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Sommario

Numerosi esseri viventi traggono vantaggio da appendici �essibili che, muovendosi at-
tivamente o passivamente nel �uido circostante, generano movimento o portano ad un
miglioramento delle prestazioni aerodinamiche. La natura è ricca di esempi: alcuni
batteri usano i loro �agelli per muoversi nel �uido in quiete, mentre gli uccelli usano
le loro piume per controllare il �usso durante il volo, aumentando così le prestazioni
aerodinamiche e abbassando l'energia necessaria al volo.

Una comprensione piú approfondita delle interazioni �uido-struttura può portare
ad applicazioni ingegneristiche che sono basate sull'imitazione della natura e ottenere
così un miglioramento delle tecnologie odierne.

Il presente lavoro di tesi è mirato alla simulazione delle complesse interazioni �uido-
struttura a cui sono sottoposti una serie di �lamenti �essibili ed inestensibili, in-
cernierati al bordo di uscita di un cilindro tridimensionale. Il cilindro è il prototipo
più semplice di corpo tozzo, notoriamente a�etto da scarse prestazioni aerodinamiche
a causa del massiccio distacco dello strato limite ed alla creazione di un larga zona
di ricircolo; inspirandosi alla natura, la presenza dei �lamenti potrebbe portare ad un
sensibile miglioramento della aerodinamica del corpo.

La ricerca é e�ettuata tramite simulazioni numeriche. Le equazioni di governo
del moto del �uido sono discretizzate su una griglia collocata e risolte mediante un
codice ai volumi �niti, mentre i �lamenti sono modellizzati mediante equazioni proprie
della meccanica delle strutture. L'accoppiamento tra �uido e struttura viene e�ettuato
utilizzando il metodo dei contorni immersi, che evita l'uso di griglie mobili o deformabili
conformanti ai corpi �essibili. Il codice è stato validato utilizzando numerosi casi
disponibili in letteratura, trovando un ottimo riscontro con gli altri autori.

Le simulazioni sono tutte e�ettuate al di là della soglia di tridimensionalità del
�usso in modo che i �lamenti siano indotti a muoversi in ogni direzione da un �usso
completamente tridimensionale.

Sono state testate di�erenti con�gurazioni dei �lamenti e diversi parametri; le
prestazioni aerodinamiche del corpo sono state confrontate con il cilindro privo di
appendici, riscontrando, in tutti i casi simulati, un netto miglioramento dei coe�cienti
aerodinamici.

L'e�etto dei �lamenti sulla struttura della scia è stato preso in considerazione,
osservando, a seconda delle con�gurazioni, un anticipo della seconda biforcazione tridi-
mensionale o la soppressione della prima instabilità tridimensionale.
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Abstract

Numerous living beings take advantage of �exible appendages that, moving actively or
passively in the surrounding �uid, generate locomotion or lead to an amelioration of the
aerodynamic performance. Nature is rich of examples: some bacteria use their �agella
to move through a quiescent �uid, while the birds use their feathers that, interacting
with the �ow, increase their aerodynamic performance, decreasing the energy needed
to �y.

Improved understating of the �uid-structure interaction can lead to engineering
applications that exploit the design principle of Nature and to an improvement of the
human technologies.

The present work is aimed to simulate the complex �uid-structure interaction to
which �exible, inextensible �laments, clamped in rear of a three-dimensional circular
cylinder, are subjected.

The cylinder is the simplest prototype of blu� body, notoriously a�ected by low
aerodynamic performance because of the strong separation of the boundary layer and
the generations of a large recirculation zone; inspiring to Nature, the �laments may
lead to good improvement of the aerodynamic of the body.

The investigation is carried out through numerical simulations. The governing
di�erential equations of the �ow are discretized on a non-staggered grid and solved
using a �nite volume code, while the �laments are modelled using the theory of the
structure mechanics. The coupling between �uid and structure is performed using
the immersed boundary method, that avoid the use of moving or deforming grids
conforming to the �exible bodies.

The code has been validated using numerous test cases, obtaining very good agree-
ment with the other authors.

The simulations are performed beyond the three-dimensionality threshold such that
the �laments are induced to move in each space direction by a fully developed three-
dimensional �ow. Di�erent con�gurations of the the �laments and parameters have
been tested; the aerodynamic performance of the body has been compared with the
bare cylinder, noting an improvement of the aerodynamic coe�cients for all the cases
tested.

The e�ect of the �laments on the wake structure has been visualized and, in function
of the case tested, an anticipation of the second three-dimensional bifurcation or an
inhibition of the �rst shedding mode has been observed.
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Chapter 1

Introduction

Fluid-structure interactions are commonplace in nature. Swimming �sh and several
micro-organism base their locomotion on complex interaction between their deformable
bodies and the surrounding �uid. Other living being, despite not having active mech-
anism of locomotion, take advantage of appendages moving passively in the �ow to
increase their aerodynamic performance and to decrease the energy needed to move.
This interesting feature can be found in the birds' feathers that, acting on the �ow,
produce an amelioration of aerodynamic performance.

Figure 1.1: Filament immersed in a soap �lm: (a) stretched state. (b) �apping state.
(c) �apping �lament at several time points along its �apping cycle.(d)The same �lament
at higher �ow speed, showing aperiodic �apping.

Biomimetics is the branch of science that studies the living beings in nature as
source of inspiration for the improvement of human technologies.
Mechanisms based on the interaction between �exible bodies and �uid �ow are increas-
ing their importance in engineering applications and several researchers focused their
attention on these problems. On one hand, the knowledge of the physical mechanisms
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involved in these interactions can lead to a better understanding of some basics bi-
ological processes and inspire new technologies. On the other hand, modelling these
phenomena is a challenge because of their complex geometry and freely moving bound-
aries which give rise to complicated �uid dynamics.

The �rst experiments on a �exible �laments moving in a uniform �ow, shown in
�gure 1.1, was performed by Zhang et al.[1]. They visualized the motion of the �laments
in a two dimensional soap �lm and �gured out the complex dynamic that can arise
from the interaction between the �uid and the immersed bodies. They showed two
distinct stable states for a single �lament (see �gure 1.1): the stretched state and a
self sustained �apping state. Inspired by the experiments, Peskin et al. [2] performed
numerical simulations on the �lament-�uid interaction problem and found that the
mass of the �lament plays an important role in the dynamics of �apping.

Bagheri et al. [3] studied the dynamics of a �exible �lament free to �ap in the wake
of a two dimensional circular cylinder. They found a symmetry breaking with the
�lament oscillating in the upper or in the lower part of the cylinder. This behaviour is
associated to a net generation of lift and torque; a decrease in drag was also observed.

As outlined in the above examples, the presence of �exible bodies can lead to
interesting dynamics and produce aerodynamic advantages. In the present work, the
circular cylinder will be taken as a prototype of a blu� body and numerical simulations
will be performed with the aim of discovering the e�ects of �exible �laments clamped
in the rear of the cylinder. In the next section a short review of vortex dynamic in the
cylinder wake and �ow regimes will be proposed.

1.1 Review of Vortex Dynamics in a Cylinder Wake

The vortex dynamics in a cylinder wake presents numerous bifurcations and the struc-
ture of the wake is signi�cantly di�erent depending on the �ow regime considered. The
Reynolds number, Re = UD

ν
, is the main bifurcation parameter and in correspondence

of certain value of Re the following regimes can arise:

• Re < 49: at Re below around 49, as shown in �gure 1.2, the wake comprises a
steady recirculation region of two symmetrically placed vortices on each side of
the wake whose length grows as the Reynolds number increases.

Figure 1.2: Steady wake behind a circular cylinder at low Re.

• 49 < Re < 190: The recirculation region develops instabilities whose strength
and ampli�cation grow with Re. There is the manifestation of a repeating pattern
of swirling vortices (Von Karman street) caused by the unsteady separation of
the �ow around the cylinder. The wake oscillations are purely periodic over the
this range and cause the oscillation of the forces over the cylinder.
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Figure 1.3: Unsteady wake behind a circular cylinder after the �rst bifurcation.

• 190 < Re < 260: This regime is associated with two discontinuous changes in
the wake formation as Re is increased. The �ow becomes three dimensional and
two di�erent shedding modes occurs, namely mode A and mode B. The mode A
instability , as shown in �gure 1.4, is characterized by the formation of primary
vortex loop that becomes stretched into streamwise vortex pairs of wavelength
about λ

D
≈ 4 in the spanwise direction.

(a)

(b)

Figure 1.4: Wake structure for a three dimensional circular cylinder at Re = 200: iso-
surface of positive(green) and negative (yellow) streamwise vorticity; in dark green and
light blue iso-surface of negative and positive spanwise vorticity are shown.
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The mode B changes the shape of the wake and presents a �ner scale streamwise
vortex pairs of spanwise wavelength of about λ

D
≈ 1 (see �gure 1.5).

(a)

(b)

Figure 1.5: Wake structure for a three dimensional circular cylinder at Re = 270: iso-
surface of positive(green) and negative (yellow) streamwise vorticity; in dark green and
light blue iso-surface of negative and positive spanwise vorticity are shown.

After Re = 260 there is an increase in disorder and the �ow begins to become
turbulent. Sever bifurcation and changes in the wake of the cylider occur and some of
these are not fully understood. Their description is beyond the scope of this work and
more information can be found in [4].



1.2 Case of Study 5

1.2 Case of Study

Figure 1.6: Cylinder equipped with �exible �laments.

The present work has the aim to simulate the dynamic of �exible, inextensible �laments
clamped in the rear of a three dimensional circular cylinder and analyse the e�ect that
their presence have in the �ow; a sketch of the �laments arrangement is proposed in
�gure 1.6. The simulations performed are DNS (direct numerical simulation) and the
governing equations of the �ow are solved directly without any approximation of smaller
scales. All the numerical calculations are perform beyond the three dimensionality
threshold (Re = 190) such that the �laments are exposed to a three dimensional �ow
�eld and they are free to move in any space direction.

Di�erent number of the �laments and their length will be tested and the aero-
dynamic performance of the body will be measured and compared with the cylinder
without the appendages.



Chapter 2

Numerical Method

2.1 The Navier-Stokes Equations

The Navier-Stokes equations, named in honor of Claude-Louis Navier (1785-1836) and
George Gabriel Stokes (1819-1903), describes the motion of �uids from a macroscopic
point of view, assuming that the �uid can be treated as a continuum (it is in�nitely
divisible and it is not composed of discrete elements as atoms or molecules).

The equations, in their most complete form, are nonlinear, coupled partial di�eren-
tial equations and their analytical resolution is often complex or not possible. Only in
few particular cases, involving simple geometries and special boundary conditions, an
analytical solution can be found. These �ows are important to study the fundamentals
of �uid mechanics but their practical relevance in engineering and scienti�c applica-
tions is limited. Thus, a numerical approach is needed in order to solve the equations
out of those particular situations.

The equations arise from the conservation of momentum and mass for an arbitrary
portion of �uid Ω of surface S:

∂

∂t

∫
Ω

ρu dΩ +

∫
S

ρuu · n dS =

∫
S

ρT · n dS +

∫
Ω

ρf dΩ , (2.1)

∂

∂t

∫
Ω

ρ dΩ +

∫
S

ρu · n dS = 0 , (2.2)

where u is the velocity vector,f represents forces per unit of volume, such as gravity,
that may be applied at the �uid, T is the stress tensor acting on the surface of the
�uid volume, n is the unit vector normal to the surface S and t is the time. The stress
tensor T has its own structure in function of the type of �uid considered.

A simpli�cation of resulting �ow governing equations is obtained introducing the
following assumption:

• Incompressibility

• Isothermal �ow

• Newtonian �uid
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The �rst two assumptions lead to consider as constant the �uid density ρ and the
dynamic viscosity µ, that, in general, may vary with space, time and temperature.
These simpli�cations rule out the solvability of high speed �ows (Ma > 0.3), where
the e�ect of compressibility cannot be neglected, but simplify the solution of a large
part of problems in which these proprieties can be considered constant. The third
assumption specify the type of �uid and de�nes the structure of the stress tensor T
that, in cartesian coordinate, becomes:

Tij = −pδij + µ(
∂ui
∂xj

+
∂uj
∂xi

) , (2.3)

here xi stands for the i-th component of the coordinate vector, p is the pressure and
δij is the Kronecker delta. The stress tensor is therefore composed by two part acting
together on the surface of the �uid volume: the �rst one is related to the pressure and
the second one takes into account the viscous stresses contribution.

Using these hypothesis, the general conservation equations for the i-th cartesian
component simplify in:

∂

∂t

∫
Ω

ρu dΩ +

∫
S

ρuiu · n dS =

∫
S

ti · n dS +

∫
Ω

ρfi dΩ , (2.4)∫
S

u · n dS = 0 , (2.5)

where ti is given by:

ti = −pei + µ(
∂ui
∂xj

+
∂uj
∂xi

)ej , (2.6)

while ei indicates the unit vector in the direction of the coordinate xi.
Applying to surface integrals the Gauss's divergence theorem and after some ma-

nipulations, it is possible to obtain the governing equations in a di�erential form. The
result are the Navier-stokes equations:

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f (2.7)

∇ · u = 0 (2.8)

Both the expressions for conservation equations are valid. The use of the integral
formulation is useful when dealing with �nite volume method which will be presented
in the section 1.2 .

2.1.1 Non-Dimensionalization of the Navier-Stokes Equations

Non-dimensionalization is a common practice in �uid dynamics and consist in scaling
the terms of the equations with suitable reference quantities in order to reduce the free
parameters in the problem studied. In addition, the non-dimensionalization procedure
helps to compare the order of magnitude of various terms and emphasizes the role that
some particular parameter plays in the physics of the problem.
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The Navier-Stokes equations can be non-dimensionalized introducing the following
reference scales:

• Length scale: Lc

• Velocity scale: U∞

• Pressure: ρU2
∞

• Time: Lc

U∞

This choice lead to the asterisk indicating non-dimensional quantities:

x∗ =
x

Lc

u∗ =
x

U∞

p∗ =
p

ρU2
∞

t∗ =
tLc
U∞

f ∗ =
Lc
U2
∞

Substituting into equations (2.7)-(2.8), the non-dimensional Navier-Stokes equa-
tions read:

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇p∗ +

1

Re
∇2u∗ + f ∗ (2.9)

∇ · u∗ = 0 (2.10)

From now on when using these equations the asterisk will be omitted for clarity.

2.2 Finite Volume Method

The �nite volume method is a numeric approach for solving compressible and incom-
pressible �uid �ows in any number of space dimension.
The starting point are the incompressible Navier-Stokes equations, proposed again be-
low in their non dimensional, di�erential and cartesian form:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xj
+

1

Re

∂

∂xj

∂ui
∂xj

+ fi (2.11)

∂ui
∂xi

= 0 (2.12)

The �rst step towards the solution of the problem is the discretization of the above
conservation equations. The �uid domain Ω is subdivided in a �nite number of small,
non overlapping, control volumes by a grid which de�nes control volume boundaries.
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Figure 2.1: Collocated and staggered variables arrangement in a two dimensional grid.
x-velocity component is evaluated at→ , y-velocity component at ↑ , whereas pressure
at •
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The computational nodes, where the unknown variables (u, p) are to be computed,
can be arranged mainly in two di�erent ways, as shown in �gure 2.1:

• Staggered

• Collocated

The staggered arrangement, allocates the velocities at the control volume boundaries
and pressure in the cell centre, while, in the collocated arrangement, all the unknowns
are computed in the control volume center. Despite of their simplicity, collocated grids
were out of favour for a long time in the past because of their likelyhood to create
pressure oscillations in the �ow �eld. However, after that solutions at this problem
were proposed, the collocated arrangement was preferred thanks to its simplicity in
non-cartesian grid generation and memory savings in three-dimensional problems.

The basic idea of the �nite volume method is to require the satisfaction of the
conservations equations (2.11) at each control volume; thus, if the mass and momen-
tum balance are satis�ed at each CV, they will be satis�ed on the whole domain.
The Navier-Stokes equations and continuity equation are integrated over each control
volume assuming the following integral form:∫

Ω

∂ui
∂t

dΩ +

∫
Ω

ui
∂uj
∂xj

dΩ = −
∫

Ω

∂p

∂xj
dΩ +

∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ +

∫
Ω

fi dΩ , (2.13)

∫
Ω

∂ui
∂xi

dΩ = 0 . (2.14)

In �gure 2.2 is shown a three-dimensional cartesian control volume together with the
notation used. The CV consist of six plane faces, denoted with lower case letters
(e,w,n,s,t,b) corresponding to their orientation with respect to the central node (P).

Figure 2.2: Control volume for a 3D cartesian grid

Before proceeding with the numerical approximation, the volume integrals concern-
ing the convecting term and di�usion term can be conveniently transformed in surface
integrals over the CV boundary using Gauss' divergence theorem and the incompress-
ibility condition: ∫

Ω

ui
∂uj
∂xj

dΩ =

∫
S

uiu · n dS , (2.15)
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and ∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ =

∫
S

1

Re
∇ui · n dS . (2.16)

Here ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

)T stands for the gradient operator.

Consider now an arbitrary �ux φ through the CV boundaries. It can be calculated by
the sum of all �uxes through the surface composing the control volume as:∫

S

φ dS =
N∑
k=1

∫
Sk

φ dS , (2.17)

here N is the number of control volume faces and φ can be both the convective or
di�usive �ux de�ned in equations (2.15)-(2.16). The above expression is still exact and
holds for any control volume of arbitrary shape.

The surface integral of φ, for an arbitrary face k is estimated with the mid-point
rule: ∫

Sk

φ dS ≈ φkSk . (2.18)

The integral is approximated by the value of φ at the surface center times the area
of the surface at which the integral is calculated. It is possible to show that this
approximation is of second order accuracy. Usually, for collocated grids, the value of
φ at the face center is not known and interpolation is needed in order to express φk
as a function of neighbouring computational nodes. Referring to the �gure 2.1(a), the
value of φ at CV-face center is obtain by linear interpolation between the two nearest
nodes, as follows (e.g e face):

Φe = λΦP + (1− λ)ΦE (2.19)

Where λ is a weight de�ned as:

λ =
xe − xE
xE − xP

(2.20)

This scheme is called central di�erence scheme (CDS) and it is of second order accuracy.
For clarity, the discretization of the convective �uxes will be shown only for the e-face
of the cartesian CV shown in �gure 2.2 and only for the velocity component u in x
direction. The �uxes at the other surfaces can be treated in the same fashion applying
the appropriate subscripts permutation.
Applying the above approximation, the discrete convective and di�usive �ux read:∫

Se

uiu · ne dSe ≈ meue = me[λuP + (1− λ)uE] , (2.21)

and ∫
Se

1

Re
∇ui · ne dSe ≈

Se
Re

uE − uP
xE − xP

. (2.22)

me = ueSe in (2.21) is the mass �ow rate through the surface e.
The spatial discretization is completed by the approximation of pressure gradient

and body forces, also called source terms. For an arbitrary source term q the following
approximation is applied: ∫

ΩP

q dΩ ≈ qP∆ΩP . (2.23)
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The integral is estimated by the product between the central value of q in the con-
trol volume center and the cell volume ∆Ω. This is again a second order accurate
approximation.

The �nite volume approximation for the pressure term becomes (e.g x direction):∫
Ω

∂p

∂xj
dΩ ≈ (pe − pw)

∆xp
(2.24)

pe and pw are the interpolated values of p at the control volume faces e and w using
the already de�ned central di�erence scheme.

The forcing term f : ∫
ΩP

f dΩ ≈ fP∆ΩP . (2.25)

After the space discretization, a time advancement strategy is to be de�ned.
The solution of the Navier-Stokes equations is complicated by the lack of an inde-
pendent equation for the pressure, whose gradient contributes to each of the three
momentum equations. One possibility is to obtain an equation for the pressure by ap-
plying the divergence operator to both sides of momentum equation. This approach is
called velocity-pressure formulation and it is widely use in solution of the Navier-Stokes
equations.

It is worth to note that problems may appear using collocated grids and pressure
oscillation may generates in the �ow �eld and leading to unphysical results. The most
common approach to avoid this problem was �rstly developed by Rhie and Chow [5]
and consists in changing the interpolation method used for calculate the mass �ow
rate m through a control volume surface. The interpolated velocity ue at a cell face is
correct with pressure terms that permit to avoid the problem.

2.3 Fractional Step Method

The fractional step method is a technique to advance in time the �uid �ow governing
equations and was �rstly developed by Chorin [6] and then improved by other authors.
The algorithm is based on decomposition of any vector �eld into a solenoidal part and
an irrotational part and, typically, consists of two stages:

• Prediction

• Correction

In the prediction step, the momentum equation is solved, but the resulting solution
does not satisfy the continuity equation. In the correction step the previous solution
is corrected and the velocity �eld is projected onto a divergence-free �eld.

Several numerical implementation are available in the literature; here we will be
present the fractional step version employed in the present study and proposed by Kim
and Moin [7]. The method is semi-implicit and not all the terms of the momentum
equation are discretized in time in the same manner. In particular the second order
Crank-Nicolson scheme is used for the wall-normal di�usive term and the second order
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Adams-Bashforth scheme for all of the other terms in momentum equation.
The two-step time advancement scheme can be written as:

û− uni
∆t

= −Nl(un,un−1)− G(φn, φn−1) +
1

Re
L(ûi,u

n), (2.26)

Lφ =
1

∆t
Dû , (2.27)

with:
D(un+1) = 0, (2.28)

where Nl is a shorthand notation that include the discretized convective term whose
treatment is of no importance and that can be evaluated using the �nite volume ap-
proach presented in section 1.1. φ is a scalar to be determined, L represents the discrete
laplacian operator, and G and D the discrete gradient and divergence operator.
Equation (2.26) is �rstly solved to �nd the non solenoidal velocity �eld û and then the
equation (2.27) is employed in order to correct the velocity �eld and satisfy the con-
tinuity equation. The projection variable φ has the role to enforce the continuity and
can be obtained applying the divergence operator to equation (2.26). This operation
leads to a Poisson equation for φ:

(
δ2

δx2
1

+
δ2

δx2
2

+
δ2

δx2
3

)φn+1(i, j, k) = Dû = Q(i, j, k) . (2.29)

This equation is expressed in its discrete form and can be solved with the classical
linear system tools but, especially in three dimensional problems, the solution could be
computationally expensive. Thanks to the use of periodic boundary condition in span-
wise direction always employed in the simulations performed in this work, a solution
method based on Fourier transform can be employed. Let N1, N2, N3 be the number
of grid points in the domain, the scalar φ can be written in Fourier series as:

φn+1(i, j, k) =

N3−1∑
m=0

φ̃(i, j,m)cos[
πm

N3

(k − 1

2
)] , (2.30)

for i = 1, 2, ..., N1, j = 1, 2, ..., N2, k = 1, 2, ..., N3. Substituting (2.30) and the corre-
sponding expansion for Q in (2.29), after some manipulation the following equation in
the wave space is obtain:

δ2φ̃

δx2
1

+
δ2φ̃

δx2
2

− kmφ̃ = Q̃(i, j,m) (2.31)

This particular algorithm leads to the solution of a series of two dimensional Helmholtz
equations that can be quickly solved instead of solving large and sparse linear system.
The solution for φ is then reconstruct applying (2.30).
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2.4 Immersed Boundary Method

The immersed boundary method (IBM) designates the class of techniques where the
calculation are performed over an eulerian grid that does not conform to the shape of
the body in the �ow, since the boundary conditions on the body surface are enforced
adding to the Navier-Stokes equations appropriate forcing terms. Because of this key
feature, the IBM are particularly suitable when dealing with moving and deforming
bodies and allows to avoid complex grid generation and moving grids.

Peskin [8] presented the �rst application of this method to simulate the blood �ow
inside a heart with �exible valves. After him, several authors [],[] have turned their
attention to immersed boundary methods and the technique has become the principal
tool to deal with �uid-stucture interaction problems.

The method employed in the present work was proposed �rstly by Pinelli et al. [9]
and it is applicable to both cartesian and curvilinear grids.

2.4.1 Mathematical formulation

As introduced in section 1.3, the time advancement of the conservation equations is
based on a fractional step method:

û− un

∆t
= −Nl(un,un−1)− G(φn, φn−1) +

1

Re
L(û,un) , (2.32)

Lφ =
1

∆t
Dû , (2.33)

un+1
i − û

∆t
= −G(φn+1) . (2.34)

The sequence above is conveniently modi�ed to imposed the desired boundary condition
on the immersed body surface. The time advancement of the momentum equation is
carried out in two stages. First, a prediction step analogous at (2.32) is performed,
without any constraint on the embedded geometry:

û = un −∆t[Nl(un,un−1)− G(φn, φn−1) +
1

Re
L(û,un)] . (2.35)

The velocity �eld obtained is then interpolated onto the embedded geometry Γ, which
is discretized through a number of Lagrangian points with coordinate Xk:

Û(Xk, t
n) = I(û) . (2.36)

The values of Û(Xk, t
n) are used to determine the distribution of singular forces along

Γ that restore the desired boundary values UΓ(Xk, t
n) on Γ:

F̂ (Xk, t
n) =

UΓ(Xk, t
n)− Û(Xk, t

n)

∆t
. (2.37)

The singular force �eld de�ned over Γ is then transformed by a convolution operator
C into a volume force �eld de�ned over the mesh points xi,j,k:

f̂(xi,j,k, t
n) = C[F̂ (Xk, t

n)] . (2.38)
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The force given by (2.38) is now used to solve again the momentum equation:

û = un −∆t[Nl(un,un−1)− G(φn, φn−1) +
1

Re
L(û,un) + f̂ ] . (2.39)

Finally the algorithm completes the time step with the solution of the Poisson equation
and the projection step.

The form of the interpolation and convolution operator is to be de�ned and it will
be show in the next section.

2.4.2 Interpolation and Convolution

The interpolation and convolution operations are a key point of the immersed boundary
method. The basic idea of the method is that, a given smooth function f(s) at a certain
point x ∈ Ω can be expressed as:

f(x) =

∫
Ω

δ(x− s)f(s) ds , (2.40)

where δ is the Dirac's delta.

Figure 2.3: Kernel function proposed by Roma et al. [10] in two dimenion. The
dilatation parameter is taken equal to 1.

Numerically, the Dirac's delta is substituted by its discrete counterpart, called
kernel function. The kernel function is characterized to be of compact support (it is
non zero in the region ΩI , called support, and zero outside it) and must respect some
fundamentals properties of the analytical delta function. Many kernel function are
available in the literature, in the present study the one proposed by Roma et al. [10]
is employed, sketched in �gure (2.3):

wd =


1
6
(5− 3|r| −

√
−3(1− |r|)2)− 1, if 0.5 < |r| < 1.5,

1
3
(1 +

√
−3r2 + 1) if |r| < 0.5,

0 otherwise,

with r = x−s
d
. The parameter d is called dilatation factor and de�nes the extension of

the support. This function mimics the action of Diracs's delta and satisfy the following
properties:
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• wd(r − d) is continuous in ∀r;

• wd(r − d) = 0, if |r| ≥ 1.5;

•
∑
l

wd(r − l) = 1, ∀l ∈ N;

•
∑
l

(r − l)wd(r − l) = 0, ∀l, r;

•
∑
l

[wd(r − l)]2 = 1
2
, ∀l, r.

This guarantees the integral conservation of the force and its �rst moment during a
spreading operation but can be met only on a uniform mesh.

Following Pinelli et al.[9] and Liu et al. [11], the kernel function is improved using
a second order polynomial correction:

w̃d =
n∑
i=0

bi(x− s)iwd(x− s) . (2.41)

This step allows to use non uniform grids and makes the boundary of the immersed
body sharper. The coe�cients bi can be found requiring to the modi�ed window
function to respect the reproducing conditions below:

m̃i =

∫
ΩI

(x− s)iw̃d(x− s), ds = δi0 . (2.42)

After some manipulations, a symmetric linear system is to be solved:


m0 m1 . . . mN

. . . . . . . . . . . .
mj mj+1 m mN+j

. . . . . . . . . . . .
mN mN+1 . . . m2N



b0
...
bj
...
bN

 =


1
...
0
...
0

 , (2.43)

where mj is given by:

mj =

∫
ΩI

(x− s)iwd(x− s) ds . (2.44)

In three dimensions the window function wd can be given as a cartesian product of
wd with itself:

wδ,η,σ = wδ(x− s)wη(y − t)wσ(z − v). (2.45)

Here δ, η, σ are the dilatation factors in the three coordinate directions. As mentioned
before, the window function is corrected assuming the following form:

w̃d(x− s, t− y, t, z − v) = [b0 + (x− s)b1 + (y − t)b2 + (z − v)b3

+ b4(x− s)(y − t) + (y − t)(z − v)b5 + (z − v)(x− s)b6

+ (x− s)2b7 + (y − t)2b8 + (z − t)2b9]wd(x− s, ty, t, z − v). (2.46)

The coe�cients bi can be found solving the linear system (2.42.
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The matrix M , called moment matrix, for three-dimensional problems reads :

M =



m0,0,0 m1,0,0 m0,1,0 m0,0,1 m1,1,0 m0,1,1 m1,0,1 m2,0,0 m0,2,0 m0,0,2

m1,0,0 m2,0,0 m1,1,0 m1,0,1 m2,1,0 m1,1,1 m2,0,1 m3,0,0 m1,2,0 m1,0,2

m0,1,0 m1,1,0 m0,2,0 m0,1,1 m1,2,0 m0,2,1 m1,1,1 m2,1,0 m0,3,0 m0,1,2

m0,0,1 m1,0,1 m0,1,1 m0,0,2 m1,1,1 m0,1,2 m1,0,2 m2,0,1 m0,2,1 m0,0,3

m1,1,0 m2,1,0 m1,2,0 m1,1,1 m2,2,0 m1,2,1 m2,1,1 m3,1,0 m1,3,0 m1,1,2

m0,1,1 m1,1,1 m0,2,1 m0,1,2 m1,2,0 m0,2,2 m1,1,2 m2,1,1 m0,3,1 m0,1,3

m1,0,1 m2,0,1 m1,1,1 m1,0,2 m2,1,1 m1,1,2 m2,0,2 m3,0,1 m1,2,1 m1,0,3

m2,0,0 m3,0,0 m2,1,0 m2,0,1 m3,1,0 m2,1,1 m3,0,1 m4,0,0 m2,2,0 m2,0,2

m0,2,0 m1,2,0 m0,3,0 m0,2,1 m1,3,0 m0,3,1 m1,2,1 m2,2,0 m0,4,0 m0,2,2

m0,0,2 m1,0,2 m0,1,2 m0,0,3 m1,1,2 m0,1,3 m1,0,3 m2,0,2 m0,2,2 m0,0,4


.

with mi,j,k =
∫

ΩI
(x− s)i(y − t)j(z − v)kw̃d(x− s, t− y, t, z − v) dsdtdv.

2.4.3 Numerical Implementation

Figure 2.4: De�nition of the support cage in two dimension. The dashed line is the
embedded curve and the solid line is the rectangular support cage ΩI . • Lagrangian
markers on the embedded curve, 2 grid points, � grid points within the support.

The �st step is to discretize the embedded geometry into a number of nodesXi, i =
1, ..., Ne. Around each node XI a cubic/rectangular cage ΩI is de�ned that contains
at least three nodes of underlying mesh in each direction (9 in 2D and 27 in 3D) and
that will be the support for the window function (2.45). The cage and the underlying
mesh are sketched in �gure 2.4. The edges of the cage measure 3δ, 3η, 3σ in x, y, z
direction respectively, where δ, η, σ are the dilatations factors.

To determinate of support centred in XI , the closest node to XI , xî,ĵ,k̂, is found
and the distance ∆x = |XI − xî,ĵ,k̂| is calculated; then a set of nodes neighbouring
xî,ĵ,k̂, NI = xî+l,ĵ+m,k̂+n, l,m, n = −1, 0, 1 is considered and the following quantities
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are evaluated:

h+
x (XI) = max(|xi,j,k − xi−1,j,k| : xi,j,k, xi−1,j,k ∈ NI),
h−x (XI) = min(|xi,j,k − xi−1,j,k| : xi,j,k, xi−1,j,k ∈ NI),
h+
y (XI) = max(|yi,j,k − yi,j−1,k| : yi,j,k, yi,j−1,k ∈ NI),
h−y (XI) = min(|yi,j,k − yi,j−1,k| : yi,j,k, yi,j−1,k ∈ NI),
h+
z (XI) = max(|zi,j,k − zi,j,k−1| : zi,j,k, zi,j,k−1 ∈ NI),
h−z (XI) = min(|zi,j,k − zi,j,k−1| : zi,j,k, zi,j,k−1 ∈ NI).

(2.47)

Based on these values, the length of the edges of the cube through the local dilatation
factor are:

δI = (
5

6
h+
x (XI) +

1

6
h−x (XI) +

1

9
∆x) , (2.48)

ηI = (
5

6
h+
y (XI) +

1

6
h−y (XI) +

1

9
∆y) , (2.49)

σI = (
5

6
h+
z (XI) +

1

6
h−z (XI) +

1

9
∆z) . (2.50)

The set of grid nodes that fall within the cage is sought:

SI =

{
xi,j,k : |xî,ĵ,k̂ − xi,j,k| <

3

2
δI , |yî,ĵ,k̂ − yi,j,k| <

3

2
ηI , |zî,ĵ,k̂ − zi,j,k| <

3

2
σI

}
(2.51)

the small fraction 1
9
∆x is added to avoid the support boundary touching some of

support nodes; In this case the window function would be zero at those node, making
the matrix M, previously de�ned, singular.

The elements of the moment matrix are numerically evaluated using, for example,
the mid-point rule:

mi,j,k =
∑

l,h,n∈SI

(xl,h,n −XI)
i(yl,h,n − YI)j(zl,h,n − ZI)kwδI ,ηI ,σI∆Vl,h,n , (2.52)

where ∆Vl,h,n is the volume of the cell centred in xl,h,n. The methodology developed
allow the de�nition of the modi�ed window function to be used in the convolution
integral in interpolation and spreading operations. In particular, given a component
of the velocity �eld ui(x, y, z) known at a grid node xl,h,n ∈ SI , the interpolated value
at node XI can be approximated by:

Ui(XI) = I(ui) =
∑

l,h,n∈SI

ui(xl,h,n)w̃δI ,ηI ,σI∆Vl,h,n . (2.53)

Once the force component Fi(XI) is found from (2.37), the distribution of singular
forces over the mesh nodes can be obtained using the following convolution operator:

fi(xl,h,n) = C(Fi) =
Ne∑
I=1

Fi(XI)w̃δI ,ηI ,σI εI∆sI , (2.54)
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where ∆sI is the length of the arch joining XI+ 1
2
to XI− 1

2
and εI is a characteristic

strip-width. To determinate the correct value of εI the value of the force in the point
XI obtained by interpolation of the nodes of the underlying grid is considered:

Fi(XI) =
∑

l,h,n∈SI

fi(xl,h,n)w̃δI ,ηI ,σI∆Vl,h,n . (2.55)

By replacing the values of fi with those that would be obtained for the discrete spread-
ing operation (2.54), the following condition is obtained:

Fi(XI) =
Ne∑
K=1

aI,KεKFi(XK) , i = 1, ..., Ne , (2.56)

where aI,K is the discrete integral product of the I th and the Kth window functions
over the support of the former one multiplied by the node spacing ∆SK between the
two nodes:

aI,K = ∆SK
∑

l,h,n∈SI

w̃δI ,ηI ,σI (xl,h,k −XI)w̃δI ,ηI ,σI (xl,h,k −XK)∆Vl,h,n . (2.57)

In matrix notation, and imposing that the local width ε is independent of the actual
force distribution Fi, the linear system (2.56) can be written as:

A~ε = ~1 . (2.58)

The conditioning of the matrix A depends on the ratio between the node spacing δsK
and the eulerial grid size. This lead to choose a number of nodes to discretize the
immersed body such that the above ratio is near one.
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2.5 Filament Governing Equations

The �lament model is crucial in order to obtain physical results from the simulations.
In the present study the �lament is assumed to be:

• �exible: the �lament can bend in the space and reacts to a �exural force gener-
ating a restoring force.

• inextensible: the �lament length remains constant during its motion even if a
system of external forces is acting on it.

• massive: the �lament has its own material density ρs di�erent, in general, from
the surrounding �uid density ρf .

A curvilinear coordinate s is used to specify the position along the �lament.
The governing equation for a �lament, written in a Lagrangian form, is:

∆ρ
∂2X

∂t2
=

∂

∂s
(T
∂X

∂s
)−KB

∂4X

∂s4
+ ∆ρg − F , (2.59)

where s is the arclength, ∆ρ denotes the density di�erence between the �lament and
the surrounding �uid, X(s, t) = (X(s, t), Y (s, t), Z(s, t))T is the �lament position , T
is the tension along the �lament, KB is the bending rigidity, g is the gravity acceler-
ation and , F (s, t) = (Fx(s, t), Fy(s, t), Fz(s, t))

T is the Lagrangian force exerted on
the �lament by surrounding �uid. In the equation (2.59) there are four unknowns (po-
sition vector X(s, t) and the tension T (s, t)) and another equation is needed to close
the problem.
The inextensibility condition is the constrain that leads to the following closure equa-
tion:

∂X

∂s
· ∂X
∂s

= 1 . (2.60)

The boundary conditions must be speci�ed at the free end (s = L) and at the �xed
end (s = 0) of the �lament. At the free end we have that:

T (L, t) = 0,
∂2X(L, t)

∂s2
= 0 . (2.61)

At the �xed end two di�erent types of boundary condition may be chosen. The �rst
one is the simply supported condition:

X(0, t) = X0,
∂2X(0, t)

∂s2
= 0 , (2.62)

and the other one is the clamped condition

X(0, t) = X0,
∂X(0, t)

∂s
= α . (2.63)

Using the clamped condition, it is possible to impose the �lament slope at the �xed
end. This condition will be employed for the calculation later.
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2.5.1 Non-imensionalization of the Equations

The equations (2.59) and (2.60) can be non-dimensionalized by introducing and apply-
ing the following characteristic scales:

• A characteristic length Lc of the problem for the position X and the arclength
s. Lc is assumed to be the �lament length if the �lament is standing alone in a
uniform �ow. Otherwise, if the �lament in placed behind a circular cylinder, the
cylinder diameter D is taken as characteristic length.

• The far-�eld velocity U∞ for the velocity.

• U∞/Lc for time.

• ∆ρU2
∞/Lc for the lagrangian force acting on the �lament.

This yields non-dimensional quantities denoted by asterisk, i.e:

X∗ = X/Lc (2.64)

t∗ = U∞t/Lc (2.65)

F ∗ = FLc/∆ρU
2
∞ (2.66)

Scaling (2.59) and (2.60) with relations (2.6)-(2.8), the non-dimensionalized equa-
tions are:

∂2X∗

∂t∗2
=

∂

∂s∗
(T ∗

∂X∗

∂s∗
)−K∗B

∂4X∗

∂s∗4
+Ri

g

|g|
− F ∗ (2.67)

From now on when using this equations the asterisks will be omitted.

2.6 Discretisation of the Filament Equation

2.6.1 Time And Space Discretisation

Because of its complexity, an analytical solution is available for the set of equations
(2.59) and (2.60) under the hypothesis thatKB = 0 and only if the �lament is subjected
to a small amplitude motion [12]. These assumptions are often too restrictive and,
in order to recreate a more physical results of the �lament motion, a computational
approach have to be used. In the next section will be presented the numerical method
employed to solve the �lament problem. 2.5.

X X XX X X X

...

...
Ti

Xi
0 1 N2 N+1 N+2

Figure 2.5: Variable arrangement for a �exible �lament. The red • is the Lagrangian
node, while the blue x is tension node.

Following Huang et al.'s formulation [12], the discretisation of the �lament governing
equations is preformed in a staggered arrangement,as shown in �gure 2.5. The �lament
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is discretized with a �nite number of Lagrangian nodesXi; tension nodes Ti are placed
between the coordinate markers. The nodes i = −1, N + 1, N + 2 are ghost nodes and
they are used only to impose the boundary conditions.

The time and space discretized set of equations to be solved reads:

Xn+1−2Xn+Xn−1

∆t2
= Ds(T

n+1DsX
n+1)−KBDssssX

n+1 +Ri g
|g| + F n , (2.68)

DsX
n+1 ·DsX

n+1 = 1 , (2.69)

where Ds and Dssss are the discrete counterpart of �rst and fourth order derivatives
respect to the parametric coordinate s. The tension and the bending term in (2.68)
are discretized as follow for nodes i ∈ [2, N − 2]:

Ds(TDsX) = Ti(Xi+1−Xi)−Ti−1(Xi−Xi−1)
∆s2

KBDssssX = KB
Xi−2−4Xi−1+6Xi−4Xi+1+Xi+2

∆s4

DsX ·DsX = (Xi+1−Xi)·(Xi+1−Xi)
∆s2

(2.70)

Substituting relations (2.70) and algebraically rearranging the terms, it is possible to
�nd a suitable form for equation (2.68):

− αXn+1
i−2 + (T n+1

j + 4α)Xn+1
i−1 − [β + T n+1

i+1 + T n+1
i + 6α]Xn+1

i +

(T n+1
i+1 + 4α)Xn+1

i+1 − αX
n+1
i+2 +X∗ = 0 , (2.71)

with:

• α = KB

∆s2
,

• β = ∆s2

∆t
,

• X∗ = 2Xn −Xn−1.

The equations for the nodes i = 1, N−1, N can be found applying the correct boundary
conditions at the �xed and at the free end of the �lament.

2.7 Boundary Conditions

2.7.1 Fixed end

At the �xed end s = 0, the �lament equation can be conveniently rearranged.
Assuming DssssX = 0, multiplying by DsX both sides of the equation and remember-
ing boundary condition (2.62), equation (2.59) reduces to:

∂T

∂s
+ T

∂2X

∂s2
· ∂X
∂s

+ (Ri
g

g
+ F ) · ∂X

∂s
= 0 , (2.72)

or, in its discrete counterpart:

DsT
n+1 + T n+1DsDsX

n+1 ·DsX
n+1 + (Ri

g

g
+ F n) ·DsX

n+1 = 0 . (2.73)
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Equation (2.72) can be discretized in the same manner employed for equation (2.59)
and it reduces to:

T n+1
1 − T n+1

0

∆s
+ (T1 + T0)(

Xn+1
−1 − 2Xn+1

0 +Xn+1
1

∆s2
) ·

(Xn+1
1 −Xn+1

−1 )

2∆s
+

+ (F n +Ri
g

g
) ·

(Xn+1
1 −Xn+1

−1 )

2∆s
. (2.74)

The value of position at the ghost point X−1 can be easily found from the boundary
conditions as follow:

Xn+1
−1 − 2Xn+1

0 +Xn+1
1 = 0 , for the simply supported �lament.

Xn+1
1 −Xn+1

−1 = 2∆sα , for the clamped �lament.

Xn+1
s=0 = Xn+1

0 .

(2.75)

Substituting the value for Xn+1
−1 in equation (2.74), the �nal form of the �lament

equation at the �xed end for the simply supported boundary condition can be written
as:

T n+1
1 − T n+1

0 + (F n +Ri
g

g
) · (Xn+1

1 −X0) = 0 , (2.76)

and for the clamped boundary conditions:

∆s(T n+1
1 − T n+1

0 ) + (T1 + T0)(
Xn+1

1 −Xn+1
0 − 2∆sα

∆s2
) ·α

+ (F n +Ri
g

g
) ·α∆s . (2.77)

2.7.2 Free end

At the free end (s = L), boundary conditions (2.61) translates in:
Xn+1

N−1 − 2Xn+1
N +Xn+1

N+1 = 0

Xn+1
N − 2Xn+1

N+1 +Xn+1
N+2 = 0⇒XN+2 − 3XN + 2XN−1 = 0

T n+1
N+1 = −T n+1

N .

(2.78)

Substituting the values for Xn+1
N+1 and Xn+1

N+2 in equation (2.68), the equations for
node i = N − 1 result

− αXn+1
N−3 + (T n+1

i + 4α)XN−2 − [β + T n+1
i+1 + T n+1

i + 5α]Xn+1
N−1+

(T n+1
i+1 + 2α)Xn+1

N +X∗ = 0 , (2.79)

while for node i = N it is:

−αXn+1
N−2 + (2T n+1

i + 2α)Xn+1
N−1 − [β + α + 2T n+1

i ]Xn+1
N +X∗ = 0 . (2.80)

It is worth to note that the free end of the �lament does not correspond to a
tension point. Thus, in order to obtain discrete boundary condition for T (L, t), a
linear distribution of tension is hypothesized between N and N + 1.
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2.8 Numerical Resolution of Filament's Equation

The relations (2.70), (2.72),(2.79) and (2.80) represent a set of 4N + 1 non-linear
equations in the unknowns T0, Ti, X

n+1
i . The system can be conveniently put in the

following form: 

F1(Xn+1
1 , T n+1

1 , T n+1
0 ) = 0

F2(Xn+1
2 , T n+1

1 ) = 0
...

Fi(X
n+1
i , T n+1

i ) = 0
...

F4N+1(Xn+1
N , T n+1

N ) = 0

(2.81)

where Fi represent the i-th equation for the i-th lagrangian node.
Because of non linearity, the iterative Newton-Raphson method has been employed in
order to solve the system (2.81). It consists in solving, at each time step, the following
linearized system k times until convergence:J(u(k))δu(k) = −F k(u(k))

δu(k+1) = u(k+1) − u(k)
(2.82)

where:

• u is the vector containing the unknowns:

u = (T0, T1, x1, y1, z1, T2, x2, y2, z2, . . . , TN , xN , yN , zN)T

• J is the Jacobian matrix containing the derivatives of equations (2.81) with
respect to the unknowns ui:

J =



∂F
(k)
1

∂u1

∂Fk
1

∂u2
. . .

∂F
(k)
1

∂uN

∂F
(k)
2

∂u1

∂F
(k)
2

∂u2
. . .

∂F
(k)
2

∂uN
...

...
. . .

...

∂F
(k)
N

∂u1

∂F
(k)
N

∂u2
. . .

∂F
(k)
N

∂uN


• F k is the vector containing the residual of equations (2.81) at the k-th iteration.

The superscript •(n+1) is omitted for clarity. Convergence is considered to be reached
if the maximum residual of equations (2.81) is less than 10−10. The �lament model is
implemented insied a Navier-Stoked solver and it is used to update the position of the
object during the simulations.



Chapter 3

Validation

This chapter is dedicated to the validation of the code and comparisons with previous
works will be presented. In particular the following test cases will be proposed, with
the aim of testing the code in all of its part and in di�erent situations:

• Pure gravity driven �lament: the �lament is dropped from an initial angle and it
falls under the action of gravity force. This numerical experiment is important in
order to test the accuracy of the routine dedicated to the solution of the �lament
equation, that follows the procedure developed in section 2.6.

• Single �lament in a uniform �ow: a single �lament stands in a channel and it
is subjected to a uniform �ow that forces the �lament to �ap. The simulation
reproduces the experiments conduced by Zhang et al. [1] and the results are
compared with the numerical calculations performed by Huang et al. [12] and
Favier et al. [13].

• Single �lament behind a two dimensional circular cylinder: a single �lament is
free to �ap behind a two dimensional circular cylinder, forced by the unsteady
wake generated by the blu� body. The results are compared with Bagheri et al.
[3].

The governing di�erential equations are discretized on a collocated grid using a �nite-
volume code. The method of Rhie and Chow is used to avoid pressure oscillations. Both
convective and di�usive �uxes are approximated by second-order central di�erences. A
second-order-accurate semi-implicit fractional-step procedure is used for the temporal
discretization. The Crank-Nicolson scheme is used for the wall-normal di�usive terms,
and the Adam-Brashforth scheme for all the others terms. The code has been equipped
with the immersed boundary method explained in section 1.5 and the �lament position
is computed using the model in section 1.8.
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3.1 Validation Of The Filament Model

Figure 3.1: Initial position of the �lament falling under gravity.

The �lament numerical model presented in section 2.6 is validated against Huang et
al. [12]. The �lament is subjected to only gravity force, acting in x-direction as shown
in �gure 3.1, and it is free to fall and to oscillate. The test cases involves the use of
the following setup:

Pure gravity driven �lament

Length L 1.0

Bending Sti�ness Kb 0.01

Richardson number Ri 10

Initial angle θ 18

N of Lagrangian points N 64

Table 3.1: parameters used in the test case 1 for the �lament

Parameters test 2

Length L 1.0

Bending Sti�ness Kb 0.0

Richardson number Ri 10

Initial angle θ 2

N of Lagrangian points N 64

Table 3.2: parameters used in the test case 2 for the �lament.

In �gure 3.2(a)-3.3(b) is sketched the path of the free extremity of the �lament
(point P in �gure 3.1) normalized with the �lament length, whereas in �gure 3.2(b)-
3.3(b) is drawn the �lament motion between 0 and 0.8 time unit.
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(a) (b)

Figure 3.2: Pure gravity driven �lament for the case with sti�er �lament. (a) time
evolution of the free extremity and validation against Huang et al. (b) Superposition
of the �lament positions between 0 and 0.8 time unit.

(a) (b)

Figure 3.3: Pure gravity driven �lament with zero bending coe�cients. (a) time evo-
lution of the free extremity end and validation against Huang et al. (b) Superposition
of the �lament positions between 0 and 0.8 time unit.

The comparisons shown a very good agreement respect to the literature. The
�laments bends under the action of the gravity force and start pendulum-like motion
whose amplitude is in�uenced by the bending coe�cients and the initial angle, as
expected.
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3.2 Single Filament in a Uniform Flow

In the present section the numerical experiment of a single �lament �apping in an
incoming uniform �ow will be reproduced. The results will be compared with the
calculation performed by Huang et al. [?] and Favier et al. [13].

A sketch of the setup is shown in �gure 3.4.

L
U

Lx

Ly

Figure 3.4: Sketch of the setup for a single �lament immersed in a uniform �ow.

The �lament in standing alone in a channel and it is free to �ap under the force
exerted by the �uid over the body. The simulation setup parameters are summarized
in table 3.3.

Filament in a uniform �ow

Length L 1.0

�lament density ρs 1.5

Bending Sti�ness Kb 10−3

Reynolds number UL
ν

200

Richardson number Ri 0.5

Initial angle θ 18

N of Lagrangian points N 64

Table 3.3: Parameter used in the present simulation.

Free slip boundary condition at the top and bottom of the domain are chosen and
the simply supported condition at the �xed end of the �lament is imposed according to
the reference cases. The Navier-Stokes equation are solved using a fractional step �nite
volume method together with the immersed boundary method presented in section 1.5,
used to simulate the presence of the �lament.

The grid used is a simple cartesian grid with uniform spacing in x and y direction.
The computational domain has the following characteristics, presented in table 3.4:
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Domain setup

x-length Lx 4

y-length Ly 4

Grid size 256X128

Table 3.4: Computational domain setup.

The �lament is forced by the �uid and it is induced to �ap up and down reaching a
maximum excursion. The �ap amplitude is limited by the combined action of the �uid
itself and of the bending and tension forces that operate to straighten the �lament: the
result is a self-sustained, symmetric �apping cycle. In �gure 3.5 is shown the �lament
during its motion and the computed �ow �eld.

(a) (b)

(c) (d)

Figure 3.5: Snapshots of u-velocity �eld during the motion of the �lament.
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The free end of the �lament, shown in �gure 3.6 (a), is compared with the results
obtained by Huang et al. [12] and by Favier et al. [13]. In �gure 3.6(b) is also shown a
qualitative comparison of the �apping cycle with the experiments conduced by Zhang
et al. [1].

(a)

(b) (c)

Figure 3.6: Flapping �lament in a uniform �ow. (a) time history of the free end of
the �lament.(b) �apping cycle computed in the present simulation. (c) Flapping cycle
from the experiments by Zhang et al.

The simulation shows a good agreement with the validation cases: the �lament
exhibits the characteristic �gure-eight orbit and the free extremity time evolution has
a good match with previous works.
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3.3 Hinged Filament behind a 2D Circular Cylinder

This section is dedicated to the last validation cases proposed. A �exible �lament is
hinged behind a two dimensional circular cylinder and it is free to �ap in the wake gen-
erated by the blu� body. The initial position of the �lament is symmetric with respect
to the wall normal direction and the object is subject to an unperturbed incoming �ow.
A sketch of the setup is shown in �gure 3.7:

L
U

Lx

Ly

Figure 3.7: Sketch of the setup for the �lament hinged behind a cylinder .

The boundary conditions at top and bottom of the computational domain are free-
slip condition and the �lament is maintained in position using the simply supported
condition at the �xed end. The object is posed in a box with a uniform spacing of 60
per diameter and two di�erent bending coe�cients are tested. The parameters used in
the simulation are summarised in table 3.5:

Hinged Filament behind a 2D Circular Cylinder

Length in x-direction Lx 21

Length in y-direction Ly 10

Filament Length L 1.5

Cylinder diameter D 1.0

�lament density ρs 0.1

Bending Sti�ness Kb 5× 10−3, 0.1

Reynolds number UD
ν

100

Richardson number Ri 0.0

Initial angle θ 0◦

N◦ of Lagrangian points N 84

Table 3.5: Parameters used in the present simulations.

The simulations were run until a periodic �apping is observed and the time evolution
of the free extremity of the �lament is monitored. As �gured out by Bagheri et al. ,
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a clear symmetry breaking is observed. After a transient, in both cases, the �lament
starts to �ap periodically in the upper part of the cylinder. The results are shown in
�gure 3.8:

(a)

(b)

(c)

Figure 3.8: Filament �apping behind a circular cylinder. (a) Free extremity time
evolution. (b) Field snapshot of u velocity component for the softer �lament (c) Field
snapshot of u velocity component for the sti�er �lament.

Little di�erences were found comparing the results with Bagheri et al. In partic-
ular a di�erence in �apping frequency of 4% and 7% for the softer and sti�er case,
respectively, however. the physics of the problem is respected and symmetry breaking
is clear for both cases and the above di�erences in frequency may be caused by the
di�erent immersed boundary method used for two cases compared.



Chapter 4

Results

In this chapter the results of the three dimensional simulations will be shown. A
circular cylinder stands in an unperturbed uniform �ow at Re = 200 and a series of
�exible, inextensible �laments are clamped in the rear of the cylinder and are free to
move in any space direction. The clamped condition is conveniently used instead of the
simply supported condition because it is more realistic and closer to a possible future
implementation of an anchoring system of the �laments in engineering applications
such as in experiments.

The Reynolds number chosen is just above the three dimensionality threshold
guaranteeing a three dimensional �ow and, at the same time, allowing to visualize
the e�ect of the �laments on the three dimensional bifurcation that may be a�ected
by the presence of the �exible appendages.

The �laments are packed along the spanwise direction in two di�erent ways:

• Sparse packing.

• Dense packing.

The sparse packing provides 8 equispaced �laments, whereas the dense packing pro-
vides 32 equispaced �laments. In the second case the space between the �laments is
considerably reduced and this may have not negligible consequences on the dynamics
of the wires.

For each of these arrangement of the �laments, the following parameters will be
test:

• The length of the �laments L.

• The bending sti�ness Kb.

In particular, as shown later, the bending sti�ness is chosen according to the following
criteria: in one case Kb is taken in order to accord the natural frequency of �laments,
fn, with frequency fs of the vortex shedding, periodically generated by the detachment
of the boundary layer from the upper and lower part of the cylinder. In the other case
Kb is chosen in order to obtain a fn double compared to fs.

Two decreasing length of the �laments respect to the cylinder diameter will be
tested. The length is reduced in the second case to try to recreate a possible symmetry-
breaking scenarios that occurs in two dimension when the �lament is short.
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The density of each �lament ρs is taken equal to 1 for convenience in all the simu-
lations performed.

A summary of the simulations are performed is o�ered in table 4.1.

Summary of the simulations

N◦ of �laments Re ρs L/D

Simulation 1 8 200 1.0 1.0

Simulation 2 32 200 1.0 1.0

Simulation 3 8 200 1.0 1.0

Simulation 4 32 200 1.0 1.0

Simulation 5 8 200 1.0 0.5

Simulation 6 8 200 1.0 0.5

Simulation 7 32 200 1.0 0.5

Table 4.1: List of the simulations performed.

4.1 Computational Domain

The choice of the computational domain is one of the most important things in CFD.
On one hand, the domain must be su�ciently large to avoid the �ow con�nement
and the manifestation of unwanted boundary e�ects that can signi�cantly a�ect the
solution and lead to incorrect results. On the other hand the computational grid must
be �ne enough to capture the �ow structure and give a solution as accurate as possible,
but always keeping in mind that a �ne which is too �ne grid has a huge impact on the
computational time and cost.

The grid used for the present simulations is shown in �gure 4.1. The domain size
has been chosen referring to the literature, in particular with [14] and it is reported
in table 4.2. The choice of a spanwise length of Lz

D
= 8 is induced by the fact that

the three dimensional instabilities described in chapter 1 have a wavelength of λz
D
≈ 4

for the Mode A and λz
D
≈ 0.9 for mode B. Thus, Lz

D
= 8 is taken a priori in order to

resolve well both these instabilities and simulate with only one grid all the cases to be
study.

The grid is composed by an inner box with a uniform spacing in all the three
cartesian directions containing the circular cylinder and the �laments. This choice
has been done to guarantee the maximum accuracy in resolving the boundary layer
detaching for the cylinder boundary and the motion of the �laments induced by vortex
shedding. Out of the uniform spacing zone, the grid is stretched in the x and y
directions following an exponential rule in order to save computational nodes where
not necessary and to decrease the computational time. The grid spacing in the spanwise
direction is taken constant and �ne enough to resolve well the three dimensional �ow
behind the cylinder according to [14]. A the full grid setup can be found in table 4.2.
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Figure 4.1: Grid used for the simulations. The grid is represented coarser to allow a
better visualization.

Domain setup

Domain size Lx × Ly × Lz 21.5× 10× 8

N◦ of grid points Nx ×Ny ×Nz 482× 275× 98

stretching factor in x-direction rx 1.005, 1.01

stretching factor in y-direction ry 1.01

Uniform box zone

Domain size lx × ly × lz 4v × 2× 8

N◦ of grid points per diameter Ne 40

Table 4.2: Domain and grid setup for the simulations performed. The stretching factor
rx = 1.01 is used in the �nal part of the domain where less accuracy is needed.

The boundary conditions applied at the top and bottom of the domain are the free-
slip conditions, while, at the boundary sides along the span, the periodic boundary
conditions are used in order to take advantage of a FFT algorithm for a fast solution
of the Poisson equation.
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4.2 Choice of the Bending Sti�ness

Figure 4.2: Free vibrations of undampened cantilever beam.

As introduced in the previous section, the bending sti�ness is taken in order to accord
the natural frequency of the �laments fn with the vortex shedding frequency fs or to
render it double respect to fs. The starting point to �nd the correct value of Kb is the
free-�lament equation, because only the natural frequency is needed:

∂2Y

∂t2
= −Kb

∂4Y

∂s4
. (4.1)

Equation (4.1) is the well know dimensionless Euler-Bernoulli equation for an elastic
beam. Only the y-component of the equation is considered because the resonating con-
dition is sought only for the streawise disturbance associated with the vortex shedding
and not with the spanwise instability that is less powerful.

The normal mode solution to the equation (4.1) becomes:

Y (s, t) = F (s)G(t) , (4.2)

Substituting in (4.1) the equation become:

F (s)
d2G(t)

dt2
= Kb

d4F (s)

ds4
G(t) . (4.3)

From the above equation, after some manipulation, the equation for the displacement
in wall-normal direction reads:

F (s) = C1cos(βns) + C2sin(βns) + C3cosh(βns) + C4sinh(βns) , (4.4)

where βn = ( ω
2

Kb
)
1
4 .

The boundary conditions for a �lament clamped at the one end, as shown in �gure
4.2, are:

Boundary conditions

s = 0 s = L

Y = 0 d2Y
ds2

= 0

dY
ds

= 0 d3Y
ds3

= 0
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Applying the boundary conditions, the following equation is to be solved:

cos(βL)cosh(βL) = −1 . (4.5)

The roots of the above equation are:

Roots of the equation 4.5

n βnL

1 1.8751

2 4.69409

3 7.85475

4 10.99554

5 14.13176

The value of βn are needed in the equation for the time, that reads:

G(t) = b1sin(β2
n

√
Kbt+ b2cos(β

2
n

√
Kbt) , (4.6)

The coe�cients b1 and b2 are to be determined using initial conditions and their ex-
pression in of no importance here.

The natural frequency is:

fn =
β2
n

2πL2

√
Kb . (4.7)

The �rst value of natural frequency is therefore: f1 = 3.516
L2

√
Kb . The value of bend-

ing sti�ness to use in the simulations can be obtain simply rearranging the previous
expression for f1 as:

Kb =
(2kπfsL

2)2

3.5162
, k = 1, 2 , (4.8)

where fs is the shedding frequency measured from the �uctuation in time of the lift
coe�cient and k is a factor used to module the the shedding frequency fs in order to
obtain the wanted value of fn.

4.3 Simulation Cases: L/D = 1

The simulation cases with L/D = 1 are the �rst tackled and, as described before,
four di�erent con�gurations will be tested. For each con�guration the aerodynamic
performance will be measured and the dynamics of the �lament in the space will be
shown. A summary of these simulations is o�ered in table 4.3:
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Summary of the simulations

N◦ of �laments Re ρs fn/fs Kb

Simulation 1 8 200 1.0 1.0 0.13

Simulation 2 32 200 1.0 2.0 0.52

Simulation 3 8 200 1.0 1.0 0.13

Simulation 4 32 200 1.0 2.0 0.52

Table 4.3: summary of simulation performed for the case L/D = 1.

4.3.1 Dynamics of the Filaments behind the Cylinder

Starting from the sparse �laments packing, this case o�er an interesting behaviour
not simply predictable. The �laments are aligned along the spanwise direction with a
distance between each appendage of ∆z

D
= 1 and with an initial angle of 0◦ relatively

to the �ow direction, from left to right. The �laments are free to �ap under the action
of the forces that the �uid exerted over the immersed bodies and, because of the three
dimensional nature of the �ow, a motion in spanwise direction is expected. As in two
dimensional simulations, the free extremity of the appendages is taken as a reference
of the motion of the �laments in space. The results for the resonating case, with
Kb = 0.13, are plotted in �gure 4.4.
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Figure 4.3: Positions by the middle �lament during its motion. The number of �lament
is 8 and Kb = 0.13.

The �laments move synchronised in x-y plane increasing the amplitude of oscilla-
tions, until reaching a self sustained �apping state. The spanwise motion is character-
ized by a transient that leads to large oscillations and, as shown in �gure 4.5,
each two �laments move in phase, giving rise to an interesting dynamics.

In �gure 4.3 is shown the trajectory followed by free extremity of the middle �lament
(�lament n◦4); this trajectory draws in the space an eight-like orbit, similar to the two
dimensional case.
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(a)

(b)

Figure 4.4: Free extremity time evolution for Kb = 0.13 and 8 �laments. (a) y-
component of displacement. (b) z-component of displacement.
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(c)

Figure 4.5: Detailed view of the self sustained oscillations. (a) y-component of dis-
placement., (b) z-component of displacement, (c) Superposition of the z-componet of
displacement for all the �laments.
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(a)

(b) (c)

Figure 4.6: Sketch of the positions assumed by the middle the �lament for Kb = 0.13;
case with 8 �laments. (a) Isometric view. (b) x-y plane view. (c) z-y plane view.

The sti�er case, with Kb = 0.52, as predictable, is characterized by smaller oscilla-
tion in each direction because of the larger value of the bending sti�ness, that also avoid
the matching between the natural frequency of the �lament and the �ow. However the
dynamic of the motion is similar, presenting a transient with increasing oscillations in
each space direction. The path of the free end and is proposed in �gure 4.9.
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(a)

(b)

Figure 4.7: Free extremity time evolution for Kb = 0.52; 8 �laments. (a) y-component
of displacement, (b) z-component of displacement.
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The sparse packing allows the motion of the �laments in spanwise direction, but
this degree of freedom is lost if the number of �laments is increased to 32. The spacing
between the appendages is now ∆z = 0.25 and this restriction inhibits the motion of
the �laments, forcing them to �ap only in x-y plane, as show in �gure 4.8. Moreover,
as shown in �gure 4.9, in comparison with the sparse arrangement, closely spaced
�laments �ap at smaller amplitude.

(a)
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4.7

4.8

4.9

5

5.1

5.2

x/D

y/
D

(b)

Figure 4.8: Sketch of the positions assumed the middle �lament for Kb = 0.13; case
with 32�laments. (a) x-y plane view, (b) positions reached by the end point of the
central �lament.
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4.3.2 E�ect On The Cylinder Wake

(a)

(b)

(c)

Figure 4.10: Wake structure behind the cylinder at Re = 200. Iso-surface of positive
(green) and negative (yellow) ωx vorticity; in red and violet the iso-surface of negative
and positive ωz vorticity are shown, (a) Cylinder wake without �laments, (b) �rst
bifurcation of the cylinder wake with 8 �laments and Kb = 0.13, (c) Final structure of
the cylinder wake with 8 �laments and Kb = 0.13.

The presence of the �exible �laments behind the cylinder has important e�ects on the
wake structure. In chapter 1, the main bifurcation and the structure of the cylinder
wake was introduced and it was underlined how the wavelength of the three dimensional
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(a)

(b)

Figure 4.9: Free extremity time evolution for the 32 �laments case, (a) y-component
of displacement, Kb = 0.13, (b)y-component of displacement, Kb = 0.52.
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instabilities changed in relation to the Reynolds number. The simulations in the present
work are performed beyond the three dimensionality threshold but, however, before the
second bifurcation for the base cylinder case, which occurs at Re = 260.

The presence of the �laments acts on the �ow and contributes to introducing insta-
bilities that change the shape of wake. In �gure 4.10 the wake structure for the cylinder
with 8 �laments and Kb = 0.13 is shown. The presence of the appendages cause two
consecutive transition in the wake: the �rst one occurs when the spanwise motion is
not fully stabilized. The �laments anticipate the second bifurcation leading to a mode
B shape with the formation of streamwise vortex pairs with a spanwise wavelength
λz = 8 (see �gure 4.10(b)).

The second one takes place when the �laments reach their limit cycle. The motion
in each direction of the �laments, moving two by two in phase, introduces new wave
length in the instabilities leading to a new wake structure characterized by a spanwise
wavelength λz of almost 6 (see �gure 4.10(c)).

For Kb = 0.52 a similar scenario occurs: the second three dimensional bifurcation
is anticipated and a mode B shedding takes place instead of a mode A. However the
small order of the oscillation doens not cause a second transition and the spanwise
wave length of the streamwise vortex pairs remains λz = 8, as shown if �gure 4.11.

(a)

Figure 4.11: Wake structure behind the cylinder at Re = 200 with 8 �laments and
Kb = 0.52. Iso-surface of positive (green) and negative (yellow) ωx vorticity. in dark
green and light blue the iso-surface of negative and positive ωz vorticity are represented
.

Increasing the number of the �laments to 32, the e�ect on the wake structure become
signi�cant: the shedding modes A and B are inhibited. The streamwise vortex pairs
that characterised the shedding mode A and B vanish and the ωx vorticity component
is localized only in the neighbourhood of the cylinder trailing edge, in correspondence
to the dense packing of the �laments. The value of the bending sti�ness does not play
any role and the wake is a�ected by the �laments in a similar manner. The wake
structure for both the cases with 32 �laments is shown in �gure 4.12:
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(a)

(b)

Figure 4.12: Wake structure behind the cylinder at Re = 200 with 32 �lament. (a)
Kb = 0.13 , (b)Kb = 0.52. Iso-surface of positive (green) and negative (yellow) ωx vor-
ticity; in dark green and light blue the iso-surface of negative and positive ωz vorticity
are represented.

4.3.3 E�ect on the Aerodynamic Coe�cients

The aerodynamics coe�cients are the main index of the aerodynamic performance
of a body immersed in a �ow. They are de�ned as the force in a speci�c direction,
normalized with the dynamic pressure, as follow:

CD =
2Fx

ρ∞U2
∞S

, CL =
2Fy

ρ∞U2
∞S

, (4.9)

where S is the reference area of the object, taken as S = Lz ×D.
CD is called drag coe�cient and measure the drag su�er by the immersed body,

whereas the lift coe�cient CL measure how much the �uid pushes the body in the
direction normal to drag direction. The computed coe�cients will be compared with
the cylinder without �laments.

The forces exerted by the �uid over the entire body (cylinder+�laments) are com-
puted performing a global momentum balance over the computational domain.
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The e�ect of the �laments is surprising positive and the results are shown in �gure
4.13. A comparison between all the cases with L/D = 1 is o�ered in �gure 4.14.

(a) (b)

(c) (d)

Figure 4.13: Aerodynamic e�ect of the �laments. (a) CD comparison between the
cases with 8 �laments and the cylinder without �laments; (b) CL comparison between
the cases with 8 �laments and the cylinder without �laments; (c) CD comparison be-
tween the cases with 32 �laments and the cylinder without �laments;(d) CL comparison
between the cases with 8 �laments and the cylinder without �laments.
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(a)

(b)

Figure 4.14: Comparison between all the cases with L/D = 1; (a) drag coe�cients CD;
(b) lift coe�cients CL.
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The mean value of the coe�cients and the root mean square values of the oscillation
around the mean are collected and summarized in table 4.4:

Aerodynamic coe�cients

Case Kb CD C ′Drms CD C ′Lrms

No �laments − 1.448 0.0 0.180 0.290

8 �laments 0.13 1.343 0.0 0.133 0.228

8 �laments 0.52 1.315 0.0 0.147 0.216

32 �laments32 0.13 1.296 0.0 0.128 0.173

32 �laments32 0.52 1.268 0.0 0.120 0.157

Table 4.4: Summary of the aerodynamics coe�cients for the cases with L/D = 1.

The bene�ts of the �laments is clear: the drag is decrease up to 12.5% and the rms

lift coe�cient oscillations are reduced up to 30%.

4.4 Simulation cases: L/D = 0.5

The simulation cases with L/D = 0.5 are summarized in table 4.5:

Summary of the simulations

N◦ of �laments Re ρs fn/fs Kb

Simulation 1 8 200 1.0 1.0 0.008

Simulation 2 32 200 1.0 1.0 0.008

Table 4.5: Summary of the simulations performed for the case L/D = 0.5.

4.4.1 Dynamics of the Filaments behind the Cylinder

The shorter �laments are tested in order to look at a possible symmetry-breaking
scenario that, in two dimensions, occurs only if the appendage is su�ciently short
with respect to the recirculation bubble generated behind the cylinder. However, in
three dimensions this phenomenon is not granted and these simulations have the aim
of testing the above described possibility. Also in this case the number of �laments
tested is either 8 or 32.
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Figure 4.15: Time evolution of the free extremity, L/D = 0.5; (a) 8 �laments,
y-component; (b) 32 �laments, y-component; (c) 8 �laments, superposition of z-
component of the eight �laments.

The time evolution of the free extremity, shown in �gure 4.15, helps to describe the
dynamics of the shorter �laments. The appendages move in phase in x-y, in analogy
with the cases with L/D = 1 . The motion in the spanwise direction, that develops for
the sparse arrangement, is in phase each two �laments and it is reported in �gure 4.15
(c).

Increasing the number of �laments to 32, similar observation to cases with the
longer �laments can be done. There is an inhibition of the spanwise motion of the
�laments and the motion in x-y becomes regular and periodic in time after a short
transient, as shown in �gure 4.15 (b).
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4.4.2 E�ect on the Aerodynamic Coe�cients

Previously it was found that the �laments have a positive impact on the aerodynamics
of the entire body; also with the shorter �laments a decrease in drag and in lift force
oscillations can be observed. The results are o�ered and compared together in �gure
4.18 while the mean value of the coe�cients and the root mean square of the oscillation
with respect to the mean is proposed below in table 4.6:

Aerodynamic coe�cients

Case Kb CD C ′Drms CL C ′Lrms

No �laments − 1.448 0.0 0.180 0.290

8 �laments 0.008 1.385 0.0 0.158 0.208

32 �laments 0.008 1.350 0.0 0.142 0.142

Table 4.6: Summary of the aerodynamics coe�cients for the cases with L/D = 0.5.

Because there is not a symmetry breaking, the CL coe�cient is symmetric with
respect to the zero value, but, however, there is a good amelioration of the aerodynamic
performance even if, �xing the number of �laments, slightly better results are obtain
with L/D = 1.

4.4.3 Other simulations

Other simulations with values of Kb not resonating with the �ow and L/D = 0.5 were
tested; the cases are summarized in table 4.7:

Summary of the simulations

N◦ of �laments Re ρs Kb

Simulation 1 8 200 1.0 0.0005

Simulation 2 8 200 1.0 0.002

Simulation 3 32 200 1.0 0.002

Table 4.7: Summary of the simulations performed for the case L/D = 0.5.

The softer values chosen for the bending sti�ness give rise to a some di�erences
respect with the previous cases. The �laments move again in phase in x-y but their
motion is composed by more frequencies and the �laments move alternatively in the
lower and in the upper side of the cylinder. The motion in the spanwise direction,
that develops for the sparse arrangement, is not in phase for all the �laments and it is
reported in �gure 4.17.

Increasing the number of �laments to 32, there is a regularization of the oscillations
that becomes periodic in time after a small transient, as shown in �gure 4.16 (c).
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(a)

(b)

Figure 4.16: Time evolution of the free extremity, L/D = 0.5; (a) 8 �laments, y-
component; (b) 8 �laments, z-component; (c) 32 �laments, y-component.



4.4 Simulation cases: L/D = 0.5 54

600 605 610 615 620 625 630 635 640 645
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

tU
inf

/D

z en
d/D

 

 

Filament 1
Filament 2
Filament 3
Filament 4
Filament 5
Filament 6
Filament 7
Filament 8

(a)

600 605 610 615 620 625 630 635 640 645 650
−0.09

−0.06

−0.03

0

0.03

0.06

0.09

tU
inf

/D

Z
en

d/D

 

 

Filament 1
Filament 2
Filament 3
Filament 4
Filament 5
Filament 6
Filament 7
Filament 8

(b)

Figure 4.17: Time evolution of the z-component of the free extremity of the eight
�laments; (a)Kb = 0.0005, (b) Kb = 0.002.

The computed aerodynamic coe�cients are o�ered and compared together in �gure
4.18 while the mean value of the coe�cients and the root mean square of the oscillation
with respect to the mean is proposed below in table 4.8:

Aerodynamic coe�cients

Case Kb CD CL C ′Drms C ′Lrms

No �laments − 1.448 0.0 0.180 0.290

8�laments 0.005 1.387 0.0 0.155 0.200

8�laments 0.002 1.388 0.0 0.155 0.201

32�laments 0.002 1.326 0.0 0.122 0.173

Table 4.8: Summary of the aerodynamics coe�cients for the non resonant cases.
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(a)

(b)

Figure 4.18: Comparison between all the cases with L/D = 0.5.(a) Drag coe�cients
CD.(b) Lift coe�cients CL.



Chapter 5

Conclusions

The �ow past a three-dimensional circular cylinder, equipped with a series of �exible,
inextensible �laments clamped at the cylinder trailing edged and regularly spaced along
the span has been simulated.

The �laments have been tested in two main con�guration:

• Sparse packing: 8 �laments, over the length of the cylinder.

• Dense packing: 32 �laments, over the length of the cylinder.

The bending sti�ness of the �laments has been chosen in order to make the natural
frequency of the appendages close to the frequency of the vortex shedding, generated
by the detachment of the boundary layer from the wall of the cylinder. For each of
the above arrangements two di�erent lengths of the �laments have been tested and the
dynamics of the �laments has been monitored in time.

After analysing the results, the following conclusions can be made:

• The sparse packing allows the motion of the �laments in the spanwise direction
for both "short" and "long" �laments.

• The dense packing totally inhibits the generation of the spanwise motion of the
�laments. The appendages move in phase only in x-y plane and �ap at lower
amplitude than in the sparse packing case. A full comparison of the motion of
the �laments is o�ered in �gure 5.1.

• The �laments act on the �ow interacting with the wake and leading to changes in
the wake shape as compared to the bare cylinder case. On one hand, the sparse
packing of �laments anticipates the transition to the second three-dimensional
bifurcation (Mode B instability), or it introduces disturbances that cause a reor-
ganization of the mode A instability into a con�guration with a lower wavelength.
In particular, this second scenario can be found if the spanwise motion of the �la-
ment becomes relevant. On the other hands, the dense packing of �laments causes
a radical change in the wake, suppressing totally the �rst bifurcation mode. The
length of the �laments does not play a signi�cant role in this transition process.
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(a) (b)

(c) (d)

(e)

Figure 5.1: Comparison between displacement of the middle �laments. (a) y-
component of the displacement. Case with L/D = 1; (b) z-component of the dis-
placement. Case with L/D = 1; (c)-(d) y-component of the displacement. Case with
L/D = 0.5; (d) z-component of the displacement. Case with L/D = 0.5.
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• The aerodynamic performances are improved by the presence of the �laments. A
decrease in drag up to 12.5% and a decrease in amplitude of lift oscillations up
to 30% has been observed.

Summary of the computed aerodynamics coe�cients

Case L/D Kb CD CL C ′Drms C ′Lrms

No �laments 0.5 − 1.448 0.0 0.180 0.290

8 �laments 0.5 0.008 1.385 0.0 0.158 0.208

8 �laments 0.5 0.0005 1.387 0.0 0.155 0.200

8 �laments 0.5 0.002 1.388 0.0 0.155 0.201

32 �laments 0.5 0.008 1.350 0.0 0.142 0.142

32 �laments 0.5 0.002 1.326 0.0 0.122 0.173

8 �laments 1.0 0.13 1.343 0.0 0.133 0.228

8 �laments 1.0 0.52 1.315 0.0 0.147 0.216

32 �laments 1.0 0.13 1.296 0.0 0.128 0.173

32 �laments 1.0 0.52 1.268 0.0 0.120 0.157

Table 5.1: Summary of the computed aerodynamics coe�cients.

Slightly better results are obtained with the longer �laments. The symmetry
breaking bifurcation has not been found yet, but more simulations have to be
performed in order to �gure out this possible scenario. In fact, it is very likely
that a symmetry breaking bifurcation - if it exists - would be postponed in the
3D case (as compared to the 2D case)since the �laments have a third direction
(z) where to escape.
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