease of enstropy, lower oscilla-
tions in lift, drag reduction, regularization of the wake and lower pressure gradients, even
if the porous medium was rigid in the case treated. An example of turbulent flow field
downstream to a square cylinder is shown in figure 1.10; the picture demonstrated how the
porous layer strongly regularizes the wake.

Figure 1.10: Square cylinder vorticity contour for Re = 30000. Top: solid case. Bottom:
porous case with layer extension h/D = 10%.

The simulations performed by the authors above indicate that porous medium parame-
ters, like the medium porosity or its vertical extension above the solid wall, have important
effects on the quantities listed above. The variety of these results seems to indicate (at
least qualitatively) that increasing the porous medium extension beyond a certain limit is
not beneficial, and they also show that the porosity of the medium should not be excessive
in order to be effective (high/medium porosities are the best).

However the above cited works should be taken with some care; only few cases are
three-dimensional, they all use a modeling approach for the porous medium based on a
simplified version of the VANS (Volume Average Navier-Stokes equations, see section 1.4.2),
without performing any validation of the method. Sometimes they also use the equations
outside their field of validity (there are discussions in the scientific community about using
the previous version of the VANS equations for highly turbulent flows).

The lack of validation reflects the fact that reliable experiments of such porous coatings
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are almost non existent in the literature. There is also some confusion in the community on
how to compute forces on such bodies surrounded by a porous coating. These differences led
some authors ( Naito and Fukagata [115]) to over-estimate the forces and their predictions
are not aligned with the literature. Caltagirone [31] argued on theoretical bases that the
approach used by Bruneau and Mortazavi [27] is the correct one for that specific version
of the VANS used by all the previous authors.

The approach of Favier et al. [53] differentiates itself from the previous approaches that
use the VANS equations. In fact the authors used a numerical method that includes the
dynamics of a moving porous medium made of fibers at the back of a cylinder. Their
results in a laminar flow case agree with the prediction of a wake stabilization and show
some more realistic values of drag reduction, about 15%. However the difficulties in this
approach lie in the medium dynamics, it introduce many mechanical parameters that are
not easily identifiable for natural surfaces.

A similar model has been used by Venkataraman and Bottaro [155], in which they
applied a movable porous coating in the suction side of a NACA airfoil. In this case the
synchronization between the oscillations of the structures and the natural frequency of
the fluid is responsible for the pressure distribution modification. They have shown the
robustness of this solution in a wide range of angles of attack and, in the best case, they
have found some lift enhancement and a drag reduction around 10%.

Later on, Rosti et al. [137] worked on a similar configuration with only one movable flap
on the low pressure side of the airfoil. Numerical and experimental results qualitatively
agree (on the flow mechanism) with the results in the complete porous case.

Zampogna et al. [171] perform some three-dimensional DNS computation over a sphere
with cylindrical roughness at Reynolds number equal to 1000, finding a modest drag re-
duction of 2% compared to a smooth sphere of the same size.

The very few experiments in literature on this porous coatings show less promising
results associated to drag reduction.

For example, Heenan and Morrison [75] performed an experiment in which they took a
backward facing step with a porous insert in the re-circulation region. Their measurement
shows a 13% decrease of the peak of pressure at the wall and a relocation of the detachment
point further downstream. A maximum of 9% of drag reduction was measured. The effect
of adding a porous surface in this case was to limit the pressure fluctuations that cause the
re-circulation bubble unsteadiness.

Later on Klausmann and Ruck [85] studied a 3D cylinder with a porous insert in the
back (as in figure 1.9). The authors used a wind tunnel testing with pressure measure-
ments around the body and particle image velocimetry (PIV) flow capture. Their results
confirmed that the porous layer on the leeward side increased the pressure in that zone,
causing a reduction of drag around 10% over various Reynolds number (in turbulence
range). This last measurement was sensitive to the geometrical parameters of the medium
as the position and its size. To the best of our knowledge this is the first example of
actual measurements of flow quantities using PIV, that can later be used to perform some
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validation on different numerical models. The above results are partially confirmed by a
similar experimental analysis by Grizzetti et al. [72].

Some other experimental data can be found in the case of flow over aquatic canopies
(Zhang and Nepf [172], Segalini et al. [140] and Hamed et al. [74]) even though the published
data are limited and the experiments show the presence of a free surface that increases the
difficulty of the problem and limits the possible use as a simple validation.

From this section the main physical mechanisms related to permeable surfaces had been
introduced. Even thought the different approaches in the literature seem to disagree in
the predicted values of some fundamental items such as the forces, a general trend on all
data shows that porous coatings can be effectively used in many situations. It is clear that
the scientific community needs many more experimental data in order to develop new and
improved numerical and theoretical models for such permeable coatings.

1.3.2 Canopy flow

Another important class of flows over poroelastic carpets are the canopy flows. These
types of problems involve flows over flexible slender structures such as trees and aquatic
vegetation. The behavior of wind over plants is very important in a large variety of fields,
like: the transport of substances as CO2 and nutrients or preventing agricultural dam-
age (wind-throw of crop fields); also some similarities with urban canopies can be found
(Ghisalberti [63]).

The boundary layer profile over such canopies differs substantially from the rough wall
one, as figure 1.11 shows. The vegetation resistance causes the creation of an inflection
point in the mean velocity profile that leads to a mixing layer type of instability (Kelvin-
Helmholtz instability) near the vegetation top. As a consequence of such instabilities
Finnigan [55] indicated that the vegetation can heavily modify the turbulence spectra as
a result of the interface instabilities and the coherent structures above it. The two lower
pictures in figure 1.11 outline the above statements. The spectrum in case of canopy flow
presents a larger peak in the frequency of the mixing layer instability. It presents also a
steeper slope in the energy cascade part due to the larger dissipation inside the permeable
layer and a high frequency peak associated to the swinging of the plants that can emit or
absorb small scales vorticies.

It is clear from the literature that the dynamics of the permeable substrate made
by vegetation is extremely important and should always be taken into account to fully
generalize the physics in such problems involving moving canopies. Nepf [117] shows how
the interface between aquatic plants and the free flow can be largely modified due to the
movement of the fibers (most of the plants arms and branches can be viewed as fibers).

In order to discriminate the different behavior of the fibrous structure it is convenient
to introduce some non-dimensional parameters typically used in fluid structure interaction
problems:

m∗ = ρβ/ρσ, CY = ρβU∞
2s3/E, s = H/d,
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Figure 1.11: Frames a and b show respectively the schematics of the mean flow over a
rough wall and a canopy flow; the difference in the eddy size is clear, also the inflection
point in the canopy flow velocity profile is obvious. Frames c and d show the turbulent
spectra for the two different flows above, in the case of rough wall a Kolmogorov type of
energy spectrum can be retrieved; in the case of canopy flow it is possible to see a larger
peak in the frequency of the mixing layer instability, a steeper slope in the energy cascade
part and high frequency peaks at high frequencies. Image from De Langre [45].

where ρβ is the fluid phase density, ρσ is the solid phase density, U∞ is a free-stream
reference velocity, E is the Young modulus of the solid material, H is a reference length
for the extension of the solid structure and d is a reference length for the thickness of
the material. The first parameter is the mass ratio (m∗), the second is called Cauchy
number (CY ) and the last one is the slenderness (s) of the structure. The mass ratio can
be used to quantify the added mass effects caused by solid inertia, however these effects
are usually negligible in case of fibrous permeable media. The Cauchy number defines
the static deformation of a fiber caused by the fluid flow; when the Cauchy number is
greater than unity, important deformations are expected. This last parameter is extremely
important since it controls a phenomenon called reconfiguration that leads to drag reduction
(Gosselin and De Langre [70]; Alvarado et al. [5]). The reconfiguration can be defined as
the capability of the structure to adopt a new shape when forced by a flow, usually it
become more streamlined to reduce its exposed frontal area with the aim to reduce the
total drag. When dealing with this phenomenon one should take into account the frontal
area A and the drag coefficient CD together, in order to avoid misinterpretation of the drag
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Figure 1.12: Effects of the Cauchy number CY on drag reduction. The drag reduction is
represented as the ratio between the frontal area A and the drag coefficient CD in dynamic
conditions, divided by the same product wider static conditions (subscript). Image from
De Langre [45]

reduction. In figure 1.12 the ratio of the parameter ACD has been represented for different
natural structures against the Cauchy number and it is evident that for a CY > 1 a drastic
drag reduction can be observed.

The overall reconfiguration of the permeable medium can lead to pressure recovery and
a wake regularization when applied to a bluff body, as the experiments by Gosselin and
De Langre [70] show.

Another important non-dimensional number is the reduced velocity (UR), that can be
derived from the previous ones:

UR =
√
CY s/m∗

This number is used when dealing with vortex induced vibrations of slender structures.
When its value is near one, dynamical coupling between the fluid and the structure is
expected, such as resonance or lock-in phenomena1.

Canopies can also help to prevent separation in the presence of adverse pressure gra-
dients. Belcher et al. [17] have carried out an analysis of the flow over a hill covered with
canopies using numerical and experimental data. The authors show how the permeable
layer can present a re-circulation region inside the canopy in the decreasing slope side of

1self-excited vortex-induced vibrations accompanied by the synchronization of the frequency of vortex
formation with the frequency of structure vibration.
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the hill. This zone move the separation away from the flow over the hill to the internal
structure of the canopy.

It is important to point out that the above results are restricted to fibrous or slender
structures and they cannot be extrapolated in general for different porous structure and
shapes, even though similar mechanisms are expected.

The research on canopy flow embraces a wide range of configurations and this renders
any comparison very difficult to make since most of the authors use very different models
in various regimes of velocities, using flexible structures with very different shapes. Even
if experiments are easier to find, like Segalini et al. [140], Segalini et al. [141], Maza et al.
[104], Barsu et al. [11] and Alvarado et al. [5], there is no quantitative mathematical model
established for the fluid and structure equations and almost all models available rely on
empirical correlations that fit the data in each different application.

1.4 Models for flows through porous surfaces

In this section we want to show some insight of the key characteristics that a model of
flows through poroelastic layers should have. In order to be as clear as possible we have
taken as example a very simple geometry to sketch the problem: the flow over a wall that
includes multiple flexible filaments, in the hypothesis of highly packed fibers the medium
can be treated like a porous medium. This simple geometrical configuration still has all the
characteristic and difficulties of more interesting applications, such as a bluff body with a
poroelastic layer.

Figure 1.13 shows a graphical representation of such a flow. The main fluid direction is
aligned with the x1 axis and the projection of the stream-wise component of the velocity
is shown in the plane x1 − x3. Such flow can bend the filaments that can show a more
or less coherent response. The surface that envelops all the filaments lid (Γ) defines the
limit between the region of free flow (Ωf ) and that inside the poroelastic medium (Ωp). Its
projection is shown in the x1 − x3 plane.

In order to computationally solve this problem there are some key points to address:

• Length scales: the flow presents interaction at multiple scales. The flow can develop
Kelvin–Helmholtz type instabilities on the interface and they can even penetrate
inside the medium and brake up to very small scales eddies. In order to resolve this
complex dynamics one should use a very fine numerical mesh (highly computationally
expensive) or come up with a model (like in the context of turbulence modeling).
Turbulence dynamic can be also problematic; the hypothesis that pore size eddies can
exist deep inside the porous medium is still object of some debate in the community.
How to deal with such small scale dynamics and/or find a model is not an easy task.

• Compliance or fluid-structure interaction: if the filaments are flexible, they can bend
and swing due to the fluid load. We have to take into account a structural model for
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Figure 1.13: Sketch of a fully developed flow over a poroelastic surface made of multiple
filaments.

the filaments (by using, for example, the Bernoulli beam equation), including also
the computation of energy that the swing motion re-inject inside the fluid. This two-
way coupling could also be really computational expensive in the presence of a large
number of filaments. If the flexibility is important, one should in principle take into
account also the contact and repulsion, elastic coupling, between the fibers. If the
porous medium has more complicated shapes, like the scales in the butterfly wing,
is even harder to come out with a simplified model for the solid dynamics and the
use of a general finite elements discretization is probably a necessity but it increasing
also the computational cost of the problem. Another approach consists in deriving a
"rheological" model for the medium, in which the average mechanical properties can
be found. Such models are applicable only to porous media where the solid inclusions
are connected to each other. Such average methods are computationally convenient
but their mathematical description can be difficult.

• Anisotropy: the model used should be able to treat permeable surfaces that have
different responses when stressed in different directions. For instance, the geomet-
rical arrangement and/or the mechanical properties of the medium can be non-
homogeneous, so that the medium can appear more permeable in one direction and
show a preferential flow path. The different reaction for a specific direction can be
modeled with a tensorial parameter as for the case of the permeability tensor that is
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basically a generalized drag coefficient.

Dupont et al. [48] performed a LES simulation introducing a two-way coupling for the
fluid-structure interaction problem over a carpet of fibers. They validated their simula-
tions with video recording of a similar experiment and the frequency measurements of the
Kelvin–Helmholtz instabilities at the interface agrees very well. They have not specified the
computational configuration used, but they have mentioned an important high performance
computing center in the acknowledgment which made us assume that the computational
power involved was substantial. Recently, also Marjoribanks et al. [101] have adopted a
similar approach.

Some other examples that solve the fully coupled problem directly are discussed by
Monti et al. [112], Pinelli et al. [126], Favier et al. [54] and Revell et al. [135]. However,
in their cases the number of filaments is small and so they can be assimilated to isolated
filaments rather than to a poroelastic carpet.

Due to the computationally cost of solving the problem directly, the scientific commu-
nity has came out with other approaches that treat the porous domain with a generalized
model that does not resolve the fine scales inside the medium, but instead it expresses
them as a function of the length scales present in the fluid domain Ωf .

These are called homogenization approaches and the key points in such methods are:

• The division of the overall domain in two different parts: the fluid domain Ωf and
the porous domain Ωp.

• Two different fluid models are used in the two domains. In Ωf the Navier-Stokes
equations for incompressible Newtonian fluids are solved. In the porous part there
are a number of different models that add source terms in the former equations to
take into account of the presence of the porous medium.

• The two domains should be coupled together with a boundary condition at the inter-
face or a transitional region around the interface is added with its specific treatment.

• A model for the structural mechanics. It can be an averaged model or it can solve
the mechanic equations directly.

The key points written above are extensively discussed, in chapter 2, for the homoge-
nization method chosen in this thesis. However, in the next section the two main branches
in literature, that take into account the presence of a porous medium layer are summarized
in order to give a panoramic on the possible choices.

1.4.1 Isotropic drag models

In the case of flow through vegetation (canopy flows) it is common to use an isotropic drag
model2 to parameterize the drag of the canopy. The drag can be a function of the wall

2the drag is equal along the three principal directions of the medium.
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normal direction, but in most of the applications it is taken as a constant. The isotropic
hypothesis can be correct in case of dense vegetation, even if the normal component of
the resistance should be smaller. However the resistance in the vertical direction can be
approximated in this manner in channel flows where the mean flow is mostly streamwise.
On the contrary, in applications where the transpiration at the interface is important (wake
control of bluff body) the isotropic drag model is, certainly, not the most adequate.

The drag resistance is included in the Navier-Stokes equations as a source term:

∂vβ
∂t

+ vβ · ∇vβ = − 1
ρβ
∇pβ + νβ∇2vβ −

1
2CDa|vβ|vβ, (1.3)

where the subscript β indicates variables defined in the fluid phase, and CD the drag
coefficient of the isolated fiber. The parameter a is the frontal area per unit volume of the
vegetation, and it is function of the porosity of the medium. The drag term is quadratic
in the velocity, but there is some evidence in the literature that the reconfiguration phe-
nomenon can change this relationship (Gosselin and De Langre [70]; Alvarado et al. [5]).

From our point of view this approach lacks of strong mathematical formalism. As
a matter of fact the definition of the additional terms of the equations heavily relies on
empirical relations. Another issue is that the isotropic hypothesis rules out the possibility
to model the anisotropic nature of most surfaces in which we are interested.

In the field of flows through vegetation some authors have successfully used this ap-
proach. For example Maza et al. [104] and Maza et al. [105] used it to study wave attenu-
ation and Ghisalberti and Nepf [65], Battiato and Rubol [12] developed simple models for
the 2D mean flow over a canopy.

1.4.2 Homogenization models

In this section we want to introduce the most popular approach to derive the equations
valid in the porous domain. The fundamental idea is to build a micro-scale model, for both
the fluid and the solid, and then derive the macro-scale equations using some averaging
operator over the micro-scale.

The two most used homogenization methods are theVolume Averaging method (Whitaker
[162]) and the Multiple Scales method (Mei and Vernescu [108]) which can be broadly clas-
sified as perturbations methods. The key differences and the main results retrieved using
these approaches are presented in the following.

Volume Averaging

The method of Volume Averaging has been developed to solve transport equations in porous
media applications; in this case the presence of two different length scales is obvious, as it
can be evinced from figure 1.14.
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Figure 1.14: Schematics of a porous medium of size L, with a zoom on the microscopic
structure and its scale `. Image from Whitaker [162].

The core idea of the methods is to firstly define an average operator as

〈ψβ〉β = 1
Vβ

∫
V
ψβ dV,

in this case the variable ψβ represents any vector or scalar variable, associated to the fluid
phase (indicated with the sub-script β), that is present in the system of equations that we
want to homogenize. For Navier-Stokes equation ψ is the velocity and the pressure. In the
above operator Vβ is the fluid volume present inside a reference volume V .

The average operator has the purpose to homogenize the equations. The second crucial
step of the method is to decompose the variables as proposed by Gray [71]:

ψβ = 〈ψβ〉β︸ ︷︷ ︸
O(L)

+ ψ̃β︸︷︷︸
O(`)

(1.4)

Equation (1.4) shows how each variable can be decomposed into an averaged part which
contains only spatial variations at the macro-scale L and a fluctuation part that contains
only the micro-scale ` spatial variations.

Also the decomposition can be substituted in the transport equations, and after some
mathematical manipulations it is possible to retrieve the new averaged equations that
include only variables of order L. Since this is the method chosen to develop our work, all
the technical details are explained in chapter 2.

To introduce briefly some other aspects about this method, we show, as an example,
how to derive the homogenized version of the Stokes equation. The described problem is a

28



steady flow inside a rigid porous medium, like the one in figure 1.14. The Stokes equation
valid for the fluid phase, indicated with the β subscript, reads:

0 = −∇pβ + µβ∇2vβ, (1.5)

It is important to specify that equation (1.5) is valid only in the fluid phase and in
order to solve it we have to consider a no-slip boundary condition at the interface with
the solid phase, with the difficulties that come to define the complex structure of the solid
inclusion. Applying the Averaging Method, we can derive a homogeneous version of (1.5)
that is valid in all the domain that includes the two different phases, the solid and the
liquid one. The homogenized version of (1.5) is the well known Darcy’s equation:

〈vβ〉β = − K
εµβ
∇〈pβ〉β,

developed with this approach by Whitaker [159]. It is important to specify that the conti-
nuity equation, in his incompressible form, is need to retrieve the averaged equation above.

The Darcy’s equation allows to recognize two additional quantities that arise from the
averaging procedure. The first one is a scalar called porosity ε that represents the ratio
between the volume of the fluid inside a reference volume over the total volume. The
second one is the tensor K called permeability tensor and it expresses the resistance of the
porous medium that affects the flow in its motion. The term K plays the same role as
CDa in the isotropic drag model; the main difference is that the permeability tensor can
be computed directly from the geometry of the medium (see chapter 2), i.e. it does not
rely on empirical relations. In addition, the tensorial nature of this terms allows to model
porous inclusions that are anisotropic.

Applications of the theory include flow where inertial terms are not negligible (Whitaker
[161]), porous media with small deformations (Whitaker [160]) and with high deformations
(Hussong et al. [77]), turbulent problems (Soulaine and Quintard [147], Breugem et al.
[24]), interface between a permeable medium and a free flow (Beavers and Joseph [14]),
multi-phase systems (Whitaker [158]), heat transfer (Carbonell and Whitaker [33]) and
sound propagation (Firdaouss et al. [57], Lafarge et al. [91]).

It is impossible to go into details in the derivation of the equations for each specific
problem, but the key point here has been to show the differences between this method and
the isotropic drag model of the previous section.

Multiple Scales

The multiple scales method presents analogies to the previous one and it has also been
applied to similar problems in the context of porous media applications.

In this method we start with the assumption of scale separation between `, the micro-
scale, and L, the macro-scale. The scale separation factor can be defined as ε = `/L� 1.
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Using the same examples as the previous section, we show how to compute the homogenized
version of the Stokes equation for fluid flow through porous media. We introduce the micro-
scale and the macro-scale coordinates defined respectively as:

Xi = x̃i
L
, xi = x̃i

`
,

where x̃i are the original eulerian coordinate of the problem. Using the above separation
factor it is possible to expand the pressure and velocity as:

ψ(Xi, xi) = ψ(0)(Xi, xi) + εψ(1)(Xi, xi) + ε2ψ(2)(Xi, xi) +O(ε3),

Substituting this decomposition inside the equation (1.5) it is possible to derive a set of
hierarchical equations, one for each order of the expansion. It can be shown that analyzing
each equation in the set the homogenized equation yields:

vi
(0) = −Kij

∂p(0)

∂Xj
, (1.6)

in which either the pressure or the velocity fields appears only at the order zero, and the
equation depends only on the macro-scale length.

The same permeability tensor K as before is found, with the same definition and inter-
pretation. It is clear that for this simple problem we end up with the same homogenized
equation. The point that has changed is the starting hypotheses of the method and the
mathematical development.

A full analysis of the dualism of the two approaches can be found in the work by Davit
et al. [44].

The multiple scales method has also been used to study many other problems: inertial
effects (Mei and Auriault [107], Skjetne and Auriault [145]), coupling between a free fluid
and a porous medium (Mikelic and Jäger [109]), porous media with small deformations
(Auriault and Sanchez-Palencia [9]), heat conduction in composites (Auriault [8]), rigid
and moving permeable layers (Zampogna and Bottaro [167], Lācis et al. [90] and Zampogna
and Bottaro [169]).

1.5 Stability of flows over permeable surfaces

Flows through submerged aquatic plants exhibit large scale vortices at the top of the
vegetation, advected along the flow direction and causing a periodic waving of the plants,
referred to as monami (if the fluid is air) and honami (in case of water) (Inoue [79],
Ackerman and Okubo [1]). The effect of the onset of the monami is depicted qualitatively
in figure 1.15.

Vortices arise from the nonlinear amplification of a Kelvin-Helmholtz instability mode,
related to the presence of an inflection point in the base flow profile (Asaeda et al. [7]).
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Figure 1.15: Left: when the drag of the canopy is large enough it generates canopy-scale
vortices by Kelvin-Helmholtz instability. These vortices may interact with the flexible
vegetation and generate a waving motion called monami. Right: when this interaction is
too weak, the canopy only bend. Image from Nepf [117].

The profile itself is inflectional because the fluid is slowed down by the drag exerted by the
canopy, whose modeling has recently been addressed (Py et al. [127]; Singh et al. [143];
Zampogna et al. [170]; Tilton and Cortelezzi [151]). The correct prediction of the onset
and characteristics of the Kelvin-Helmholtz instability is important to assess the effects of
turbulence (Finnigan [55], Jimenez et al. [83]) in particular to:

• understand how the vertical exchange of momentum occurs (Ikeda and Kanazawa
[78]).

• clarify how the transport of CO2 and dissolved nutrients or sediments take place.
This exchange occur between the obstructed vegetation flow and the free overflow
motion (Gambi et al. [59], Eckman [49], Grizzle et al. [73]).

• assess the changes in the morphology of the vegetation in inland or coastal wetlands
in response to continuous periodic forcing (Asaeda et al. [7], Patil and Singh [123]).

One of the possible approaches to study how and when these instabilities start is the
linear stability analysis. In the following section we briefly introduce the key assumption
and simplifications of the method, and some results in the context of permeable surfaces
are also presented.

1.5.1 Stability theory generalities

Stability theory covers the modeling of transition of fluid systems towards unstable states
eventually leading to turbulence. The theory provides a fast and robust method to compute
the frequency and growth rate of the unstable mode in the base flow.
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The linear stability relies on the decomposition of the flow variables q into a steady-
state part q, called base flow, and an unsteady part q̃:

q(x, t) = q(x) + q̃(x, t)

Where the unsteady part is small compared to the steady one. We also simplify q̃ with
the hypothesis to have a general wave form:

q̃ = q̂(x)eiΘ(x,t)

where q̂ is the amplitude function and Θ is the phase of the perturbation. The choice made
to determine the time and space dependency of either the phase function and the amplitude
determine a certain hierarchy inside the stability theories. This hierarchy depends on how
many directions we consider to be periodic in the amplitude function3. Figure 1.16 below
present each possible choice in literature and the theory that derives from it.

Figure 1.16: Classification of modal linear stability theories. Table from Juniper et al. [84].

In our case we have limited our study to a local approach build on normal mode
decomposition, local stability theory (LST, also known as ordinary stability equations OSE
in the denomination of table 1.16). In the LST we make the hypothesis that the amplitude
and the base flow depend only on the wall normal spatial coordinate (parallel flow) and
the phase function takes into account of the periodicity in time and in the streamwise and
cross-flow directions. The last hypothesis should not only be seen as a simplification since
there are some problems (such as canopy flows) in which two of the three directions are
really homogeneous. The complete formulation is:

q̃(x, t) = q̂(x2)ei(αx1+βx3−ωt)

where x2 is the wall normal direction, α is the streamwise (x1) wavenumber, β is the
crossflow (x3) wavenumber and the real part of ω is the temporal frequency.

Casting this form for the pressure and velocity inside the Navier-Stokes equation, the
equations that we get describe the evolution of the perturbations, taking the base flow

3The hierarchy goes from local approach with 2 direction periodic out of 3, to tri-global with all the 3
directions considered space dependent.
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as an input of the problem. In order to study the stability of the perturbations in their
time evolution, problem known as temporal stability, we fix the space perturbation form
imposing α and β as real numbers (inputs of the problem) and solving for ω as a complex
number. With such choices the problem become a generalized eigenvalue problem for ω:

Aq̂ = ωBq̂

The solution gives the frequency (real part of the eigenvalues) and the growth-rate (imag-
inary part) of the perturbation modes (eigenvectors) of the flow.

The above introduction of the method is quite condensed, however there is much litera-
ture on the subject (Juniper et al. [84], Criminale et al. [41], Schmid and Henningson [139]
and Ortiz et al. [121]). The problem has also been extensively studied in its computational
aspects by Canuto et al. [32].

1.5.2 Monami/Honami and Kelvin-Helmholtz rolls

We have already highlighted that the above framework concerning the stability problem
has been applied in some porous media flow (canopy) configurations, also including the
vegetation movement. Because of the flexibility of the vegetation, some theoretical studies
have focused on the modeling of the stems of the aquatic plants and their displacement in
response to the forcing by the water flow (Py et al. [127]; Patil and Singh [123]; Gosselin
and De Langre [69]; Py et al. [128]).

It has been studied in Finnigan [55] that these large coherent structures control turbu-
lence dynamics over the canopy. Movements of the latter generate sweeps (and ejections) of
fluids that generates the counter-rotating stream-wise eddy evolving as Kelvin-Helmholtz
rolls. The complex evolution of vortices is shown in figure 1.17.

Figure 1.17: Left: first emergence of the Kelvin-Helmholtz instability. The growth-rate is
proportional to the shear magnitude at the inflection point. Center: the instability evolves
in rollers consisting of high vorticity that are spaced with a similar wave-length Λx as
the previous stage. Right: secondary instabilities in the rollers lead to their kinking and
pairing, coherent structures appear in the transverse and streamwise dimensions. Image
from Finnigan [55].
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However, Kelvin-Helmholtz vortices occur whether the plants bend or not, and to as-
certain causes and effects to first order it is acceptable to focus on rigid porous structures.
The flow over and through a submerged array of rigid, cylindrical pillars has been the
basis of the approach of Ghisalberti and Nepf [64] [65] [66], who have conducted a series of
careful experiments. Their results have often been used by fluid dynamicists to put forth
and test theoretical hypotheses to predict the frequency and wavelength of the large scale
vortical motion, for a variety of conditions. The configuration studied consists of a regular
grid of rigid pillars, orthogonal to the surface, of identical height h. In some of the theoret-
ical models proposed to analyze the stability of this system, the Rayleigh equation is used
throughout the water channel, with or without a drag term in correspondence of the canopy
(Raupach et al. [134]; Py et al. [127]; Singh et al. [143]; Zampogna et al. [170]; Luminari
et al. [97]). The same authors have recently demonstrated that the addition of a drag term
through the vegetation reduces the amplification factor of the Kelvin-Helmholtz instabil-
ity throughout the whole range of wave-numbers and increases mildly the wavelength of
the fastest growing mode (Zampogna et al. [170]; Luminari et al. [97]). In chapter 3 we
study how the perturbation of the base flow affects the predicted amplification factor and
wavelength. We also test the difference between the isotropic drag model and the tensorial
approach, in order to show which approach is more robust for stability computations.

1.6 Conclusions

The key point of this introductory chapter was to first present the context of this research.
We have started explaining that the idea of using porous surface as aerodynamical perfor-
mance enhancement from various examples in Nature. Many models based on this idea
already exist and we gave an extensive summary of the results present in the literature.
We have also presented the key points of the mathematical methods used to derive the
porous medium equations that supply a basis for the next chapter in which the volume
average method is formally explained.
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Chapter 2

Volume Average Method

Do not worry about your difficulties in mathematics; I can assure you that
mine are still greater.

- Letter to junior high school student Barbara Wilson,
January 7, 1943, Albert Einstein

2.1 Introduction

In the previous chapter we have already introduced the volume averaging method and how
it can be used to derive a macroscopic description of the microscopic system of equations.
The homogenized version of the system is valid everywhere in the porous medium domain,
and not only in the fluid phase. Theoretical aspect of the volume averaging method can
be found in Whitaker [162] [159] [161], Quintard and Whitaker [129] [130] [131] [132] [133]
and many other contributions that are introduced in the next chapter. The various steps
necessary to derive the local average version of the fluid dynamic equations are listed in
the following.

2.2 Homogenization procedure

The mathematical method of volume averaging is based on some fundamental steps that
one should follow in order to retrieve the homogenized version of the equations. The main
steps are:

• The definition of the averaging operator;

• The use of theorems that permit to interchange the derivation and the averaging
operation;

• The decomposition of fields as a sum of mean field and a perturbed field;
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• The assumption of length-scales constraints (based on the problem definition) that
help to simplify and define a local closure problem.

Such scheme is graphically summarized in Paéz-García et al. [122] and Davit et al. [44].
A similar flowchart of the complete overall procedure is shown in figure 2.1.

2.3 Derivation of VANS equations for 3D incompressible flu-
ids

2.3.1 Navier-Stokes equations

The dynamics of the fluid phase (indicated with the subscript β), inside and above the
porous medium, is governed by the Navier-Stokes equation for an incompressible Newtonian
fluid:



∂vβ
∂t

+∇ · (vβvβ) = − 1
ρβ
∇pβ + νβ∇2vβ

∇ · vβ = 0
vβ = vσ at Aβσ
vβ = φ(x, t) at Aβe

(2.1)

where vβ, pβ, ρβ and νβ stand, respectively, for the velocity, the pressure, the density
and the kinematic viscosity of the fluid. The interface between the fluid and the solid
is indicated as Aβσ, in which the no-slip condition for the velocity apply. In the above
boundary condition vσ is the velocity of the solid phase. Aβe indicate the external flow
boundary of the macroscopic region in which a certain velocity field φ(x, t) is defined.
Initial conditions should also be specified in order to solve the system, but they do not
take active part in the homogenization procedure. The next sections show how to average
this system using the volume averaging method.

2.3.2 Definition of the averaging operators

Figure 2.2 shows the schematics of the internal structure of a fibrous porous medium, the
important quantities are also indicated in the same picture. The shape of the volumes used
in the averaging operations are enclosed in continuous lines. V |x indicate the volume with
centroid x and Vβ|x indicate the fluid volume fraction inside the latter. The coordinate
vector r = x + y represents the centroid of another possible volume in which one can
compute the average quantities, the boundaries of the same volume are indicated with
dotted lines.
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Figure 2.1: Illustration of the volume average homogenization procedure. Image adapted
from Davit et al. [44]
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Figure 2.2: A graphical representation of the averaging volumes and interfaces in case of
fibrous (ordered) porous media. In this example the fibers are in a staggered arrangement.
The edges of the volumes that have centroid position x are shown in continuous lines and
the ones with centroid r are shown in dotted lines.

Let ψβ be an arbitrary order tensor (scalar, vector or second order tensor) defined in
the fluid phase of the volume V with x as centroid.

Two different volume averaging operators can be defined. The intrinsic average indi-
cated as 〈.〉β reads:

〈ψβ〉β|x = 1
Vβ(x)

∫
Vβ(x)

m(y)ψβ(x + y, t)d Vβ, (2.2)

wherem is a weight function defined on Vβ and y is the relative position vector with respect
to the centroid x of the averaging volume Vβ.

The second one is the superficial average indicated with 〈〉:

〈ψβ〉|x = 1
V

∫
Vβ(x)

m(y)ψβ(x + y, t)d Vβ. (2.3)

In the two definitions y is the integration variable. The difference between the two
formulations is that the former takes into account the actual fluid fraction in averaging the
field instead of the size of the total volume.

In order to use a less heavy notation, the subscript |x is dropped in the following
procedure, but should be kept in mind that the volume averaged quantities are explicitly
dependents on the volume center position as both averaging operators are defined as a
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volume integral. The size and shape of the integration domain can also be problematic
and more details on these issues are presented in section 2.3.3.

The weight function m, has the aim to guarantee smooth volume averaged fields. How-
ever, the choice of this formulation depends on the porous medium geometry, as the size
of the average volume.

The notation is further simplified if a constant weight is considered, in such a case it is
possible to drop it from the average operators. However any shape of the function m can
be used without formally changing the final form of the averaged equations.

The porosity of a porous medium cell is defined as:

ε = Vβ
V
, (2.4)

it represents how much fluid is actually present inside the averaging volume, in other terms
it is an indication of how packed are the fibers of our porous medium.

Using the above definition, it is possible to express a relationship between the two
averaging operators:

〈ψβ〉 = ε〈ψβ〉β. (2.5)

2.3.3 Choice of shape and size of averaging volume and weight function

The problem of choosing the right weight function, for a given porous medium geometry,
has been extensively studied by the series of works Quintard and Whitaker [129] [130] [131]
[132] [133] and more recently generalized by Davit and Quintard [43].

The authors above distinguish their results for ordered and disordered porous media.
They show that in each case a specific size and shape of the weight function (and the
volume) is needed in order to produce smooth averaged fields. The volume in which the
average procedure is applied is called reference elementary volume (REV). Usually for
disordered porous media a spherical volume is the most appropriate, and the REV size (`)
satisfy the length scale constraint:

`β � `� L,

where `β is a characteristic distance of the pore spacing. In case of ordered porous media
the most appropriate shape is usually a cube with side:

O(`β) = `� L.

The above constraint can be reinterpreted as the separation of scale parameter in the
multiple scale method, ε = `/L� 1.

Ochoa-Tapia and Whitaker [118] confirm the same length-scale constraints even in case
of an interface between a free fluid and a porous medium.

The size of the REV (`) should be chosen with the above specifications. These length
scale constraints ensure that the volume is large enough that periodic boundary conditions
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can be applied in the exterior of the volume. The REV size should also capture all the
phenomena that take place at the micro-scale (`β). If the REV size is the correct one,
increasing or decreasing its size should not change the average quantities. The weight
function can also help to attenuate variation of the averaged fields due to geometrical
inhomogenities of the porous medium. As a matter of fact, it acts as a low-pass filter for
the perturbations fields.

The weight function can also play an important role in the interpretation of the averaged
equation. As shown later on, in order to retrieve a local form of the VANS equations, the
following statement should in principle be true:〈

〈ψβ〉|r
〉
|x = 〈ψβ〉|x (2.6)

This means that the averaged field contain small variations at the micro-scale (inside
the averaging volume V ). In order to satisfy this requirement certain weight functions
can perform better than others, although the same conclusion can be derived from the
length-scales constraints. In paragraph 2.6, at the end of this chapter, some details of this
approximation are further explained.

For a disordered porous medium the hat function mu which has the form:

mu(y)


1
V

|y| 6 `/2
0 |y| > `/2

(2.7)

can be used to produce smooth averaged fields.
Instead, for an ordered porous medium the literature shows that a triangle shaped

function, called cellular filter, m4, performs better:

m4(y)
{

(`/2− |y|) |y| 6 `/2
0 |y| > `/2

(2.8)

Davit and Quintard [43] have recently expanded the required assumption that a m
function should satisfy. In general the weight function m should:

• be normalized as:
∫
Vβ

m(y) dVβ = 1;

• have compact support;

• satisfy: m ∗ ψβ ∈ Ck, where k represent the order at which the equation (2.6) is
exact1;

• satisfy2: (mPj(y)) ∗ ψβ =
{

0 for odd j,
const for even j,

1see equation (2.9).
2this requirement is clarified in paragraph 2.6.
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where Pj(y) is a polynomial of order j. The last requirement uses the fact that the average
operation can also be defined as a convolution product between the weight function and
the flow field quantities (Marle [102]):

〈ψβ〉|x = 1
V

∫
Vβ(x)

m(y)ψβ(x + y, t)d Vβ = m ∗ ψβ (2.9)

The choice of the weight function shape is very important, however previous works
in which the authors had implicitly used mu are not wrong. As a matter of fact, if the
assumption of well behaved fields holds3 then the homogenized equations are the correct
one. However neglecting the use of the proper weight function can induce some problem
on the interpretation of the averaged fields4; as a consequence particular care should be
used especially when making comparison to experiments.

In the following derivation of the equations no weight function is used inside the aver-
aged operators, in order to not make the notation too heavy. In any case in the following
sections it is indicated whether this special hypothesis on the weight function is required.

2.3.4 Theorems involving derivatives of spatial averaged quantities

The purpose of these theorems is to be able to swap the derivative and the volume average
operation.

Theorem 1 (Spatial averaging theorem). Let ψβ be a scalar quantity defined in the fluid
phase β, then:

〈∇ψβ〉 = ∇〈ψβ〉+ 1
V

∫
Aβσ

ψβnβσ dA (2.10)

In the above 〈ψβ〉 is evaluated at x and the operator ∇ expresses the differentiation
operation with respect to x. Also nβσ represent the unit outward vector of the surface
Aβσ(t), directed from the β phase to the σ phase.

Corollary 1 (Vector form of (2.10)). The vector form of the spatial averaging theorem is
given by:

〈∇ ·ψβ〉 = ∇ · 〈ψβ〉+ 1
V

∫
Aβσ

ψβ · nβσ dA (2.11)

Corollary 2. Applying the theorem (2.10) to a constant field ψβ = 1 the following relation
can be found:

∇ε = − 1
V

∫
Aσβ

nβσdA, (2.12)

3it means that the equation (2.6) can be verified a posteriori.
4as Quintard and Whitaker [129] show for the example of the hydrostatic pressure.
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Theorem 2 (Transport theorem). Let ψβ be a quantity defined in the fluid phase β, then:〈
dψβ
dt

〉β
= ∂〈ψβ〉β

∂t
+
∫
Aβσ(t)

nβσ · ψβ vσ dA, (2.13)

where vσ is the point velocity of the solid-fluid interface Aβσ.

The three theorems and the corollary are essential to develop the closed form of the
equations. One interesting thing to pay attention to is that the theorems switch the average
and derivative operation but always introduce a non local integral term.

2.3.5 Averaged continuity equations

We start by finding the averaged version of the continuity equation in (2.1):

〈∇ · vβ〉 = 0 (2.14)
Applying theorem (2.11) to the previous equation we get:

〈∇ · vβ〉 = ∇ · 〈vβ〉+ 1
V

∫
Aβσ

vβ · nβσ dA.

The boundary condition at the interface (vσ = vβ) implies that the integral above can be
modified as:

〈∇ · vβ〉 = ∇ · 〈vβ〉+ 1
V

∫
Aβσ

vσ · nβσ dA.

Now we rewrite the last term as if it were a result of the transport theorem applied to a
constant unitary scalar field:

〈∇ · vβ〉 = ∇ · 〈vβ〉+ ∂

∂t

1
V

∫
Vβ

dV − 1
V

∫
Vβ

∂1
∂t

dV,

where the last integral is zero. The first term can be further developed, obtaining finally
the averaged continuity equation:

∇ · 〈vβ〉+ ∂ε

∂t
= 0. (2.15)

2.3.6 Averaged momentum equations

We seek the average version of the momentum equation (2.1) re-written below:

∂vβ
∂t

+∇ · (vβvβ) = − 1
ρβ
∇pβ + νβ∇2vβ. (2.16)

In order to keep the procedure readable the development of each term is performed
separately, in the same order as they appear in equation (2.16).
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Temporal derivative term

Using theorem (2.13) we can write the first term of the equation as:〈
∂vβ
∂t

〉
= ∂〈vβ〉

∂t
− 1
V

∫
Aβσ

vβ(vσ · nβσ) dA. (2.17)

Convective term

Theorem (2.11) applied to the convective term gives:

〈∇ · (vβvβ)〉 = ∇ · 〈vβvβ〉+ 1
V

∫
Aβσ

(vβvβ) · nβσ dA. (2.18)

The boundary condition at the interface (vσ = vβ) implies that the integrals inside the
convective and temporal part are equal, so the left end side of the momentum equation
becomes:

LHS = ∂〈vβ〉
∂t

+∇ · 〈vβvβ〉. (2.19)

Pressure term

The pressure term is also expanded using theorem (2.10):〈
− 1
ρβ
∇pβ

〉
= − 1

ρβ
∇〈pβ〉 −

1
V

∫
Aβσ

pβ
ρβ

nβσ dA. (2.20)

Diffusion term

Here we fist use the identity ∇2 = ∇ · (∇), then we apply theorem (2.12) directly to this
expansion to get:〈

νβ∇2vβ
〉

= 〈νβ∇ · ∇vβ〉 = ∇ · 〈νβ∇vβ〉+ 1
V

∫
Aβσ

νβnβσ · ∇vβ dA. (2.21)

Now using theorem (2.10) on 〈∇vβ〉 we get:

〈
νβ∇2vβ

〉
= ∇ · νβ∇〈vβ〉+∇ ·

(
1
V

∫
Aβσ

νβnβσvβ dA
)

+ 1
V

∫
Aβσ

νβnβσ · ∇vβ dA

= νβ∇2〈vβ〉+∇ ·
(

1
V

∫
Aβσ

νβnβσvβ dA
)

+ 1
V

∫
Aβσ

νβnβσ · ∇vβ dA,

The first integral term is null in case of rigid porous media and is also null in case of rigid
motion of the solid. A manipulation procedure of this term has been proposed in Hussong
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et al. [77] but its influence in the poroelastic case is yet to be clarified. In the following
development this term will be included for completeness although, it is out of scope of our
study.
Before continuing the development, by summing all the terms together we get:

∂〈vβ〉
∂t

+∇ · 〈vβvβ〉 = − 1
ρβ
∇〈pβ〉+ νβ∇2〈vβ〉+

+ 1
V

∫
Aβσ

nβσ ·
(
−pβ
ρβ

I + νβ∇vβ

)
dA+∇ ·

(
1
V

∫
Aβσ

νβnβσvβ dA
)
. (2.22)

This is still not the averaged version of the momentum equation, since it has the pres-
ence of the non-homogeneous term 〈vβvβ〉 and some local (microscopic) variables remains
inside the integral term. In the next section these two terms are treated in order to make
them function only of averaged quantities.

2.3.7 Length scale decomposition

The decomposition proposed by Gray [71] is now used to get the average version of the
problem (2.1):

ψβ(r, t) = 〈ψβ〉β|(r,t) + ψ̃β(r, t), (2.23)

where ψ̃β is the microscopic scale contribution and 〈ψβ〉β the volume-averaged one. The two
contributions should be added together to obtain the local field values for the considered
quantity ψβ. In this equation the independent variable is r because we want to put emphasis
on the fact that the Gray’s decomposition is valid at every point in the space and, not only
in the REV’s centroid x. The implication of computing this decomposition in a point
in space rather than x are explained in paragraph 2.6. This decomposition has been
introduced in order to separate the different scales of the spatial variation of the fields, and
so separate the low frequencies from the high ones.

If the hypothesis of this decomposition holds, it is possible to demonstrate that the
average value of the perturbation field vanishes5:〈

ψ̃β
〉

= 〈ψβ〉 −
〈
〈ψβ〉β

〉
≈ 〈ψβ〉 − ε〈ψβ〉β = 〈ψβ〉 − 〈ψβ〉 = 0.

Using the above results, the non-linear term in equation (2.22) can be converted to:

〈vβvβ〉 =
〈
〈vβ〉β〈vβ〉β

〉
+
〈
〈vβ〉βṽβ

〉
+
〈
ṽβ〈vβ〉β

〉
+ 〈ṽβṽβ〉 = ε〈vβ〉β〈vβ〉β + 〈ṽβṽβ〉.

(2.24)
5the paragraph 2.6 addresses specifically the hypothesis behind this result.
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For each integral term of (2.22) the same field decomposition should be applied:

1
V

∫
Aβσ

−
(
pβ
ρβ

I
)
· nβσ dA = 1

V

∫
Aβσ

− 1
ρβ

(
〈pβ〉β + p̃β

)
nβσ dA

= 1
ρβ
∇ε 〈pβ〉β −

1
V

∫
Aβσ

p̃β
ρβ

nβσ dA, (2.25)

1
V

∫
Aβσ

νβnβσ · ∇vβ dA = 1
V

∫
Aβσ

νβnβσ · ∇(〈vβ〉β + ṽβ) dA

= −νβ∇〈vβ〉β · ∇ε+ 1
V

∫
Aβσ

νβnβσ · ∇ṽβ dA. (2.26)

The momentum equation now reads:

∂〈vβ〉
∂t

+∇ · (ε〈vβ〉β〈vβ〉β) +∇ · 〈ṽβṽβ〉 = − 1
ρβ
∇〈pβ〉+ νβ∇2〈vβ〉 − νβ∇〈vβ〉β · ∇ε

+ 1
ρβ
∇ε 〈pβ〉β + 1

V

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA+∇ ·

(
1
V

∫
Aβσ

νβnβσvβ dA
)
.

(2.27)

At this step the momentum equation is not closed since both the averaged quantities
and perturbation fields are present. In order to overcome this problem the intrinsic version
of the equation will be derived in the next section.

2.3.8 Intrinsic average form

In order to get the intrinsic average formulation, relation (2.5) is used to express surface
averaged quantities in terms of intrinsic ones. First, the continuity equation becomes:

∇ · (ε〈vβ〉β) + ∂ε

∂t
= 0.

The temporal derivative term of the momentum equation becomes:

∂〈vβ〉
∂t

= ∂(ε〈vβ〉β)
∂t

= ∂ε

∂t
〈vβ〉β + ε

∂〈vβ〉β

∂t
.

Applying the same relation to the viscous term yields:

∇2〈vβ〉 = ∇2
(
ε〈vβ〉β

)
= ε∇2〈vβ〉β + 〈vβ〉β∇2ε+ 2∇ε∇〈vβ〉β, (2.28)
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and the pressure term is also transformed into:

∇〈pβ〉 = ∇
(
ε〈pβ〉β

)
= ε∇〈pβ〉β + 〈pβ〉β∇ε. (2.29)

Summing up all the terms, we get:

∂ε

∂t
〈vβ〉β + ε

∂〈vβ〉β

∂t
+∇ ·

(
ε〈vβ〉β〈vβ〉β

)
+∇ · (〈ṽβṽβ〉)

= −ε ∇
(
〈pβ〉β

ρβ

)
−∇ε 1

ρβ
〈pβ〉β + νβε ∇2〈vβ〉β + νβ〈vβ〉β ∇2ε+ 2νβ∇〈vβ〉β · ∇ε

+ 1
ρβ
∇ε〈pβ〉β −

1
V

∫
Aβσ

p̃β
ρβ

nβσ dA

−νβ∇〈vβ〉β · ∇ε+ 1
V

∫
Aβσ

νβnβσ · ∇ṽβ dA

+∇ ·
(

1
V

∫
Aβσ

νβnβσvβ dA
)
. (2.30)

After the proper simplification we have the final versions of the Navier-Stokes system
of equations (2.1) using intrinsic quantities:



∂ε

∂t
〈vβ〉β + ε

∂〈vβ〉β

∂t
+∇ ·

(
ε〈vβ〉β〈vβ〉β

)
+∇ · (〈ṽβṽβ〉)

= −ε∇
(
〈pβ〉β

ρβ

)
+ νβε∇2〈vβ〉β + νβ∇〈vβ〉β · ∇ε+ νβ〈vβ〉β∇2ε

+ 1
V

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA

+∇ ·
(

1
V

∫
Aβσ

νβnβσvβ dA
)
,

∇ · (ε〈vβ〉β) + ∂ε

∂t
= 0.

(2.31)

It is important to highlight that the intrinsic momentum equation explicitly depends on
the porosity of the medium, because of the terms involving gradients of the porosity field.
In applications where the porosity can vary spatially, like the interface of a porous medium,
this formulation has the advantage to treat explicitly the interface non-homogeneities 6.

Equation (2.31) is also non-local since it has volume-averaged quantities and surface
integrals. These terms need some explicit manipulation in order to get a close formulation of

6further discussion of the interface treatment is presented in paragraph 2.5
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the above system. In the next paragraphs a closure formulation of these terms is discussed.
Usually these terms are named sub-filter stresses ζ and microscopic force Fm:

ζ = ∇ · (〈ṽβṽβ〉) ,

Fm = 1
V

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA.

We remember that the last integral term will not be further developed since it vanishes
in case of rigid porous media (assumption required further in the development).

2.4 Closure problems

2.4.1 Microscopic force Fm

The term Fm acts as a surface filter in the momentum equation. The perturbation fields
are filtered out by the integral operation over the fluid-solid interface. However, the term is
usually called microscopic force since it physically represents the force per unit mass that
the fluid exerts on the solid inclusions.

There is no simple representation for Fm if we include the terms that contain gradients
of the porosity (∇ε). Since we are interested in developing a local closure problem, which
will depend on the geometry of each REV, it is possible to neglect these terms. This means
that the closure problems are not correct at the interface between a porous medium and
a free fluid. However, if we use these closure problems at the interface we can still obtain
good results, as shown in the last chapter, even if they are not formally correct.

The continuity equation in system (2.31) becomes ∇ · 〈vβ〉β = 0 after the assumption
of constant porosity. We subtract this last equation from the continuity equation valid for
the local velocity velocity (2.1):

∇ · vβ −∇ · 〈vβ〉β = 0.

From Gray’s decomposition (2.23) the perturbation velocity field is written as ṽβ =
vβ − 〈vβ〉β. Using this relation after collecting the divergence we obtain the continuity
equation for the perturbations:

∇ · ṽβ = 0. (2.32)
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To continue the development, we first divide the momentum equation of system (2.31) by
the permeability ε, and we also apply the assumption of constant porosity:

∂〈vβ〉β

∂t
+∇ ·

(
〈vβ〉β〈vβ〉β

)
+ 1
ε
∇ · (〈ṽβṽβ〉)

= −∇
(
〈pβ〉β

ρβ

)
+ νβ∇2〈vβ〉β + 1

Vβ

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA

Subtracting the above momentum equation from the local field one (2.1) it is found:
∂ṽβ
∂t

+ vβ · ∇ṽβ + ṽβ · ∇〈vβ〉β + ε−1∇ · 〈ṽβṽβ〉 =

= −∇
(
p̃β
ρβ

)
+ νβ∇2ṽβ −

1
Vβ

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA. (2.33)

Now in order to simplify this last equation the following length-scale estimates can be
introduced:

ṽβ = O(〈vβ〉β), ∇ṽβ = O

(
〈vβ〉β

`

)
, ∇〈vβ〉β = O

(
〈vβ〉β

L

)
, ε = O(δ).

The last relation state that the porosity varies over a length scale δ. Valdés-Parada
et al. [153] and Ochoa-Tapia and Whitaker [118] propose the estimate `� δ arguing that
δ has the size of the zone in which the porosity varies, in case of an interface between a
porous medium and a free fluid. However it is important to state that this assumption
does not holds at the interface of all porous media geometries. For ordered porous media
ε = O(`). Whitaker [161] states clearly that there is not any easy way to define a local
closure problem when the relation ` � δ does not hold. In order to continue with the
development of the model, the relationship ` � δ is assumed to be true. However, the
derived closure problem will be formally correct only far from regions where the porosity
varies.

Analyzing the orders of magnitude, it is possible to neglect some of the terms in the
momentum equation (2.33):

vβ · ∇ṽβ � ṽβ · ∇〈vβ〉β ⇒ O

(
〈vβ〉β

`

)
� O

(
〈vβ〉β

L

)
, (2.34)

vβ · ∇〈ṽβ〉β � ε−1∇ · (〈ṽβṽβ〉) ⇒ O

(
(〈vβ〉β)2

`

)
� O

(
(〈vβ〉β)2

δ

)
, (2.35)

νβ∇2ṽβ �
∂ṽβ
∂t

⇒ O

(
(〈vβ〉β)2

`

)
� O

(
(〈vβ〉β)2

L

)
. (2.36)

In the last assessment it has been assumed that the time scale associated respectively
with the micro and the macro-scale are t = `/〈vβ〉β and T = L/〈vβ〉β. These assumptions
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imply that the perturbation problem is quasi-stationary, since physically the perturbation
field can be considered steady from the macroscopic point of view (Davit et al. [44]; Zhu
et al. [173]). It can also be noticed that in the above simplifications we have neglected
terms that contains the small parameter ε or its powers. This last results is coherent with
the multiple scale theory (Mei and Vernescu [108]) in which only zero order terms are kept
in the local closure problem formulation.

With this order of magnitude analysis the governing equations are simplified as:
vβ · ∇ṽβ = −∇

(
p̃β
ρβ

)
+ νβ∇2ṽβ −

1
Vβ

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA,

∇ · ṽβ = 0,
ṽβ = −〈vβ〉β at Aβσ,

(2.37)

and these represent the transport equations for the perturbation fields.
Considering rigid porous media it is possible to derive the boundary conditions at the

interface, substituting Gray’s decomposition inside the boundary condition (2.1). As a
consequence the solid phase is assumed rigid in this section. The above system is still
defined on all the porous domain and so we would like to find a way to reduce its size and
still obtain the same results. One possibility (not explored further here) is to use Green’s
functions to solve the problem in this form (Wood and Valdés-Parada [163]).

Here we proceed by restricting the solution region to a single REV, enforcing periodic
boundary conditions at the boundaries of such a volume. Such hypothesis is consistent with
the hypothesis of periodic ordered porous media in which the macroscopic field variation
inside the REV are negligible7. The problem on the REV thus becomes:



vβ · ∇ṽβ = −∇
(
p̃β
ρβ

)
+ νβ∇2ṽβ −

1
Vβ

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA,

∇ · ṽβ = 0,
ṽβ = −〈vβ〉β at Aβσ,
p̃β(x + `i) = p̃β(x), ṽβ(x + `i) = ṽβ(x), i = 1, 2, 3,
〈ṽβ〉β = 0.

(2.38)

In this set of equations the last condition, 〈ṽβ〉β = 0, is imposed to ensure a unique
solution.

Now the perturbed field has to be expressed as a function of some averaged values. Let
us introduce the closure tensor S and the closure vector s as:

ṽβ = S · 〈vβ〉β(x) + ξ (2.39)
p̃β = µβs · 〈vβ〉β(x) + γ (2.40)

7see paragraph 2.6.
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where ξ is a vector and γ a scalar. Whitaker [161] has demonstrated that the first vanishes
and the second is constant. It is very important to point out that equation (2.39) and
(2.40) are crucial since a linear correlation between the micro and macro-scale fields is
implied. However these relations can be function of the space coordinate x as explored
later in chapter 4.

Whitaker [161] proposes to define S and s via the following problem:



vβ
νβ
· ∇S = −∇s +∇2S− 1

Vβ

∫
Aβσ

nβσ · (−sI +∇S) dA,

∇ · S = 0,
S = I at Aβσ,
s(x + `i) = s(x), S(x + `i) = S(x), i = 1, 2, 3,
〈S〉β = 0.

(2.41)

It is difficult to solve this problem computationally because it is an integral-differential
equation. In order to simplify the problem, it is further decomposed into two parts, the
solution of the first one gives us the permeability tensor and the solution of the second one
the Forchheimer tensor. The variables S and s are further decomposed as:

S = B + C, s = b + c.

In this manner the micro-macro field relationship can be written as:

ṽβ = B · 〈vβ〉β + C · 〈vβ〉β, (2.42)
p̃β = µβb · 〈vβ〉β + µβc · 〈vβ〉β, (2.43)

where B is defined from:



0 = −∇b +∇2B− 1
Vβ

∫
Aβσ

nβσ · (−bI +∇B) dA,

∇ ·B = 0,
B = −I at Aβσ,
b(x + `i) = b(x), B(x + `i) = B(x), i = 1, 2, 3,
〈B〉β = 0.

(2.44)
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and C from:



vβ
νβ
· ∇B + vβ

νβ
· ∇C = −∇c +∇2C− 1

Vβ

∫
Aβσ

nβσ · (−cI +∇C) dA,

∇ ·C = 0,
C = 0 at Aβσ,
c(x + `i) = c(x), C(x + `i) = C(x), i = 1, 2, 3,
〈C〉β = 0.

(2.45)

Substituting the decomposition (2.39) and (2.40) inside the surface filter Fm we get:

Fm = νβ

(
1
Vβ

∫
Aβσ

nβσ · (−sI +∇S) dA
)
〈vβ〉β

Decomposing then the closure variables as in (2.42) it is possible to define the permeability
tensor K:

1
Vβ

∫
Aβσ

nβσ · (−bI +∇B) dA = −εK−1,

and the Forchheimer tensor F:

1
Vβ

∫
Aβσ

nβσ · (−cI +∇C) dA = −εK−1 · F.

A change of variables is now made (Barrere et al. [10]):

d = ε−1b ·K, D = ε−1 (B + I) ·K, (2.46)
m = ε−1c ·H, M = ε−1 (C + I) ·H, (2.47)

problem (2.44) can be written as:

0 = −∇d +∇2D + I,
∇ ·D = 0,
〈d〉β = 0,
D = 0 at Aβσ,
d(x + `i) = d(x), D(x + `i) = D(x), i = 1, 2, 3,
〈D〉β = ε−1K,

(2.48)

the permeability tensor K can now be computed from D.
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Problem (2.45) with the change of variables (2.47) becomes:



vβ
νβ
∇M = −∇m +∇2M + I,

∇ ·M = 0,
〈m〉β = 0,
M = 0 at Aβσ,

m(x + `i) = m(x), M(x + `i) = M(x), i = 1, 2, 3,
〈M〉β = ε−1H,

(2.49)

where H is called effective permeability tensor and it represents a generalization of the
permeability tensor in the inertia regime. The relation between the Forchheimer tensor
and the effective permeability is the following:

H−1 = K−1 (I + F) .

With the help of the above closure problem the final closed formulation for the micro-
scopic force becomes:

Fm ≈ FM = −νβεH−1 · 〈vβ〉β (2.50)

in which the correspondence between the descriptions by means of the perturbation fields
and the one that uses only the macroscopic fields become readily apparent.

It is also possible to use simplified regressions that permit to by-pass the local closure
problems and get directly the tensors K and F. One of the most famous relations are the
Kozeny-Carman equation (Kozeny [87]) and the modified Ergun equation. An extended
version of this empirical formulation can be found in Zampogna and Bottaro [167] and
Yazdchi and Luding [164]. The above relationships are always based on regressions from
experiments and they are usually parameterized with the porosity and some geometrical
characteristics of the medium. The downsize in using these simplified formulas is that
the geometries used are most of the times very simple such as spheres, or 2D regular
arranged cylinders and they are difficult to generalize. Also their range of application is
usually restricted to very small Reynolds number. Such restrictions render the local closure
problems the most reliable means to compute the Forchheimer and permeability tensors.

2.4.2 Sub-filter stresses ζ

The model is not yet completed, also the sub-filter stresses need to be closed. This term
acts as a volume filter for the perturbation velocity, in fact the product of the velocity
perturbations appear inside the volume averaging operator:

ζ = ∇ · 〈ṽβṽβ〉.
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The same term has already been neglected in equation (2.35) in the previous paragraph,
based on some length-scale argument [161]. Here we want to explain briefly what this term
represents and possibly when it can become important.

Breugem et al. [24] and Nepf [116] separate the nature of sub-filter stresses into two
different components:

• mechanical diffusion: when the fluid is forced to flow through the pores, it has to
pass around the solid structure causing an increase of diffusion inside the VANS
momentum equations. This mechanism is usually studied by means of the flow path
tortuosity for each different particle (Duda et al. [47]; Sivanesapillai et al. [144]).

• turbulent dispersion: it is caused by the subfilter scales eddies that appear at the
pore scale. This turbulent diffusivity can be anisotropic. For example, in the case
of fibrous porous media the vertical penetration and breakdown of eddies is much
higher than the horizontal one.

Breugem et al. [24] show that even if the two different components are equally important
they are negligible in the volume averaged field equations.

However, we speculate that this term can becomes important in situations involving
elastic porous media where sweeps and ejection of fluid can be observed at the interface.
This statement is supported by Finnigan [55] and De Langre [45] who have shown the
turbulence spectrum modification in the case of canopy flows. Possibly, the sub-filter
stresses could model this shift of the spectrum to high frequencies.

In order to better study this term, we need many reliable full DNS inside the porous
media at high pore Reynolds number. However, such simulations are very expensive and
almost absent from the literature. Experimental measurements inside the porous structure
can be another way to study this volume filter, even though such measurements can be
very difficult to perform.

2.5 Interface treatment

The problem of the interface condition between a porous medium and a free fluid has
been approached by many different authors. Ehrhardt [51] has given a concise but very
clear introduction on the problem, even thought the field is rapidly evolving (Minale [111],
Angot et al. [6], Lācis and Bagheri [89], Zampogna et al. [171]). Our work is not focused
on the development of a new condition although, here, we want to explain our choice for
the interface treatment over the many possible ones.

The interface conditions can be classified into two groups: the one domain approach
(ODA) and the two domain approach (TDA). In the TDA the whole domain is split into
two and a boundary condition at the interface is specified. Historically, the necessity of
such a treatment was mainly due by the difference of order of the Stokes equations and
the Darcy one, that makes them incompatible at the interface. The Brinkmann model
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adjusts the order of the porous medium equation, however the validity of this correction
deep inside the porous medium is questionable. The TDA was followed by Beavers and
Joseph [14], Mikelic and Jäger [109], Ochoa-Tapia and Whitaker [118] and Le Bars and
Worster [94]. These works have all in common the fact that a certain slip is specified at
the interface, for example the Beavers and Joseph [14] condition reads:

〈vβ〉β(x,Γ+) =
√
K11
α

∂〈vβ〉β(x,Γ−)
∂y

,

where Γ+ and Γ− represent the wall normal coordinate above and below the interface,
K11 is a measure of the permeability component in the tangential direction and α is a
coefficient based on the porous medium geometry. Other propositions change and extend
this formulation but basically they still impose a velocity jump at the interface, as a function
of a parameter α needed to fit the experimental data.

On the contrary in the ODA approach the final averaged equation are valid through
the whole domain and the quantities that define the presence of the porous media, i.e. the
porosity and the permeability, vanish in the free fluid region. This method is also know
as penalization method. One of the first applications of the penalization method can be
found in Caltagirone [31]; after that it was used by many other authors, like Bruneau and
Mortazavi [27], Bruneau and Mortazavi [28], Bruneau et al. [29], Hussong et al. [77]. It is
possible that the interface boundary condition approach is not superior, neither physically
nor mathematically. As a matter of fact either methods require a parameter to close the
formulation. The advantage of using the penalization method is that in this case the
parameter needed is the spatial distribution of the porosity field that is trivial to compute
when the geometry of the medium is known. However, it is still not clear how to vary the
permeability in the transition zone. Most of the authors propose a sharp jump from the
porous media value and the free fluid one. Neglecting the variation of permeability across
the transition zone appears to be acceptable, even though examples of linear variation of
this term exists (Caltagirone [31]). Hussong et al. [77] make a direct comparison with a
DNS simulation which included a discretization of all the pores, and concluded that the
variation of the permeability is very important in order to have a good comparison with
high fidelity computation.

A direct comparison between the ODA and TDA is presented in Cimolin and Discacciati
[40] who conclude that the macroscopic description of the interface provided by the two
different methods is similar. They also point out that the penalization method has the
advantage to be easily implemented in a Navier-Stokes solver and it does not present
sensitive convergence properties as the TDA do.

Also, there is evidence in the literature (Ochoa-Tapia et al. [119]) that transition zone
of the size of the pore scale exist, in which the velocity and pressure exhibit a continuous
variation and not a steep one. It has been demonstrated by the same authors that the
same transition zone is physical and not a result of the averaging procedure.
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In the following work we adopt the penalization approach with the porosity variation
computed directly from the geometry of our fibrous medium and a steep variation of the
effective permeability at the interface. In chapter 5 we show some details and results from
this approach.

2.6 Note on the average of an average field

In the above sections we have briefly talked about the results in equation (2.6) that we
recall here: 〈

〈ψβ〉|r
〉
|x = 〈ψβ〉|x.

Introducing the decomposition (2.23) the above results can be used to state that the per-
turbation fields have zero average: 〈

ψ̃β
〉

= 0.

Let us recall what the average operator really does when applied to an averaged quantities:〈
〈ψβ〉|r

〉
|x = 1

V

∫
Vβ(x)

〈ψβ〉|r(r) dV ;

the above equation can be described as the average computed over the volume V with
centroid x, of the averaged field 〈ψβ〉|r that can vary spatially, because of the change of r.

In order to show how the above expression can be simplified we expand the averaged
quantity 〈ψβ〉|r over the centroid x using a Taylor expansion:

〈ψβ〉|r = 〈ψβ〉|x + y · ∇〈ψβ〉|x + 1
2yy : ∇∇〈ψβ〉|x +O(y3)

Now, if we put this expansion inside the averaging operator, we get:〈
〈ψβ〉|r

〉
|x = 〈ψβ〉|x + 〈y〉|x · ∇〈ψβ〉|x + 1

2〈yy〉|x : ∇∇〈ψβ〉|x +O(y3)

The term 〈y〉 is zero for REVs used in ordered porous media. The second term can
be shown to be negligible either with the same length-scale constraint used in the REV
definition, in fact Ochoa-Tapia and Whitaker [118], Paéz-García et al. [122] showed that
this term is order O(ε2). Although it is possible to choose an appropriate weight function
that strictly enforces m ∗ yy = 0, these function are unpractical (Davit and Quintard
[43]). As we recall from section 2.3.3 the triangle shaped weight function almost satisfies
this hypothesis. The function m4 guarantees a second order closure. This means that
1
2〈yy〉|x : ∇∇〈ψβ〉|x is a constant. Further manipulations ([43]) can show that it is also
negligible (O(ε2)).
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2.7 Conclusions

We have shown in this chapter how to formally derive the homogenized version of the
Navier-Stokes equations. We have also discussed the extension of the model in case of an
elastic porous medium. A lot of emphasis has been put on the closure problem for the
microscopic force and the topic is further developed in chapter 4. Although the average
volume method is not new, we think that this chapter helps to place in context the recent
works in the literature. The chapter also forms a basis for a better understanding of the
next chapters.
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Chapter 3

Drag-model sensitivity of
Kelvin-Helmholtz waves in canopy
flows

While knowledge can create problems, it is not through ignorance that we
can solve them.

- Asimov’s New Guide to Science, 1984, Isaac Asimov

3.1 Introduction

In section 1.5 of the introduction we have already introduced the stability problems for
flow through porous media. In the same text some results has already been discussed and
it has been enlightened that most of the modelling problem rely on the choice of the drag
model that include the canopy effects inside the flow.

Questions remain, however, on which is the most accurate and/or less sensible model
for the canopy drag. Most of the authors (Raupach et al. [134], Py et al. [127] and Singh
et al. [143]) uses a drag coefficient based source term, inside the momentum equation,
that mimic the presence on the canopy. Instead in the work of Zampogna et al. [170] a
different model, applicable within the vegetated layer and based on the equations ruling the
behavior of a transversely isotropic porous medium, has been developed and the stability
results appear to better match experimental correlations. This conclusion is, however, not
consolidated yet, and further studies are needed to assess the influence of the model of the
drag force through the vegetation, both in setting up a particular (inflectional) mean flow
and on the onset and growth of Kelvin-Helmholtz waves. The present work addresses the
points above through an adjoint based sensitivity analysis along the lines of Bottaro et al.
[21] the direct stability equations are written with account of viscosity, and the adjoint
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equations are found and solved in the temporal framework. Results in the spatial setting
are discussed in section 3.5, where a digression is made on the computation of the group
velocity of the instability waves by the use of the adjoint fields. The sensitivity functions
to both mild modifications in the base shear layer and in the drag coefficient are computed
and discussed. Finally, a different sensitivity analysis is developed on the basis of the recent
anisotropic model by Zampogna et al. [170] and the results qualitatively compared to those
obtained with the more conventional isotropic drag force model.

3.2 Model of the canopy flow

3.2.1 The mean flow

To obtain the mean flow on top of which small amplitude perturbations are superimposed,
the procedure outlined by Ghisalberti and Nepf [65] and recently closely followed by Zam-
pogna et al. [170] is used. For the sake of conciseness, the procedure which relies on several
empirical correlations is not repeated here, aside from a few brief comments. A mildly
inclined water channel is considered, with a canopy formed by rigid cylindrical dowels of
height h equal to 13.8 cm and diameter d = 0.64cm. The frontal area of the vegetation per
unit volume, i.e., the packing density of the elements, is either a = 0.04cm−1 or 0.08cm−1;
the free surface is positioned at a level H = 46.7cm from the bottom plate and the flow ve-
locity at the free surface, U2 , varies from 4.4 to 13.7cm/s. The Froude number, Fr = U2

gH
is thus very low and water surface fluctuations can be ignored (Brevis et al. [25]). To a
good approximation the mean flow can be taken as steady and parallel, with the streamwise
velocity varying from the value U1 at the bottom wall (not accounting for the thin bottom
boundary layer) to the value U2 at the top, near the free surface (3.1). The slope of the
bottom surface is very small; it is denoted as S and, in the experiments by Ghisalberti and
Nepf [65] varies from 1.8 × 10−6 to 10−4; such a slope provides the driving force for the
motion. The viscous term is small compared to the turbulent diffusion term, so that the
mean streamwise momentum equation can be approximated by:

gS = ∂u′v′

∂y
+ 1

2CD(y)aU(y)2 (3.1)

with g the acceleration of gravity and CD an isotropic drag function available from the
experiments, variable across the canopy and equal to zero when y ≥ h.

The Reynolds stress u′v′ is modelled with the Boussinesq assumption, introducing a
turbulent viscosity which depends on a mixing length and on the gradient of the mean
velocity U. Referring to Ghisalberti and Nepf [65] for details of the empirical correlations
used to close the equations and the solution method, we limit ourselves here to stating
that the results obtained for the mean flow are very close to those reported in Zampogna
et al. [170] (cf. their Figure 3) and closely match experimental points for the cases G, H,
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Figure 3.1: Configuration studied with main notations

I, and J considered (we use the same terminology of Ghisalberti and Nepf [64] [65] [66]
to indicate the different flow configurations). An example of mean flow is reported in 3.2
(left frame). There, one can observe the computed flow (against discrete measurement
points), its first derivative, and the drag coefficient distribution for one representative
case (experiment G), used below also to discuss stability and sensitivity results. Other
procedures have been employed in the past to calculate the mean flow, with satisfactory
results. For example, Singh et al. [143] have considered a constant value of CD through
the canopy, while Zampogna et al. [170] have coupled, at a fictitious interface, the fluid
equations outside the canopy to Darcy’s law within the vegetation. Thus, for the purposes
of the present paper, the mean flow is assumed as given; it could be, for example, simply
a fit through experimental data.

3.2.2 Stability and sensitivity equations

A temporal linear stability analysis is carried out, with the generic perturbation q′(x, y, t)
of the form:

q′(x, y, t) = q̃(y)ei(α x−ω t) (3.2)

with α the real streamwise wavenumber and ω a complex number whose real part, ωr,
is the frequency of the mode and the imaginary part, ωi , is the growth rate.
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The dimensionless linear stability equations in primitive variables read:

iαu+Dv = 0, D = d/dy[
i(αU − ω)− D2 − α2

Re
+ aCdU

]
u+ U ′v + iαp = 0, U ′ = dU

dy[
i(αU − ω)− D2 − α2

Re

]
v +Dp = 0

(3.3)

with the perturbation velocity components which vanishes when y = 0 and y = y∞.
The upper boundary of the computational domain is taken far enough away from the lower
boundary to ensure that the results do not vary upon modifications of y∞ . All the terms in
the equations are dimensionless; the mean speed through the shear layer, Um = U1 + U2

2 , is
used to scale the disturbance velocity components, pressure is scaled with ρUm2 , distances
with h, and time with h/Um . The Reynolds number in the equations above is thus defined
as Re = ρUmh/µ , with ρ and µ the fluid’s density and dynamic viscosity, respectively. The
computations are performed both at the Re values of the experiments and in the inviscid
limit (Re−1 → 0 ), for comparison purposes. In the latter case, the boundary conditions
are simply v = 0 at y = 0 and y∞ . System (3.3) above and its boundary conditions are, in
the following, also written in short notation as L q = 0. The eigenvalues of the system are
those complex values of ω which yield non trivial solutions for u, v, and p. Two numerical
collocation codes are written, and successfully compared; one is based on the equations
in primitive variables form, the second solves an Orr-Sommerfeld like equation (with the
addition of the drag term) along the lines of Singh et al. [143]. In both cases, a spectral
scheme based on N Chebyshev polynomials is used (N is typically equal to 300 to ensure
grid converged results), with an algebraic mapping between the physical and the spectral
domains (Hussaini and Zang [76] ).

Viscous and inviscid stability results for case G are shown in figure 3.2 (center and
right frames); differences are small, in consideration of the fact that the Reynolds number
of the viscous case is relatively large (Re = 3450). The viscous wavenumber of largest
amplification is found for α = 0.4790; the waves are weakly dispersive, particularly at
low wavenumbers (an original interpretation of phase and group velocities is proposed in
section 3.5). The wavelength of largest growth is smaller than that found by Zampogna
et al. [170] which was 0.73; this is related to the slightly different base flow in the two cases
(in the present contribution a smoothing has been applied to the U velocity distribution to
render dU/dy continuous across y) and highlights the sensitivity of this stability problem
to base flow variations. Following Bottaro et al. [21] it is assumed that small variations
in base flow and drag coefficient entail infinitesimal variations in the system’s eigenvalues
and eigenfunctions. We stress here the fact that CD is identically equal to zero outside of
the canopy, and this implies that there are no possible variations in CD for y ≥ 1.
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Figure 3.2: Left frame: mean flow U , together with experimental data points Ghisalberti
and Nepf [65], its first derivative, and drag coefficient distribution (case G). Center: viscous
and inviscid growth rates, ωi , as a function of the streamwise wavenumber α. Right:
corresponding frequencies, ωr

The sensitivity functions to variations in U and CD are obtained by using the properties
of the adjoint system which is defined from the Lagrange identity:

0 = δ〈q†,L q〉 = 〈q†,L δq〉+ 〈q†, ∂L

∂U
qδU〉+ 〈q†, ∂L

∂Cd
qδCd〉+ 〈q†, ∂L

∂ω
q〉δω (3.4)

and considering the effect of independent variations of U and CD onto q and ω. It is
found that:

δω = δωr + iδωi =
∫ y∞

0
GU (y)δU(y)dy +

∫ 1

0
GCD(y)δCD(y)dy (3.5)

with:

GU = α
[
v†v + u†u

]
+ i(u†v)′ − iaCdu†u

GCD = −iαUu†u
(3.6)

the required sensitivity functions; the real parts of GU and GCd express sensitivities
to variations in the frequency of the mode while the imaginary parts are sensitivities to
variations in the growth rate. Direct and adjoint eigenfunctions are normalized so that
Nω = 1, with:

Nω =
∫ y∞

0

[
v†v + u†u

]
dy (3.7)
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Figure 3.3: Moduli of direct (left frame) and adjoint (right frame) eigenfunctions for the
viscous (continuous lines, Re = 3450) and the inviscid (symbols) case, in correspondence
to the wavenumber of largest amplification.

An example of direct and adjoint eigenfunctions is provided in figure 3.3, both in the
viscous case (Re = 3450) and in the inviscid limit, for α = 0.4790. It is interesting to
observe that while the direct eigenfunctions are almost overlapped, the same is not the
case for the adjoint eigenfunctions, with the inviscid mode (drawn with symbols) which
has a larger amplitude than the viscous one. The shapes of the direct eigenfunctions are
very close to those reported in Zampogna et al. [170]. The adjoint modes reveal that the
flow is most sensitive to streamwise forcing, particularly when it occurs slightly above the
edge of the canopy. Source terms in the mass conservation and in the vertical momentum
equations are much less effective.

3.3 Sensitivity results for the isotropic drag model

Some representative sensitivity functions are plotted in figure 3.4; viscous and inviscid
results concur in showing that the largest sensitivities to variations of U are found right
above the vegetation’s edge, where there are peaks in the adjoint eigenfunctions and where
d2U/dy2 vanishes. The U sensitivities are negligible within the vegetated layer and for
values of y larger than twice the canopy’s height. The CD sensitivities are non negligible
only in close proximity of the interface. It is interesting to observe that real and imaginary
parts of the U sensitivity functions are shifted in y with respect to one another; this means
that, for example, a localized perturbation at a given y position (above the canopy) might
have a strong repercussion on the growth rate but not on the frequency of the most unstable
Kelvin-Helmholtz mode, or vice versa. Comparing left and right frames of the figure 3.4, it
is seen that inviscid GU sensitivity functions display sharper peaks and steeper gradients,
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Figure 3.4: Real and imaginary parts of the sensitivities to mean flow variations (top) and
to variations in the drag distribution function (bottom), for the parameters of 3.3

and yield larger variations in ω than their viscous counterparts in the proximity of the U
inflection point, a clear consequence of the inviscid mechanism ruling the instability. In
both the viscous and the inviscid models, the sensitivity to base flow variations is typically
one order of magnitude larger than the sensitivity to changes in the drag coefficient.

The infinite norm of the sensitivities for the four cases studied (G, H, I, and J) is
reported in 3.5; the main result found is that |GU |∞ grows monotonically with α (and
more so in the inviscid case) whereas |GCd |∞ does not. It is consistently found that |GU |∞
of case H is larger than that of case I, which exceeds the corresponding value of case J, in
turn larger than |GU |∞ of case G. This is not unexpected in view of the values of the mean
shear U2 − U1

H
which are, going from H to G, equal to 0.236, 0.158, 0.084, and 0.071s−1 ,

respectively. The sensitivity of the eigenvalue ω to variations in the mean flow is generally
stronger than the corresponding sensitivity to variations in the drag coefficient (aside for
the long wave limit, where they are comparable). This might be interpreted positively,
considering that the use of a scalar coefficient CD to represent the drag within the canopy
is but a crude approximation.
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Figure 3.5: Infinite norms of the sensitivity functions for varying α

An alternative model to represent the flow throughout a network of rigid, cylindrical
dowels has recently been proposed by Zampogna et al. [170] The sensitivity results for such
a new model are discussed next.

3.4 An alternative sensitivity model: accounting for the canopy
anisotropy

The stability problem in this section is based on the coupling between two regions, one
outer region dominated by inertia and ruled by the inviscid equations and an inner one
dominated by viscosity and ruled by Darcy’s law, with account of the canopy geometry
through a tensorial permeability, as described by Zampogna et al. [170].
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Normalizing the disturbance equation which couples pressure and velocity in the inner
region with the same scales as previously, we obtain

ui
′ = −Re d

ah2Hij
∂p′

∂xj
, (x1, x2) = (x, y) (3.8)

with Hij the dimensionless apparent (or effective) permeability. The effective interface
between the inertial region and the slow, viscosity dominated region does not coincide with
the edge of the canopy; in fact, the rapid outer flow penetrates through the upper part of
the vegetation and an effective matching between outer and inner flows must be enforced
some distance δ below the canopy’s edge (Le Bars and Worster [94]). This distance, a
penetration depth, has been successfully computed by Zampogna and Bottaro [167] for a
few cases and is found to increase with the Reynolds number of the flow; for experiment
G discussed below it is δ = 0.40 (Zampogna and Bottaro [168]). On account of the results
shown in figure 3.4, with the sensitivities which are negligible for y ≈ 0.60, we expect that
the exact position of the effective interface will not affect the results significantly. Using
the fact that the velocity within the orthotropic porous medium is divergence free, the
interface condition to be applied at yitf = 1− δ is found to be (3.9)

v|itf +B(α)p|itf = 0 (3.9)

with:

B(α) = Re
d

ah2

√
H11H22α tanh(θ), θ = α

√
H11
H22

yitf

The second boundary condition that the Rayleigh stability equation must satisfy at y∞
is simply v = 0. Thus, we solve only for the inviscid flow in the outer region, and the perme-
ability of the inner domain enters the equations only through the interface condition (3.9).
Hij is a two by two diagonal tensor; H11 is the component of the dimensionless permeabil-
ity along x and H22 is the y component. For case G considered here, the packing density
of the elements is a = 0.04cm−1 ; it is also found that H11 = 0.0512 and H22 = 0.0575
(Zampogna and Bottaro [168]), so that the function B(α) reads B = 15.727α tanh(0.566α).

3.4.1 The sensitivity equations

The adjoint equations in this case are the same as system (3.3), without the terms con-
taining 1/Re and CD , and the boundary conditions are:

v†|itf −B(α)p†|itf = 0, v†|y∞ = 0 (3.10)
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The variation in the complex frequency is related to variations in the mean flow and in
the permeability components through the equation:

δω =
∫ y∞

yitf

GU (y)δU(y)dy +GH11δH11 +GH22δH22

with:

GU = α
[
v†v + u†u

]
+ i(u†v)′

GH11 = − i2αRe
d

ah2

[
p†p
]
|itf

√
H22
H11

{
tanh θ + θ

cosh2 θ

}

GH22 = − i2αRe
d

ah2

[
p†p
]
|itf

√
H11
H22

{
tanh θ − θ

cosh2 θ

} (3.11)

the required sensitivities, with the normalization
∫ y∞
yitf

[
v†v + u†u

]
= 1. In writing δω

above, we have made the assumption that the mean flow U does not vary at the two
extreme points of the integration domain. The stability results (for the same parameters
as in figure 3.2) are displayed in figure 3.6.

As already observed in Zampogna et al. [170], both the growth rate and the frequency
are slightly larger with this model than with the isotropic resistance model, for all α’s, and
the most unstable mode is found at a larger value of α (here α ≈ 0.8) in better agreement
with experimental correlations Zampogna et al. [170] Raupach et al. [134]. Also in this
case the waves are found to be only weakly dispersive.
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Figure 3.6: Amplification factor (left) and frequency of the most unstable mode as a
function of α, for the anisotropic drag model
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Figure 3.7: Left and center frames: moduli of direct and adjoint eigenfunctions; pressure
and “adjoint pressure” are drawn with dashed lines. Right: real and imaginary parts of
the sensitivity function GU (α = 0.4790)

Eigenfunctions are plotted in figure 3.7, together with the real and imaginary parts of
the GU sensitivity function. As in figure 3.3, the modulus of the u eigenfunction peaks
near the edge of the canopy ( y = 1), whereas the adjoint eigenfunctions have a maximum
value slightly above. As a general remark, the shapes of the direct and adjoint modes are
quite similar to those found with the isotropic resistance model; as reported at the end of
3.2.2, it is found that the flow is most sensitive to streamwise momentum forcing. Also,
real and imaginary parts of GU have a double peak structure, like in the isotropic drag
model, but now the largest absolute value of GU is smaller and shifted towards a larger y
than in the previous inviscid case (cf.3.4, top right frame).

This can also be appreciated by the inspection of figure 3.8 (left); |GU |∞ still grows
monotonically with α, but the sensitivity is smaller than that computed earlier (cf. 3.5)
with either the viscous or inviscid model (it is actually closer to the viscous sensitivity, as
an effect of the interface condition). Furthermore, it is interesting to observe that both real
and imaginary parts of GU vanish for y = y|itf (cf. figure 3.7, right), and this supports the
statement made previously that a small shift in the position of the effective interface has
but a minor influence on the most unstable mode. The sensitivity coefficients for the two
components of the permeability tensors are displayed in figure 3.8 (center and right frames):
the present model is more effective to variations in H11 than to H22 as far as modifying the
complex eigenfrequency. Significantly, different ranges of wavenumbers behave differently
as far as the variation in ω is concerned. The frequency ωr of long waves (around α ≈ 0.3)
is more easily modified by acting on H11 (with an almost negligible effect on the growth
rate of the wave); conversely, the growth rate of modes with large values of α is affected
efficiently by variations in the first component of the permeability tensor.
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Figure 3.8: Case G. Left: infinite norm of GU for varying α. Center and right frames:
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3.5 Digression on spatial stability theory and group velocity

Stability problems such as the first one considered here can be approached with the spatial
theory framework, with the wavenumber α complex, its imaginary part being a growth rate,
and the circular frequency ω a real constant parameter. Let us generalize the sensitivity
analysis by considering, as a first step, α and ω as complex numbers which can vary.
Equation (3.4) contains one additional term and reads:

0 = δ〈q†,L q〉 = 〈q†,L δq〉+ 〈q†, ∂L

∂U
qδU〉+ 〈q†, ∂L

∂Cd
qδCd〉+ 〈q†, ∂L

∂ω
q〉δω + 〈q†, ∂L

∂α
q〉δα

(3.12)
To obtain the sensitivities in the spatial problem (for which δω = 0) we now have to

solve an adjoint system similar to equation (3.3), where ω† is replaced by ω and α by α† .
The variation of the wavenumber δα = 0 is thus given by:

δα = δαr + iδαi =
∫ y∞

0
GU (y)δU(y)dy +

∫ 1

0
GCD(y)δCD(y)dy

the functions GU and GCd maintain the same form as in the temporal theory (3.6),
with the direct and adjoint eigenfunctions which are now normalized by imposing that
Nα = −1, with:

Nα =
∫ y∞

0

[(
U − 2iα

Re

)
(v†v + u†u) + p†u+ u†p

]
d y
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Let us now consider a problem in which U and CD are not allowed to vary, but α and
ω are. With reference to Equation (3.12), with any choice of normalization of direct and
adjoint modes, it is found that Nωδω = Nαδα. Thus, once the adjoint problem is solved, it
is possible to accurately compute the group velocity cg of any stability problem using the
value of Nω and Nα , i.e.,

cg := dωr
dαr
≈ real(Nα)
real(Nω) (3.13)

Note that cg above is different from the “complex group velocity” Cg := dω

dα
≈ Nα

Nω
,

and it is also cg 6= real(Cg). Relation (3.13) can be employed in either a spatial or temporal
stability analysis and some representative results (for case G) are provided in Table I with
the phase velocity cr := ωr/αr and the group velocity determined from Equation (3.13) .
The temporal or spatial amplification factors, ωi or −αi , respectively, are also given for all
cases using Gaster’s transformation: ωi = −αicg . Two types of errors on the calculation
of the group velocity (noted err) are given in the table; the top four values, relative to the
temporal theory, are defined as:

err =
|cg|(3.13) − cg|FD|

cg|(3.13)

with cg|FD arising from a first order finite difference approximation of the group velocity.
The bottom four values are defined by the formula:

err = |cg|temporal − cg|spatial|
cg|temporal

The relative difference on cg between temporal and spatial theory is rather low. It
has to be kept in mind, however, that a stability analysis in the spatial framework yields
a nonlinear eigenvalue problem, with a consequent larger numerical system than in the
temporal framework; therefore, by inverting matrices of the same size, the accuracy is
expected to be slightly lower. The accuracy of the growth rate approximated through
Gaster’s relationship is also found to be acceptable.
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Theory Re αr ωr −αi ωi cr cg err(%)
Temporal 500 0.5 0.4778 0.0248 0.0254 0.9556 1.0245 0.54

3450 0.5 0.4601 0.0413 0.0404 0.9202 0.9797 0.06
105 0.5 0.4514 0.0436 0.0421 0.9028 0.9661 0.63
109 0.5 0.4508 0.0451 0.0425 0.9016 0.9427 2.90

Spatial 500 0.4993 0.4778 0.0248 0.0250 0.9569 1.0100 1.41
3450 0.4990 0.4601 0.0427 0.0404 0.9220 0.9471 3.30
105 0.4996 0.4514 0.0449 0.0416 0.9109 0.9371 3.46
109 0.4993 0.4508 0.0450 0.0411 0.9028 0.9143 3.01

Table 3.1: Temporal versus spatial stability, Case G. The model employed here is based
on a modified Orr-Sommerfeld equation rather than a system based on primitive variables
as done in the bulk of the paper—which is why the temporal results have slightly larger
growth rates ωi than those displayed in Fig. 3.2; this is related to the need of computing
numerically d2U/dy2 and dCd/dy in the Orr-Sommerfeld like equation. In italics, the
growth rates obtained from Gaster’s transformation are reported; the parameters imposed
in each simulation are indicated with bold characters. The solutions for Re = 109 coincide
with those found using the inviscid equations.

The amplitude of the sensitivity functions, |GU (y)| and |GCd(y)|, in the spatial and tem-
poral stability frameworks is of same order of magnitude (not shown here) since they are re-
lated through the complex group velocity Cg . It is found that |GU temporal| ≈ |Cg||GUspatial|
with |Cg| ≈ cg ≈ 1 in the present case. Obtaining and comparing results in the temporal
and spatial stability frameworks, such as in Table I, is a good means to validate the sen-
sitivity functions and to verify the accuracy of the computations of the adjoint stability
equations.

3.6 Concluding remarks

We have considered two different models of the flow through a vegetated layer experiencing
Kelvin-Helmholtz destabilization. One model is based on the use of a single drag coeffi-
cient to express the force exerted by the vegetation on the fluid, the second considers the
canopy as an orthotropic porous medium and is based on Darcy’s equation with a tensorial
permeability Zampogna and Bottaro [167]. Both models have advantages and drawbacks.
The main advantage of the first model is that the drag coefficient can be taken to vary
across the canopy; whether this positive consideration, based on macroscopic experimental
measurements Ghisalberti and Nepf [64], Ghisalberti and Nepf [65] and Ghisalberti and
Nepf [66], carries over to the stability problem remains to be established. The second
model, applicable to dense porous media, considers two independent parameters to express
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the disturbance flow perpendicular and parallel to the rigid dowels forming the canopy.
Such parameters and components of the transversely isotropic permeability tensor H arise
from the solution of a local Oseen problem (Zampogna and Bottaro [167]). The draw-
back of the second model is the fact that an interface (whether real or effective) appears,
and adequate matching conditions must be enforced there. Despite much work since the
seminal contribution by Beavers and Joseph [14], a consensus on the "best" interface condi-
tions between a pure fluid region and a porous medium has not yet emerged. The models
have been put to test through a classical sensitivity analysis (Bottaro et al. [21]). Beyond
displaying stability results which correspond better to those to be expected from avail-
able experimental correlations Raupach et al. [134], Zampogna et al. [170], the anisotropic
model is less sensitive to variations in the base flow (with potentially larger variations in
frequency and growth rate of the instability mode for the case of shorter waves). As far as
a direct comparison between GCd and GHii is concerned, this can hardly be made since the
variables represent different objects; in particular, the pressure drop through the canopy
depends directly on the drag coefficient and inversely on the permeability. The present re-
sults indicate that the anisotropic model depends significantly on the value of the apparent
permeability component H11 (Zampogna and Bottaro [167]), whose evaluation must thus
be conducted carefully. The problem of computing the effective permeability tensor will be
addressed in the next chapter in which we show its modelling issues and possible solutions.

It also worth mention that the results presented here has been the basis for some
other works (Gomez-de Segura et al. [68], Sharma et al. [142] and Garcia Mayoral and
Abderrahaman-Elena [60]). The authors had used our approach to study some properties
of the porous media to further explore drag reduction mechanisms and stability issues.
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Chapter 4

Effect of geometrical parameters
and inertia on the apparent
permeability tensor in fibrous
porous media

Before we work on artificial intelligence, why don’t we do something about
natural stupidity?

- , Steve Polyak

4.1 Introduction

Since Darcy’s original formulation (Darcy [42]), which relates the flow rate through a
porous bed to the pressure drop across the bed’s sides, many corrections have been made
to account, for example, for viscous effects (Brinkman [26]) or for the consequences of
inertia (Forchheimer [58]). All of the cited works are of empirical nature, but the volume
averaged methods (VANS) has been able to recover all of these formulations rigorously
starting from the Navier-Stokes equations (Whitaker [162]).

As already seen in chapter 2, the VANS theory requires the knowledge of a number of
terms, most notably, in the case of an isotropic porous bed, a permeability coefficient and a
Forchheimer coefficient. Initial efforts in defining these terms were based on a combination
of physical reasoning and measurements, leading to expressions known as the Kozeny-
Carman Kozeny [87], Carman [34] and the Ergun Ergun and Orning [52] correlations.
These approaches do not consider microstructural or geometrical features of the porous
bed and are often restricted to simple unidirectional flows. In the present work we are
concerned with a transversely isotropic material composed by parallel fibers of circular
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cross-section, with one axis of symmetry, (O, x3). In such materials the permeability is a
diagonal tensor with the component in the direction parallel to the fibers greater than those
along the transverse axes. For such an arrangement we will investigate, in this chapter, the
effects of both the direction of the forcing pressure gradient and inertia. When the latter
effect is present, embodied by a Reynolds number Red, based on mean velocity through
the medium and fibers’ diameter, exceeding an order one threshold, the permeability is
no more simply defined upon geometrical properties. This extended permeability, which
arises from a well-defined closure problem (2.49), is then called apparent permeability.

The influence of the geometry of the solid inclusions has been addressed previously
by Yazdchi et al. [165] for arrays of cylinders in both square and hexagonal (or stag-
gered) patterns, with the cylinders’ section which can vary in shape. The results, in the
two-dimensional and low Reynolds number limits, demonstrate the dependence of the per-
meability component along the flow direction to both the porosity and the direction of the
macroscopic pressure gradient. The direction of the pressure gradient is found to have a
weak effect for beds of medium-high porosity (ε > 0.7) and a stronger dependence appears
upon the geometry of the solid inclusions.

The influence of the Reynolds number on the permeability and on the Forchheimer
correction has been presented in a number of papers (Firdaouss et al. [56], Penha et al.
[125] and Edwards et al. [50]). These authors show that, for arrays of fibers, the apparent
permeability decreases with the increase of the Reynolds number, and the rate of this
decrease depends on the geometry of the array; also, the Reynolds number is found to have
a stronger influence on the apparent permeability when the medium is highly porous. The
results of the work by Edwards et al. [50] agree with those by Zampogna and Bottaro [167]
and with our own work (as shown later), all for the case of cylindrical fibers. Although
some issues remain on the persistence of steady solutions in the simulations by Edwards
et al. [50] in cases for which a limit cycle should have set in. A fully three-dimensional
porous medium, more complex than those discussed so far, has been considered by Soulaine
and Quintard [147], confirming the decreasing trend of the apparent permeability with the
Reynolds number.

Another contribution which deserves mention is the one by Lasseux et al. [93]. They
have computed the permeability tensor for various Reynolds numbers, in a two-dimensional
geometry with cylinders of square cross-section. Forcing the flow along the main symmetric
directions of the fiber, the same authors have identified different regimes:

• a creeping flow regime for 0 < Red < 10−3, without Forchheimer terms;

• a weak inertia regime for 10−3 < Red < 1, with the Forchheimer correction quadratic
in Red;

• a strong inertia regime for 1 < Red < 10, where the Forchheimer correction is linear
with the Reynolds number;
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• a turbulent regime, for Red > 10, with the Forchheimer correction again quadratic
with the Reynolds number.

The boundaries between the different regimes are specific to the geometrical arrangements
and to the porosities being considered. A step forward in rendering (some of) these bound-
aries rigorous and independent of the arrangement of the pores, through the definition of a
Reynolds number which accounts for a "topological" coefficient, has been recently made by
Pauthenet et al. [124]. For the purposes of the present paper, we must retain that Lasseux
et al. [93] have parametrized the Forchheimer correction with the Reynolds number, and
have found that the inertial correction is orders of magnitude smaller than the Darcy’s
term, at least before the turbulent regime sets in. Moreover, Lasseux et al. [93] have stud-
ied how a Forchheimer tensor, F, depends upon the direction of the macroscopic forcing
term with respect to the orientation of the square cross-section of the fibers, for Red up to
30. It is concluded that a deviation angle, γ, exists between the direction of the pressure
gradient and that of the mean flow, because of the fibers’ geometry. Finally, the inertial
correction is strongly influenced by the orientation of the driving pressure gradient, and
the Forchheimer tensor F is not symmetric (in fact the off-diagonal components are found
to be inversely proportional to the diagonal terms, and symmetric with respect to rotations
about the diagonal axis of the square, i.e. the direction at 45◦ in the x1 − x2 plane).

The effect of variations in the forcing angle, with restrictions to angles in the x1 − x2
plane, is also examined by Soulaine and Quintard [147] with conclusions in qualitative
agreement with those of both the contribution just cited and our results described further
below. In all cases, the off-diagonal components of the apparent permeability tensor are
small and the diagonal components display but a small variation upon rotation of the
driving pressure gradient.

Our aim is to show how the direction of the macroscopic pressure gradient, the porosity
and the Reynolds number can modify the Darcy and Forchheimer closures arising from a
VANS model of a fibrous porous medium. We are going to consider a three-dimensional
unit cell for the microscopic model, with a generic forcing whose direction is defined by two
Euler angles. Given the formidable space of parameters, some representative results are
first shown and discussed. Response surfaces in the space of parameters are then identified
by the use of a metamodel based on Kriging interpolation. They represent an extremely
useful data base which can be afterward used in macroscopic simulations of flows through
bundles of fibers of varying orientation and porosity.
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4.2 The Volume-Averaged Navier-Stokes (VANS) method

The system under investigation consists of an incompressible Newtonian fluid which flows
through a rigid porous medium. The governing equations valid at the microscale are:


∂vβ
∂t

+ vβ · ∇vβ = − 1
ρβ
∇pβ + νβ∇2vβ + f

∇ · vβ = 0

where vβ, pβ, ρβ and νβ stand, respectively, for the velocity, the pressure, the density
and the kinematic viscosity of the fluid. The right-hand side term, f , is a force (per unit
mass) which drives the fluid motion and can be interpreted as the macroscopic pressure
gradient acting on the system. In chapter 2 we have already shown how the above equations
can be homogenized and a new set of equations, valid at the macroscale, can be retrieved.
The macroscale system (2.31) introduce the surface integral term:

Fm = 1
V

∫
Aβσ

nβσ ·
(
− p̃β
ρβ

I + νβ∇ṽβ

)
dA,

that we have discussed in chapter 2 section 2.4.1. This term is close by means of the
equation (2.50) that we recall here:

Fm ≈ FM = −νβεH−1 · 〈vβ〉β (4.1)

The two terms Fm and FM can be interpreted as the force that the fluid exert on
the solid structure of the porous medium. The two formulations are different only in the
way of computing the force, the former one uses the miscroscopic representation and the
latter the macroscopic one. The drag force Fm computed by direct numerical simulations
(DNS) with account of all individual pores will be later compared to the model based on
the permeability and Forchheimer tensors (whose equations are given below). Nonetheless,
knowledge of the behavior of these tensors (or, equivalently, of the related apparent perme-
ability) might prove both useful and instructive, in particular should one wish to extend
the range of applicability of the model to cases for which the microscopic solution is not
available.

The core of the VANS approach consists in the identification of the permeability and
Forchheimer tensors. This problem, referred to as the closure problem, is discussed at
length in paragraph 2.4.1. The two different tensors K and F can be computed by means
by the two differential problems (2.48) and (2.49) reported here and discussed in detail in
chapter 2.
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

0 = −∇d +∇2D + I,
∇ ·D = 0,
〈d〉β = 0
D = 0 at Aβσ,
d(x + `i) = d(x), D(x + `i) = D(x), i = 1, 2, 3,
〈D〉β = ε−1K.

The second closure problem differs from the first only for the presence of a linearised
convective term in which the microscopic velocity obtained from the DNS, vβ, is used as
an input 1. This of course implies knowledge of the microscopic velocity field. A Oseen-like
approximation which relaxes this constraint has been proposed by Zampogna and Bottaro
[167].



vβ
νβ
∇M = −∇m +∇2M + I,

∇ ·M = 0,
〈m〉β = 0
M = 0 at Aβσ,

m(x + `i) = m(x), M(x + `i) = M(x), i = 1, 2, 3,
〈M〉β = ε−1H.

The closure problems reflect the structure of the solution of the two system (2.48)
and (2.49). In particular, the solution of the former depends only on the geometry of the
porous medium so that the permeability tensor K is symmetric. This is not the case for
H, because of the effect of the microscopic velocity amplitude and direction. Clearly, the
solution of system (2.49) tends to that of (2.48) when Red → 0.

4.3 Validation and setup

In this section the numerical methodology, the parameters, the setup and the validation
for some reference cases are given.

4.3.1 Computational domain

The geometry used for the base REV is shown in figure 4.1: a cylindrical inclusion is present
at the center of the REV and four quarters of cylinders are situated at the corners. The

1En extension to this model that does not require the DNS velocity as input has been proposed in
Valdés-Parada et al. [154]. However this extension still need more verification and validation.
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Figure 4.1: REV for the fiber geometry investigated.

lateral length of the cubic envelop is `, which is used as length scale for the microscopic
problem; the diameter d of the cylinders is adapted as a function of the desired porosity ε,
ratio between the fluid volume over the total REV volume (`3).

The forcing term f of the DNS is a vector whose direction is defined by two Euler
angles, with rotations of the form: θ e3 +φ e2

I (cf. figure 4.1). Its amplitude is set a priori
and is connected to the Reynolds number, Red, defined with the mean velocity over the
REV and the fiber diameter, d. Red is a result of the calculations, once the mean velocity
is evaluated.

4.3.2 Numerical setup

The simulations have been carried out with the open-source code OpenFOAM Weller et al.
[157], based on a finite volume discretization with a centered arrangement for the unknowns.
The standard solver icoFoam (incompressible Navier-Stokes) has been modified in order
to include a constant pressure gradient acting as a forcing term f in equation (4.1). The
coupling between the velocity and the pressure equations is based on the pressure implicit
split operator referred to as the PISO algorithm. The time derivative term is discretized
using the second order backward Euler scheme and all the spatial terms use a second-order
central difference stencil based on Gauss finite volume approach. The velocity system is
solved with a preconditioned bi-conjugate gradient (PBiCG) iterative solver with the toler-
ance on the velocity residuals set to 10−8, associated to a diagonal incomplete lower upper

77



pre-conditioner (DILU). The pressure equation is solved with a geometric-algebraic multi-
grid (GAMG) algorithm associated to a Gauss-Seidel smoother and the tolerance on the
pressure residuals is here equal to 10−6. Cyclic boundary conditions are applied to all fields
on all fluid boundaries along the three directions, and the no-slip condition is imposed on
the surface of the solid inclusions. The time step ∆t is automatically determined to ensure
that the maximum Courant number, Co, respects the condition: Co = ||vβ|| ∆t/∆x < 1/2,
in which ||vβ|| is the local velocity magnitude in the REV and ∆x is the local grid spacing.
Co is basically the ratio between the fluid speed and the velocity to propagate information
through the mesh and the condition Co < 1/2 is found to be sufficient to have a stable
solver.

4.3.3 Mesh convergence analysis

The mesh has been computed using the internal OpenFOAM mesher named snappy-
HexMesh. The final grid is mainly composed by hexahedral cells with a refined regular
grid in the boundary layer regions next to the solid surfaces. Three different mesh sizes,
with 0.65×106, 106 and 1.5×106 elements, have been tested in order to demonstrate spatial
convergence. This has been assessed using the Grid Convergence Index (GCI) introduced
by Roache [136].

Details of the coarsest mesh used are shown in figure 4.2. On the right frame a close
up of the grid in the neighborhood of the fiber’s boundary is displayed: twenty points are
used in the structured portion of the mesh along the wall-normal direction.

Figure 4.2: Mesh used for the computation; top view (left) and zoom in the boundary layer
region (right). ε = 0.6.

The GCI method is based upon a grid refinement error estimator derived from the
theory of generalized Richardson extrapolation. It measures the ratio between the com-
puted value of a quantity over the asymptotic numerical value, thus indicating how far the
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mesh mesh average REV
index identifier velocity
3 fine 1.11
2 medium 1.07
1 coarse 1.09

metric value
GCI23 0.366%
GCI12 1.11%
AC 1.006

Table 4.1: Convergence analysis. Left: average velocity within the REV, normalized with
K11
νβ
||f ||. Right: grid convergence metrics. The REV has ε = 0.6, the motion is along x1,

i.e. θ = φ = 0 and Red → 180.

solution is from the asymptotic ("exact") value. The procedure is simple and provides a
method to estimate the order of the spatial convergence, based on two or three different
grid sizes. First of all, the grids must be generated with the same algorithm and they must
have the same final quality. In each simulation a physical scalar quantity representative of
the physical phenomenon must be sampled. The method follows the following four steps:

1. Estimate the order of convergence of the procedure, defined as p = ln
(
f3 − f2
f2 − f1

)
/ ln r,

where r is the grid refinement ratio between each grid (it is computed as the ratio
between the number of elements of two consecutive grids; the approach imposes that
r should remain constant between any couple of consecutive grids and be larger than
1.1), and fi represents the quantity of interest in each grid (1=coarse, 2=medium
and 3=fine).

2. Compute the relative error between grid i and j: |ε|ij = fj − fi
fi

, for (i, j) ∈ {(1, 2), (2, 3)}.

3. Compute GCIij =
Fs|ε|ij
rp − 1 , with Fs a safety factor equal to 1.25 if the grids are three,

and equal to 3 if the grids are only two Roache [136].

4. Check whether each grid level yields a solution that is in the asymptotic range of
convergence; this means that the quotient AC = GCI23

GCI12

1
rp

should be as close as
possible to one.

In our case the quantity of interest chosen is the intrinsic average velocity inside the porous
medium, and the we have used a Reynolds number equal to 180 to well take into account
all possible inertia effects. For these specifications the results are summarized in table 4.1.
From the table it can be seen that the intrinsic velocity difference is very small from one
grid to the next and the coarse grid provides results close to the expected asymptotic value.
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Figure 4.3: Permeability versus porosity for a square arrangement of cylinders. The scaling
of the permeability is `2 and is explicitly indicated in the vertical axis.

This is taken as a sufficiently convincing argument to carry out all the computations in the
following with a grid density equal to that of grid 1.

4.3.4 Validation on two different configurations

The results published in the literature by Zampogna and Bottaro [167] and Yazdchi et al.
[165] are now used to validate both the methodology and our choices of the computational
parameters. In the cited papers, three-dimensional computations of the permeability com-
ponents in different cells geometries are presented.

Figure 4.3 displays the comparison for a cell with a square arrangements of the fibers;
here the permeability is evaluated along the two principal directions, x1 and x3. A good
agreement is found with the published results. Figure 4.4 shows a similar comparison for
a staggered arrangement of the inclusions in the unit cell. In this case the section of the
cell is rectangular. The agreement for the only permeability component available in the
literature is again satisfactory.

Finally, to check the correct implementation of the closure model (4.1) it is important to
verify the equality between the amplitude FM of the macroscopic force and its microscopic
counterpart Fm obtained through an integration of the DNS fields over the solid boundaries
of the inclusions in the REV. Figure 4.5 shows a plot of the relative error between these two

forces, i.e. ||F
M − Fm||
||Fm||

, as function of the Reynolds number. We consider the successful
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Figure 4.4: Permeability versus porosity for a staggered arrangement of cylinders. The
permeability component is here scaled with d2 (and not `2), with d the diameter of the
inclusions.

comparison displayed in figure 4.5 as the conclusive demonstration of the validity of the
approach described here. We have nonetheless carried out the same verification displayed
in figure 4.5 for each one of the simulations described in the following, to our satisfaction.

4.3.5 Tests with larger REV’s

Since the Reference Elementary Volume (REV) is the unit cell within the porous medium
over which average quantities of the VANS are computed, it is important to choose its
dimensions appropriately in the inertial regime for, if the REV is too small, it might be
easy to miss crucial features of the wakes. For example, to predict the critical Reynolds
number, Rec, of the first Hopf bifurcation, a REV containing at least three solid inclusions
in the direction of the mean pressure gradient is necessary in the simulations by Agnaou
et al. [3]. Among the results reported, it is found that, for a fixed REV size, the error
committed in the evaluation of the critical Reynolds number increases with the porosity.
This same error is considerably reduced when the mean pressure gradient angle is θ = 45◦.
Thus, the choice of the number of inclusions in a REV is a task not to be overlooked, and
the final choice must account for the porosity, the direction of the pressure gradient and
the microscopic Reynolds number.

Here, the influence of the numbers of inclusions present in a REV is assessed by focussing
only on the velocity components after averaging over the REV. The unit cubic cell of side
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Figure 4.5: Relative error between the microscopically computed forces along the x1 di-
rection and those arising from the Darcy-Forcheimmer model; ε = 0.8 for the REV in the
staggered arrangement of Yazdchi et al. [165].

` is used as reference: starting from this, two additional REV’s are built, as shown in
figure 4.6. The first one is doubled in both the x1 and x2 directions and the case tested
numerically is characterised by θ = 0, φ = 0 (i.e. the forcing pressure gradient is directed
along x1), porosity ε = 0.6 and Red = 50. The second REV configuration is a composition
of 3 reference REVs on top of one another along x3, with the parameters set to θ = 45◦,
φ = 45◦, ε = 0.6 and Red = 100.

For both these test cases, no appreciable differences, neither in the mean velocity nor
in the forces on the fibers, have been observed, with relative errors on the mean velocity
with respect to the reference case which remain below 2%. We take this as sufficient
evidence to use, in the following, only the reference cubic REV of side equal to `, with the
understanding that only configurations with Red up to around 100 can be considered.

4.4 Microscopic solutions

In this section, some local microscopic fields computed with direct numerical simulations are
shown, together with components of the intermediate tensor M coming from the numerical
solution of the closure equations (4.2).

In figure 4.7 (top row) the local x1 velocity component is drawn for the two-dimensional
flow when ε = 0.6, for three Reynolds numbers, to cover the transition from the Stokes
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Figure 4.6: REV configurations. Left: 2×2×1 arrangement; centre: 1×1×1 arrangement
(reference); right 1× 1× 3 arrangement.

to the inertial regime. In all plots, the velocities are rendered non-dimensional by the
corresponding value of K11

νβ
||f ||. When inertia is absent, the flow has a central symmetry;

by increasing the Reynolds number, only the symmetry with respect to the x1 axis is
maintained (x1 is the direction of the forcing pressure gradient), with the wake’s length
which increases with Red. When Red is of order 100 the wake spreads to the downstream
boundary of the REV, re-entering, because of periodicity, at the upstream side. This Red
represents the upper limit of validity for the cubic unit cell of side `; larger values of Red
could only be investigated with longer/larger/thicker REV’s.

The non-dimensional local M11 fields for the same parameters are displayed in figure
4.7 (mid row). All values in the figures arise from scaling M with `2. Visually, these local
fields are strongly correlated to the local streamwise velocity component in the whole Red
range. This is not unexpected since the local velocity drives the convective term of system
(4.2). The central symmetry of all components of M in the Stokes regime is coupled to
the rotational invariance of the apparent permeability tensor in two-dimensional flows.

The effect of varying the porosity is shown in figure 4.7 (bottom row) where ε is taken
equal to 0.4. Even at such a low porosity the stretching of the wake can be noticed, and
it increases with Red. Interestingly, this effect is milder when the forcing is inclined by an
angle φ, since the tighter packing of the inclusions causes a strong deviation of the mean
flow along the axis of the fiber. In this case, M11 and M22 behave very similarly to the
case φ = 90◦.
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Figure 4.7: Top row: plane view of the dimensionless x1 component of the local velocity
field vβ for the case θ = 0, φ = 0, ε = 0.6 and for three Reynolds numbers Red = 0, 10, 50,
from left to right. Mid row: microscopic M11 fields corresponding to the images in the top
row. Bottom row: M11 fields for the same Euler angles and Reynolds number as in the top
two rows, and smaller porosity (ε = 0.4).
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Another interesting point emerges by inspection of figure 4.8 where two off-diagonal
components of M are shown for two porosity values; the first image (left frame) represents
a plane flow in the Stokes regime while the second is the plane cut of a three-dimensional
solution in the inertial regime. Positive and negative values of the microscopic fields can be
seen in both images but, once averaging is applied over the REV, the resulting permeability
component is very close to zero (in fact, exactly equal to zero in the Stokes case). This same
features occurs for all off-diagonal terms in all cases examined, so that, within the current
range of Reynolds numbers, the apparent permeability tensor is, to a good approximation,
diagonal2.

Figure 4.8: right: Non-dimensional M21 field for θ = 0, φ = 0, Red = 10, ε = 0.8, left:
Non-dimensional M12 field for θ = 22.5◦, φ = 45◦, Red = 50, ε = 0.4.

A three-dimensional case is shown in figure 4.9, where all the non-zero terms of the M
tensor are plotted for a porous structure with ε = 0.6. The components shown are M11,
M22,M33, M12 and M21, while Mi3 and M3j are not plotted because they are identically
zero to machine accuracy. Distinct features are visible in each image; in particular, in
the last frame the M33 microscopic component displays a low wavelength structure along
the cylinder’s axis. Increasing the dimensions of the REV along x3 does not alter such a
structure, i.e. the `3 domain chosen with its periodic boundary conditions does not filter
out significant high wave-numbers of the flow.

2In fact, there are always at least two orders of magnitude differences between the diagonal and the
off-diagonal components. While the latter should not, in principle, be ignored, we will focus attention here
only on the dominant terms of the permeability tensor.
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Figure 4.9: Non-dimensional M components fields for the case θ = 22.5◦, φ = 45◦, Red =
50, ε = 0.6.
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index θ φ field properties
1 0◦ 0◦ 2D symmetric
2 22.5◦ 0◦ 2D non-symmetric
3 0◦ 45◦ 3D symmetric
4 22.5◦ 45◦ 3D non-symmetric
5 − 90◦ 3D symmetric

Table 4.2: Directions of the forcing tested and property of the solutions.

We further note that the tensor M is not symmetric in this case since each off-diagonal
component represents the solution of the closure problem in a specific direction (first index
of the field) and the forcing term acts orthogonally to it (second index of the field). Once
averaged over the REV it is found that both H12 and H21 are very close to zero.

4.5 The apparent permeability tensor

In this section the variations of the diagonal components of the permeability tensor H are
discussed as function of the direction of the mean forcing, the Reynolds number and the
porosity. As stated previously, the Reynolds number ranges from 0 to approximately 100
in order to capture phenomena associated with inertia; the cases considered never lead to
unsteady signals. The porosity parameter ε is set to either 0.4 (low porosity), 0.6 (medium)
or 0.8 (high). The forcing direction is defined by the Euler angles and all the configurations
considered in this section are summarized in table 4.2; the choice has been made to explore
a reasonably large range of parameters, with both two-dimensional and three- dimensional
flows characterized by symmetric and asymmetric patterns.

Let us briefly recall the methodology. First, a DNS is carried out to compute the
microscopic flow. Then the closure problem is solved for the tensor M. Finally, each
component of the apparent permeability H is obtained by averaging (equation (2.49)). The
results are collected in figures 4.10, 4.11 and 4.12, showing the variation of the diagonal
components of H.
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Figure 4.10: Diagonal elements of the apparent permeability H as function of the Reynolds
number for porosity ε = 0.8. The forcing direction is represented through the couple of
Euler angles (θ, φ) (cf. table 4.2 for the case index). Left column: low-Red regime; right
column: inertial regime.
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Figure 4.11: Same as figure 4.10 with porosity ε = 0.6.
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Figure 4.12: Same as figure 4.10 with porosity ε = 0.4.

In the left column of each figure we focus on the low-Red regime (0 < Red < 2), while in
the right column the effect of inertia can be assessed. As expected, when Red is small the
apparent permeability is quasi-Reynolds-number-independent (and can be approximated
well by the true permeability). As the Reynolds number increases above a few units, inertial
effects grow in importance yielding typically a monotonic decrease of all components of H,
aside from case indexed 5 (φ = 90◦) for which the flow remains aligned with the cylinder’s
axis. In case 5 the microscopic flow solution is invariant with x3 and does not change with
Red in the range considered, so that H is a constant tensor.

When the porosity is large all components show a similar behaviour irrespective of the
forcing angle (except, clearly, case 5). Differences start appearing at ε = 0.6; the two cases
with φ = 0◦ (index 1 and 2) behave similarly, and so do the two cases indexed 3 and 4
(with φ = 45◦). This seems to suggest a weaker effect of θ on the permeability components.
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For even smaller porosity (ε = 0.4), the blockage which the inclusions cause to the flow
produces the unexpected behaviour displayed in figure 4.12. When the flow is purely two-
dimensional (cases 1 and 2), variations in the Reynolds number affect H significantly; when
a pressure gradient along x3 is present the strong packing of the fibers constrain the fluid
to flow prevalently along the fibers’ axis, and the apparent permeability is almost Red-
independent. When assessing variations in Hjj for this case, attention should also be paid
to the fact that the permeability is now at least one order of magnitude smaller than in the
previous cases so that variations of the diagonal components shown in figure 4.12 are tiny
in absolute terms. This is related to the fact that the inverse of the permeability plays the
role of a drag coefficient in the macroscopic expression of the force (cf. equation (2.31)).
In other words, materials with higher porosity (larger space between solid inclusions) offer
lower resistance to the motion of the fluid.

Applying the intrinsic average operator to the non-diagonal component of the tensor
M results in terms that are negligible with respect to their diagonal counterparts, and
these results are true for all the parameters considered. This means that there is a very
weak coupling between the principal directions of the fiber. The directional decoupling and
the diagonal property of the apparent permeability tensor has also been computationally
demonstrated on a completely different REV geometry by Soulaine and Quintard [147].
Conversely, Lasseux et al. [93] have carried out a two-dimensional study with fibers of
square cross-section, finding that the off-diagonal terms are non-negligible and only about
one order of magnitude smaller than the diagonal components. This result is a consequence
of the non-rotationally-invariant geometry considered. The present work and the two
articles just cited suggest that the diagonal property of the tensor H is closely related to
the geometry of the porous material, more than to the flow regime.

4.6 A metamodel for H

The previous sections has shown how the apparent permeability depends on the two Euler
angles, the Reynolds number and the porosity. The space of parameters is formidable and
the results found so far are not sufficient to treat, for example, cases characterized by mul-
tiple inclusions’ sizes and orientations in different regions of the domain, or cases involving
a poroelastic medium, with temporally and spatially varying porosity, flow direction and
local Reynolds number. The complete solution of the closure problem for a single set of
parameters takes approximately 4 CPU hours on our two-processor Intel(r) IVYBRIDGE
2.8Ghz, each with 10 cores and 64 GB of RAM, so that a complete parametric study is,
to say the least, unpractical. In view of this, the construction of a metamodel capable
to provide a full characterisation of the permeability as a function of all parameters is a
worthy endeavor. We have tested several surrogate models, before eventually settling on
the kriging approach Kleijnen [86] described in the following.
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parameter values
θ 0◦ 22.5◦ 45◦
φ 0◦ 22.5◦ 45◦ 67.5◦ 90◦
Red 0 10 50 100
ε 0.4 0.6 0.8

Table 4.3: Sampling parameters.

4.6.1 DACE sampling

The first step to build a metamodel is the collection of relevant samples. The quality
of the final metamodel strongly depends on the samples collected and their number and
distribution is of primary importance. The apparent permeability tensor, H, depends
on four independent variables; the samples have been generated starting from the set of
parameters given in table 4.3.

One of the best options to generate the relevant database would be to use a full factorial
design approach in which all the combinations of the four variables from table 4.3 are
computed. Because of the large number of computations required, this approach has not
been retained. We have resorted to the methodology known as DACE (Design and Analysis
of Computer Experiments), a technique to fill in the best possible way the space of the
parameters of the problem. The Dakota library Adams et al. [2] has been selected for
the purpose and the Monte-Carlo incremental random sampling algorithm Giunta et al.
[67] has been chosen, in order to make efficient use of the cases already computed. This
incremental approach selects in a quasi-random way the new samples to generate, starting
from the existing ones. In the end, the set of samples comprises 118 cases.
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Figure 4.13: Scatter matrix plot for the collected numerical data of the apparent perme-
ability tensor.
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In the scatter plot of figure 4.13 the three diagonal components of the permeability
tensor are shown as function of one another. The three porosities are separately considered
in each of the above plot, and the permeability points are represented with their linear
regression on top. This kind of plot is common in statistical analysis to determine if
correlations in the data are present. The permeability components show some correlation
with the data points which lie reasonably well on a straight line. This result has a physical
implication. Remembering the diagonal dominance of the permeability tensor, we have in
the low Red limit:(

〈uβ〉β, 〈vβ〉β, 〈wβ〉β
)
∼
(
H11

∂p

∂x1
, H22

∂p

∂x2
, H33

∂p

∂x3

)
. (4.2)

It is then possible to compute the angle between the forcing term, ∇p, and the average
velocity vector, represented in figure 4.14 for the two-dimensional case, φ = 0. This is
achieved by taking the ratio between the first two components of Darcy’s equation, calling
γ the flow deviation with respect to the mean forcing. We thus have:

tan (θ + γ) = H22
H11

tan θ. (4.3)

If the ratio between the two permeability components is equal to one, the angle γ vanishes.
The correlation between H11 and H22 controls the deviation of the flow in the (x1, x2)
plane, and the argument can easily be extended to H11/H33 and H22/H33 for deviation
angles in three-dimensions.

Figure 4.14: Explanatory sketch for the relation between mean pressure gradient and mean
velocity field.

Using a linear correlation such as that shown in table 4.4 and figure 4.13, it is observed
that in the low porosity case (ε = 0.4) the ratio can become very large indicating a strong
deviation of the flow from the forcing direction, because of the strong constraint provided
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ε H11/H22 H11/H33 H22/H33

0.4 1.57 11.06 96.03
0.6 1.50 1.62 0.99
0.8 1.20 0.82 0.66

Table 4.4: Permeability components ratio for three values of the porosity. The permeability
ratios here are given by the angular coefficients of the linear correlations displayed in figure
4.13.

by the inclusions. As the porosity increases, the ratio does not differ much from unity,
which means that the deviation remains limited. It is simple to see that the deviation
angle, for example in the (x1, x2) plane, satisfies the approximate relation

tan γ =

(
1− H11

H22

)
tan θ

H11
H22

+ tan2 θ
,

so that for H11
H22

equal to, say, 1.5, the largest deviation remains always below 12◦ for any θ.
It should however be kept in mind that trends based on these ratios are valid only as long
as Darcy’s law and linear correlations are acceptable. Cases exists for which such trends
are violated; for example, a flow with θ = 45◦ and φ = 0◦ has deviation angle γ equal to
zero, for whatever porosity. In this case H11/H22 is equal to one and such a point is an
outlier in the regression plots of figure 4.13.

4.6.2 Kriging interpolation method

The kriging approach is a linear interpolation/extrapolation method that aims to build a
predictor field based on a set of observations (xi, y(xi)), for i = 1, ..., n.

The predictor f̂(x) is a sum of a trend function t(x) and a Gaussian process error model
e(x):

f̂(x) = t(x) + e(x). (4.4)

The aim of the error model is to make adjustments on the trend function so that, for any
point of the sampling the predictor is exactly equal to the sample, i.e. f̂(xi) = y(xi). This
property represents one of the main qualities of this approach. In addition, when the model
parameters are conveniently set, the trend function and the covariance model can take into
account both smooth and steep variations in the data set.

The trend function defined here is based on a second order least-square regression, with
the coefficients found from the solution of the associated linear system.
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The Gaussian process error model has zero-mean and its covariance between two generic
data-points, xi and xj , is written as

Cov(y(xi), y(xj)) = c(xi,xj)

The function c(xi, xj) is a correlation model, based on the Matérn covariance model that
reads:

c(xi,xj) = σ2 21−ν

Γ(ν)

(√
2ν|xi − xj|
|λ|

)ν
Kν

(√
2ν|xi − xj|
|λ|

)
, (4.5)

where Kν(.) is a modified Bessel function, Γ(.) is the gamma function and the coefficient
σ is an amplitude parameter. The parameters that can be used to tune the metamodel
are the amplitude parameter σ, the exponent ν and the scale vector λ. The kriging
metamodel outputs can show different behaviours for different selections of the above three
parameters and their setting is thus crucial. The amplitude parameter σ is chosen to be
equal to 1; larger value lead to steeper gradients and undesirable local extrema around
the data points. The vector λ = (λθ, λφ, λRed , λε) is a scaling parameter for the distance
|xi − xj|. In this study, through systematic variations of the parameters it is found that
the choice λ = (1.2, 1, 1, 1) yields acceptable results; in particular, the weight along θ is
mildly larger than in the other directions in order to obtain smoother metamodel surfaces
in this direction. The exponent ν controls the covariance function and more especially its
gradients. When ν = 1/2 the covariance can be approximated by a negative exponential,
exp(−αx) and when ν goes to infinity it behaves as exp(−αx2). In the present study, the
best (i.e. smoother) results are obtained for ν equal to 1.9. The above parameters have been
chosen in order to avoid unphysical or unrealistic behaviour of the apparent permeability
such as, for instance, negative values or steep, spurious local maxima/minima. The method
above is implemented in OpenTURNS and full details are provided by Baudin et al. [13].

A procedure called k-fold, belonging to the class of cross-validation methods, has been
used in order to prove the robustness of the metamodel. The k-fold method starts with the
full database Sn = (xi,y(xi)), for i = 1, ..., n, split into two complementary set of size n1
and n2, such that Sn = Sn1 ∪ Sn2 . Then, a new metamodel is built using only the points
present in the set Sn1 . For the sake of clarity, the metamodel built with only the subset
Sn1 will be called from now on f̂n1 , and the metamodel build with all the database will be
indicated as f̂n. The idea now is to use the points in the set Sn2 as test, since they are
essentially "new" for the metamodel f̂n1 . The division of the subset is performed picking
points in a random way, and is repeated k times in order to rule out any possible "lucky"
combination.

96



Thus, the metric used for the error computation is the following:

ξcv = 1
k n2

k∑
i=1

n2∑
j=1

(f̂i
n(xj)− f̂i

n2(xj))2,

quantifying the quadratic error between the original metamodel and the one built each
time with a different set that belongs to different folds. The metric is also averaged over
all the test points n2 present in all the k folds. The relative mean error can be computed
as:

Ecv% = 100
√
ξcv

mean(|f̂i
n|)
.

In our case the number of points used to test the model n2 is equal to
√
N ≈ 12 as

recommended for kriging metamodels Wang and Shan [156]. The number of folds has
been varied from 5 to 25 and in all the cases tested the Ecv% has been found to decrease
below 6% when we use at least 16 folds (which means leaving out 7 to 8 points from the
metamodel construction), which is more than acceptable to prove that our kriging method
is a robust approximation.

The metamodel provides a scalar function (for each term of the H tensor) defined in
a four-dimensional space. In each of the following figures two parameters are fixed and
the response surface is displayed as function of the remaining two, focussing on the H11
component. The other diagonal components of the apparent permeability tensor behave in

5 10 15 20 25
k
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E
cv

%

Figure 4.15: Relative mean error computed using the k-fold approach presented against
the number of folds k used to divide the dataset
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Figure 4.16: Response surfaces of H11 with φ = 0◦ for porosity ε = 0.4, 0.6, 0.8, from left
to right.

a similar fashion and will not be shown for brevity. All the results of the metamodel are,
however, available from the authors upon request.

In figure 4.16 the angle φ is fixed to zero, and the isolines display H11 as function of
the angle θ and of the Reynolds number, Red, for three values of porosity. The white
square symbols indicate the samples used to build the metamodel. The maximum value of
each surface is always found for Red equal to zero and H11 typically decreases with Red,
when the porosity is sufficiently large. As seen previously, for a porosity approximately
greater or equal to 0.6 the variation of the apparent permeability with the angle θ is weak
in this two-dimensional configuration. For the lowest porosity studied (left frame) the
permeability has very small values and the isolines display an irregular behaviour; this is a
feature common to all plots relative to the smaller value of ε, signaling that it is probably
necessary, in this specific case, to insert additional sample points in building the response
surfaces.

In figure 4.17 the parameter θ is set to 0◦ and the response surface is displayed in the
Red − φ plane. As already indicated, the results confirm that an increase of the Reynolds
number is generally associated to a decrease of the first diagonal component of the apparent
permeability tensor. However, the H11 variations with respect to φ are more pronounced
than those found with respect to θ and are due to a real three-dimensionalization of the
flow. This conclusion remains to be verified in the lower porosity case (left frame) where
the variations are very tiny and more irregular.

In figure 4.18 the Reynolds number is set to the inertial range value of 40 and the
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Figure 4.17: Response surfaces of H11 with θ = 0◦ for porosity ε = 0.4, 0.6, 0.8, from left
to right.

response surface is displayed in the θ − φ plane. For the two highest porosity values,
0.6 and 0.8, the results confirm that H11 has a much stronger dependence on φ than on θ,
suggesting that the real test of permeability models must include three-dimensional effects.
As seen earlier, the behaviour of the permeability when the porosity is low (left frame in
the figure) is not intuitive, with a significant effect of the angle φ and a minor influence of
θ. Again this occurs from the constraint provided to the flow by the inclusions, and from
the occurrence of a large deviation γ in these cases.

The response surface is shown in the Red− ε plane of figure 4.19 for three sets of θ−φ
angles. Here a significant effect of the porosity with respect to the Reynolds number is
obervable. In fact the surface gradient is almost aligned with the porosity direction, i.e. a
quasi- Reynolds independence is demonstrated in this plane, and the apparent permeability
can change by one order of magnitude in the range of the analysed porosity.

Some relatively small Reynolds number effects are visible at porosity equal to 0.8, when
the wake of the flow has more space to develop in the inertial regime. In the central figure
the flow is aligned with the direction of the fibers and, as expected, it shows practically no
dependence with respect to the Reynolds number.

The response surface analysis has confirmed the qualitative trends which had been
reached earlier on the basis of a few selected flow cases, yielding at the same time much more
detailed information on the behaviour of the apparent permeability with the parameters
of the problem. The data base which has been built will be used in future work which will
focus, via the VANS approach, on configurations for which neither the porosity nor the
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Figure 4.18: Response surfaces of H11 with Re = 40 for porosity ε = 0.4, 0.6, 0.8, from left
to right.

local Reynolds number are constant in space or time.
For the sake of space, only the first diagonal component of the apparent permeability

tensor has been discussed in detail; however, all components have been computed and the
same conclusions can be drawn from the H22 or H33 component.

4.7 Concluding remarks

The components of the permeability tensor are essential ingredients for any solution of flow
through anisotropic porous media. When the flow through the pores resents of significant
acceleration effects, the permeability must be modified (it is then called apparent) by the
presence of a second tensor, the Forchheimer tensor F, defined by

F = KH−1 − I.

The permeability, K, and the apparent permeability, H, can be formally deduced by two
closure problems which have been briefly recalled in section 4.2. The real obstacle to the
solution of the problem for H is the need to know the microscopic velocity fields through the
pores. We have solved for such fields in a unit cell (the REV), varying the forcing amplitude
and direction, treating over one hundred different cases of flows through arrangements of
parallel fibers. From this, we have thus been able to solve the linear system (4.2) for all the
unknown elements of the intermediate tensor M, from which, through averaging, we have
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Figure 4.19: Response surface of H11; in the left frame φ = θ = 0, in the centre frame
φ = 90◦, θ = 0 and on the right φ = 45◦, θ = 22.5◦.

computed the apparent permeability. Such a tensor is indispensable to evaluate accurately
the drag force caused by the presence of the fibers, for a macroscopic solution of the flow
on the basis of equations Whitaker [162] when inertial effects are present.

It has been found that the apparent permeability tensor is strongly diagonally dominant
for whatever forcing direction and porosity, provided the local Reynolds number remains
below a value approximately equal to 100; this results, which is a direct consequence of the
transverse isotropy of the material which has been considered here, can be used to compute
H rapidly, approximating it as a diagonal tensor.

Finally, a metamodel has been used to produce results so as to cover the whole space of
parameters, and this has allowed the construction of a complete data base. This database
can be used in simulations of porous media based on the VANS approach as we will show
in the next chapter.
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Chapter 5

VANS macroscopic applications

The first principle is that you must not fool yourself — and you are the
easiest person to fool.

- 1974 Caltech commencement address, Richard Feynman

5.1 Introduction

In this chapter the macroscopic VANS equations are validated against a full microscopic
DNS. Special attention is focused on the interface treatment using the penalization method.
We also assess the effects of the permeability tensor metamodel within the algorithm.
Computations are performed initially on the classical closed cavity configuration. The aim
for the cavity problem is to validate the VANS approach and to show the importance of
the interface treatment and the permeability metamodel. In the last part the Ercoftac
periodic hill case is also tested. This open configuration aims to test the performance of
porous coating as a device to reduce separated flow.

5.2 Closed cavity problem

The configuration chosen is the square closed cavity, depicted in figure 5.1. The cavity is
square shaped with size L, the lateral and bottom walls are fixed and a constant velocity
U top is specified at the top side. On the front and back side we apply periodic boundary
conditions since the three-dimensional simulation domain has a depth equal to `. A rigid
porous medium made by regularly arranged fibers is set at the bottom of the cavity, its
vertical extension is equal to h. The reference elementary volume (REV) of the porous
medium is a cubic cell of size ` with a cylinder, with diameter d, at its center. The porosity
of the medium, ε, is equal to 0.8 and 50 fibers are assumed to be present in the cavity.

The configuration is summarized in the list below:
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Figure 5.1: Schematics of the closed cavity 2D problem. The porous medium internal
structure is depicted in the zoom on the right side in which the REV geometry is shown.

• L: side of the cavity, also the macroscopic length scale

• h: vertical extension of the fibers from the bottom of the cavity

• `: side of the cubic REV, also the microscopic length scale

• d: diameter of the cylindrical fiber

• Vβ: volume of the fluid inside the REV

• Vσ: volume of the solid inside the REV

• ε = Vβ
Vσ + Vβ

= `3 − `πd2/4
`3

= 1− π
(
d

2`

)2
: porosity of the medium

• ε = `

L
: length scale ratio

• Re = U topL

νβ
: Reynolds number of the cavity

The overall domain has the size L × L × ` respectively in the x1, x2 and x3 direc-
tions. The origin of our coordinate system is fixed at the bottom left corner of the cavity.
This configuration and porous arrangement has been chosen to employ DNS data already
available for this configuration (private communication with Zampogna and Bottaro [167]).
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The length parameters for the specific case are:

• h/L = 0.33

• `/L = 0.02

• ε = 0.8

5.2.1 Microscopic approach with direct numerical simulations

In this approach the incompressible Navier-Stokes equations are solved in the three di-
mensional case (5.1). The problem is weakly three dimensional since only one REV along
the x3 axis is included and periodic boundary condition is imposed in this direction. This
assumption seems fair since the Reynolds numbers tested are small and no 3D structures
are expected in the flow. To complete the set of boundary conditions the no-slip condition
is applied at the rigid walls and a prescribed horizontal velocity is imposed at the top wall
(5.1). The subscript β means that the variables belong to the fluid phase, as usual. The
mesh is fine enough to resolve the flow within the fibers and the spatial convergence is also
ensured. The above setup is described by the set of equations:



∂vβ
∂t

+ vβ · ∇vβ = − 1
ρβ
∇pβ + νβ∇2vβ

∇ · vβ = 0
vβ = 0 on x1 = 0, L x2 = 0
vβ = U top on x2 = L

vβ|x3=0 = vβ|x3=`

pβ|x3=0 = pβ|x3=`

(5.1)

Once the system (5.1) is solved, the microscopic fields (velocity and pressure) inside
the porous medium are averaged with the operator (5.2) in order to get the homogenized
macroscopic field 〈vβ〉β and 〈pβ〉β.

〈ψβ〉β = 1
Vβ

∫
Vβ

ψβ(x)dVβ. (5.2)

The operator (5.2) has been applied through the whole porous domain using a REV
with dimension ` × ` × `. It means that the centroid of the REV, in which the average
operation is performed, spans all the porous domain extension. It should be noted that
in our case we have not taken into account any filter function inside the definition of the
averaged operator (5.2) used to make tha average of the DNS fields. It should be noted
that the averaging procedure gives a two dimensional averaged field as a result, the only
non zero values are in the x1 and x2 directions. This is due to the symmetry of velocity
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and pressure in the x3 direction that returns zero averaged field as a result of the averaging
operation (5.2).

5.2.2 Macroscopic approach through VANS

The same problem is solved using the VANS approach. The set of equations used are the
incompressible Volume Averaged Navier-Stokes equations in the two dimensional case with
a Darcy-Forchheimer closure (5.3). The derivation of this set of equation has been already
discussed in chapter 2 and is presented here for completeness:



∂〈vβ〉β

∂t
+ 1
ε
∇ ·

[
ε〈vβ〉β〈vβ〉β

]
= − 1

ρβ
∇〈pβ〉β + νβ∇2〈vβ〉β

−νβεH−1〈vβ〉β + νβ
ε
∇ε · ∇〈vβ〉β + νβ

ε
〈vβ〉β∇2ε

∇ ·
(
ε〈vβ〉β

)
= 0

〈vβ〉 = 0 at x1 = 0, L x2 = 0
〈vβ〉 = U top at x2 = L

(5.3)

The boundary conditions are the same as the DNS approach except for the x3 dimension
that in this case is neglected since the homogenized problem is already two dimensional.
The solution of system (5.3) gives directly the averaged velocity and pressure fields to be
compared to the averaged DNS fields.

Interface treatment

The penalization method (or one domain approach) has been chosen to treat the interface of
the porous medium. The method has been already discussed in section 2.5 of chapter 2 but
here some technical aspect are further discussed. In order to use the so called penalization
method the porosity field and the effective permeability have to be defined in all the domain.
In the free fluid the porosity is, of course, unitary and the effective permeability infinite.
With such a numerical values the Navier-Stokes system (5.1) is retrieved from the system
(5.3) after some simplifications. In the deep porous medium the porosity is constant and
set equal to 0.8. The effective permeability is also constant and the components of the
tensor have been taken from a posteriori computation of the homogenized-DNS problem.
This procedure involves the inversion of the Darcy system 〈vβ〉 = νβεH−1 · ∇〈pβ〉β. The
numerical values for H are represented in table 5.1.
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The apparent permeability tensor H is also diagonal. This is consistent with the result
in chapter 4 in low pore Reynolds number, as a matter of fact in the cavity, the pore
Reynolds number is always below 5 for both cases tested.

It is difficult to define how to connect the different values for the free fluid and the
porous media part through the interface. However, the exact profile for the porosity field
can be computed knowing the geometry of the medium. In this case the porous medium is
made of cylindrical fibers in a regular arrangement. The relationship between the porosity
in the deep medium ε, the size of the REV ` and the cylinder diameter d is:(

d

`

)2
= 4
π

(1− ε)

With the above relationship it is possible to define the porosity as a function of the
vertical coordinate x2 = y:

ε(y) =


1 y > (yitf + `/2)
ε+ 1− ε

`
[y − (yitf − `/2)] (yitf − `/2) < y < (yitf + `/2)

ε y 6 (yitf − `/2)

(5.4)

In the above expression the interface location yitf is equal to h. The same expression
has been used for the effective permeability field. In equation (5.5) the inverse of the
effective permeability is used.

The Hii term in equation (5.5) refers to the effective permeability components of the
deep medium, reported in table 5.1.

Hii
−1(y) =


0 y > (yitf + `/2)

Hii
−1 − Hii

−1

`
[y − (yitf − `/2)] (yitf − `/2) < y < (yitf + `/2)

Hii
−1 y 6 (yitf − `/2)

(5.5)

The data analyzed in chapter 4 suggests that the components of H are mostly driven
by the porosity effect so it is fair to suppose that the same variability should be used for
both the porosity and the permeability fields. This assumption justifies the choice of the
same formulation for the interface treatment for the two different fields.

H11 = H22 H33

Re = 100 2.63 · 10−2 5.49 · 10−2

Re = 1000 2.65 · 10−2 5.63 · 10−2

Table 5.1: Apparent permeability values from table 1 in Zampogna and Bottaro [167]
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5.2.3 Cavity Re = 100 comparison

This section presents the comparison between the microscopic and macroscopic approaches
for the cavity at Re = 100. Pictures 5.2 and 5.3 show the pressure gradient and the velocity
fields for the two different approaches.

Each field is made non-dimensional using the macroscopic length and the velocity on
the top of the cavity:

u∗ = u/U top, v∗ = v/U top

∂p

∂x

∗
= 2L
ρβ(U top)2

∂p

∂x
,

∂p

∂y

∗
= 2L
ρβ(U top)2

∂p

∂y

The DNS approach is used as reference case for the comparison. At Reynolds number
equal to 100 a good agreement is found for both the velocities and pressure gradients fields.

Figure 5.2: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
from top to bottom, the horizontal velocity the vertical velocity and the streamlines inside
the porous domain Ωp
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Figure 5.3: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
from top to bottom, the horizontal and the vertical component of the pressure gradient
inside the porous domain Ωp

The contours and the location of the local minima and maxima are the same for the two
approaches. If we look at the numerical values, for some fields the relative errors are not
negligible; however, they are in mean always below 10%. Also the streamlines inside the
porous domain is in good agreement with the DNS data. Some differences between the
two models have to expected since in the VANS approach the micro-scale flow behavior is
modeled. This means that some of the details that the full DNS is able to retain, are lost
in the macroscopic approach.

5.2.4 Cavity Re = 1000 comparison

The same case and comparison has been done also for a Reynolds number equal to Re =
1000. For this case the same conclusion as the previous case are confirmed. Some of the
relative errors are even smaller compared to the previous Reynolds number case. This sup-
port the robustness of our model in this range of Reynolds numbers. These two solutions
of the cavity problem shown that varying the permeability and the porosity in a linear
manner through the interface is an acceptable choice when using the penalization method.
Compared to previous case the flow field now presents two different recirculations inside
the porous medium domain, increasing the complexity of the dynamics inside the porous
medium. Looking at the zone around the porous interface in figures 5.6 and 5.7, the differ-
ences between the DNS and homogenized approach are clear. The DNS shows oscillations
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in both the vertical and horizontal velocity components due to the presence of the fibers,
on the contrary in the homogenized approach this local oscillations are smoothed out by
the averaging operation. However, these oscillations have a very small amplitude and to
make them visible the range of values plotted needs to be modified (bottom pictures of
figures 5.6 and 5.7).

Figure 5.4: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
from top to bottom, the horizontal velocity the vertical velocity and the streamlines inside
the porous domain Ωp
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Figure 5.5: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
from top to bottom, the horizontal and the vertical component of the pressure gradient
inside the porous domain Ωp

5.2.5 Cavity Re = 5000 using H metamodel

In our previous simulations the metamodel for the effective permeability has not been
applied. The metamodel in chapter 4 was built for a porous medium made of staggered
cylinders. So it would not be applicable when the porous medium is made by regular
arranged cylinders.

In order to test how the effective permeability variation would impact our model we
show the solution for another test case. In the same cavity geometry as before the system
(5.3) is solved with or without the kriging metamodel for the effective permeability.

We have observed that at low pore Reynolds number the effective permeability is prac-
tically not sensitive to variations of flow direction and/or magnitude1. For this reason the
Reynolds number has been also increased to 5000, still in the stationary regime but near
the transition limit (Yih-Ferng et al. [166]).

Figure 5.8 shows the velocity and permeability profiles for a sample cut made at the
center of the cavity at x = 0.5L. It is clear that the macroscopic velocity is not affected
by the different treatment of the permeability, as a matter of fact the two velocities can be
superposed almost exactly. However, the inverse of the effective permeability component
shows some differences. At the interface it is possible to see also how the trend of the

1see figures 4.10, 4.10 and 4.10 in chapter 4.
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Figure 5.6: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
the horizontal velocity component in the whole domain. In the bottom figures the range of
values plotted has been reduced to better show the flow structure inside the fibers in the
DNS case.
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Figure 5.7: Left: VANS approach. Right: Homogenized DNS approach. The figures show,
the vertical velocity component in the whole domain. In the bottom figures the range of
values plotted has been reduced to better show the flow structure inside the fibers in the
DNS case.
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Figure 5.8: Left: horizontal velocity component. Center: vertical velocity component.
Right: Effective permeability 11 component. The three fields have been sampled at the
center of the cavity, x1 = 0.5L. The blue line represents the solution for the system (5.3)
with the kriging metamodel for the effective permeability, the red line is the solution of
the same system with the model switched off.

two different treatments look like at the interface. The permeability starts to increase at a
deeper vertical position than the case without metamodel. This is caused by the vertical
angle φ that is near 90◦ at that point because of the fluid penetration. The analysis made
in chapter 4 concludes that the permeability increases when the angle φ increases. However
the value of the permeability deep in the medium is almost the same. In any case even
if there are some differences in the permeability profiles it seems not to affect the average
velocities.

The fact that with the kriging metamodel the same linear profile as equation (5.5) is
retrieved is another confirmation that the linear variation of the permeability is acceptable.

5.3 Separated flow between hills

In chapter 1 we have presented some flow examples where a porous media layer in the
leeward side of a bluff body can reduce the separation extension. In order to test the effec-
tiveness of our model to make predictions in this sense, the flow over periodically arranged
hills has been chosen as test problem. This configuration has already been investigated
experimentally and numerically and is a classical CFD problem, now standardized by the
ERCOFTAC committee. It is used as a benchmark case to investigate the ability of DNS,
RANS and LES models to resolve separation from a curved geometry. The flow field fea-
tures a large separation bubble caused by the curved surface of the hill and a natural
reattachment in the flat part between the two hills crests. The flow is assumed to be peri-
odic and two dimensional, at the Reynolds number tested. Numerous DNS and LES works
can be found in the literature with Reynolds numbers up to 10000 (Chang et al. [37], Breuer
et al. [22] [23], Almeida et al. [4] and Temmerman and Leschziner [150]). This problem has
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been studied with two main objectives: to test the modeling and simulation issue related
to our VANS solver and the physical capacity to reproduce the flow field behavior. Our
idea is to extend the hill profile with a porous media layer and assess how the separation
bubble is modified by the layer presence. We have tested a small Reynolds number case in
the laminar regime. The problem has been chosen especially for the possibility to future
extend the study towards higher Reynolds numbers since a lot of data can be found in the
literature to validate the results.

5.3.1 Geometry and conditions

The geometry of the problem is depicted in figure 5.9. It is two dimensional since the
Reynolds number considered is in the laminar regime and the flow does not present any
three dimensional characteristics in this range. The dimension of the hill crest and exten-
sions are also showed in the same pictures being rendered adimensional with the hill crest
height. The chosen dimensions of our setup are: Lx = 9.0, Ly = 3.036 and h = 1 where
x, y, z are the streamwise, wall-normal and spanwise direction, respectively. We solve the
flow inside of a single streamwise periodic segment and thus cover solely one complete hill
region from crest to crest. Between one hill and the next one there is a flat plate region of
extension 5h. The pressure-induced separation takes place from the first hill curved surface
and reattachment is observed at the flat plate part between the two hills.

The hills profile is described by a polynomial parametric curve function of the stream-
wise direction yhill = f(x). The specific coefficients and definition can be found in Almeida
et al. [4]. This geometry is also named base case in the following text.

The problem is discretized using the finite volume method implemented in OpenFoam
and the mesh used is shown in figure 5.9. The mesh is purely made of hexahedral cells
and counts 25000 elements in the two dimensional version. It is possible to download it
at https://turbmodels.larc.nasa.gov/Other_LES_Data/2dhill_periodic.html. The
resolution has been already validated in DNS and LES computations so it has not been
further investigated here.
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Figure 5.9: Domain of the problem and mesh used to discretize it. On the right side there
is an enlargement of the zone on the hill curvature.

The inlet and the outlet patches are connected with a periodic boundary condition; at
the hill and flat plate surface the no-slip condition is imposed and finally at the top of the
domain a free slip condition is used. The numerical setup for the numerical scheme and
linear solvers is the same as the DNS simulations in chapter 4, paragraph 4.3.2.

The equations solved are a slightly modified version of the VANS system (5.3) in which
the constant macroscopic pressure gradient (g) is introduced as a source term in the mo-
mentum equation:



∂〈vβ〉β

∂t
+ 1
ε
∇ ·

[
ε〈vβ〉β〈vβ〉β

]
= − 1

ρβ
∇〈pβ〉β + νβ∇2〈vβ〉β

−νβεH−1〈vβ〉β + νβ
ε
∇ε · ∇〈vβ〉β + νβ

ε
〈vβ〉β∇2ε− g

∇ ·
(
ε〈vβ〉β

)
= 0

〈vβ〉 = 0 at hill wall
∂u

∂y
= 0 at y = 3.035h

〈vβ〉|x1=0 = 〈vβ〉|x1=9h

〈vβ〉|x1=0 = 〈vβ〉|x1=9h

(5.6)

In the system (5.6) the flow is driven by the source term g and the Reynolds number
is computed a posteriori in the following manner:

Re = Ubh

ν
,

where Ub is the velocity in the top left corner of the domain, just above the first hill.
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The treatment for the porosity is the same as equation (5.4) where in this case the
interface height yitf is described by two different profiles. The first one, called external,
is the same hill profile translated to the right by a length equal to 0.2h in the streamwise
direction. This setup is used to test the case of a porous media layer on the external part
of the hill. In this case the hill geometry is modified.

In the second case the interface profile yitf is exactly the hill profile at the same position
and the solid part of the hill is translated in the upstream direction by 0.2h. In this setup,
denoted internal, the porous media layer has been inserted on the "interior" of the hill
leeward side. It means that the total geometrical extension of the hill plus the porous
media layer is the same as the base case described by yhill.

The porous media layer has the same geometry of the one described in 4, a series of
cylinders in staggered arrangement. The cylinders are then arranged on the leeward side
of the hill and they are aligned with the wall normal direction. Although their extension
is not uniform, the line that goes through all the cylinders lid describe the curves yitf
external and internal.

The two different porosity field arrangements are depicted in figure 5.10. Where the
porosity deep inside the medium, shown in green, is equal to 0.8 and the exterior porosity
field is equal to 1 and is shown in purple.
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Figure 5.10: Porosity field in the leeward side of the first hill for the two different cases
external and internal. The porosity in the deep medium is equal to 0.8 and is colored in
green, instead the porosity in the free fluid is equal to 1 and it is colored in purple. On
the left case, the external one, the red line describes the hill profile of the base case and
the white line describes the porous media interface. For the internal case on the right the
base hill profile and the porous media interface are the same one, and they are depicted in
white.

On figure 5.10 the left picture shows the case named external, the red line indicates the
hill profile in the base case and the porous media layer is put on top of it and the white line
indicates the porous media interface yitf . The right picture in figure 5.10 instead shows
the configuration in the case named internal. For this case the porous media interface line
yitf is the same as the hill profile in the base case and is depicted in white.
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To summarize the two different cases differ for the position on the porous media interface
that is equal to the hill profile translated in the positive streamwise direction (case external)
or in the negative streamwise direction (case internal). The translation has the same
extension of 0.2h for each case.

The interface has also been treated with the linear smoothing function (5.4).
The permeability tensor components are then evaluated with the kriging metamodel in

the zone where the porosity field is different from one.

5.3.2 Comparison between smooth and porous leeward side of the hill

The above geometrical setup has been studied in the stable laminar regime. In this case
the source term is equal to g = (0.5 10−8, 0, 0) that results in a Reynolds number
equal to 83. For all the cases the recirculation bubble has been measured in its vertical
and horizontal extension. The horizontal extension LR is defined as the first streamwise
point in which a sampled velocity profile shows only positive streamwise velocities. The
vertical extension has been measured at x = 4.5 that is the mean extension of the domain.
Table 5.2 collects these results. Looking at the results the porous media has a negative
effect in both LR and hx=4.5. For the case external the geometry of the hill is modified by
the porous medium and the leeward side is pushed downstream, so it is not surprising that
the recirculation extension is pushed downstream. A similar negative effects can be found
also for the internal. This is in line with some observation made by Jimenez et al. [83]
and Gomez-de Segura et al. [68] in which they argue that some configuration of the porous
surfaces characteristic (porosity and permeability) can produce negatives effects. The last
case analyses the flow for a completely permeable hill obstacle, this means that the fluid
can pass through the overall hill geometry. Also in this case the length and the height of
the recirculation is increased, with similar values as the previous cases.

case LR hx=4.5

impermeable wall 5.6 0.27
external 5.95 0.33
internal 5.8 0.31

completely permeable 5.7 0.3

Table 5.2: Recirculation bubble streamwise extension LR and vertical extension at x = 4.5
for the three porous media configurations.

The streamlines in figure 5.12 show the shape of the recirculation bubble for the four
cases. It can be seen that they look very similar and as a matter of fact the differences
described in table 5.2 are within 5% from the base case without the porous layer. It can be
noted that for the completely permeable hill obstacle the flow field show a complex behavior
inside the porous domain. The streamlines at the inlet are almost horizontal because the
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fluid is forced to flow in this direction but it soon deviates upwards due to the permeability
of the fibrous porous media that is higher in the vertical direction. In figure 5.11 the local
velocity fields are analyzed. The sampled velocities at x = 1 seems very different because
the geometry in that point is not the same. If we look at the horizontal velocity gradients,
they are similar. Some differences can be observed for the vertical velocities. The internal
case presents smaller vertical velocities than the other two cases at x = 1, close to the
detachment point. The situation is inverted further downstream at x = 2 and the three
profiles collapse onto one another at x = 3. This different local behaviors can be used
for example in situations were the vertical exchange of momentum has to enhanced for
examples in aquatics plant applications where the nutrient exchange has to be optimized.
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Figure 5.11: The top three figures show the horizontal velocity profile for the sampled cut at
x = 1, x = 2 and x = 3 respectively from left to right. The bottom figures follow the same
patterns but instead shows the vertical velocity profile. The red line is the impermeable
wall case the blue line is the external case, the green line is the internal case and the
magenta line is the completely porous case.
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Figure 5.12: Streamlines for the three cases tested. The top picture shows the case without
the porous medium. The two central pictures show the cases where the porous media layer
is put on the external and internal part of the hill base profile. The bottom picture shows
the streamlines for a completely porous hill obstacle.
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5.4 Conclusions

In the chapter we have shown how the VANS equations derived in chapter 2 can be used
to describe the averaged macroscopic field for rigid porous medium. We have also shown
how the interface should be treated in order to retrieve good results. Direct comparison
with DNS data show that the linear smoothing of the porosity field and of the effective
permeability field are necessary. We have also shown that using the metamodel developed
for H produces the same smoothing for the interface. However it should be noted that
the definition of the interface profile of the porosity and permeability if directly dependent
of the side of the REV chosen, in our case, `. In our case the choice is dictated from the
regular and ordered arrangement of the porous structure but, other choices are possible and
this modifications will modify the slope of the interface functions. Finally the periodic hill
application demonstrate that our homogenized solver can be used easily as a tool to test
and measure porous coating and their effectiveness. For the porous characteristics used in
our study it has been found that the porous medium has negative effects for separation.
But our focus was on the validation and easiness-to-use of our macroscopic model, further
investigations are required to understand the physics under this negative effect. With this
tool it is now possible to extensively study porous media coatings in order to find the
optimal characteristics with respect to various objectives.
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Chapter 6

Conclusions, recommendations and
discussions

The question of whether Machines Can Think. . . is about as relevant as the
question of whether Submarines Can Swim.

- , Edsger Dijkstra

6.1 Main conclusions

In chapter 1 we have reviewed the latest advances and open questions present in the
literature. The same chapter is an attempt to produce a new and improved basis from
which many researchers could find and/or explore new research paths and ideas. In this
final chapter we list the main results and conclusions that can be drawn from the present
work.

The volume average method has been detailed in its key assumptions. The mathemat-
ical procedure needed to find the macroscopic equations, and the closure problem, has also
been presented. Also some of the most notable new contributions to the method have been
included in the discussion.

The sensitivity analysis shows that the VANS approach is the less sensitive one with
respect to variations in the base flow. Also, the stability results agree reasonably with the
experimental results. One of the possible drawbacks in the use of the VANS model is the
necessity to compute the effective permeability tensor H. The computational cost and the
difficulties to compute the components of the permeability tensor are the main reason that
have taken toward the development of a metamodel for the tensor H in chapter 4.

Opposed to the results in the work of Lasseux et al. [93] for rectangular fibers, our
computed effective permeability tensor for circular fibers is, with a good approximation,
diagonal. It means that the geometrical shape of the porous structure is very important for
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the characterization of the tensor structure. A possible generalization of different porous
structures is shown in Pauthenet et al. [124] even though further investigations on the non
diagonal terms are needed.

We have also shown that the 3D effects can be very important in changing the perme-
ability tensor components. In our data analysis, in chapter 4, we have shown that the angle
φ1 has a large influence in the tensor H components, especially in the inertia regime. The
same angle φ makes the flow three dimensional and it bends the fluid path along the fiber
axis. This process translates into a non-zero deviation angle γ in the fiber axis direction.

In chapter 4 [98] we have shown that the H metamodel has been developed up to a
Reynolds number equal to 100. This limit has been derived from the data and it was not
fixed a priori. To estimate this limit we have checked the direct comparison of Fm and FM
since it is a fair estimation of the correctness of the hypothesis behind our closure model.
For the geometry and range of porosities tested, the correct limit is around Reynolds
number 100. After this limit the error between the two quantities starts to be appreciable
and so the closure problem (2.49) is no more correct. We suppose that at higher Reynolds
numbers the linear correlation hypothesis between the average fields and the perturbations
(equations (2.39) and (2.40)) does not hold. This chapter has been the basis for an article
that has been already submitted and is now under review.

The interface treatment, based on the penalization method, has been investigated in
chapter 5 [99]. It has been shown that the double linear smoothing of porosity and per-
meability has a positive effect on the correctness of the homogenized model. We have
also shown that linear porosity profile derives directly from the geometry of the porous
media and it is exact. On the contrary the linear smoothing for the permeability tensor is
purely heuristic, but it can be supported by the fact that the porosity effects are largely
the most important effect in the variability of H. So, it is possible to argue that the two
fields should have the same interface treatment. Another confirmation for this fact comes
from the metamodel that, if left "free", it returns the linear profile of permeability at the
interface without imposing it a priori. A paper is actually under preparation on the topics
described in this chapter.

The VANS approach has been adopted in cases that naturally develop separation.
The inclusion of a porous media layer has been tested and the solver has shown good
computational performance without convergence problems. However, the physics of the
separation is not much modified by the porous layer, as a matter of fact the recirculation
bubble size remains almost the same. This results suggest that the laminar suppression
mechanism could be not as effective as the turbulent one (already observed in literature).
In any case, more simulations with different problem geometries are needed to generalize
the results.

The OpenFoam implementation of the macroscopic solver based on the VANS equa-
tions can be downloaded from github from the address: https://github.com/appanacca/

1the angle between the forcing term in the momentum equations and the fiber axis.
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porous_solvers_OF. The code listing is not directly shown in the manuscript since detail-
ing the solver implementation would have required to explain and describes in details many
OpenFoam library technicalities. These details have been already addressed in multiple
sources (Jasak [81], Moukalled et al. [114] and Maric et al. [100]) and they are out of the
scope of this work. To someone not new to OpenFoam programming the comments inside
the code listing are sufficient to clarify the technical points.

6.1.1 Possible future research extensions

The database from which we have built our metamodel for the tensor H can be extended.
For example, we could easily include more data points to make the model more reliable.
Another interesting part could be the extension to other fibers geometry section or even
other completely different porous media geometries (spheres, rocks ...). The database
could also be extended to moving porous media, the input parameters could include some
of the typical dynamical parameters like the mass ratio or the stiffness of the fibers. New
metamodelling approaches could also be explored. Especially, when the database grows,
deep neural networks could perform better than Kriging.

The validation of the interface treatment requires more data from DNS simulations or
experiments in similar configurations. The availability of high resolution data is still a
missing piece in the field.

The application of the macroscopic model to separated flow is only a starting point.
We have shown that our model is able to provide fairly correct homogenized flow fields
at a low computational cost. However, the capacity of a porous media layer to suppress
the separation is still questioned, at least with the parameters used. This means that the
optimal parameters are still to be found. An optimization procedure using the adjoint
equation could solve this problem, now that we have clarified the penalization approach
used in the VANS equations.

Another possible extension to the metamodel could be the implementation of the macro-
scopic approach for elastic porous media. Since the VANS solver is already been imple-
mented this extension, for example by using a Bernoulli beam, should be fairly easy.
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Appendix A: Kriging metamodel

Introduction

The kriging metamodel technique has already been introduced in chapter 4 however; to
complete the description of the method, the numerical procedure and some implementation
examples are presented in this appendix.

The kriging method was invented to get prediction of missing geostatics data (Krige
[88]). However, this methodology has been further generalized and applied extensively
to build metamodels for a large variety of applications. The method can treat highly
non linear output of an experiment and can be used to either interpolate or extrapolate
responses from a sample set.

In this discussion f̂(χ) is a model for the true function f(χ) and ŷ is the model pre-
diction of the true response, y = f(χ), that is evaluated at the point χ.

After the exploration of the design possibilities the database produced is usually orga-
nized in a set (xi, y(xi)) i = 1, ..., n where

• xi is the i − th vector element containing the k input parameters for the i − th
experiment realization;

• yi is the scalar response of the experiment for the vector of inputs xi
2;

• χ is the new input vector for which we seek the approximate output ŷ = f̂(χ).

Mathematical modelling

We define with n the number of points in the sample design set and with k the number of
inputs of the experiment; the n × k matrix containing all the inputs is indicated with X
and the n× 1 vector containing all the responses is indicated as Y.

The kriging response for a new input point χ is given by the linear predictor :

ŷ = f̂(χ) =
N∑
i=1

λi(χ)f(xi) =
N∑
i=1

λi(χ)yi, (6.1)

2yi is always a scalar because even in case of multiple outputs for an experiment they are supposed to
be uncorrelated. It means that if we had p elements in each yi we would have to build p metamodels.
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ŷ is considered to be a new realization of the random Gaussian process that has generated
the set of responses Y. The weights λi are the solutions of a linear system obtained by
minimizing the variance of the error between the predictor and the random process. The
best linear unbiased predictor BLUP is obtained finding the weights λi that minimize:

MSE[ŷ(χ)] = E

[(
f̂(χ)− f(χ)

)2
]

= E

[(
λT (χ)Y− y(χ)

)2
]
, (6.2)

under the unbiasedness condition:

E
[
f̂(χ)− f(χ)

]
= E

[
λT (χ)Y− y(χ)

]
= 0. (6.3)

This relation means that the predictor and the Gaussian process have the same mean value
for every new point χ. The equation (6.3) is further developed yielding:

E
[
f̂(χ)− f(χ)

]
= λTχE [f(X)]− E [f(χ)] =

n∑
i=1

λi(χ)µ(xi)− µ(χ) = 0, (6.4)

where µ(χ) is the mean value of the true function at the point χ; instead µ(xi) is the mean
of all the realizations collected for the database.

Different types of kriging approximation exist accordingly to how µ(χ) is evaluated:

• simple kriging assume that the trend has null value: µ(χ) = 0;

• ordinary kriging assume that the trend is an unknown constant: µ(χ) = µ;

• universal kriging assumes that the trend is the solution of a generalized least
squares model in which it is possible to decide the order (nβ)3 of the chosen base:
µ(χ) = gT (χ)β, where g(χ) is the base evaluation at the point χ and the vector β
contains the nβ coefficients of the model.

The unbiased condition (6.4) can be so rewritten, without loss of generality:

λT (χ)G(X)β − gT (χ)β = 0 =⇒ λT (χ)G(X) = gT (χ), (6.5)

where G(X) is the n × nβ matrix containing the evaluation of the least squared basis
functions at all points in X.

3This means that, for example, taking nβ = 2 the least squared model is quadratic.
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Also the relation (6.2) can be manipulated:

E

[(
f̂(χ)− f(χ)

)2
]

= var(f̂(χ)− f(χ))

= var(f̂(χ)) + var(f(χ))− 2 cov(f̂(χ), f(χ))

= var(
n∑
i=1

λi(χ)f(xi)) + var(f(χ))− 2 cov(
n∑
i=1

λi(χ)f(xi), f(χ))

=
n∑
i=1

n∑
j=1

λi(χ)λj(χ) cov(f(xi), f(xj)) + var(f(χ))

−2
n∑
i=1

λi(χ) cov(f(xi), f(χ))

=
n∑
i=1

n∑
j=1

λi(χ)λj(χ) cov(xi,xj) + var(f(χ))

−2
n∑
i=1

λi(χ) cov(xi,χ), (6.6)

where c = cov(X,χ) is the vector containing the estimated covariance between each point
in the input set X and the point χ for which we search the estimator. Similarly, Cij =
cov(xi,xj) represents the elements in the n×n matrix containing the correlation estimates
between each point in X. Possible estimations for the two covariance matrixies are listed
in the next section.

The derivative of the relation (6.6) with respect to λ is posed equal to zero in order to
minimize the kriging error, yielding the final relation:

λT (χ)C = c. (6.7)

Introducing the Lagrangian multiplier φ for the unbiased constraint it is possible to
build the partitioned matrix for the kriging metamodel:(

0 GT

G C

)(
φ
λ

)
=
(

g
c

)
. (6.8)

Then, by inverting the partitioned matrix the kriging predictor can be written as:

ŷ(χ) = gT (χ)β + cT (χ)R−1 (Y−Gβ) . (6.9)

The first term g(χ)Tβ is usually called trend function and the second term is the
Gaussian error model. As a matter of fact, (Y−Gβ) is the known vector of differences
between the true outputs and the trend function at all the points X in the database.
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One of the kriging metamodel benefits is that the model is exact at the data points.
However, if it is known that the experimental realization used in the database presents some
reliability issue and/or have noise4, there is a technique that permits to take into account
these effect. Adding a nugget (η) to all entries on the covariance matrix C∗ = C + ηI the
metamodel is no more exact at the data points. The same technique is used to increase
the conditioning number of the portioned system when dealing with numerical problems.

Covariance matrix choice

In order to give some indication on the choice of the proper covariance function let us first
introduce the semivariogram concept. The semivariogram γ between two generics points,
in the design space x1,x2, is defined as:

γ(x1,x1) = 1
2E

[
(f(x1)− µ(x1)− f(x2) + µ(x2))2

]
(6.10)

= 1
2var(f(x1)− f(x2))

= 1
2var(f(x1)) + 1

2var(f(x2))− cov(x1,x2) (6.11)

The semivariogram for each datapoint in the database can be directly computed from
the equation (6.10) and afterwards the relation (6.11) can be used to fit the semivariogram
data with the covariance function.

Lets us clarify the last statements with an example. We chose to replicate the example
present in Cavazzuti [36] in which the author proposes an experiment that depends on two
variables x1 and x2 and 10 realizations. The experiment database is shown in figure 6.1.

The semivariogram functions, as a function of the Eucledian distance between the two
points hij = |xi−xj |, has been computed using equation (6.10) and is represented in figure
6.2 on the left. The points in the semivariogram are then averaged over a distance step
whose width is equal to 0.25 and the points are shown on the right of figure 6.2. The
correlation function should be chosen to be the best fit for the averaged semivariogram.
This means that in theory, depending on the dataset, one could formulate a personalized
covariance model.

What is done in practice is that some parametric families of correlation functions have
been proposed in the literature; for example the power exponential correlation function
reads:

c(xi,xj) = σ2exp

− k∑
j=1

θk|xi,k − xj,k|ν
 . (6.12)

The kriging predictor surfaces can show different behaviors for different selections of the
above three parameters (σ, ν and θ) and their setting is thus crucial. The coefficient σ is an

4common in experimental data.
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Figure 6.1: Experiment data points for the 10 realizations available. The color map repre-
sent the output realizations Y of the experiment f(X).

amplitude parameter for the correlation function. It determines variations of the function f̂
from its mean. Small values of σ characterize functions that stay close to their mean value,
larger values allow more variations. It basically controls the gradient steepness around the
data points. The exponent ν of the model has similar effects. The vector θ = (θx1 , θx2)
is a length scale parameter for the distance |xi − xj|; describes how smooth a function is.
Small length scale values mean that function values can change quickly generating narrow
bumps near the data points. Large values characterize functions that change only slowly
but it will make the surface explode outside the convex hull described by the data points.
It is possible to specify different length scales in different directions, in this manner the
metamodel can include anisotropic effect for each variable of the experiment. This model
has been fitted in the previous semivariogram choosing ν = 2, θ = 1.895 and σ = 38.44
and it is depicted in the right figure 6.2 using a red line. Is possible to see that this model
fits well the data points for this experiment.

Another popular model for the covariance function is the Matérn model5 that reads:

c(xi,xj) = σ2 21−ν

Γ(ν)

k∑
j=1

[(√
2ν|xi,k − xj,k|

θk

)ν
Kν

(√
2ν|xi,k − xj,k|

θk

)]
, (6.13)

where Kν(.) is a modified Bessel function and Γ(.) is the gamma function. The parameters
that can be used to tune the metamodel are the amplitude parameter σ, the exponent ν
and the scale vector θ with the same meaning as in the previous correlation function.

To summarize, when choosing the correlation it should be kept in mind:

• to well approximate the trend of the averaged semivariogram,
5the one used in chapter 4.
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Figure 6.2: Left: Semivariogram versus the Euclidean distance computed for each data
point against the other. Right: The blue dots represents the same semivarigram on the
left but averaged over a step distance equal to 0.25. The red line corresponds to the
semivariogram computed using relation (6.11) with the covariance model power exponential
with parameters ν = 2, θ = 1.895 and σ = 38.44.

• the scale parameter θ highly changes the presence of spurious minima and maxima
in the metamodel. The others parameters ν, σ and η control the gradient and the
exactness of the model around the data points.

Some examples of the response surface built with the above parameters are presented
in the next section, along with the actual implementation.

Implementation example

An example of the implementation of kriging algorithm is presented in the following. To
build the model we use the open source library openTURNS (Baudin et al. [13]) using its
Python application programming interface6. This interface has been chosen because it is
very expressive even to non programmers. The code is shown in the listing below where
each line is commented and is self explanatory. From line 1 through 22 the experiment
database is created, in line 24 the trend function model is set constant but line 26 and 28
show how to set linear and quadratic least square trends. The covariance model is set in
line 31, and from line 35 to 42 the algorithm metamodel tree is built and executed. At the
end it is possible to get a callable function on the desired new point, line 44-47.

1 import numpy as np # import the generic vector library
2 import openturns as ot # import the openTURNS library

6although the crunching number computation is performed under the hood with C++.
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3

4 # define the k input varibles as a n dimensional array
5 x1 = np.array([14.04, 14.33, 15.39, 13.76, 14.59,
6 13.48, 15.86, 15.61, 13.29, 14.81])
7 x2 = np.array([18.76, 18.54, 17.05, 17.54, 17.84,
8 17.21, 17.61, 18.85, 18.20, 18.15])
9

10 # transform the inputs as a n by k array
11 x = np.column_stack((x1, x2))
12

13 # define the outputs as a n by 1 array
14 y = np.array([[10],[2 ],[4],[-2],[9],[3] ,[0], [-1]])
15

16 # tranform the array in OT samples
17 X = ot.Sample(x)
18 Y = ot.Sample(y)
19

20 # explicit define the number of input i.e the k number
21 dimension = len(x[0])
22

23 # define the constant trend function
24 basis = ot.ConstantBasisFactory(dimension).build()
25 # or the linear trend
26 # basis = ot.LinearBasisFactory(dimension).build()
27 # or the quadratic trend
28 # basis = ot.QuadraticBasisFactory(dimension).build()
29

30 # select the covariance model squared exponential (sigma, theta)
31 covarianceModel = ot.SquaredExponential([38.44], [1.895])
32 # or define the Matern model
33 # covarianceModel = ot.MaternModel()
34

35 algo = ot.krigingAlgorithm(X, Y, covarianceModel, basis) # build the metamodel
36

37 # eta = 0.2
38 # algo.setNoise([eta]*len(y)) # set the optional nugget
39

40 algo.run() # run the metamodel tree computation
41 result = algo.getResult() # return a container for the results
42 metamodel = result.getMetaModel() # get a callable function
43
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44 # set the new point to compute
45 chi = np.array([13, 17])
46 # get the metamodel prediction for the point chi
47 y_chi = np.array(metamodel(chi))
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Figure 6.3: kriging metamodel surface for using a constant trend function and the power
exponential covariance model with parameters ν = 2, θ = 1.895 and σ = 38.44.

It is possible to pass directly a vector of new points to the function metamodel in line
44. Figures 6.3, 6.4 and 6.5 show some metamodel surfaces with different parameters setup.

It is possible to see that changing the parameters of the kriging metamodel the shape
of the response function can change, and some very bad choice of the parameters can lead
to very exotic shapes, like in figure 6.5. In any case it is possible to test the robustness
of a certain setup using an error estimate like the one proposed in chapter 4. In practical
applications the choice of the optimal parameters is usually left to the experience of the
user.

Final remarks

Further detail on theoretical and computational aspects can be found in Cavazzuti [36],
Adams et al. [2], Sacks et al. [138] and Baudin et al. [13]. The above code snippet is public,
in the GitHub repository of the author can be found at the address: https://github.com/
appanacca/kriging_book.git. The OpenTRUNS library implementation is available at
the previous repository link. In addition an equivalent ordinary kriging implementation,
starting from scratch, can be downloaded. More generally whenever a reduced order model
has to be built with a not extremely large amount of data the Kriging metamodelling should
be a solution to investigate seriously.
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Figure 6.4: kriging metamodel surface for using a quadratic trend function and the Matern
covariance model with parameters ν = 1.5, θ = 10 and σ = 1.
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Figure 6.5: kriging metamodel surface for using a linear trend function and the power
exponential covariance model with parameters ν = 2, θ = 0.8 and σ = 10.

133



Bibliography

[1] J.D. Ackerman and A. Okubo. Reduced mixing in a marine macrophyte canopy.
Functional Ecology, pages 305–309, 1993.

[2] B.M. Adams, L.E. Bauman, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy,
M.S. Eldred, P.D. Hough, K.T. Hu, J.D. Jakeman, J.A. Stephens, L.P. Swiler, D.M.
Vigil, , and T.M. Wildey. Dakota, a multilevel parallel object-oriented framework
for design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: Version 6.0 Theory Manual. Technical report, Sandia National
Laboratories, SAND2014-4253, 2014.

[3] M. Agnaou, D. Lasseux, and A. Ahmadi. From steady to unsteady laminar flow in
model porous structures: an investigation of the first Hopf bifurcation. Computers
& Fluids, 136:67–82, 2016.

[4] G.P. Almeida, D.F.G. Durao, and M.V. Heitor. Wake flows behind two-dimensional
model hills. Experimental Thermal and Fluid Science, 7(1):87–101, 1993.

[5] J. Alvarado, J. Comtet, E. De Langre, and A.E. Hosoi. Nonlinear flow response of
soft hair beds. Nature Physics, 13:1014–1019, 2017.

[6] P. Angot, B. Goyeau, and J.A. Ochoa-Tapia. Asymptotic modeling of transport
phenomena at the interface between a fluid and a porous layer: Jump conditions.
Physical Review E, 95(6):063302, 2017.

[7] T. Asaeda, T. Fujino, and J. Manatunge. Morphological adaptations of emergent
plants to water flow: a case study with typha angustifolia, zizania latifolia and phrag-
mites australis. Freshwater Biology, 50(12):1991–2001, 2005.

[8] J.L. Auriault. Effective macroscopic description for heat conduction in periodic com-
posites. International Journal of Heat and Mass Transfer, 26(6):861–869, 1983.

[9] J.L. Auriault and E. Sanchez-Palencia. Etude du comportement macroscopique d’un
milieu poreux saturé déformable. Journal de mécanique, 16(4):575–603, 1977.

134



[10] J. Barrere, O. Gipouloux, and S. Whitaker. On the closure problem for darcy’s law.
Transport in Porous Media, 7(3):209–222, 1992.

[11] S. Barsu, D. Doppler, J.J.S. Jerome, N. Rivière, and M. Lance. Drag measurements
in laterally confined 2d canopies: Reconfiguration and sheltering effect. Physics of
Fluids, 28(10):107101, 2016.

[12] I. Battiato and S. Rubol. Single-parameter model of vegetated aquatic flows. Water
Resources Research, 50(8):6358–6369, 2014.

[13] M. Baudin, A. Dutfoy, B. Iooss, and A.L. Popelin. OpenTURNS: An industrial
software for uncertainty quantification in simulation. Springer International Pub-
lishing, 2016. ISBN 978-3-319-11259-6. doi: 10.1007/978-3-319-11259-6_64-1. URL
http://dx.doi.org/10.1007/978-3-319-11259-6_64-1.

[14] G.S. Beavers and D.D. Joseph. Boundary conditions at a naturally permeable wall.
Journal of Fluid Mechanics, 30(1):197–207, 1967.

[15] D.W. Bechert, M. Bruse, W. Hage, and R. Meyer. Biological surfaces and their
technological application—laboratory and flight experiments on drag reduction and
separation control. AIAA paper, 1960, 1997.

[16] D.W. Bechert, M. Bruse, W. Van der Hage, J.G.Th. Van der Hoeven, and G. Hoppe.
Experiments on drag-reducing surfaces and their optimization with an adjustable
geometry. Journal of Fluid Mechanics, 338:59–87, 1997.

[17] S.E. Belcher, I.N. Harman, and J.J. Finnigan. The wind in the willows: flows in
forest canopies in complex terrain. Annual Review of Fluid Mechanics, 44:479–504,
2012.

[18] S. Bhattacharyya and A.K. Singh. Reduction in drag and vortex shedding frequency
through porous sheath around a circular cylinder. International Journal for Numer-
ical Methods in Fluids, 65(6):683–698, 2011.

[19] B. Bhushan. Biomimetics: bioinspired hierarchical-structured surfaces for green sci-
ence and technology. Springer, 2016.

[20] A. Boomsma and F. Sotiropoulos. Direct numerical simulation of sharkskin denticles
in turbulent channel flow. Physics of Fluids, 28(3):035106, 2016.

[21] A. Bottaro, P. Corbett, and P. Luchini. The effect of base flow variation on flow
stability. Journal of Fluid Mechanics, 476:293–302, 2003.

[22] M. Breuer, B. Jaffrézic, S. Šaric, S. Jakirlic, G. Deng, O. Chikhaoui, J. Fröhlich,
D. von Terzi, M. Manhart, and N. Peller. Issues in hybrid les–rans and coarse grid
les of separated flows. In EUROMECH colloquium, volume 469, pages 6–8, 2005.

135



[23] M. Breuer, N. Peller, C. Rapp, and M. Manhart. Flow over periodic hills–numerical
and experimental study in a wide range of reynolds numbers. Computers & Fluids,
38(2):433–457, 2009.

[24] W.P. Breugem, B.J. Boersma, and R.E. Uittenbogaard. The influence of wall per-
meability on turbulent channel flow. Journal of Fluid Mechanics, 562:35–72, 2006.

[25] W. Brevis, M. García-Villalba, and Y. Niño. Experimental and large eddy simulation
study of the flow developed by a sequence of lateral obstacles. Environmental Fluid
Mechanics, 14(4):873–893, 2014.

[26] H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a
dense swarm of particles. Applied Scientific Research, 1(1):27–34, 1949.

[27] C.H. Bruneau and I. Mortazavi. Passive control of the flow around a square cylinder
using porous media. International Journal for Numerical Methods in Fluids, 46(4):
415–433, 2004.

[28] C.H. Bruneau and I. Mortazavi. Numerical modelling and passive flow control using
porous media. Computers & Fluids, 37(5):488–498, 2008.

[29] C.H. Bruneau, E. Creusé, D. Depeyras, P. Gilliéron, and I. Mortazavi. Coupling
active and passive techniques to control the flow past the square back ahmed body.
Computers & Fluids, 39(10):1875–1892, 2010.

[30] D.M. Bushnell, J.N. Hefner, and R.L. Ash. Effect of compliant wall motion on
turbulent boundary layers. Physics of Fluids, 20(10):S31–S48, 1977.

[31] J.P. Caltagirone. Sur l’intéraction fluide-milieu poreux; application au calcul des
efforts exercés sur un obstacle par un fluide visqueux. Comptes rendus de l’Académie
des sciences. Série II, Mécanique, physique, chimie, astronomie, 318(5):571–577,
1994.

[32] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral methods in fluid
dynamics. Technical report, Springer, 1988.

[33] R.G. Carbonell and S. Whitaker. Heat and mass transfer in porous media. Funda-
mentals of transport phenomena in porous media, 82:121–198, 1984.

[34] P.C. Carman. Fluid Flow Through Granular Beds. Transactions - Institution of
Chemical Engineeres, 15:150–166, 1937.

[35] P.W. Carpenter. Status of transition delay using compliant walls. Viscous drag
reduction in boundary layers, 123:79–113, 1990.

136



[36] M. Cavazzuti. Optimization methods: from theory to design scientific and technolog-
ical aspects in mechanics. Springer Science & Business Media, 2012.

[37] P.H. Chang, C.C. Liao, H.W. Hsu, S.H. Liu, and C.A. Lin. Simulations of laminar
and turbulent flows over periodic hills with immersed boundary method. Computers
& Fluids, 92:233–243, 2014.

[38] R. Chen, I. Teruaki, N. Toshiyuki, and L. Hao. Owl-inspired leading-edge serra-
tions play a crucial role in aerodynamic force production and sound suppression.
Bioinspiration & Biomimetics, 12(4):046008, 2017.

[39] H. Choi, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over
riblets. Journal of Fluid Mechanics, 255:503–539, 1993.

[40] F. Cimolin and M. Discacciati. Navier–stokes/forchheimer models for filtration
through porous media. Applied Numerical Mathematics, 72:205–224, 2013.

[41] W.O. Criminale, T.L. Jackson, and R.D. Joslin. Theory and computation of hydro-
dynamic stability. Cambridge University Press, 2003.

[42] H. Darcy. Les fontaines publiques de la ville de Dijon. Victor Dalmont, 1856.

[43] Y. Davit and M. Quintard. Technical notes on volume averaging in porous media i:
How to choose a spatial averaging operator for periodic and quasiperiodic structures.
Transport in Porous Media, 119(3):555–584, 2017.

[44] Y. Davit, C.G. Bell, H.M Byrne, L.A.C. Chapman, L.S. Kimpton, G.E. Lang, K.H.L.
Leonard, J.M. Oliver, N.C. Pearson, and R.J. Shipley. Homogenization via formal
multiscale asymptotics and volume averaging: How do the two techniques compare?
Advances in Water Resources, 62:178–206, 2013.

[45] E. De Langre. Effects of wind on plants. Annu. Rev. Fluid Mech., 40:141–168, 2008.

[46] B. Dean and B. Bhushan. Shark-skin surfaces for fluid-drag reduction in turbu-
lent flow: a review. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 368(1929):4775–4806, 2010.

[47] A. Duda, Z. Koza, and M. Matyka. Hydraulic tortuosity in arbitrary porous media
flow. Physical Review E, 84(3):036319, 2011.

[48] S. Dupont, F. Gosselin, C. Py, E. De Langre, P. Hemon, and Y. Brunet. Modelling
waving crops using large-eddy simulation: comparison with experiments and a linear
stability analysis. Journal of Fluid Mechanics, 652:5–44, 2010.

137



[49] J.E. Eckman. The role of hydrodynamics in recruitment, growth, and survival of
argopecten irradians (l.) and anomia simplex (d’orbigny) within eelgrass meadows.
Journal of Experimental Marine Biology and Ecology, 106(2):165–191, 1987.

[50] D.A. Edwards, M. Shapiro, P. Bar-Yoseph, and M. Shapira. The influence of Reynolds
number upon the apparent permeability of spatially periodic arrays of cylinders.
Physics of Fluids A: Fluid Dynamics, 2(1):45–55, 1990.

[51] M. Ehrhardt. An introduction to fluid-porous interface coupling. Technical report,
2010.

[52] S. Ergun and A.A. Orning. Fluid flow through randomly packed columns and fluidized
beds. Industrial & Engineering Chemistry, 41(6):1179–1184, 1949.

[53] J. Favier, A. Dauptain, D. Basso, and A. Bottaro. Passive separation control using
a self-adaptive hairy coating. Journal of Fluid Mechanics, 627:451–483, 2009.

[54] J. Favier, C. Li, L. Kamps, A. Revell, J. O’Connor, and C. Brücker. The pelskin
project—part i: fluid–structure interaction for a row of flexible flaps: a reference
study in oscillating channel flow. Meccanica, 52(8):1767–1780, 2017.

[55] J. Finnigan. Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32
(1):519–571, 2000.

[56] M. Firdaouss, J.L. Guermond, and P. Le Quéré. Nonlinear corrections to darcy’s law
at low reynolds numbers. Journal of Fluid Mechanics, 343:331–350, 1997.

[57] M. Firdaouss, J.L. Guermond, and D. Lafarge. Some remarks on the acoustic pa-
rameters of sharp-edged porous media. International journal of engineering science,
36(9):1035–1046, 1998.

[58] P.H. Forchheimer. Wasserbewegung durch boden. Zeitz. Ver. Duetch Ing., 45:1782–
1788, 1901.

[59] M.C. Gambi, A.R.M. Nowell, and P.A. Jumars. Flume observations on flow dynamics
in zostera marina (eelgrass) beds. Marine ecology progress series, pages 159–169,
1990.

[60] R. Garcia Mayoral and N. Abderrahaman-Elena. Analysis of anisotropically perme-
able surfaces for turbulent drag reduction. Physical Review Fluids, 2017.

[61] R. García-Mayoral and J. Jiménez. Drag reduction by riblets. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 369(1940):1412–1427, 2011.

138



[62] R. García-Mayoral and J. Jiménez. Hydrodynamic stability and breakdown of the
viscous regime over riblets. Journal of Fluid Mechanics, 678:317–347, 2011.

[63] M. Ghisalberti. Obstructed shear flows: similarities across systems and scales. Jour-
nal of Fluid Mechanics, 641:51–61, 2009.

[64] M. Ghisalberti and H. Nepf. Mixing layers and coherent structures in vegetated
aquatic flows. Journal of Geophysical Research: Oceans, 107(C2), 2002.

[65] M. Ghisalberti and H. Nepf. The limited growth of vegetated shear layers. Water
Resources Research, 40(7), 2004.

[66] M. Ghisalberti and H. Nepf. Mass transport in vegetated shear flows. Environmental
Fluid Mechanics, 5(6):527–551, 2005.

[67] A.A. Giunta, S.F. Wojtkiewicz, and M.S. Eldred. Overview of modern design of
experiments methods for computational simulations. In Proceedings of the 41st AIAA
aerospace sciences meeting and exhibit, AIAA-2003-0649, 2003.

[68] G. Gomez-de Segura, A. Sharma, and R. Garcia-Mayoral. Turbulent drag reduction
by anisotropic permeable coatings. In 10th International Symposium on Turbulence
and Shear Flow Phenomena, 2017.

[69] F. Gosselin and E. De Langre. Destabilising effects of plant flexibility in air and
aquatic vegetation canopy flows. European Journal of Mechanics-B/Fluids, 28(2):
271–282, 2009.

[70] Frédérick P Gosselin and Emmanuel De Langre. Drag reduction by reconfiguration
of a poroelastic system. Journal of Fluids and Structures, 27(7):1111–1123, 2011.

[71] W.G. Gray. A derivation of the equations for multi-phase transport. Chemical
Engineering Science, 30(2):229–233, 1975.

[72] L. Grizzetti, M. Quadrio, and L. Cortelezzi. Studio sperimentale della scia di un
corpo tozzo in presenza di inserti di materiale poroso. Master’s thesis, Politecnico di
Milano: Dipartimento Ingegneria Aerospaziale, 2015.

[73] R.E. Grizzle, F.T. Short, C.R. Newell, H. Hoven, and L. Kindblom. Hydrodynam-
ically induced synchronous waving of seagrasses:‘monami’and its possible effects on
larval mussel settlement. Journal of Experimental Marine Biology and Ecology, 206
(1-2):165–177, 1996.

[74] A.M. Hamed, M.J. Sadowski, H. Nepf, and L.P. Chamorro. Impact of height hetero-
geneity on canopy turbulence. Journal of Fluid Mechanics, 813:1176–1196, 2017.

139



[75] A.F. Heenan and J.F. Morrison. Passive control of pressure fluctuations generated
by separated flow. AIAA journal, 36(6):1014–1022, 1998.

[76] M.Y. Hussaini and T.A. Zang. Spectral methods in fluid dynamics. Annual Review
of Fluid Mechanics, 19(1):339–367, 1987.

[77] J. Hussong, W.P. Breugem, and J. Westerweel. A continuum model for flow induced
by metachronal coordination between beating cilia. Journal of Fluid Mechanics, 684:
137–162, 2011.

[78] S. Ikeda and M. Kanazawa. Three-dimensional organized vortices above flexible water
plants. Journal of Hydraulic Engineering, 122(11):634–640, 1996.

[79] E. Inoue. Studies of the phenomena of waving plants (“honami”) caused by wind.
Journal of Agricultural Meteorology, 11(3):87–90, 1955.

[80] M. Itoh, S. Tamano, R. Iguchi, K. Yokota, N. Akino, R. Hino, and S. Kubo. Turbulent
drag reduction by the seal fur surface. Physics of Fluids, 18(6):065102, 2006.

[81] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with Ap-
plications to Fluid Flows, 1996. PhD thesis, Ph. D. Thesis, University of London
Imperial College, 1996.

[82] J.W. Jaworski and N. Peake. Aerodynamic noise from a poroelastic edge with im-
plications for the silent flight of owls. Journal of Fluid Mechanics, 723:456–479,
2013.

[83] J. Jimenez, M. Uhlmann, A. Pinelli, and G. Kawahara. Turbulent shear flow over
active and passive porous surfaces. Journal of Fluid Mechanics, 442:89–117, 2001.

[84] M.P. Juniper, A. Hanifi, and V. Theofilis. Modal stability theory: Lecture notes from
the flow-nordita summer school on advanced instability methods for complex flows,
stockholm, sweden, 2013. Applied Mechanics Reviews, 66(2):024804, 2014.

[85] K. Klausmann and B. Ruck. Drag reduction of circular cylinders by porous coating
on the leeward side. Journal of Fluid Mechanics, 813:382–411, 2017.

[86] J.P.C. Kleijnen. Regression and kriging metamodels with their experimental designs
in simulation: A review. European Journal of Operational Research, 256(1):1 – 16,
2017. ISSN 0377-2217.

[87] J. Kozeny. Über grundwasserbewegung. Wasserkraft und Wasserwirtschaft, 22(5):
67–70, 1927.

140



[88] D.G. Krige. A statistical approach to some basic mine valuation problems on the
witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy,
52(6):119–139, 1951.
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