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Sommario

Numerosi esseri viventi traggono vantaggio da appendici flessibili che, muovendosi at-
tivamente o passivamente nel fluido circostante, generano movimento o portano ad un
miglioramento delle prestazioni aerodinamiche. La natura ¢é ricca di esempi: alcuni
batteri usano i loro flagelli per muoversi nel fluido in quiete, mentre gli uccelli usano
le loro piume per controllare il flusso durante il volo, aumentando cosi le prestazioni
aerodinamiche e abbassando I’energia necessaria al volo.

Una comprensione pit approfondita delle interazioni fluido-struttura puo portare
ad applicazioni ingegneristiche che sono basate sull’imitazione della natura e ottenere
cosi un miglioramento delle tecnologie odierne.

Il presente lavoro di tesi é mirato alla simulazione delle complesse interazioni fluido-
struttura a cui sono sottoposti una serie di filamenti flessibili ed inestensibili, in-
cernierati al bordo di uscita di un cilindro tridimensionale. Il cilindro é il prototipo
pitu semplice di corpo tozzo, notoriamente affetto da scarse prestazioni aerodinamiche
a causa del massiccio distacco dello strato limite ed alla creazione di un larga zona
di ricircolo; inspirandosi alla natura, la presenza dei filamenti potrebbe portare ad un
sensibile miglioramento della aerodinamica del corpo.

La ricerca é effettuata tramite simulazioni numeriche. Le equazioni di governo
del moto del fluido sono discretizzate su una griglia collocata e risolte mediante un
codice ai volumi finiti, mentre i filamenti sono modellizzati mediante equazioni proprie
della meccanica delle strutture. L’accoppiamento tra fluido e struttura viene effettuato
utilizzando il metodo dei contorni immersi, che evita I'uso di griglie mobili o deformabili
conformanti ai corpi flessibili. Il codice é stato validato utilizzando numerosi casi
disponibili in letteratura, trovando un ottimo riscontro con gli altri autori.

Le simulazioni sono tutte effettuate al di 1a della soglia di tridimensionalita del
flusso in modo che i filamenti siano indotti a muoversi in ogni direzione da un flusso
completamente tridimensionale.

Sono state testate differenti configurazioni dei filamenti e diversi parametri; le
prestazioni aerodinamiche del corpo sono state confrontate con il cilindro privo di
appendici, riscontrando, in tutti i casi simulati, un netto miglioramento dei coefficienti
aerodinamici.

L’effetto dei filamenti sulla struttura della scia é stato preso in considerazione,
osservando, a seconda delle configurazioni, un anticipo della seconda biforcazione tridi-
mensionale o la soppressione della prima instabilita tridimensionale.

il



Abstract

Numerous living beings take advantage of flexible appendages that, moving actively or
passively in the surrounding fluid, generate locomotion or lead to an amelioration of the
aerodynamic performance. Nature is rich of examples: some bacteria use their flagella
to move through a quiescent fluid, while the birds use their feathers that, interacting
with the flow, increase their aerodynamic performance, decreasing the energy needed
to fly.

Improved understating of the fluid-structure interaction can lead to engineering
applications that exploit the design principle of Nature and to an improvement of the
human technologies.

The present work is aimed to simulate the complex fluid-structure interaction to
which flexible, inextensible filaments, clamped in rear of a three-dimensional circular
cylinder, are subjected.

The cylinder is the simplest prototype of bluff body, notoriously affected by low
aerodynamic performance because of the strong separation of the boundary layer and
the generations of a large recirculation zone; inspiring to Nature, the filaments may
lead to good improvement of the aerodynamic of the body.

The investigation is carried out through numerical simulations. The governing
differential equations of the flow are discretized on a non-staggered grid and solved
using a finite volume code, while the filaments are modelled using the theory of the
structure mechanics. The coupling between fluid and structure is performed using
the immersed boundary method, that avoid the use of moving or deforming grids
conforming to the flexible bodies.

The code has been validated using numerous test cases, obtaining very good agree-
ment with the other authors.

The simulations are performed beyond the three-dimensionality threshold such that
the filaments are induced to move in each space direction by a fully developed three-
dimensional flow. Different configurations of the the filaments and parameters have
been tested; the aerodynamic performance of the body has been compared with the
bare cylinder, noting an improvement of the aerodynamic coefficients for all the cases
tested.

The effect of the filaments on the wake structure has been visualized and, in function
of the case tested, an anticipation of the second three-dimensional bifurcation or an
inhibition of the first shedding mode has been observed.

il
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Chapter 1

Introduction

Fluid-structure interactions are commonplace in nature. Swimming fish and several
micro-organism base their locomotion on complex interaction between their deformable
bodies and the surrounding fluid. Other living being, despite not having active mech-
anism of locomotion, take advantage of appendages moving passively in the flow to
increase their aerodynamic performance and to decrease the energy needed to move.
This interesting feature can be found in the birds’ feathers that, acting on the flow,
produce an amelioration of aerodynamic performance.

Figure 1.1: Filament immersed in a soap film: (a) stretched state. (b) flapping state.
(c) flapping filament at several time points along its flapping cycle.(d) The same filament
at higher flow speed, showing aperiodic flapping.

Biomimetics is the branch of science that studies the living beings in nature as
source of inspiration for the improvement of human technologies.
Mechanisms based on the interaction between flexible bodies and fluid flow are increas-
ing their importance in engineering applications and several researchers focused their
attention on these problems. On one hand, the knowledge of the physical mechanisms
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involved in these interactions can lead to a better understanding of some basics bi-
ological processes and inspire new technologies. On the other hand, modelling these
phenomena is a challenge because of their complex geometry and freely moving bound-
aries which give rise to complicated fluid dynamics.

The first experiments on a flexible filaments moving in a uniform flow, shown in
figure 1.1, was performed by Zhang et al.[1]. They visualized the motion of the filaments
in a two dimensional soap film and figured out the complex dynamic that can arise
from the interaction between the fluid and the immersed bodies. They showed two
distinct stable states for a single filament (see figure 1.1): the stretched state and a
self sustained flapping state. Inspired by the experiments, Peskin et al. [2] performed
numerical simulations on the filament-fluid interaction problem and found that the
mass of the filament plays an important role in the dynamics of flapping.

Bagheri et al. [3] studied the dynamics of a flexible filament free to flap in the wake
of a two dimensional circular cylinder. They found a symmetry breaking with the
filament oscillating in the upper or in the lower part of the cylinder. This behaviour is
associated to a net generation of lift and torque; a decrease in drag was also observed.

As outlined in the above examples, the presence of flexible bodies can lead to
interesting dynamics and produce aerodynamic advantages. In the present work, the
circular cylinder will be taken as a prototype of a bluff body and numerical simulations
will be performed with the aim of discovering the effects of flexible filaments clamped
in the rear of the cylinder. In the next section a short review of vortex dynamic in the
cylinder wake and flow regimes will be proposed.

1.1 Review of Vortex Dynamics in a Cylinder Wake

The vortex dynamics in a cylinder wake presents numerous bifurcations and the struc-
ture of the wake is significantly different depending on the flow regime considered. The
Reynolds number, Re = %, is the main bifurcation parameter and in correspondence
of certain value of Re the following regimes can arise:
. Re < 49: at Re below around 49, as shown in figure 1.2, the wake comprises a
steady recirculation region of two symmetrically placed vortices on each side of
the wake whose length grows as the Reynolds number increases.

e
i)

Figure 1.2: Steady wake behind a circular cylinder at low Re.

« 49 < Re < 190: The recirculation region develops instabilities whose strength
and amplification grow with Re. There is the manifestation of a repeating pattern
of swirling vortices (Von Karman street) caused by the unsteady separation of
the flow around the cylinder. The wake oscillations are purely periodic over the
this range and cause the oscillation of the forces over the cylinder.
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\

Figure 1.3: Unsteady wake behind a circular cylinder after the first bifurcation.

« 190 < Re < 260: This regime is associated with two discontinuous changes in
the wake formation as Re is increased. The flow becomes three dimensional and
two different shedding modes occurs, namely mode A and mode B. The mode A
instability , as shown in figure 1.4, is characterized by the formation of primary
vortex loop that becomes stretched into streamwise vortex pairs of wavelength
about % ~ 4 in the spanwise direction.

Figure 1.4: Wake structure for a three dimensional circular cylinder at Re = 200: iso-
surface of positive(green) and negative (yellow) streamwise vorticity; in dark green and
light blue iso-surface of negative and positive spanwise vorticity are shown.
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The mode B changes the shape of the wake and presents a finer scale streamwise
vortex pairs of spanwise wavelength of about % ~ 1 (see figure 1.5).

Figure 1.5: Wake structure for a three dimensional circular cylinder at Re = 270: iso-
surface of positive(green) and negative (yellow) streamwise vorticity; in dark green and
light blue iso-surface of negative and positive spanwise vorticity are shown.

After Re = 260 there is an increase in disorder and the flow begins to become
turbulent. Sever bifurcation and changes in the wake of the cylider occur and some of
these are not fully understood. Their description is beyond the scope of this work and
more information can be found in |4].
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1.2 Case of Study

Figure 1.6: Cylinder equipped with flexible filaments.

The present work has the aim to simulate the dynamic of flexible, inextensible filaments
clamped in the rear of a three dimensional circular cylinder and analyse the effect that
their presence have in the flow; a sketch of the filaments arrangement is proposed in
figure 1.6. The simulations performed are DNS (direct numerical simulation) and the
governing equations of the flow are solved directly without any approximation of smaller
scales. All the numerical calculations are perform beyond the three dimensionality
threshold (Re = 190) such that the filaments are exposed to a three dimensional flow
field and they are free to move in any space direction.

Different number of the filaments and their length will be tested and the aero-
dynamic performance of the body will be measured and compared with the cylinder
without the appendages.



Chapter 2

Numerical Method

2.1 The Navier-Stokes Equations

The Navier-Stokes equations, named in honor of Claude-Louis Navier (1785-1836) and
George Gabriel Stokes (1819-1903), describes the motion of fluids from a macroscopic
point of view, assuming that the fluid can be treated as a continuum (it is infinitely
divisible and it is not composed of discrete elements as atoms or molecules).

The equations, in their most complete form, are nonlinear, coupled partial differen-
tial equations and their analytical resolution is often complex or not possible. Only in
few particular cases, involving simple geometries and special boundary conditions, an
analytical solution can be found. These flows are important to study the fundamentals
of fluid mechanics but their practical relevance in engineering and scientific applica-
tions is limited. Thus, a numerical approach is needed in order to solve the equations
out of those particular situations.

The equations arise from the conservation of momentum and mass for an arbitrary
portion of fluid €2 of surface S:

2/pudQ—l—/puu-ndS = /pT-ndS+/,0fdQ : (2.1)
ot Jo s s Q

2/de—l—/pu-ndS =0 , (2.2)
ot Jo s

where u is the velocity vector, f represents forces per unit of volume, such as gravity,
that may be applied at the fluid, T is the stress tensor acting on the surface of the
fluid volume, m is the unit vector normal to the surface S and ¢ is the time. The stress
tensor T has its own structure in function of the type of fluid considered.

A simplification of resulting flow governing equations is obtained introducing the
following assumption:

« Incompressibility
« Isothermal flow

« Newtonian fluid
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The first two assumptions lead to consider as constant the fluid density p and the
dynamic viscosity u, that, in general, may vary with space, time and temperature.
These simplifications rule out the solvability of high speed flows (Ma > 0.3), where
the effect of compressibility cannot be neglected, but simplify the solution of a large
part of problems in which these proprieties can be considered constant. The third
assumption specify the type of fluid and defines the structure of the stress tensor T
that, in cartesian coordinate, becomes:
8ui 8Uj

_|_

Tij = —pdy; + M(axj 8%) ;

(2.3)

here z; stands for the i-th component of the coordinate vector, p is the pressure and
0;; is the Kronecker delta. The stress tensor is therefore composed by two part acting
together on the surface of the fluid volume: the first one is related to the pressure and
the second one takes into account the viscous stresses contribution.

Using these hypothesis, the general conservation equations for the i-th cartesian
component simplify in:

9 pudQ—i—/puiu-ndS = /ti-ndS—i—/pfidQ , (2.4)
ot Jo s s Q

/u-ndS =0 , (2.5)
s

where t; is given by:
aui an
+-)e
8xj (%l
while e; indicates the unit vector in the direction of the coordinate x;.
Applying to surface integrals the Gauss’s divergence theorem and after some ma-
nipulations, it is possible to obtain the governing equations in a differential form. The
result are the Navier-stokes equations:

B
a—?—i—u-Vu = —Vp+oViu+tf (2.7)

V-u = 0 (2.8)

Both the expressions for conservation equations are valid. The use of the integral
formulation is useful when dealing with finite volume method which will be presented
in the section 1.2 .

2.1.1 Non-Dimensionalization of the Navier-Stokes Equations

Non-dimensionalization is a common practice in fluid dynamics and consist in scaling
the terms of the equations with suitable reference quantities in order to reduce the free
parameters in the problem studied. In addition, the non-dimensionalization procedure
helps to compare the order of magnitude of various terms and emphasizes the role that
some particular parameter plays in the physics of the problem.
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The Navier-Stokes equations can be non-dimensionalized introducing the following
reference scales:

. Length scale: L.
. Velocity scale: Uy,

o T2
« Pressure: pUz,

Le

. Time: oo

This choice lead to the asterisk indicating non-dimensional quantities:

. T
r=—
L.

% X
u = —
Uso

P =—
pUZ,

. tL,
s

* LC

Substituting into equations (2.7)-(2.8), the non-dimensional Navier-Stokes equa-
tions read:

ou* . . ., 1
B +u"-Vu* = —Vp +Re

V-u* = 0 (2.10)

Viu* + f* (2.9)

From now on when using these equations the asterisk will be omitted for clarity.

2.2  Finite Volume Method

The finite volume method is a numeric approach for solving compressible and incom-
pressible fluid flows in any number of space dimension.

The starting point are the incompressible Navier-Stokes equations, proposed again be-
low in their non dimensional, differential and cartesian form:

il — = 4 2.11

ot L Oz, Oz, N Re 0x; Oz, +J (2.11)
(9ui

= 2.12

5 = O (2.12)

The first step towards the solution of the problem is the discretization of the above
conservation equations. The fluid domain €2 is subdivided in a finite number of small,
non overlapping, control volumes by a grid which defines control volume boundaries.
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IEEE
sl e
HEE

Xi-1 X Xi+1
(a) Collocated.

Vi ‘ ‘

! ! !
Xi-1 X
(b) Staggered.

Figure 2.1: Collocated and staggered variables arrangement in a two dimensional grid.
x-velocity component is evaluated at — , y-velocity component at 1, whereas pressure
at e
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The computational nodes, where the unknown variables (u, p) are to be computed,
can be arranged mainly in two different ways, as shown in figure 2.1:

. Staggered

. Collocated

The staggered arrangement, allocates the velocities at the control volume boundaries
and pressure in the cell centre, while, in the collocated arrangement, all the unknowns
are computed in the control volume center. Despite of their simplicity, collocated grids
were out of favour for a long time in the past because of their likelyhood to create
pressure oscillations in the flow field. However, after that solutions at this problem
were proposed, the collocated arrangement was preferred thanks to its simplicity in
non-cartesian grid generation and memory savings in three-dimensional problems.

The basic idea of the finite volume method is to require the satisfaction of the
conservations equations (2.11) at each control volume; thus, if the mass and momen-
tum balance are satisfied at each CV, they will be satisfied on the whole domain.
The Navier-Stokes equations and continuity equation are integrated over each control
volume assuming the following integral form:

Ou; ou; op 1 0 Ou;
L dQ —2dQ=— | =—dQ ———d)  dS) 2.1
il /Q Ui /Q o, S /Q Re o, 0w, 0t /Q fia -, (2.13)
ou;
LA = . 2.14
| aa=o (2.4

In figure 2.2 is shown a three-dimensional cartesian control volume together with the
notation used. The CV consist of six plane faces, denoted with lower case letters
(e,w,n,s,t,b) corresponding to their orientation with respect to the central node (P).

Figure 2.2: Control volume for a 3D cartesian grid

Before proceeding with the numerical approximation, the volume integrals concern-
ing the convecting term and diffusion term can be conveniently transformed in surface
integrals over the CV boundary using Gauss’ divergence theorem and the incompress-

ibility condition:
/ ul% dQ) = / wu-ndS (2.15)
Q a.fl:] S
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and 190 1
u.

———dO= | —

o Re 0x; Ox; s Re

Vu;-ndS (2.16)

Here V = (%, a%, %)T stands for the gradient operator.

Consider now an arbitrary flux ¢ through the CV boundaries. It can be calculated by
the sum of all fluxes through the surface composing the control volume as:

N
/¢ds => | ¢ds | (2.17)
o k=1 Sk

here N is the number of control volume faces and ¢ can be both the convective or
diffusive flux defined in equations (2.15)-(2.16). The above expression is still exact and
holds for any control volume of arbitrary shape.

The surface integral of ¢, for an arbitrary face k is estimated with the mid-point
rule:

ddS ~ ¢S, . (2.18)
Sk

The integral is approximated by the value of ¢ at the surface center times the area
of the surface at which the integral is calculated. It is possible to show that this
approximation is of second order accuracy. Usually, for collocated grids, the value of
¢ at the face center is not known and interpolation is needed in order to express ¢y
as a function of neighbouring computational nodes. Referring to the figure 2.1(a), the
value of ¢ at CV-face center is obtain by linear interpolation between the two nearest
nodes, as follows (e.g e face):

O, =\Pp + (1 —N\)Ppg (2.19)
Where ) is a weight defined as:
A= Le T TE (2.20)
ITgp —Xp

This scheme is called central difference scheme (CDS) and it is of second order accuracy.
For clarity, the discretization of the convective fluxes will be shown only for the e-face
of the cartesian CV shown in figure 2.2 and only for the velocity component u in z
direction. The fluxes at the other surfaces can be treated in the same fashion applying
the appropriate subscripts permutation.

Applying the above approximation, the discrete convective and diffusive flux read:

/ U - N dSe = mee = me[Aup + (1 — Nug] (2.21)
Se

and
Se Up —up

/ L Sunds, ~ (2.22)
S,

. Re Rexp —xp
Mme = UeS, in (2.21) is the mass flow rate through the surface e.
The spatial discretization is completed by the approximation of pressure gradient
and body forces, also called source terms. For an arbitrary source term q the following
approximation is applied:

Qp
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The integral is estimated by the product between the central value of g in the con-
trol volume center and the cell volume A{Q. This is again a second order accurate
approximation.

The finite volume approximation for the pressure term becomes (e.g x direction):

dp (Pe — Pw)
/ S d02 Mp (2.24)

pe and p,, are the interpolated values of p at the control volume faces e and w using
the already defined central difference scheme.

The forcing term f:

fdQ =~ fpAQp . (2.25)

Qp

After the space discretization, a time advancement strategy is to be defined.
The solution of the Navier-Stokes equations is complicated by the lack of an inde-
pendent equation for the pressure, whose gradient contributes to each of the three
momentum equations. One possibility is to obtain an equation for the pressure by ap-
plying the divergence operator to both sides of momentum equation. This approach is
called velocity-pressure formulation and it is widely use in solution of the Navier-Stokes
equations.

It is worth to note that problems may appear using collocated grids and pressure
oscillation may generates in the flow field and leading to unphysical results. The most
common approach to avoid this problem was firstly developed by Rhie and Chow [5]
and consists in changing the interpolation method used for calculate the mass flow
rate m through a control volume surface. The interpolated velocity u. at a cell face is
correct with pressure terms that permit to avoid the problem.

2.3 Fractional Step Method

The fractional step method is a technique to advance in time the fluid flow governing
equations and was firstly developed by Chorin [6] and then improved by other authors.
The algorithm is based on decomposition of any vector field into a solenoidal part and
an irrotational part and, typically, consists of two stages:

. Prediction
. Correction

In the prediction step, the momentum equation is solved, but the resulting solution
does not satisfy the continuity equation. In the correction step the previous solution
is corrected and the velocity field is projected onto a divergence-free field.

Several numerical implementation are available in the literature; here we will be
present the fractional step version employed in the present study and proposed by Kim
and Moin [7]. The method is semi-implicit and not all the terms of the momentum
equation are discretized in time in the same manner. In particular the second order
Crank-Nicolson scheme is used for the wall-normal diffusive term and the second order
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Adams-Bashforth scheme for all of the other terms in momentum equation.
The two-step time advancement scheme can be written as:

u— ’U,? _ n ,n—1\ n n—1 i o~ n
xS N(u™, u" ) = G(o", " ") + Re£<u“u ), (2.26)
Lo = iD (2.27)
= A7 u .
with:
D(u"™) =0, (2.28)

where AN is a shorthand notation that include the discretized convective term whose
treatment is of no importance and that can be evaluated using the finite volume ap-
proach presented in section 1.1. ¢ is a scalar to be determined, £ represents the discrete
laplacian operator, and G and D the discrete gradient and divergence operator.
Equation (2.26) is firstly solved to find the non solenoidal velocity field @ and then the
equation (2.27) is employed in order to correct the velocity field and satisfy the con-
tinuity equation. The projection variable ¢ has the role to enforce the continuity and
can be obtained applying the divergence operator to equation (2.26). This operation
leads to a Poisson equation for ¢:

52 52 52 1

—+ =5+ )" (i,5,k) = Da = Q(i,j,k) . 2.29
This equation is expressed in its discrete form and can be solved with the classical
linear system tools but, especially in three dimensional problems, the solution could be
computationally expensive. Thanks to the use of periodic boundary condition in span-
wise direction always employed in the simulations performed in this work, a solution
method based on Fourier transform can be employed. Let Ny, No, N3 be the number
of grid points in the domain, the scalar ¢ can be written in Fourier series as:

N3—1

" (i, 5, k Z o(i, 7, m cos[ (k: — —)] : (2.30)

Ns 2
fori=1,2,..,Ny,7=1,2,..., Ny, k =1,2,..., N3. Substituting (2.30) and the corre-
sponding expansion for @ in (2.29), after some manipulation the following equation in
the wave space is obtain:

R 5%

This particular algorithm leads to the solution of a series of two dimensional Helmholtz
equations that can be quickly solved instead of solving large and sparse linear system.
The solution for ¢ is then reconstruct applying (2.30).
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2.4 Immersed Boundary Method

The immersed boundary method (IBM) designates the class of techniques where the
calculation are performed over an eulerian grid that does not conform to the shape of
the body in the flow, since the boundary conditions on the body surface are enforced
adding to the Navier-Stokes equations appropriate forcing terms. Because of this key
feature, the IBM are particularly suitable when dealing with moving and deforming
bodies and allows to avoid complex grid generation and moving grids.

Peskin [8] presented the first application of this method to simulate the blood flow
inside a heart with flexible valves. After him, several authors [|,]] have turned their
attention to immersed boundary methods and the technique has become the principal
tool to deal with fluid-stucture interaction problems.

The method employed in the present work was proposed firstly by Pinelli et al. |9]
and it is applicable to both cartesian and curvilinear grids.

2.4.1 Mathematical formulation

As introduced in section 1.3, the time advancement of the conservation equations is
based on a fractional step method:

S o 1

TAr = M) =G0 L) (2:32)
.

Lo= ADi (2.33)

'Uf;H_l —u . n+1

A I (234

The sequence above is conveniently modified to imposed the desired boundary condition
on the immersed body surface. The time advancement of the momentum equation is
carried out in two stages. First, a prediction step analogous at (2.32) is performed,
without any constraint on the embedded geometry:

@ =u" — AtV (u", u" ) — G(¢", ") + éﬁ('&, u")| . (2.35)

The velocity field obtained is then interpolated onto the embedded geometry I', which
is discretized through a number of Lagrangian points with coordinate Xj:

U(Xp t") =I(a) . (2.36)
The values of U (X, t") are used to determine the distribution of singular forces along
T that restore the desired boundary values U (X}, ") on T
. U (X, t") — U(X, 1"
F(X, t") = (Xi, ") — U(Xi, ") (2.37)
At
The singular force field defined over I' is then transformed by a convolution operator
C into a volume force field defined over the mesh points x; ; i

f(@ijpt") = C[F (X, t")] . (2.38)
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The force given by (2.38) is now used to solve again the momentum equation:

1

oLt u") + fl . (2.39)

U =u" — AN (", u" ) = G(¢", ") +

Finally the algorithm completes the time step with the solution of the Poisson equation
and the projection step.

The form of the interpolation and convolution operator is to be defined and it will
be show in the next section.

2.4.2 Interpolation and Convolution

The interpolation and convolution operations are a key point of the immersed boundary
method. The basic idea of the method is that, a given smooth function f(s) at a certain
point x € Q) can be expressed as:

) = /Q 5z — ) f(s)ds (2.40)

where ¢ is the Dirac’s delta.

Figure 2.3: Kernel function proposed by Roma et al. [10] in two dimenion. The
dilatation parameter is taken equal to 1.

Numerically, the Dirac’s delta is substituted by its discrete counterpart, called
kernel function. The kernel function is characterized to be of compact support (it is
non zero in the region €2, called support, and zero outside it) and must respect some
fundamentals properties of the analytical delta function. Many kernel function are
available in the literature, in the present study the one proposed by Roma et al. [10]
is employed, sketched in figure (2.3):

(5—3|r| — /=31 —|r[)2) =1, if0.5<|r] <15,

1
6

wg =4 3(14+/=3r2+1) if |r| < 0.5,
0

otherwise,

with r = #=2. The parameter d is called dilatation factor and defines the extension of
the support. This function mimics the action of Diracs’s delta and satisfy the following
properties:
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« wq(r — d) is continuous in Vr;
e wy(r—d) =0, if |r| > 1.5
e Swg(r—1)=1,Vl e N;

]

e > (r=Dwg(r—1)=0,Vi,r
I

o Ylwa(r =1 =

l

, Vi

N =

This guarantees the integral conservation of the force and its first moment during a
spreading operation but can be met only on a uniform mesh.

Following Pinelli et al.|9] and Liu et al. [11], the kernel function is improved using
a second order polynomial correction:

Wy = Z bi(x — s)'wg(z —s) . (2.41)

This step allows to use non uniform grids and makes the boundary of the immersed
body sharper. The coefficients b; can be found requiring to the modified window
function to respect the reproducing conditions below:

m; = / (x — 8)bg(x — ), ds =6y . (2.42)
Qr

After some manipulations, a symmetric linear system is to be solved:

mo My my b'o 1
m; My M Myt b | =10 : (2.43)
my  MN+1 manN by 0
where m; is given by:
mj = /Q (z — 8)'wa(z — 8)ds . (2.44)
I

In three dimensions the window function w, can be given as a cartesian product of
wy with itself:
Wi .o = Ws(T — 8)wy(y — t)ws(z — v). (2.45)

Here 6,7, 0 are the dilatation factors in the three coordinate directions. As mentioned
before, the window function is corrected assuming the following form:
Wy(x —s,t —y,t,z—v) = [bo+ (. — 8)b1 + (y — 1)b2 + (2 — v)b3
+by(z—s)y—t)+ (y—t)(z—0v)bs + (z — v)(x — s)bg
+ (2 — 8)%br + (y — t)%bs + (2 — t)?bglwy(z — s, ty,t, 2 —v). (2.46)

The coefficients b; can be found solving the linear system (2.42.
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The matrix M, called moment matrix, for three-dimensional problems reads :

moo00 MM100 ™Mo,1,0 MMo,0,1 ™M11,0 Mo1,1 Mi101 ™M200 "M020 70,02
mi0,0 M200 M11,0 M101 M21,0 Mi11 M201 MM300 120 7™MM1,0,2
mo10 M™Mi110 Mo20 MMo,a1,1 Mig20 Me21 Mi11 M210 MMo30 70,1,2
moo01 Ma10,1 Mo, Mo,o2 M™Mi111 Mo12 Mio2 M201 MMo21 770,0,3
M= mii1,0 M210 Mi20 Mi11,1 M220 Mi21 M21,1 M310 Mi130 7112
mo11 Mi111 Moe21 Mo12 Mi20 Me22 Mi12 M211 MMop3,1 10,1,3
mi0,1 M201 Mi111 Mip02 MM211 Mi12 M20,2 MM301 Mi121 11,0,3
Mm2o0 MM300 ™M21,0 M201 M™M310 M21,1 M301 M400 "M220 7MM20,2
Mmoz20 Mi20 Mo3,0 MMo,21 M™Mi130 Mo3,1 Mi21 M220 Mo40 70,22
Mmoo2 Mi1o02 Mo12 Mo,o03 M™Mi12 Me1,3 Mi103 M202 MMo22 10,04

with mjx = [o (2 —8)'(y — 1) (z — v)fdg(x — 5,t =y, t, 2 — v) dsdtdv.

2.4.3 Numerical Implementation

Figure 2.4: Definition of the support cage in two dimension. The dashed line is the
embedded curve and the solid line is the rectangular support cage €);. e Lagrangian
markers on the embedded curve, O grid points, B grid points within the support.

The fist step is to discretize the embedded geometry into a number of nodes X;,i =
1,..., N.. Around each node X; a cubic/rectangular cage €0 is defined that contains
at least three nodes of underlying mesh in each direction (9 in 2D and 27 in 3D) and
that will be the support for the window function (2.45). The cage and the underlying
mesh are sketched in figure 2.4. The edges of the cage measure 36, 3n, 30 in z,y, 2
direction respectively, where 9,7, o are the dilatations factors.

To determinate of support centred in X7y, the closest node to X7y, x5, 1S found
and the distance Ax = | X; — x; 5| is calculated; then a set of nodes neighbouring
Z; 5 7 N; = T 5 e e = —1,0,1 s considered and the following quantities
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are evaluated:

-~

R (X)) = max(|@ijp, — i1kl - @ijg, Tic1 ik € Ni),

h (X1) = min(|@ijk — Tic1jk] : Tijg Tie15k € Ni),

hi(Xr) = max(|yijx — FYigiks Vi1 € NT), (2.47)
hy (X1) = min(|yijre — Yig—1kl * Yigks Yij—1.6 € Ni),

hi(X1) = max(|zijre — Zije—1] © Zijk Zigr—1 € N1),
LR (X)) = min(|zij, — Zijr—1] © Zijk, Zije—1 € NT).

Based on these values, the length of the edges of the cube through the local dilatation
factor are:

5 = (Zh;(XI)Jréhx(XI)jLéAx) , (2.48)
= Gy (X0) + 2hy (X1) + 5A0) (2.49)
71 = CHE(X) + Sh (X)) + 5A) (2.50)

The set of grid nodes that fall within the cage is sought:

3
< 01 Wi — gl <

3 3
577], |Zi7§-7]% — Zi,j,k| < 50’[} (251)

S[ = {m%] k |I’L ] ]{2 xl7]7k
the small fraction %Aaf: is added to avoid the support boundary touching some of
support nodes; In this case the window function would be zero at those node, making
the matrix M, previously defined, singular.

The elements of the moment matrix are numerically evaluated using, for example,
the mid-point rule:

Mk = Z @thn — X1) Wihn — Y1V (Zinn — Z0) W5, 1.0, AV (2.52)
l,h,neST

where AV}, is the volume of the cell centred in x;j,. The methodology developed
allow the definition of the modified window function to be used in the convolution
integral in interpolation and spreading operations. In particular, given a component
of the velocity field u;(z,y, z) known at a grid node x;;,, € Sy, the interpolated value
at node X; can be approximated by:

Ui(X1) =Z(u) = > wil@inn) s mo AVinn (2.53)
I,h,neST

Once the force component F;(X7) is found from (2.37), the distribution of singular
forces over the mesh nodes can be obtained using the following convolution operator:

Ne
fi@inn) = C(F) =Y Fi(X )5,y or€1s1 (2.54)

I=1
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where Asy is the length of the arch joining XI+1 to X;_ 1 and €; is a characteristic
strip-width. To determinate the correct value of €; the valie of the force in the point
X obtained by interpolation of the nodes of the underlying grid is considered:

F(X[ Z f’b :BlhTL)de nr, O'IA‘/lhn . (255)

l,h,n€ST

By replacing the values of f; with those that would be obtained for the discrete spread-
ing operation (2.54), the following condition is obtained:

Fi(X;) =) arxexFi(Xg) ,i=1,..,N, | (2.56)

where ar i is the discrete integral product of the I'" and the K** window functions
over the support of the former one multiplied by the node spacing ASk between the
two nodes:

arx = ASk Z Ws; my.or (Trngk — X1)Wspnp.00(Tinpe — XK)AVinm (2.57)
l,h,neST

In matrix notation, and imposing that the local width € is independent of the actual
force distribution Fj, the linear system (2.56) can be written as:

Ae=1 . (2.58)

The conditioning of the matrix A depends on the ratio between the node spacing dsx
and the eulerial grid size. This lead to choose a number of nodes to discretize the
immersed body such that the above ratio is near one.
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2.5 Filament Governing Equations

The filament model is crucial in order to obtain physical results from the simulations.
In the present study the filament is assumed to be:

. flexible: the filament can bend in the space and reacts to a flexural force gener-
ating a restoring force.

. inextensible: the filament length remains constant during its motion even if a
system of external forces is acting on it.

. massive: the filament has its own material density p, different, in general, from
the surrounding fluid density py.

A curvilinear coordinate s is used to specify the position along the filament.
The governing equation for a filament, written in a Lagrangian form, is:

02X 0 00X 0*X
ror =25\ as) ~ Kpga

+Apg—F | (2.59)

where s is the arclength, Ap denotes the density difference between the filament and
the surrounding fluid, X (s,t) = (X (s,t),Y (s,t), Z(s,t))T is the filament position , T
is the tension along the filament, Kp is the bending rigidity, g is the gravity acceler-
ation and , F(s,t) = (Fua(s,t), Fy(s,t), F.(s,t))T is the Lagrangian force exerted on
the filament by surrounding fluid. In the equation (2.59) there are four unknowns (po-
sition vector X (s,t) and the tension 7'(s,t)) and another equation is needed to close
the problem.

The inextensibility condition is the constrain that leads to the following closure equa-
tion:

0xX ox
Os  0s
The boundary conditions must be specified at the free end (s = L) and at the fixed
end (s = 0) of the filament. At the free end we have that:

(2.60)

9°X (L, t)

T(L,1) =0, o

=0 . (2.61)

At the fixed end two different types of boundary condition may be chosen. The first
one is the simply supported condition:

02X (0,1)
X(0,t) =X ——7-=0 2.62
( ) ) 0 052 ) ( )
and the other one is the clamped condition
0X(0,t
X(0,1) = Xo, % —a (2.63)
s

Using the clamped condition, it is possible to impose the filament slope at the fixed
end. This condition will be employed for the calculation later.
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2.5.1 Non-imensionalization of the Equations

The equations (2.59) and (2.60) can be non-dimensionalized by introducing and apply-
ing the following characteristic scales:

« A characteristic length L. of the problem for the position X and the arclength
s. L. is assumed to be the filament length if the filament is standing alone in a
uniform flow. Otherwise, if the filament in placed behind a circular cylinder, the
cylinder diameter D is taken as characteristic length.

« The far-field velocity U, for the velocity.
o Usx/ L, for time.
« ApUZ /L. for the lagrangian force acting on the filament.

This yields non-dimensional quantities denoted by asterisk, i.e:

X* =X/L, (2.64)
t* = Uxt/L, (2.65)
F* =FL./ApU% (2.66)

Scaling (2.59) and (2.60) with relations (2.6)-(2.8), the non-dimensionalized equa-
tions are: P2x 5 9x oix

s - LI K+ R - F 2.67

ot*? 85*( Ds* ) B st T Z]g] (2.67)

From now on when using this equations the asterisks will be omitted.

2.6 Discretisation of the Filament Equation

2.6.1 Time And Space Discretisation

Because of its complexity, an analytical solution is available for the set of equations
(2.59) and (2.60) under the hypothesis that Kz = 0 and only if the filament is subjected
to a small amplitude motion [12]. These assumptions are often too restrictive and,
in order to recreate a more physical results of the filament motion, a computational
approach have to be used. In the next section will be presented the numerical method
employed to solve the filament problem. 2.5.

X o 1 2 " N N+ _ N+2
e—X—90 X0 X0 X0 X o —X—e—X—=0

T

Figure 2.5: Variable arrangement for a flexible filament. The red e is the Lagrangian
node, while the blue x is tension node.

Following Huang et al.’s formulation [12], the discretisation of the filament governing
equations is preformed in a staggered arrangement,as shown in figure 2.5. The filament
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is discretized with a finite number of Lagrangian nodes X;; tension nodes T; are placed
between the coordinate markers. The nodes : = —1, N + 1, N + 2 are ghost nodes and
they are used only to impose the boundary conditions.

The time and space discretized set of equations to be solved reads:

XTE2XGXT L = DT D, X)) — KpDygo X1 4 Rif +F" , (2.68)

D,Xntt. D X" =1 | (2.69)
where Dy and D, are the discrete counterpart of first and fourth order derivatives

respect to the parametric coordinate s. The tension and the bending term in (2.68)
are discretized as follow for nodes i € [2, N — 2]

DS (TDSX) _ Tz‘(X¢+1—Xi);?é_l(Xi—Xi_l)

X, o—4X,; 1+6X,;—4X; X;
KBDssssX _ KB i—2 i 1+As; i+1+Xit2 (270)

DSX * DSX fr (XiJFl*XZ'éE;XiJrl*Xi)

Substituting relations (2.70) and algebraically rearranging the terms, it is possible to
find a suitable form for equation (2.68):

aXH + (TM +4a) X — [B+ TR + T + 6a] X7+
(T3 +4a) X —aX75T + X7 =0, (271)

with:
K
« (X = AS‘é7
ﬁ_ As?
¢ At

C X =2X" - XL,

The equations for the nodes ¢ = 1, N—1, N can be found applying the correct boundary
conditions at the fixed and at the free end of the filament.

2.7 Boundary Conditions

2.7.1 Fixed end

At the fixed end s = 0, the filament equation can be conveniently rearranged.
Assuming D4, X = 0, multiplying by D, X both sides of the equation and remember-
ing boundary condition (2.62), equation (2.59) reduces to:

oT X 00X 0X
D5 + 92 Bs + (RZ— +F)- D5 =0 |, (2.72)

or, in its discrete counterpart:

DI 4 T D DX DX (Ri + FMY . DX =0 (2.73)
g
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Equation (2.72) can be discretized in the same manner employed for equation (2.59)
and it reduces to:
T1n+1 _ Ton-i-l
As

Xﬁ—fl _ 2X6L+1 4 Xln—i-l (Xln—H _ Xﬁ—li-l)
As? ) 2As *
n .g ('X1n+1 B XﬁJlrl)
F ).
+ (F" + Rzg) N

+ (11 + To)(

(2.74)

The value of position at the ghost point X | can be easily found from the boundary
conditions as follow:

X" —2Xit 4+ X =0 , for the simply supported filament.
X - X" = 2Asa ., for the clamped filament. (2.75)
XSn:+01 — X6L+1

Substituting the value for X"! in equation (2.74), the final form of the filament
equation at the fixed end for the simply supported boundary condition can be written

as:
T - T (B R (X - X)) =0 (2.76)
9

and for the clamped boundary conditions:

X X 2Asa

As(TPH = T3 + (Th + To)( N )«
4 (F" + Ri%) als . (2.77)
2.7.2 Free end
At the free end (s = L), boundary conditions (2.61) translates in:
X3 - 2X5 + X = 0
Xyt —2Xpt + Xt = 0= Xvio — 33Xy +2Xn_1 =0 (2.78)

n+1 __ n—+1
TN+1 - _TN

Substituting the values for X3t and X'} in equation (2.68), the equations for
node i = N — 1 result

—aXyH 4 (TP +40) Xy — [B+ TP + T + 50) XE +
(T +20) X+ X =0, (2.79)
while for node 1 = N it is:
—a X+ 2T+ 20) X — B+ a+ 2T XM X =0 . (2.80)

It is worth to note that the free end of the filament does not correspond to a
tension point. Thus, in order to obtain discrete boundary condition for T'(L,t), a
linear distribution of tension is hypothesized between N and N + 1.
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2.8 Numerical Resolution of Filament’s Equation

The relations (2.70), (2.72),(2.79) and (2.80) represent a set of 4N + 1 non-linear
equations in the unknowns Ty, T;, X"*'. The system can be conveniently put in the
following form:

rFl(X?—‘_laTln—i_lvT(;l—’—l) =0
F2(X5L+17 T1n+1) =0

: (2.81)
E(X;’H*l’ ﬂn+1> — O

F4N+1(X]r\tr+ly TJT\LzH) =0

where Fj represent the i-th equation for the i-th lagrangian node.

Because of non linearity, the iterative Newton-Raphson method has been employed in
order to solve the system (2.81). It consists in solving, at each time step, the following
linearized system £ times until convergence:

J(u)ou®) = —F*(u®)

2.82
SuHD) — (1) _ g (k) (2:82)

where:

. u is the vector containing the unknowns:

T
u = (T07T17$173/17217T271'273/27227 s 7TN7xN7yN7ZN)

« J is the Jacobian matrix containing the derivatives of equations (2.81) with
respect to the unknowns w;:

[or™  oF} o™ ]
Ouy Oua o Oun
or®  arM or®
J = ouq Ousg T Oupn
ory)  ory ory)
L Oup Ouz T dun

. F* is the vector containing the residual of equations (2.81) at the k-th iteration.

The superscript o1 is omitted for clarity. Convergence is considered to be reached
if the maximum residual of equations (2.81) is less than 107'°. The filament model is
implemented insied a Navier-Stoked solver and it is used to update the position of the
object during the simulations.



Chapter 3

Validation

This chapter is dedicated to the validation of the code and comparisons with previous
works will be presented. In particular the following test cases will be proposed, with
the aim of testing the code in all of its part and in different situations:

« Pure gravity driven filament: the filament is dropped from an initial angle and it
falls under the action of gravity force. This numerical experiment is important in
order to test the accuracy of the routine dedicated to the solution of the filament
equation, that follows the procedure developed in section 2.6.

. Single filament in a uniform flow: a single filament stands in a channel and it
is subjected to a uniform flow that forces the filament to flap. The simulation
reproduces the experiments conduced by Zhang et al. [1] and the results are
compared with the numerical calculations performed by Huang et al. [12] and
Favier et al. [13].

. Single filament behind a two dimensional circular cylinder: a single filament is
free to flap behind a two dimensional circular cylinder, forced by the unsteady
wake generated by the bluff body. The results are compared with Bagheri et al.

3].

The governing differential equations are discretized on a collocated grid using a finite-
volume code. The method of Rhie and Chow is used to avoid pressure oscillations. Both
convective and diffusive fluxes are approximated by second-order central differences. A
second-order-accurate semi-implicit fractional-step procedure is used for the temporal
discretization. The Crank-Nicolson scheme is used for the wall-normal diffusive terms,
and the Adam-Brashforth scheme for all the others terms. The code has been equipped
with the immersed boundary method explained in section 1.5 and the filament position
is computed using the model in section 1.8.
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3.1 Validation Of The Filament Model

X p

Figure 3.1: Initial position of the filament falling under gravity.

The filament numerical model presented in section 2.6 is validated against Huang et
al. [12]. The filament is subjected to only gravity force, acting in z-direction as shown
in figure 3.1, and it is free to fall and to oscillate. The test cases involves the use of
the following setup:

Pure gravity driven filament

Length L 10
Bending Stiffness K, 0.01
Richardson number Ri 10
Initial angle 0 18

N of Lagrangian points N 64

Table 3.1: parameters used in the test case 1 for the filament

Parameters test 2

Length L 1.0
Bending Stiffness Ky, 0.0
Richardson number Ri 10
Initial angle 0 2

N of Lagrangian points N 64

Table 3.2: parameters used in the test case 2 for the filament.

In figure 3.2(a)-3.3(b) is sketched the path of the free extremity of the filament
(point P in figure 3.1) normalized with the filament length, whereas in figure 3.2(b)-
3.3(b) is drawn the filament motion between 0 and 0.8 time unit.



3.1 Validation Of The Filament Model

27

0.4

0.3

0.2

0.1

Y(tL,L)L

-0.1

-0.2

-0.3

-0.4

R AR R R RARRR Tr e ey M

TTTT

L7

- s ma g

-

EE mm s gy

B S -

- R

<

L
08 08 1

Figure 3.2: Pure gravity driven filament for the case with stiffer filament. (a) time
evolution of the free extremity and validation against Huang et al. (b) Superposition
of the filament positions between 0 and 0.8 time unit.
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Figure 3.3: Pure gravity driven filament with zero bending coefficients. (a) time evo-
lution of the free extremity end and validation against Huang et al. (b) Superposition
of the filament positions between 0 and 0.8 time unit.

The comparisons shown a very good agreement respect to the literature.

The

filaments bends under the action of the gravity force and start pendulum-like motion
whose amplitude is influenced by the bending coefficients and the initial angle, as
expected.
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3.2 Single Filament in a Uniform Flow

In the present section the numerical experiment of a single filament flapping in an
incoming uniform flow will be reproduced. The results will be compared with the
calculation performed by Huang et al. [?| and Favier et al. [13].

A sketch of the setup is shown in figure 3.4.

A

- L

Figure 3.4: Sketch of the setup for a single filament immersed in a uniform flow.

The filament in standing alone in a channel and it is free to flap under the force
exerted by the fluid over the body. The simulation setup parameters are summarized
in table 3.3.

Filament in a uniform flow

Length L 1.0
filament density ps 1.5
Bending Stiffness K, 1073
Reynolds number % 200
Richardson number Ri 0.5
Initial angle 0 18

N of Lagrangian points N 64

Table 3.3: Parameter used in the present simulation.

Free slip boundary condition at the top and bottom of the domain are chosen and
the simply supported condition at the fixed end of the filament is imposed according to
the reference cases. The Navier-Stokes equation are solved using a fractional step finite
volume method together with the immersed boundary method presented in section 1.5,
used to simulate the presence of the filament.

The grid used is a simple cartesian grid with uniform spacing in x and y direction.
The computational domain has the following characteristics, presented in table 3.4:
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Domain setup
x-length L, 4
y-length L, 4
Grid size 256X128

Table 3.4: Computational domain setup.

The filament is forced by the fluid and it is induced to flap up and down reaching a
maximum excursion. The flap amplitude is limited by the combined action of the fluid
itself and of the bending and tension forces that operate to straighten the filament: the
result is a self-sustained, symmetric flapping cycle. In figure 3.5 is shown the filament
during its motion and the computed flow field.

(c) (d)
Figure 3.5: Snapshots of u-velocity field during the motion of the filament.
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The free end of the filament, shown in figure 3.6 (a), is compared with the results
obtained by Huang et al. [12] and by Favier et al. [13]. In figure 3.6(b) is also shown a
qualitative comparison of the flapping cycle with the experiments conduced by Zhang
et al. [1].

T T T T T T T T Favier etal. 2013 ™)

0.6 [ L] Huang etal. 2007 | <4 0.6
[ This simulation ]

Figure 3.6: Flapping filament in a uniform flow. (a) time history of the free end of
the filament.(b) flapping cycle computed in the present simulation. (¢) Flapping cycle
from the experiments by Zhang et al.

The simulation shows a good agreement with the validation cases: the filament
exhibits the characteristic figure-eight orbit and the free extremity time evolution has
a good match with previous works.
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3.3 Hinged Filament behind a 2D Circular Cylinder

This section is dedicated to the last validation cases proposed. A flexible filament is
hinged behind a two dimensional circular cylinder and it is free to flap in the wake gen-
erated by the bluff body. The initial position of the filament is symmetric with respect
to the wall normal direction and the object is subject to an unperturbed incoming flow.
A sketch of the setup is shown in figure 3.7:

A

Ly

>

A

Figure 3.7: Sketch of the setup for the filament hinged behind a cylinder .

The boundary conditions at top and bottom of the computational domain are free-
slip condition and the filament is maintained in position using the simply supported
condition at the fixed end. The object is posed in a box with a uniform spacing of 60
per diameter and two different bending coefficients are tested. The parameters used in
the simulation are summarised in table 3.5:

Hinged Filament behind a 2D Circular Cylinder

Length in z-direction L, 21
Length in y-direction L, 10
Filament Length L 1.5
Cylinder diameter D 1.0
filament density Ps 0.1
Bending Stiffness Ky 5 x1073,0.1
Reynolds number @ 100
Richardson number Ri 0.0
Initial angle 0 0°
N° of Lagrangian points N 84

Table 3.5: Parameters used in the present simulations.

The simulations were run until a periodic flapping is observed and the time evolution
of the free extremity of the filament is monitored. As figured out by Bagheri et al. ,
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a clear symmetry breaking is observed. After a transient, in both cases, the filament
starts to flap periodically in the upper part of the cylinder. The results are shown in
figure 3.8:
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Figure 3.8: Filament flapping behind a circular cylinder. (a) Free extremity time
evolution. (b) Field snapshot of u velocity component for the softer filament (¢) Field
snapshot of u velocity component for the stiffer filament.

Little differences were found comparing the results with Bagheri et al. In partic-
ular a difference in flapping frequency of 4% and 7% for the softer and stiffer case,
respectively, however. the physics of the problem is respected and symmetry breaking
is clear for both cases and the above differences in frequency may be caused by the
different immersed boundary method used for two cases compared.



Chapter 4

Results

In this chapter the results of the three dimensional simulations will be shown. A
circular cylinder stands in an unperturbed uniform flow at Re = 200 and a series of
flexible, inextensible filaments are clamped in the rear of the cylinder and are free to
move in any space direction. The clamped condition is conveniently used instead of the
simply supported condition because it is more realistic and closer to a possible future
implementation of an anchoring system of the filaments in engineering applications
such as in experiments.

The Reynolds number chosen is just above the three dimensionality threshold
guaranteeing a three dimensional flow and, at the same time, allowing to visualize
the effect of the filaments on the three dimensional bifurcation that may be affected
by the presence of the flexible appendages.

The filaments are packed along the spanwise direction in two different ways:

. Sparse packing.
. Dense packing.

The sparse packing provides 8 equispaced filaments, whereas the dense packing pro-
vides 32 equispaced filaments. In the second case the space between the filaments is
considerably reduced and this may have not negligible consequences on the dynamics
of the wires.

For each of these arrangement of the filaments, the following parameters will be
test:

« The length of the filaments L.
. The bending stiffness K.

In particular, as shown later, the bending stiffness is chosen according to the following
criteria: in one case K is taken in order to accord the natural frequency of filaments,
fn, with frequency fs of the vortex shedding, periodically generated by the detachment
of the boundary layer from the upper and lower part of the cylinder. In the other case
Ky, is chosen in order to obtain a f,, double compared to f;.

Two decreasing length of the filaments respect to the cylinder diameter will be
tested. The length is reduced in the second case to try to recreate a possible symmetry-
breaking scenarios that occurs in two dimension when the filament is short.
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The density of each filament p, is taken equal to 1 for convenience in all the simu-
lations performed.
A summary of the simulations are performed is offered in table 4.1.

Summary of the simulations
N° of filaments Re ps L/D

Simulation 1 8 200 1.0 1.0
Simulation 2 32 200 1.0 1.0
Simulation 3 8 200 1.0 1.0
Simulation 4 32 200 1.0 1.0
Simulation 5 8 200 1.0 0.5
Simulation 6 8 200 1.0 0.5
Simulation 7 32 200 1.0 0.5

Table 4.1: List of the simulations performed.

4.1 Computational Domain

The choice of the computational domain is one of the most important things in CFD.
On one hand, the domain must be sufficiently large to avoid the flow confinement
and the manifestation of unwanted boundary effects that can significantly affect the
solution and lead to incorrect results. On the other hand the computational grid must
be fine enough to capture the flow structure and give a solution as accurate as possible,
but always keeping in mind that a fine which is too fine grid has a huge impact on the
computational time and cost.

The grid used for the present simulations is shown in figure 4.1. The domain size
has been chosen referring to the literature, in particular with [14] and it is reported
in table 4.2. The choice of a spanwise length of % = 8 is induced by the fact that
the three dimensional instabilities described in chapter 1 have a wavelength of % ~ 4

for the Mode A and % ~ 0.9 for mode B. Thus, % = 8 is taken a priori in order to
resolve well both these instabilities and simulate with only one grid all the cases to be
study.

The grid is composed by an inner box with a uniform spacing in all the three
cartesian directions containing the circular cylinder and the filaments. This choice
has been done to guarantee the maximum accuracy in resolving the boundary layer
detaching for the cylinder boundary and the motion of the filaments induced by vortex
shedding. Out of the uniform spacing zone, the grid is stretched in the x and y
directions following an exponential rule in order to save computational nodes where
not necessary and to decrease the computational time. The grid spacing in the spanwise
direction is taken constant and fine enough to resolve well the three dimensional flow
behind the cylinder according to [14]. A the full grid setup can be found in table 4.2.
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Figure 4.1: Grid used for the simulations.

better visualization.

setup

Domain

21.5 x 10 x 8
482 x 275 x 98

x L,
N,

L, x Ly
N

Domain size

N

N, x

X

of grid points

o

1.005, 1.01

x

direction

tretching factor in =z

S

1.01

direction

stretching factor in  y

Uniform box zone

4y X 2 X 8

y X 1

2 X 1
N

[

Domain size

N

40

(&

of grid points per diameter

o

Table 4.2: Domain and grid setup for the simulations performed. The stretching factor

rt of the domain where less accuracy is needed.

1.01 is used in the final pa

Ty

The boundary conditions applied at the top and bottom of the domain are the free-

at the boundary sides along the span, the periodic boundary

Y

while . :
conditions are used in order to take advantage of a FFT algorithm for a fast solution

of the Poisson equation.

)

slip conditions
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4.2 Choice of the Bending Stiffness

Figure 4.2: Free vibrations of undampened cantilever beam.

As introduced in the previous section, the bending stiffness is taken in order to accord
the natural frequency of the filaments f, with the vortex shedding frequency f; or to
render it double respect to f;. The starting point to find the correct value of Kj, is the
free-filament equation, because only the natural frequency is needed:
2 4

oY _ k7Y (1.1)

ot? 0s4
Equation (4.1) is the well know dimensionless Euler-Bernoulli equation for an elastic
beam. Only the y-component of the equation is considered because the resonating con-
dition is sought only for the streawise disturbance associated with the vortex shedding
and not with the spanwise instability that is less powerful.

The normal mode solution to the equation (4.1) becomes:

V(s,1) = F(s)G(t) . (12)
Substituting in (4.1) the equation become:

d*G(t d*F(s
e

dt ds
From the above equation, after some manipulation, the equation for the displacement
in wall-normal direction reads:

F(s) = Cicos(Bps) + Casin(Bys) + Cscosh(B,s) + Casinh(B,s) (4.4)

G(t) . (4.3)

where 3, = (g—i)i
The boundary conditions for a filament clamped at the one end, as shown in figure

4.2, are:

Boundary conditions
s=0 s=1L

_ a2y
Y =0 e

0
day __ a3y _
5 =0 =0
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Applying the boundary conditions, the following equation is to be solved:
cos(BL)cosh(BL) = —1 . (4.5)

The roots of the above equation are:

Roots of the equation 4.5
n B L

1 1.8751
2 4.69409
3 7.85475
4

5

10.99554
14.13176

The value of 3, are needed in the equation for the time, that reads:
G(t) = bysin(B2/ Kyt + bycos(32\/ Kpt) (4.6)

The coefficients b; and by are to be determined using initial conditions and their ex-
pression in of no importance here.

The natural frequency is:
2

fo= VRS (4.7)

2w L2

The first value of natural frequency is therefore: f; = 516\/ . The value of bend-
ing stiffness to use in the simulations can be obtain snnply rearranglng the previous
expression for f; as:

2k f, L2

3.5162 ’
where f, is the shedding frequency measured from the fluctuation in time of the lift
coefficient and £ is a factor used to module the the shedding frequency f, in order to
obtain the wanted value of f,.

K, = k=12 (4.8)

4.3 Simulation Cases: L/D =1

The simulation cases with L/D = 1 are the first tackled and, as described before,
four different configurations will be tested. For each configuration the aerodynamic
performance will be measured and the dynamics of the filament in the space will be
shown. A summary of these simulations is offered in table 4.3:
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Summary of the simulations
N° of filaments Re ps fo/fs Kp

Simulation 1 8 200 1.0 1.0 0.13
Simulation 2 32 200 1.0 2.0 0.52
Simulation 3 8 200 1.0 1.0 0.13
Simulation 4 32 200 1.0 2.0 0.52

Table 4.3: summary of simulation performed for the case L/D = 1.

4.3.1 Dynamics of the Filaments behind the Cylinder

Starting from the sparse filaments packing, this case offer an interesting behaviour
not simply predictable. The filaments are aligned along the spanwise direction with a
distance between each appendage of % = 1 and with an initial angle of 0° relatively
to the flow direction, from left to right. The filaments are free to flap under the action
of the forces that the fluid exerted over the immersed bodies and, because of the three
dimensional nature of the flow, a motion in spanwise direction is expected. As in two
dimensional simulations, the free extremity of the appendages is taken as a reference
of the motion of the filaments in space. The results for the resonating case, with
K, = 0.13, are plotted in figure 4.4.

34 65
3.2 6.48

ZdP XD

Figure 4.3: Positions by the middle filament during its motion. The number of filament
is 8 and K, = 0.13.

The filaments move synchronised in x-y plane increasing the amplitude of oscilla-
tions, until reaching a self sustained flapping state. The spanwise motion is character-
ized by a transient that leads to large oscillations and, as shown in figure 4.5,
each two filaments move in phase, giving rise to an interesting dynamics.

In figure 4.3 is shown the trajectory followed by free extremity of the middle filament
(filament n°4); this trajectory draws in the space an eight-like orbit, similar to the two
dimensional case.
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Figure 4.4: Free extremity time evolution for K, = 0.13 and 8 filaments. (a) y-
component of displacement. (b) z-component of displacement.
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Figure 4.5: Detailed view of the self sustained oscillations. (a) y-component of dis-
placement., (b) z-component of displacement, (c) Superposition of the z-componet of
displacement for all the filaments.
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Figure 4.6: Sketch of the positions assumed by the middle the filament for K, = 0.13;
case with 8 filaments. (a) Isometric view. (b) z-y plane view. (c) z-y plane view.

The stiffer case, with K, = 0.52, as predictable, is characterized by smaller oscilla-
tion in each direction because of the larger value of the bending stiffness, that also avoid
the matching between the natural frequency of the filament and the flow. However the
dynamic of the motion is similar, presenting a transient with increasing oscillations in
each space direction. The path of the free end and is proposed in figure 4.9.
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Figure 4.7: Free extremity time evolution for K}, = 0.52; 8 filaments. (a) y-component

of displacement, (b) z-component of displacement.
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The sparse packing allows the motion of the filaments in spanwise direction, but
this degree of freedom is lost if the number of filaments is increased to 32. The spacing
between the appendages is now Az = 0.25 and this restriction inhibits the motion of
the filaments, forcing them to flap only in z-y plane, as show in figure 4.8. Moreover,
as shown in figure 4.9, in comparison with the sparse arrangement, closely spaced
filaments flap at smaller amplitude.

x/D

(a)

y/D

1 1
6.57 6.58 6.59 6.6

Figure 4.8: Sketch of the positions assumed the middle filament for K, = 0.13; case
with 32filaments. (a) z-y plane view, (b) positions reached by the end point of the
central filament.
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4.3.2 Effect On The Cylinder Wake

Figure 4.10: Wake structure behind the cylinder at Re = 200. Iso-surface of positive
(green) and negative (yellow) w, vorticity; in red and violet the iso-surface of negative
and positive w, vorticity are shown, (a) Cylinder wake without filaments, (b) first
bifurcation of the cylinder wake with 8 filaments and K, = 0.13, (¢) Final structure of
the cylinder wake with 8 filaments and K, = 0.13.

The presence of the flexible filaments behind the cylinder has important effects on the
wake structure. In chapter 1, the main bifurcation and the structure of the cylinder
wake was introduced and it was underlined how the wavelength of the three dimensional
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Figure 4.9: Free extremity time evolution for the 32 filaments case, (a) y-component
of displacement, Kj, = 0.13, (b)y-component of displacement, Kj, = 0.52.
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instabilities changed in relation to the Reynolds number. The simulations in the present
work are performed beyond the three dimensionality threshold but, however, before the
second bifurcation for the base cylinder case, which occurs at Re = 260.

The presence of the filaments acts on the flow and contributes to introducing insta-
bilities that change the shape of wake. In figure 4.10 the wake structure for the cylinder
with 8 filaments and K;, = 0.13 is shown. The presence of the appendages cause two
consecutive transition in the wake: the first one occurs when the spanwise motion is
not fully stabilized. The filaments anticipate the second bifurcation leading to a mode
B shape with the formation of streamwise vortex pairs with a spanwise wavelength
A. = 8 (see figure 4.10(b)).

The second one takes place when the filaments reach their limit cycle. The motion
in each direction of the filaments, moving two by two in phase, introduces new wave
length in the instabilities leading to a new wake structure characterized by a spanwise
wavelength A, of almost 6 (see figure 4.10(c)).

For K;, = 0.52 a similar scenario occurs: the second three dimensional bifurcation
is anticipated and a mode B shedding takes place instead of a mode A. However the
small order of the oscillation doens not cause a second transition and the spanwise
wave length of the streamwise vortex pairs remains A\, = 8, as shown if figure 4.11.

Figure 4.11: Wake structure behind the cylinder at Re = 200 with 8 filaments and
Ky, = 0.52. Iso-surface of positive (green) and negative (yellow) w, vorticity. in dark
green and light blue the iso-surface of negative and positive w, vorticity are represented

Increasing the number of the filaments to 32, the effect on the wake structure become
significant: the shedding modes A and B are inhibited. The streamwise vortex pairs
that characterised the shedding mode A and B vanish and the w, vorticity component
is localized only in the neighbourhood of the cylinder trailing edge, in correspondence
to the dense packing of the filaments. The value of the bending stiffness does not play
any role and the wake is affected by the filaments in a similar manner. The wake
structure for both the cases with 32 filaments is shown in figure 4.12:
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(a)

(b)
Figure 4.12: Wake structure behind the cylinder at Re = 200 with 32 filament. (a)
K, =0.13 , (b)K}, = 0.52. Iso-surface of positive (green) and negative (yellow) w, vor-

ticity; in dark green and light blue the iso-surface of negative and positive w, vorticity
are represented.

4.3.3 Effect on the Aerodynamic Coefficients

The aerodynamics coefficients are the main index of the aerodynamic performance
of a body immersed in a flow. They are defined as the force in a specific direction,
normalized with the dynamic pressure, as follow:

2F, 2F,

C f— p—
p pUZS 7 L pUZS 7

(4.9)

where S is the reference area of the object, taken as S = L, x D.

Cp is called drag coefficient and measure the drag suffer by the immersed body,
whereas the lift coefficient C'y measure how much the fluid pushes the body in the
direction normal to drag direction. The computed coefficients will be compared with
the cylinder without filaments.

The forces exerted by the fluid over the entire body (cylinder-+filaments) are com-
puted performing a global momentum balance over the computational domain.
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The effect of the filaments is surprising positive and the results are shown in figure
4.13. A comparison between all the cases with L/D =1 is offered in figure 4.14.
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Figure 4.13: Aerodynamic effect of the filaments. (a) Cp comparison between the
cases with 8 filaments and the cylinder without filaments; (b) C, comparison between
the cases with 8 filaments and the cylinder without filaments; (¢) Cp comparison be-
tween the cases with 32 filaments and the cylinder without filaments;(d) C, comparison
between the cases with 8 filaments and the cylinder without filaments.
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Figure 4.14: Comparison between all the cases with L/D = 1; (a) drag coefficients Cp;
(b) lift coefficients Cf.
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The mean value of the coefficients and the root mean square values of the oscillation
around the mean are collected and summarized in table 4.4:

Aerodynamic coefficients

Case K, Cp Chrms Ch Clrms
No filaments — 1.448 0.0 0.180 0.290

8 filaments 0.13 1.343 0.0 0.133 0.228
8 filaments 0.52 1.315 0.0 0.147 0.216
32 filaments32 0.13 1.296 0.0 0.128 0.173
32 filaments32 0.52 1.268 0.0 0.120 0.157

Table 4.4: Summary of the aerodynamics coefficients for the cases with L/D = 1.

The benefits of the filaments is clear: the drag is decrease up to 12.5% and the rms
lift coefficient oscillations are reduced up to 30%.

4.4 Simulation cases: L/D = 0.5

The simulation cases with L/D = 0.5 are summarized in table 4.5:

Summary of the simulations
N° of filaments Re ps fu/fs Kb
Simulation 1 8 200 1.0 1.0 0.008
Simulation 2 32 200 1.0 1.0 0.008

Table 4.5: Summary of the simulations performed for the case L/D = 0.5.

4.4.1 Dynamics of the Filaments behind the Cylinder

The shorter filaments are tested in order to look at a possible symmetry-breaking
scenario that, in two dimensions, occurs only if the appendage is sufficiently short
with respect to the recirculation bubble generated behind the cylinder. However, in
three dimensions this phenomenon is not granted and these simulations have the aim
of testing the above described possibility. Also in this case the number of filaments
tested is either 8 or 32.
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Figure 4.15: Time evolution of the free extremity, L/D = 0.5; (a) 8 filaments,
y-component; (b) 32 filaments, y-component; (c) 8 filaments, superposition of z-
component of the eight filaments.

The time evolution of the free extremity, shown in figure 4.15, helps to describe the
dynamics of the shorter filaments. The appendages move in phase in z-y, in analogy
with the cases with L/D = 1. The motion in the spanwise direction, that develops for
the sparse arrangement, is in phase each two filaments and it is reported in figure 4.15
(c).

Increasing the number of filaments to 32, similar observation to cases with the
longer filaments can be done. There is an inhibition of the spanwise motion of the
filaments and the motion in x-y becomes regular and periodic in time after a short
transient, as shown in figure 4.15 (b).
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4.4.2 Effect on the Aerodynamic Coefficients

Previously it was found that the filaments have a positive impact on the aerodynamics
of the entire body; also with the shorter filaments a decrease in drag and in lift force
oscillations can be observed. The results are offered and compared together in figure
4.18 while the mean value of the coefficients and the root mean square of the oscillation
with respect to the mean is proposed below in table 4.6:

Aerodynamic coefficients

Case Kb CY_D brms C_L 2rms
No filaments — 1.448 0.0 0.180 0.290

8 filaments 0.008 1.385 0.0 0.158 0.208
32 filaments 0.008 1.350 0.0  0.142 0.142

Table 4.6: Summary of the aerodynamics coefficients for the cases with L/D = 0.5.

Because there is not a symmetry breaking, the C coefficient is symmetric with
respect to the zero value, but, however, there is a good amelioration of the aerodynamic
performance even if, fixing the number of filaments, slightly better results are obtain
with L/D = 1.

4.4.3 Other simulations

Other simulations with values of K}, not resonating with the flow and L/D = 0.5 were
tested; the cases are summarized in table 4.7:

Summary of the simulations
N° of filaments Re ps K,

Simulation 1 8 200 1.0 0.0005
Simulation 2 8 200 1.0 0.002
Simulation 3 32 200 1.0 0.002

Table 4.7: Summary of the simulations performed for the case L/D = 0.5.

The softer values chosen for the bending stiffness give rise to a some differences
respect with the previous cases. The filaments move again in phase in x-y but their
motion is composed by more frequencies and the filaments move alternatively in the
lower and in the upper side of the cylinder. The motion in the spanwise direction,
that develops for the sparse arrangement, is not in phase for all the filaments and it is
reported in figure 4.17.

Increasing the number of filaments to 32, there is a regularization of the oscillations
that becomes periodic in time after a small transient, as shown in figure 4.16 (c).
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Figure 4.16: Time evolution of the free extremity, L/D = 0.5; (a) 8 filaments, y-

component; (b) 8 filaments, z-component; (c¢) 32 filaments, y-component.
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Figure 4.17: Time evolution of the z-component of the free extremity of the eight
filaments; (a) K}, = 0.0005, (b) K, = 0.002.

The computed aerodynamic coefficients are offered and compared together in figure
4.18 while the mean value of the coefficients and the root mean square of the oscillation
with respect to the mean is proposed below in table 4.8:

Aerodynamic coefficients

Case

Ky

Ch

Cr

/

!

Drms ~Lrms
No filaments — 1448 0.0 0.180 0.290
8filaments 0.005 1.387 0.0 0.155 0.200
8filaments 0.002 1.388 0.0 0.155 0.201
32filaments  0.002 1.326 0.0 0.122 0.173

Table 4.8: Summary of the aerodynamics coefficients for the non resonant cases.
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Figure 4.18: Comparison between all the cases with L/D = 0.5.(a) Drag coefficients
Cp.(b) Lift coeflicients C.



Chapter 5

Conclusions

The flow past a three-dimensional circular cylinder, equipped with a series of flexible,
inextensible filaments clamped at the cylinder trailing edged and regularly spaced along
the span has been simulated.

The filaments have been tested in two main configuration:

. Sparse packing: 8 filaments, over the length of the cylinder.
. Dense packing: 32 filaments, over the length of the cylinder.

The bending stiffness of the filaments has been chosen in order to make the natural
frequency of the appendages close to the frequency of the vortex shedding, generated
by the detachment of the boundary layer from the wall of the cylinder. For each of
the above arrangements two different lengths of the filaments have been tested and the
dynamics of the filaments has been monitored in time.

After analysing the results, the following conclusions can be made:

. The sparse packing allows the motion of the filaments in the spanwise direction
for both "short" and "long" filaments.

. The dense packing totally inhibits the generation of the spanwise motion of the
filaments. The appendages move in phase only in x-y plane and flap at lower
amplitude than in the sparse packing case. A full comparison of the motion of
the filaments is offered in figure 5.1.

. The filaments act on the flow interacting with the wake and leading to changes in
the wake shape as compared to the bare cylinder case. On one hand, the sparse
packing of filaments anticipates the transition to the second three-dimensional
bifurcation (Mode B instability), or it introduces disturbances that cause a reor-
ganization of the mode A instability into a configuration with a lower wavelength.
In particular, this second scenario can be found if the spanwise motion of the fila-
ment becomes relevant. On the other hands, the dense packing of filaments causes
a radical change in the wake, suppressing totally the first bifurcation mode. The
length of the filaments does not play a significant role in this transition process.
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Figure 5.1: Comparison between displacement of the middle filaments. (a) y-
component of the displacement. Case with L/D = 1; (b) z-component of the dis-
placement. Case with L/D = 1; (¢)-(d) y-component of the displacement. Case with
L/D = 0.5; (d) z-component of the displacement. Case with L/D = 0.5.
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. The aerodynamic performances are improved by the presence of the filaments. A
decrease in drag up to 12.5% and a decrease in amplitude of lift oscillations up
to 30% has been observed.

Summary of the computed aerodynamics coefficients

Case L/D K, cp C Chrms Clims
No filaments 0.5 — 1.448 0.0 0.180 0.290
8 filaments 0.5 0.008 1.385 0.0 0.158 0.208
8 filaments 0.5 0.0005 1.387 0.0 0.155 0.200
8 filaments 0.5 0.002 1.388 0.0 0.155 0.201
32 filaments 0.5 0.008 1.350 0.0 0.142 0.142
32 filaments 0.5 0.002 1.326 0.0 0.122 0.173
8 filaments 1.0 0.13 1.343 0.0 0.133 0.228
8 filaments 1.0 0.52 1.315 0.0 0.147 0.216
32 filaments 1.0 0.13 1.296 0.0 0.128 0.173
32 filaments 1.0 0.52 1.268 0.0 0.120 0.157

Table 5.1: Summary of the computed aerodynamics coefficients.

Slightly better results are obtained with the longer filaments. The symmetry
breaking bifurcation has not been found yet, but more simulations have to be
performed in order to figure out this possible scenario. In fact, it is very likely
that a symmetry breaking bifurcation - if it exists - would be postponed in the
3D case (as compared to the 2D case)since the filaments have a third direction

(z) where to escape.
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