
 

UNIVERSITY OF GENOVA 

POLYTECHNIC SCHOOL  

DIME 
Department of Mechanical, Energy, Management  

and Transportation Engineering 

 

 
 

BACHELOR THESIS  

IN  

MECHANICAL ENGINEERING 

 
Interactive visualization of Big Data  

and Real-time data 
 

 

Supervisor: 

Chiar.mo Prof. Ing.  Alessandro Bottaro 

Co Supervisor: 

Dott. Ing. Joel Guerrero 

Candidate: 

Raffaello Daniele 

July



 

I 
 

Interactive visualization of Big Data and Real-time data 

 

 

 

Abstract 

This aim of this thesis is to explore the implementation of interactive data visualization for 
engineering applications. Improving efficiency in engineering systems led to a raise in the 
complexity of resolution methods. As a result, in the recent years there has been a rapid 
growth of Big Data methodologies throughout the scientific research. Not only datasets are 
growing in size, but they are also becoming more and more heterogeneous. Therefore, to 
design effective tools for navigation and analysis has become quite challenging. 
 The scope of this dissertation is to determine whether the JavaScript open source 
libraries D3, Dc and crossifilter are meeting the requirements for data analytics and visual 
display used in everyday life. Therefore, a thorough analysis of the above mentioned libraries 
and their abilities of handling substantial amount of data while remaining highly responsive 
to data filtering and exploration has been conducted. After their eligibility for working with 
big data files has been confirmed, a feasibility study on the libraries’s integration to real-
time data analysis has been carried out through the implementation of websocket servers 
with the objective of determining whether data visualization could be paired with computer 
simulations for design optimization. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

II 
 

 
 

Acknowledgments  

 

Firstly, I would like to thank Professor Alessandro Bottaro for offering me the opportunity 
to work on this project and for the immense independence, he granted me. 
 
 Furthermore, I would like to express my gratitude to Joel Guerrero for his 
availability to help me throughout the entire thesis. 
 
 I would like to thank my family, my friends and my girlfriend for their constant 
support. 
 
  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

III 
 

 
 

Contents 
 
 

Abstract..........................................................................................................................    I 

Acknowledgments ………….........................................................................................   II  

1 - Introduction .............................................................................................................   1  

2 –Data Processing Tools……………..........................................................................  4 

2.1 – Programming Languages……………………………......................................  4  

2.1.1 – HyperText Mark-up Language (HTML)…………….……..................  11 

2.1.2 – Cascading Style Sheets (CSS) …………………………..……............  12 

2.1.3 – JavaScript (JS) ………………………….……..…...............................  13 

2.2 – JavaScript Libraries ………………………………………………..................  17  

2.2.1 – Data-Driven Documents (D3.js) ………...……….…………...............  17 

2.2.2 – Crossfilter Library (crossfilter.js) …………………………….….........  18 

2.2.3 – Dimensional Charting Libray (Dc.js) …………….…….…..................  21 

3 – Data Exploration......................................................................................................  22 

3.1 – Big Data analysis through data visualization ………………………...............   22 

3.2 - Real-time data visualization ………………………………………………......  27 

3.2.1 – Design Optimization ………………………….…………....................  27 

3.2.2 – Real-time data acquisition through a websocket server….……............  30 

4 - Conclusions................................................................................................................  32 

Appendix.........................................................................................................................  33 

References.......................................................................................................................  38 

Nomenclature .................................................................................................................  39
  



 

1 
 

1. Introduction 
 
No longer than a decade ago the word “Big data” was introduced in our lexicon to refer to 
the ever growing data analysis trend that is quickly conquering areas that most of the time 
break far away from the scientific domain. Particularly, giant tech companies such as 
Google, Amazon, Facebook and others are the primary users and developers of data analysis, 
by collecting click-stream data and communications. This allows these companies to develop 
new advertising and retail strategies.  
 
As Philip Decamp cited - “Nearly every person with a computer or phone is both a frequent 
contributor and a consumer of information services that fall under the umbrella of Big Data”. 
[1]  
 To refer this concept back to the engineering environment, however, the impact of 
Big Data has been just as effective. For example, in energy systems or in the design 
optimization. Additionally, the constant strive for improving efficiency led engineers to 
design ever-complex iterative models that would converge to optimal solutions. However, 
these developments require a substantial number of simulations, hence a high computing 
power that only computers can provide.  The gathered data is often displayed in plain text or 
in the form of tables, which are never the best solutions for data reading or analysis. 
Alternatively, the most efficient way to summarize what extremely large amounts of data 
are, is to refer to their statistical properties such as the mean, the median, the variance etc. 
However, by doing so there is a chance of losing valuable information concerning the data 
set. English statistician Francis Ascombe, in an attempt to counter the general conception 
among statisticians that “numerical calculations are exact, but graphs are rough”, provided 
one example demonstrating the above mentioned theory. Ascombe provided his results in an 
article called Ascombe’s Quartet showon in Fig. 1.1. 
 
 

 
 

Fig. 1.1 – Datasets from Ascombe’s Quartet 



 

2 
 

 
In the Ascombe’s quartet, the four datasets appear to have nearly identical descriptive 
statistics as shown in Fig. 1.2 below.  
 

 
 

Fig. 1.2 – Descriptive Statistics of Ascombe’s Quartet 
 

Yet, when graphed, these four datasets tell a completely different story, appearing in 
different forms on scatter plot charts as shown in Fig. 1.3. 
 

 
 

Fig. 1.3 – Ascombe’s Quartet graphed through scatter plot charts 
 



 

3 
 

- Dataset I consists of a set of points that appear to follow a rough linear relationship 
with little variance 

- Dataset II fits a neat curve but does not follow a linear relationship 
- Dataset III looks like a tight linear relationship between x and y, except for one 

outliner 
- Dataset IV appears to be x constant except for one outliner 

 
 
Hence, data visualization can be considered just as important as statistical data analysis. By 
placing data in a visual context, people are able to visualize patterns, trends that otherwise 
would go undetected in a text based, plain data or statistical summary. 
 
 Although data visualization allows exploring huge amount of data in a confined 
space, the constant growth of datasets that are gathered and analysed every day is starting to 
challenge even the most advanced software programs specifically built for data analytics. 
Therefore, there is a constant challenge to find the most recently updated tool kit for 
analysing data. These programs can also be cost effective. Another issue that engineers and 
developers are facing is represented by the presence of “dirty data” in datasets. This data 
represents casual points that do not influence a potential pattern. Therefore, it becomes 
challenging, when confronted to large data files, to retrieve meaningful and valuable 
information. For this reasons the latest programs / analytics approaches allow for interactive 
data visualization, hence accelerating the process of data filtering and identification of “dirty 
data” that needs to be deleted as it only burdens the workload the computer has to provide.  
Among the multiple software/program choices available for data manipulation and data 
visualization, a decision was made to implement the JavaScript open source libraries: 
 

- Data Driven Documents (D3.js) 
- Crossifiler.js 
- Dimensional Charting (Dc.js) 

 
 
 Finally, throughout the course of this thesis, analysis will be carried out to determine 
whether these libraries are suitable for interactive Big Data analysis and visualization in the 
context of engineering applications. 
  



 

4 
 

2. Data Processing Tools 
 
 

As mentioned in the previous chapter, the aim of this project is to show how data 
visualization can be generated through the implementation of the JavaScript library D3.js. It 
will be used both a JavaScript and HTML approach. In order to manipulate the data and 
create the dashboards, we will need help from other JavaScript libraries such as Dc.js and 
Crossfilter.js. Hence, it has been decided to dedicate some time to explain what these 
languages and libraries are and how they work. 
 
2.1 Programming languages 
 
2.1.1 HyperText Mark-up Language (HMTL) 
 
 To convey information about a document’s structure or presentation, mark-up 
information is added to the document. Mark-up languages are widely used in everyday 
computing. For instance, word processors use codes that indicate the structure and 
presentation of a document. However, while the word processors write the necessary mark-
up to produce a document behind the scenes, HyperText Mark-up Language (HTML) is not 
a behind the scenes mark-up language. 
It a computer language that allows website creation. The functionalities of HTML are: 
 

- HyperText is the method by which it is possible for the user to move around on the 
web, by clicking on special texts called hyperlinks that transport the user to the next 
page. The fact that it is hyper just means it is not linear. For instance, the user can go 
to any place on the internet any time he needs by clicking on links; there is no 
standard order to accomplish the actions. 

- Mark-up is what HTML tags, commonly known as elements, do to the text found in 
between them. Tags mark the text as a certain type of text such as italicised. 

- HTML is a language, as it has code-words and syntax like any other language. 
 
 The HTML code is based on tags, which provide all the instructions for formatting 
the text between each other. Tags will start with an angle bracket (less than sign) ‘<’ and 
will end with another angle bracket (this time the greater than sign) ‘>’. Also, tags can be 
used to inform the processing program, in this case the web browser, how to operate the text. 
Because of their various uses, the html tags can be divided in categories, depending on the 
role they play in the manipulating the web page. It is possible to identify different categories 
such as: 
 

- The basic html tags that are used to create and structure our web page. These 
particular tags enable the user to create titles, headings, paragraphs and leave 
comments on the source code as a guidance for the programmers who wish to 
examine the file. 

- Formatting tags allow the user to implement, only to a certain extent, the document’s 
styling. For more complex styles, the Cascading Style Sheet (CSS), a programming 
language that allows manipulating furthermore more the text, page layout and 
colours will be implemented. 



 

5 
 

- Forms and input tags allow the user to insert additional features to our document such 
as buttons, legends and drop down lists. 

- The links tags let the user create links for navigating to different pages from the initial 
web page. 

- The programming tags allow the web developers to implement different 
programming languages inside an html document. 

 
For better understanding the topic, the different HTML tags used in the course of the thesis 
are presented below in Tab. 2.1.  
 

Tab. 2.1 – Different HTML elements used in the course of the thesis 
 

HTML Element Description 

Basic Tags 

<!DOCTYPE> Allows the processing program to know which 
version hot html is in use 

<html> 
Allows the processing program to know that 

what follows is html language 

<head> Defines information about the document 

<title> Defines a title for our document which will be 
displayed in the web tab 

<body> 
Defines the document body, where we insert 

the text that will appear on our web page 

<h1> … <h6> Defines the html heading which are not to be 
confused with the document’s title 

<p> 
Allow the programmer to add a paragraph 

element 

<br> Inserts a single line break 

<meta> Defines metadata about the html document 

<!-- … --> 
Allows the programmer to add comments in 

the source code 



 

6 
 

Formatting Tags 

<strong> Defines bold text 

<sub> Defines subscripted text 

<sup> Defines superscripted text 

<center> Allows to centre the text 

<ul> Defines an unordered list 

<ol> Defines an ordered list 

<table> Defines a table in our html document 

<th> Defines a table’s header 

<tr> Defines a table’s row 

<td> Defines a cell in our table 

Input tags 

<button> Defines a clickable button 

<fieldset> Groups related elements in a form 

<legend> Defines a caption for a <fieldset> element 

<select> Defines a drop down list 



 

7 
 

Links 

<a> 
Defines a hyperlink which allows the user to 

navigate to other web pages 

<link> 
Defines a relationship between a document 

and an external resource (most used to link to 
style sheets) 

Semantics 

<style> 
Defines a style information for an html 

document 

<div> Defines a section in a document 

Programming 

<script> 
Defines a client-side script. It allows the user 

to write a code in another programming 
language 

 
 

 So far, the html tags have been described in their simplest form. However, it is 
common practice to add attributes to these tags in order to modify their characteristic. The 
attributes have to be placed in the opening tag and they should always contain the following 
two parts: 
 

- The name that represents the property to be set. For instance it is possible to add to a 
paragraph element <p> the name align in order to set the alignment of the paragraph 
in the page. 

- The value of the attribute is the value of the property previously set. Using the 
example above, it is possible to add as a value: “left” to the name align. The value 
has to always be written within quotations. 

 
 It is important to note that attributes values are case-insensitive, which means there 
is no distinction between capital and lowercase letters. However, the World Wide Web 
Consortium recommends lowercase for HTML v.4. 
Among the various attributes that are listed in Tab. 2.2, it is of great importance for the 
reader’s comprehension to analyse the three core attributes: 
  



 

8 
 

- ID attribute 
- Class attribute 
- Style attribute 

 
 As the name indicates, the id attribute shown in Fig. 2.1 allows to the user to uniquely 
identify any element within the html page. This could be useful in several occasions, such 
as when, the user has different elements with the same name and needs to access one specific 
element or when he is working in another file source and he needs to link the code to an html 
element (for example between the JavaScript dc.js chart library and the html element <div>). 
 

 
 

Fig. 2.1 – Code showing the use of the “id” attribute 
 

 More general than the id attribute, the class attribute shown in Fig. 2.2 allows 
selecting one or more elements that have the same attribute name. It can be used by CSS or 
JavaScript to perform certain tasks for elements with the specified class name. 
 

 
Fig. 2.2 – Code showing the use of the “class” attribute 

 



 

9 
 

 The style attribute shown in Fig. 2.3 allows to the user to implement the CSS styling 
directly inside the designated element. As it is specific to the element, it will override any 
style set globally such as styles specified in the <style> tag or in an external style sheet. 
 

 
 

Fig. 2.3 – Code showing the use of the “style” attribute 
 
 

Tab. 2.2 – Different HTML attributes used in the course of the thesis 
 

HTML 
Attribute Belongs to Description 

Data <object> 
Specifies the URL of the resource to be used by the 

object 

Download <a>, <area> Specifies that the target will be downloaded when a 
user clicks on the hyperlink 

Hidden Global attributes 
Specifies that an element is not yet, or is no longer 

relevant 

Href 
<a>, <area>, <base>, 

<link> 
Specifies the URL of the page the link goes to 

Lang Global attributes Specifies the language of the element’s content 

Onclick All visible elements Script to be run when the element is being clicked 

Onmouseover All visible elements 
Script to be run when a mouse pointer moves over an 

element 

Rows <textarea> Specifies the visible number of lines in a text area 

Src <script>, <source> Specifies the URL of the media file 

 
For the reader’s sake, further information concerning HTML elements and attributes can be 
found on the World Wide Web Consortium official website [2].  
 



 

10 
 

 The beginning of an HTML document will always begin with a <!DOCTYPE> 
declaration. This is not an HTML tag but an instruction which tells the browser which 
version of HTML the document will be written in. Once it is clear to the web browser which 
version is being used, the opening HTML tag, <html> needs to start the document so that 
the browser understands the following code is actually HTML code. 
The user can then proceed to build the <head> and the <body> containers that are the two 
main blocks of the document shown in Fig. 2.5. 
  
 The <head> element shown in Fig 2.4 is the part of the document that will not be 
displayed in the browser once the page is loaded. It contains information such as the page 
<title>, the relative links to the styling through CSS and other metadata which is essentially 
data about data. 
 

 
 

Fig. 2.4 – In this figure it is possible to see the difference between the header and the title 
element 

(The <title> element is metadata that describes the overall HTML document, unlike the 
<h1> tag, which belongs to the <body> element and is considered as the page’s title.) 

 
 

 Adding metadata is crucial as it helps the search engines to keep track and index the 
web page. For example, the use of the ‘lang’ attribute to the opening html tag will allow the 
HTML document to be indexed more effectively by the search engine if the language is set. 
 During the years, adding metadata in the <head> element became important to the 
point that the World Wide Web Consortium (W3C) developers decided to add a <meta> tag. 
This is used for specifying the document’s character encoding as shown in Fig. 2.6 and Fig. 
2.7. For instance, UTF-8, a universal character set that includes every character from every 
human language. This means that the web page will be able to display any language 
requested. On the other hand, if the user implements the characters encoding under ISO-
8859-1 the page rendering could be different from what expected, with the web not 
recognizing certain characters. 
 Moreover, to improve the interaction between the web page and the user, the latter 
should set the viewport. This represents the user’s visible area of a web page, which can vary 
according to the devices in use. The viewport is added by including the <meta> viewport 
element, which gives the browser instructions on how to control the page’s dimensions and 
scaling. The width=device-width sets the width of the page to follow the screen-width of the 
device in use.  
 



 

11 
 

 
 

Fig. 2.5 – Basic HTML document’s structure 
 

 

 
 

Fig. 2.6 – Web page rendering using UTF-8 
 
 

 
 

Fig. 2.7 – Web page rendering using ISO-8859-1 
  



 

12 
 

 The <body> element, also known as the document body element, is perhaps the most 
important part of the html document. It contains the web page’s structure with the CSS 
styling and the JavaScript used to modify the rendering. 
The following element can be combined between each other and are part of the main features 
of the documents body: 
 

- DIV: it is used for hierarchical containers and static banners 
- Block elements formed by paragraphs, lists, forms, tables, figures ect… 
- Horizontal rules, and the Address element 
- Text and character level mark-up including emphasis, images, math, 

hypertext links and miscellaneous elements. 
 
2.1.2 Cascading Style Sheets (CSS) 
 
 Cascading Style Sheets is a style language that is designed to modify the presentation 
of a document by changing colors, fonts and layout. In an HTML document, the CSS styling 
is usually specified in the <head> element. However, any time the user needs to apply a 
certain style to different documents, a .css file containing the necessary style can be created 
and then called in the different HTML codes through the <link> element. 
 
A css file contains the style rules for every element to which it is desired to modify the 
presentation. The anatomy of a CSS rule is shown in Fig. 2.8. It is possible to differenciate: 
 

- The selector, which communicates to the browser which HTML element we wish to 
style 

- The property, which identifies the property to apply to the element (such as the 
background-color, the text color and the margins.) 

- The value of the property that in the example of the text color, refers to which color 
to use 

- The property and the value pair up to for a declaration. 
 
 Generally, complex styles are created by combining together multiple declarations 
(each separated by a semicolons) within one selector. Also, the rule needs to be enclosed in 
between curly brackets. 

 
 

Fig. 2.8 – CSS rule’s anatomy 



 

13 
 

2.1.3 JavaScript (JS) 
 
JavaScript (JS) programming language can be categorized as: 
 

- High Level Language (HLL) that has a higher abstraction from the computer, as it is 
generally independent from a computer’s hardware architecture. Thus, high level 
programming languages are more user friendly than low level languages.  

- Interpreted Programming Language as the code has to be parsed, interpreted, and 
executed each time it is run. 

- Dynamic, in computer science, these languages are able to execute many actions at 
runtime. Those may include extension of the program or adding new code by 
extending objects. 

- Weakly typed: contrary to strongly type languages that check the type of a variable 
before performing an operation on it, weakly typed languages do not check the type 
of variables. Additionally, weakly typed languages perform implicit casts. 

 
Regardless of the programming language that is being used, a program will always start with 
some declarations, followed by functions inside which there will be implemented 
instructions for arithmetical, logic, relational operations.  
Declarations are used to provide the data type of each data contained in the program. Data 
inside JavaScript can be of different types as shown in Fig. 2.9: 
 

- Boolean: they represent the ‘true’ & ‘false’ values. They are often used for 
conditional statements. 

- Null: it is a variable defined to have a null value. 
- Undefined: a variable that has not been defined yet. A variable that is not defined, 

will produce the ‘not defined’ error in return. 
- Number: the number data type can handle integers and floats. The ‘number’ type can 

handle positive, negative numbers and decimal places. 
- String: In computer science, text is treated as strings (which are grouping of 

characters). In order to define a string text has to be put in between simple or double 
quotes, for example: “Hello World” or ‘Hello World’). 

- Object: an object is a collection of properties. A property is an association between 
a name (key) and a value. 

 
 
 

 
 

Fig. 2.9 – JavaScript code displaying the different types of data 



 

14 
 

 
In the Tab.2.3 below, different types of operators that JavaScript provides in order to 
manipulate data are presented. 
 

Tab. 2.3 – JavaScript operators for creating expressions 
 

Arithmetic Operators 
+ Addition 
- Subtraction 
* Multiplication 
/ Division 
% Modulus (Division reminder) 
++ Increment 
-- Decrement 

Comparison Operators 
== Equal to 

=== Equal value and equal type 
!= Not equal 

!== Not equal value or not equal type 
> Greater than 
< Less than 

>= Greater than or equal to 
<= Less than or equal to 
? Ternary operator 

Logical Operator 
&& Logical And 
|| Logical Or 
! Logical Note 

 
 
 
When writing a code, the user usually wants to perform a certain action only on the 
occurrence of a specific condition. For this purpose, the conditional statements shown in Fig. 
2.10 can be implemented. In JavaScript the following statements can be used: 
 

- The if statement which will execute a certain action only if a specified condition is 
true 

- The else statement, if the precedent condition turns out to be false will execute 
another operation 

- The else if statement to specify a new condition to be tested if the first condition is 
false 

- The switch statement that specifies many alternative blocks of code to be executed. 
It is a faster alternative to using the If statement followed by many Else if statements. 

 



 

15 
 

 
 

Fig. 2.10 – JavaScript code for the conditional statements 
 
 

Furthermore, programs are generally presented as blocks of functions, designed to execute 
a particular task such as a calculation. One of the main reasons to apply a function could be 
to write reusable code that can produce different results each time the code is run. 
 
A JavaScript function is defined with the ‘function’ keyword followed by its ‘name’ and the 
parentheses ‘()’. The function’s code has to always be placed in between curly brackets ‘{}’ 
as shown in Fig. 2.11. 
 
When a function is generated, it can be invoked (called) in any part of the code. The 
invocation can be an event (when a user clicks on a button) or it can be automatic (self-
invoked function). Once the function reaches, the ‘return’ element found in between the 
curly brackets it will stop executing. 
 

 
 

Fig. 2.11 – JavaScript code for a function 
 
 
 

Together with HTML and CSS, JavaScript is a powerful tool for web creation. While HTML 
and CSS are mostly implemented for rendering the structure and the style of static web pages, 
JavaScript enables the user to create dynamically updating content, animating images, 
control multimedia and interactivity. Another useful feature that comes with JavaScript, is 



 

16 
 

the functionality built on top of the core JavaScript language, the so-called Application 
Programming Interfaces (APIs). They are constructs made available in programming 
languages to allow developers to create complex functionality more easily. APIs abstract 
more complex code, providing some easier syntax to use in its place, they use one or more 
JavaScript objects. 
For example, if the user wants to program 3D graphics, it will be easier to do it by 
implementing an API written in a high-level language such as JavaScript or Python, rather 
than using some low-level language such as C++ that directly controls the computer 
GPU).[3] 
 
JavaScript APIs fall into two categories: 
 
1-Browser APIs: 
 
 Built into the browser, they are able to expose data from the computer environment and 
perform complex activities. Some examples of browser APIs are: 
 

- Document Object Model (DOM) API that allows to manipulate HTML and CSS 
- Geolocation API that retrieves geographical information 
- Canvas API that allows to create animated 2D and 3D graphics 

 
 
2-Third Party APIs: 
 
Third party API are not built into the browser, therefore the user needs to grab their source 
code and information from different the web sources. Examples of third party APIs are: 
 

- The Twitter API 
- The Google Maps API 

 
To recap, when a web page is loaded, the JavaScript code will be executed by the JS engine 
after, after the HTML and CSS have been combined together in order to construct the 
webpage. By running the JS code last, it can be ensured that the structure and style of the 
document are set before starting to dynamically modify the content. 
 
  



 

17 
 

2.2 JavaScript Libraries 
 
 
2.2.1 Data-Driven Documents Library (D3.js) 
 
Data-driven documents (D3.js) is an open-source JavaScript library built to work with 
documents based on data, usually in .csv, .tsv and JSON format. It produces dynamic and 
interactive data visualization on web browsers by using HTML, SVG and CSS. [4] 
 
Together with the different properties that D3 provides, some of the most important are: 
 

- DOM Manipulation: modifying the documents with the DOM API can be tiresome, 
as it would require for a manual iteration and bookkeeping of the temporary state. 
By implementing D3, it is possible to access an element and modify its rendering in 
one code line as shown in Fig. 2.12. 

 

 
 

Fig. 2.12 – DOM Manipulation through JavaScript and D3.js 
 

- Dynamic Properties: styles, attributes, and other properties can be specified as 
functions of data in D3. Which means that data can drive your styles and attributes 
as shown in the example below in Fig. 2.13. 

 

 
 

Fig. 2.13 – Function for randomly color paragraphs 
 

 
 

- D3 provides the transition () function. This is a powerful tool because internally, D3 
works out the logic to interpolate between the values and find the intermittent states. 

 
 
 
 

 



 

18 
 

2.2.2 Crossfilter Library (crossfilter.js) 
 
 Crossfilter is a JavaScript library for exploring large multivariate datasets in the 
browser. [5] 
It is perfectly suited for big data analytics as it can support datasets with millions of records 
at extreme speeds (<30ms). Records either can come from a data file or even be built directly 
in the script, in the form of an array of JavaScript objects or primitives. 
Ultimately, in order to be more user friendly crossfilter supports APIs. Some of the APIs are 
show in Tab. 2.4 below. 
 

Tab. 2.4 – Corssfilter’s APIs for manipulating and filtering data 
 

Crossfilter APIs 

crossfilter([records]) 
Constructs a new crossfilter. If records is 

specified, simultaneously adds the specified 
records. 

crossfilter.add(records) Adds the specified records to this crossfilter 

crossfilter.remove(predicate) Removes all records that match the current 
filters from this crossfilter. 

crossfilter.all() 
Returns all of the raw records in the 

crossfilter, independent of any filters. 

crossfilter.groupAll() 
A convenience function for grouping all 
records and reducing to a single value. 

Dimension 

crossfilter.dimension(value [, is Array]) 

Construcs a new dimension using the 
specified value accessor function. The 

function must return naturally-ordered 
values. 

Dimension.filter(value) 
Filters the records such that this dimension’s 

value matches value, and return this 
dimension 



 

19 
 

dimension.filterExact(value) 
Filters records such that this dimension’s 

value equals value, and returns this 
dimension 

dimension.filterRange(range) 
Filters record such that this dimension’s  value 
is greater than or equal to range[0], and less 

than range[1], returning this dimension 

Group 

dimension.group([groupValue]) 

Constructs a new grouping for the given 
dimension, according to the specified 

groupValue function. By default, the group’s 
reduce function will count the number of 

records per group. In addition the groups will 
be ordered by count. 

 
2.2.3 Dimensional Charting Library (Dc.js) 
 
 Dc.js is a JavaScript chart library with native crossfilter support, allowing highly 
efficient exploration on large multi-dimensional datasets. It uses D3.js to render charts in a 
CSS-friendly SVG format. Charts rendered using the dc.js library are data driven and 
responsive, therefore they provide instant feedback [6]. Once data has been filtered, dc will 
set a filter on the respective dimension object. Firstly, the chart sends a redraw message to 
the other charts belonging to the chart group, via the Chart Registry. Secondly, all the chart 
belonging to the designated group pull new data from their respective crossfilter groups and 
transit from the old data to the new data, therefore giving the live interaction. 
The different dc charts and their respective methods are grouped into classes. Under the 
rownChart class it is possible to find: 
 

- dc.rowChart 
- elastic(Boolean) 
- gap([number]) 
- renderTitleLabel([Boolean]) 
- ect. 

  



 

20 
 

Supported graph types include: 
 

1. Scatter-plot chart, shown in Fig. 2.14, is a two-dimensional chart. It is often called 
the correlation chart as it allows to see if two variables are correlated. Later versions are 
supported with a trend line to make the relationship more visible. 

 
 

 
 

Fig. 2.14 – Scatter-plot chart 
 
 

2. Bar chart, shown in Fig. 2.15, is used to summarize univariate data sets. Typical bar 
charts are formed by horizontal axis (the area of interest) and the vertical axis (the 
response variable). The width of the bars is usually equal and does not have any meaning 
regarding the underlying data set. Histograms are a type of bar charts, used to depict a 
certain distribution of data. 

 

 
Fig. 2.15 – Bar chart 

 
 
 



 

21 
 

3. Pie chart, shown in Fig. 2.16, is a circular statistical graphic, divided into slices to 
illustrate slice proportion. The arc length is proportional to the number of data it 
represents. Usually they are used to show comparison as the biggest slice can be easily 
identified. 
 

 
 
 

Fig. 2.16 – Pie chart 
 
 

 
 When creating a dashboard, there is need to upload the above JavaScript libraries in 
the code, in a specific order. First, D3.js will be loaded as it will allows manipulating all the 
HTML and CSS elements. Secondly, crossfilter is used to create the necessary dimensions 
ad groups for filtering the dataset and lastly dc.js which will be uploaded. Dc.js, by 
leveraging with the two previous libraries, will render our charts. 



 

22 
 

3. Data Exploration 
 
 

3.1 Big Data analysis through data visualization 
 
The aim of this project is to display D3, Dc and crossfilter eligibility in processing big data 
sets. The McKinsey study defines Big Data as “datasets whose size is beyond the ability of 
typical database software tools to capture, store, manage and analyse.” The data size ranges 
from a dozen of terabytes (1012 bytes) to multiple petabytes (1015 bytes). Big Data breaks 
into four dimensions knows as the 4 Vs: 
 

1. Volume: relates to the size of the data records incoming 
2. Velocity: relates to how frequently data is generated and processed. This breaks into 

batch data processing, where data is collected over a period of time to real time data 
processing where there is a continual input process and output of data. 

3. Value: data value can be defined as the valuable information a certain dataset brings. 
Quite often this information is hidden in the first place and through data analytics all 
the ‘dirty’ data can be deleted and patterns can be found. 

4. Variety: Nowadays data type comes from a great variety of industries such as the 
financial services, health care, manufacturing, transportation, engineering design. 
The focus of this project will be on data provided by maritime sensors. 

 
In collaboration with associate professor Giovanni Besio from the civil, chemical and 
environmental engineering department, a thorough analysis of maritime data was conducted. 
The aim is to display the different trends of wind and wave properties in the Mediterranean 
Sea in a period that goes from 1979 to 2017, on an interactive dashboard. The quantities 
analysed can be seen below: 
 

 Significant Wave Height (Hs): in marine forecast it represents the average of the 
highest one-third (33%) of waves, measured from the crest that occur in a given 
period of time. It is measured because larger waves are more significant than smaller 
waves such due to their impact on coastal erosion and navigation. Statistical 
distribution of the wave heights is approximated by a Rayleigh distribution as shown 
in Fig. 3.1. Given the properties of the Rayleigh distribution, it is possible to 
encounter a wave with double the height of the significant wave height. 

 

 
Fig. 3.1– Statistical wave distribution 

 



 

23 
 

 Wave mean & peak Period (Tm, Tp): waves with the same height and shape 
have the same period T periodic). However in natural sea states this regularity 
is not present, the motion is irregular and chaotic. Natural states are 
represented by a superposition of a big number of regular wave trains 
traveling in different directions with different heights and periods. These 
trains are called wave components and form the wave spectrum. The wave 
period represents a key parameter for defining a sea state. Worth noticing, for 
a given wave height, the larger the period, the more energetic and powerfull 
the swell. Whereas the peak period Tp corresponds with the period of the most 
energetic wave component, the mean period Tm is calculated as an average 
from the whole ensemble of wave components. (Only the most energetic 
component defines the Tp, every single component contributes to the Tm). 

 
 Mean and peak wave direction (Dirm, Dirp): wave directions are measured 

clockwise from North and are evaluated through the mean over the whole 2D 
spectrum as shown in Fig. 3.2. 

 
 

 
 

Fig. 3.2– Prediction directional wave spectrum 
 Peak wavelength (Lp): the peak wavelength is the length where the spectrum 

reaches its highest intensity. It corresponds to the wavelength calculated with 
the peak wave period. 

 Mean wavelength (Lm): it corresponds to the wavelength calculated using the 
mean wave period. 

 Directional Spreading (Spread): is the distribution of wave energy with 
direction. The smaller the directional spread, the larger the amount of wave 
energy concentrated around the wave direction. 

 Wind speed: wind speed is defined as the hourly wind speed average 
measured at 10m above sea level. Detection of the wind speed is done 
following the nautical convention (i.e. ‘coming from’) relative to true north 
positive clockwise. For example, 0 degrees means from north to south and 90 
degrees means from east to west. 

 



 

24 
 

The mathematical meaning of these parameters can be found in Appendix A. 
The data retrieved from the Mediterranean Sea belongs to a substantial amount of locations, 
each belonging to a specific cardinal point such as latitude and longitude. A decision was 
taken to plot all the sites on a map with markers. In order to create the map Leaflet has been 
used which is a JavaScript library. The creation of the map includes the following steps: 
 
 

1. Create an index.html file with the basic html structure (see chapter 2, section 2.1) 
2. Include the Leaflet CSS in the <head> element via a <link> tag. 
3. Include Leaflet.js after Leaflet CSS, either in the <head> or in the <body> element 
4. Add a <div> element with its id attribute. The map will show here 
5. The markers corresponding to the data retrieved from stations in the Mediterranean 

Sea are added. 
 
 

Once the index.html file is run, a map appears on the web page as shown in Fig. 3.3. 
 

 
 

Fig. 3.3–Leaflet map with markers 
 
 

Moreover, in order to accelerate the access to each data file, code is added to allow the user 
to get in query string the coordinates of the point clicked in the previous page. The click 
event will load a file specific for the coordinates. Then the name of the file will be 
‘lat;lng.csv’, where ‘lat’ and ‘lng’ are respectively the latitude and the longitude passed via 
query string as shown in  Fig. 3.4. 
 

 
 

Fig. 3.4– Code retrieving a data file with specific latitude and longitude via query string, 
after a mouse click event on the map 



 

25 
 

 
When confronted to data, the first issue is about understanding its nature in order to find the 
best way to display it. After thorough research and data analysis, a general agreement was 
settled in displaying the data through: 
 
 

 A year bar chart for displaying and filtering by year the data records 
 A month row chart for displaying and filtering the data by month 
 Two heat maps describing the frequency aggregation of data records with the same 

[Significant wave height (Hs); Wave peak perio (Tp)] and [Significant wave height 
(Hs); Wave mean direction (Dirm)]. This allows to identify if there are any specific 
sea conditions that have a recurrence. 

 A wind sunburst chart is used to replace the traditional wind rose. A sunburst chart 
can be seen as a pie chart with an inner and outer ring. In the inner ring it is possible 
to find the different cardinal wind directions and on the outer ring, there are the 
different wind intensity bands corresponding to each cardinal direction. 

 Two additional sunburst charts displaying in the inner rings the cardinal wind 
directions and on the outer rings, the significant wave height for the first chart and 
the wave peak period for the second. 

 
  
Before starting the charts rendering, some data manipulation was necessary. In the first 
place, wind speed was presented in two separate columns. 
 

- West-East wind direction; as a consequence negative wind speeds indicate an East-
West wind direction. Similarly, for the South-North wind direction negative values 
refer to a South-North wind direction. 

 
For instance, constants have been defined in order to represent the cardinal directions, wind 
speed intervals, wave peak period and significant wave height intervals as shown in Fig. 3.5. 
Secondly, the setWindDirection (d) is called to parse each data records and return the number 
of the records belonging to each cardinal direction. Additionally, the wind speeds needed to 
be classified into different wind speed intervals. Hence, the compound direction had to be 
defined by calculating its module. Furthermore, the cardinal directions, the function parses 
through the wave peak period and the significant wave height columns return the number of 
data belonging to the respective intervals. Also, the getWaveDirection (d) function is used 
to parse through the mean wave direction records and return the number of data belonging 
to each angle interval previously set. 



 

26 
 

 
 

Fig. 3.5– Constants created for the setWindDirection(d) function 
 

Once the necessary data creation is settled, the data file can be loaded into the browser via 
the DOM by default, all data will be passed as an array of objects. It is important to notice 
that the first row of the file does not get printed. This is due to the data object being loaded 
by D3, which uses these column names as object properties and therefore, they are converted 
to object keys. Each array element is presented as a string, thus, it needs to be coerced into 
a number in order to be manipulated.  
Now that the file is uploaded in the browser, the data visualization begins by applying the 
crossfilter library. By using the necessary dimensions, groups and implementing the dc.js 
classes, the user will be able to generate the charts (See Appendix C). 
 
Lastly, with the use of the resetFilter (filter) function, reset buttons are created for better data 
exploration. Through the bootstrap library the layout of the webpage is created. 
 
In order to conclude, once the code is uploaded on the webpage an interactive dashboard is 
generated. If the user tries to filter data on a chart, he will see all charts uploading the new 
filtered data with a high computational speed. This shows how D3, Dc and crossfilter are 
useful tools to manipulate big data. Among the traditional uses of these data sets in weather 
forecasting for marine navigation, useful insights concerning high sea energy locations can 
be depicted through data visualization techniques. These locations can be transformed into 
wave energy plants for sustainable energy production. 
  



 

27 
 

3.2 Real-time data visualization  
 
Nowadays the majority of data visualization projects consists of static sets of data that are 
pulled upon request of the user. Therefore, the data sets only get updated when the user 
manually refresh the data file. However, this model is slowly becoming obsolete in many 
applications. With the constant raise of produced data, the user would need to spend most of 
his time updating the data sets. To overcome this issue real-time data visualization 
techniques can be implemented. 
 
Real-time data visualization is applicable when the user application needs to keep a “pulse” 
on, and monitor data passively. This means that on the dashboard the charts will update 
automatically as long as the connection is kept open. This method can be applied to different 
areas such as: 
 
 

- Stock/Financial markets 
- Industrial manufacturing 
- Scientific Laboratories 
- GPS monitoring  

 
This project focuses on the possible applications in the engineering industry environment. 
More specifically, the implementation of real-time data visualization techniques using D3, 
Dc, and crossfilter, on design optimization projects. 
 
3.2.1 Design Optimization 
 
To provide the reader with a better understanding, design optimization is defined as the 
creation of an algorithm to explore the design space and find a variety of high performing 
designs of an object. The problem formulation includes: 

- Design variables: they are parameters that are controllable from the designer. 
Design variables can represent the geometric quantity such as the thickness 
of a structural object. These variables can be either continuous (represented 
by real numbers), discrete (the number of bolts in a beam) or Boolean. 

- Constraints: constraints functions determine the feasibility of all the solutions 
found during the process of optimization. They indicate whether a design 
should be considered as a possible option. Constraints can set the value of the 
function to be exactly equal, greater or less than a certain value. 

- Objectives: these functions describe the goals of the optimization problem. 
During the problem formulation, it needs to be specified whether the goal is 
to minimize or maximize the value of each object function. When the problem 
has one objective function, it will be called a single-objective optimization 
and it usually presents a single solution. Likewise, when the problem has 
more than one objective function it is called a multiple-objective optimization 
and usually have a range of solutions. 

  



 

28 
 

- Methods: once the optimization problem is set, it can be solved using a 
variety of approaches. When a problem cannot be solved directly, 
optimization algorithms are implemented. These algorithms can be divided 
in two different categories: the deterministic methods, that apply a series of 
defined steps in order to obtain a solution and stochastic methods which apply 
a certain level of randomness while searching for a solution. 

 
In this case, the aim is to optimize the shape of a dagger board of a sail boat as shown in Fig. 
3.6. The goals are to maximize the vertical force and minimize the drag coefficient which 
represent the objective functions. This is then a multi-objective optimization (MOO) 
problem. There are twelve design variables as shown in Tab. 3.1 and one non-linear 
constraint which corresponds to the lateral force on the dagger board. For this project all the 
design variables are bounded and for the non-linear constraint an inequality has been used.  
 

 
 

Fig. 3.6– Computer rendering of sail boat to which we wish to apply a design optimization 
process to the daggerboard 

 
Tab. 3.1 – Quantities of interest in the design optimization process 

 

12 Design variables x 

3 airfoil x-c_I x1, x2, x3 

3 airfoil x-A x4, x5, x6 

3 wing chord x x7, x8, x9 

2 wing dihedral x x10, x11 

1 wing sweep x x12 

2 Objective functions 
(of) 

Drag obj_fn_1 

Vertical Force obj_fn_2 

1 non-linear 
constraint 

Lateral force nln_ineq_con_1 

 



 

29 
 

The Multi-Objective Genetic Algorithm (MOGA) method was used alongside the surrogate-
based optimization (SBO) to perform the MOO. In a SBO, a surrogate model (also known 
as meta-model) is created to approximate, as show in Fig. 3.7, an original high fidelity model 
(such as the Computational Fluid Dynamics (CFD) simulations or more expensive 
experiments). The surrogate acts as a data fit to the observations so that new results can be 
predicted without recurring to expensive experiments which can either bi-numerical or 
physical. Once the surrogate is built, the optimization method is applied.  
 
The MOO can be expensive, hence SBO us an economical solution to perform MOO. 
Moreover, the observations can be used for data mining, data analytics and for initial 
screening to provide information on the sensitivities of the data. 
 

 
 

Fig. 3.7– Comparison of a design space obtained by analytical process and a surrogate 
based process 

 
 

More information concerning the MOO on the sail boat can be found on Wolf Dynamics 
website. [8] 
 
A high number of simulations need to be performed by the design optimization methods in 
order to produce significant results for the user. Therefore, it is good practice to implement 
data visualization in order to depict data trends in an easier manner. Additionally, the process 
of data analysis and visualization can be accelerated by implementing a real-time data 
acquisition. 



 

30 
 

3.2.2 Real-time data acquisition through a websocket server 
 
 
The simulations have already been ran hence the data has already been stored. In order to 
simulate a real-time acquisition a websocket server (a bi-directional client/server 
connection) returning random data has been generated. 
 
For this project the following instruments in Tab. 3.2 have been implemented. 
 

Tab. 3.3 – Different programming tools implemented for real-time data acquisition 
 

Programming Languages 
Python – server side 

JavaScript – client side chart rendering 

JavaScript Libraries 

D3.js 

Crossfilter.js 

Dc.js 

Python’s tornado library for websockets, 
IOloop and web 

 
Tornado is a python web framework library [7], mainly used to create servers capable of 
managing non-blocking input/output (I/O). Usually, when a user requests a web page, a 
server is called to elaborate and pack the response. The response is then sent via a 
Transmission Control Protocol (TCP) connection to the client. Once the response is sent to 
the client, the connection is closed and if the client needs a new request, a connection has to 
be restored which sometimes might be an issue. With non-blocking servers, such as 
websockets servers, this is no longer a problem. With a websocket server a permanent 
bidirectional client/server connection is created and capable of exercising multiple processes 
while awaiting for new data to be sent. Closing a websocket server connection has to be done 
manually (for example by closing the web browser).  
 
IOloop is a method that communicates to tornado to listen for websocket’s connections (it 
tells tornado ‘A connection has been made, keep listening to the server until the connection 
is manually closed’). 
 
Once all libraries are downloaded, the creation of the websocket server begins. First, all 
packages are imported. Second, using tornado’s websocket a handler class is created. The 
handler contains three functions: 
 

1. open (self) function, inside which a notice requesting a three seconds delay for 
sending data once the connection is opened is passed. 
 

2. on_close(self) function, returns the message “Connection closed” once the 
client/server connection is closed 



 

31 
 

 
3. send_data (self), it is the most important function where a json object of random data 

is built and sent via the self.write_message () function. 
 

IOloop is then used to create a timeout that will send data periodically. Furthermore, a 
websocket web app is built and set to listen on port 8001. In order for the socket to become 
active, a client-side code needs to open the connection on that port. 
 
 
Now that the server is ready, it is possible to create the dashboard for data visualization, 
using D3, Dc and crossfilter libraries. The process is analogous to the one implemented for 
the first project on maritime data. A decision was made to re-create multiple count heatmaps 
depicting the frequency distribution for pairs of design variables and object functions. In the 
original data set, data visualization allows the user to directly locate a data thickening region 
in the (obj_fn_1; obj_fn_2) and the (obj_fn_2; nln_ineq_con_1) heatmaps as shown in Fig. 
3.8. This region enables, on a statistical basis, to locate the optimal regime conditions for the 
dagger board. In the real time simulation, random data included in a certain range is given 
by the server, therefore the data thickening locations will not appear.  
 

 
 
To recap, this project emphasizes on how D3, Dc, and crossfilter libraries are suitable for 
real time data analytics (data acquisition and visualization). Making their implementation a 
potential analytical approach for analysing data in future projects within the DICCA 
department. 
  



 

32 
 

4. Conclusions 
 
 

In this dissertation has been investigated the use of the JavaScript open-source libraries 
known as D3.js, Dc.js and Crossfilter.js to perform interactive data visualization. The main 
objective was to understand whether these libraries could withstand data analysis on large 
amount of data which is a process known in computer science as Big Data analysis. Google 
Chrome web browser, although any modern browser would have worked, has been used in 
order to display the analyses; this required a specific skill set for web creation with the 
implementation of HTML and CSS programming languages. 
 
To determine the feasibility of this project, datasets from the civil, chemical and 
environmental engineering department (DICCA) of University of Genoa have been 
provided. Firstly, maritime records from the Mediterranean Sea over a period of thirty-eight 
years were analyzed. Although it was possible to recreate some of the graphs used in weather 
fore-casting engineering (for example the 2D wave spectrum), there were difficulties in 
generating certain types of charts due to the lack of chart features found in the Dc.js chart 
library. For instance, it was not possible to recreate the wind and significant wave height 
rose charts. Instead, it was opted to implement the sunbursts chart, which, were able to 
display the data just as effectively. The chance of filtering data on the interactive dashboard 
demonstrated the true power of crossfilter’s library. It was possible to easily identify periods 
of the year where the sea transported more energy through the waves. For this project data 
concerning only one location was provided. However, if the user had data related to every 
location, he could be able to identify within the Mediterranean Sea the regions that could 
theoretically represent the ideal location for a kinetic wave power station. This approach is 
known as “the feasibility and location study” and is the first step taken by companies 
producing energy in deciding where to set a new power station. 
 
During the second part of the thesis the capability of these libraries to work with real-time 
data was tested. Although it was not possible to work with ongoing simulations, it was 
decided to test the real-time feature by connecting a dashboard (that was generated with data 
collected from a design optimization project) to a websocket server by using a python library 
known as Tornado. The server would send random bounded data to the dashboard. The result 
was successful as all the charts were changing in correspondence to the data that was being 
sent. This demonstrated the potential use of this data visualization approach for real time 
computer simulations such as design optimization (DO), computational fluid dynamics 
(CFD). This would result in faster data gathering and displaying, reducing the costs. 
 
Although the use of these JS libraries may seem restrictive for data visualization and 
analysis, D3, Dc and Crossfilter represent a valuable alternative to their competitors in 
displaying and analyzing data as they do not come with any cost and the fact of being open 
source allows for a faster generation of new features. 
  



 

33 
 

 Appendix 
 
 
For the sake of brevity, only the most relevant scripts are reported. 
 
Set wind direction function: 
 
 

  



 

34 
 

 
Get wave direction function: 
 
 

 
  



 

35 
 

Reset Filter function: 
 
 

 
  



 

36 
 

Websocket Handler: 
 
 

 
  



 

37 
 

Leaflet Map code: 
 
 

 



 

38 
 

 
 
 

References 
 

 
[1] Decamp, P. (2012). [online] Media.mit.edu. Available at: 

https://www.media.mit.edu/cogmac/publications/decamp_phd_thesis.pdf 

[2] W3schools.com. (2018). HTML Tutorial. [online] Available at: 
https://www.w3schools.com/html/default.asp  

[3] MDN Web Docs. (2018). Introduction to web APIs. [online] Available at: 
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-
side_web_APIs/Introduction   

[4] Bostock, M. (2018). D3.js - Data-Driven Documents. [online] D3js.org. Available at: 
https://d3js.org/  

[5] Square.github.io. (2018). Crossfilter. [online] Available at: 
http://square.github.io/crossfilter/  

[6] Dc-js.github.io. (2018). dc.js - Dimensional Charting Javascript Library. [online] 
Available at: https://dc-js.github.io/dc.js/ 

[7] Tornadoweb.org. (2018). Tornado Web Server — Tornado 5.1 documentation. [online] 
Available at: http://www.tornadoweb.org/en/stable/  

[8] Wolfdynamics.com. (2018). Wolf Dynamics - Multiphysics simulations, numerical 
optimization, and data analytics. [online] Available at: 
http://www.wolfdynamics.com/component/content/article.html?id=82  



 

39 
 

Nomenclature 
 
 
Notations 

Hs Significant wave height[m] 
Tm Mean period [s] 
Tp Peak period [s] 
Dirm Mean direction [degN] 
Dirp Peak period [degN] 
Lm Mean wavelength [m] 
Lp Peak wavelength [m] 
uw West-East wind velocity at 10m [m/s] 
vw South-North wind velocity at 10m [m/s] 
 
 
Definitions and acronyms 

D3 Data-Driven Documents 
Dc Dimensional Charting 
HTML HyperText Mark-up Language 
CSS Cascading Style Sheet 
W3C World Wide Web Consortium 
JS JavaScript 
HLL High Level Language 
API Application Programming Interfaces 
DOM Document Object Model 
SVG Scalable Vector Graphics 
DO Design Optimization 
MOO  Multi-Objective Optimization 
MOGA Multi-Objective Genetic Algorithm 
SBO  Surrgate-based Optimization 
CFD  Computational Fluid Dynamics 
TCP  Transmission Control Protocol 
I/O  Input/Output 
 
 

 
 
 

 
  
 


