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Riassunto

La formazione di gocce in getti a bassi numeri di Reynolds è un
fenomeno di grande interesse dal punto di vista ingegneristico, es-
sendo molte le sue possibili applicazioni in diversi processi industriali.
Solo per nominarne alcune: stampanti a getto d'inchiostro, processi di
emulsi�cazione e estrusione di polimeri. Motivati da queste possibili
applicazioni, abbiamo studiato la stabilità di getti coassiali in micro-
canali. La con�gurazione �sica osservata è una variante del classico
problema di Rayleigh-Plateau, dove però imponiamo con�namento
del getto. Da studi precedenti è stata osservata sperimentalmente
la transizione tra situazioni dove il �usso forma un getto (regime
di jetting) o dove forma delle gocce (regime di dripping). Il veri�-
carsi di questi due regimi è stato giusti�cato dal tipo di instabilità
presente nel �usso che può essere convettiva o assoluta. Eseguendo
analisi di stabilità locale per diverse coordinate assiali del �usso, ab-
biamo studiato il �usso nella regione in cui si sviluppa e abbiamo pro-
posto un'interpretazione dei meccanismi che regolano la transizione
tra regime di jetting e regime di dripping.
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Abstract

Droplets formation in jets at low Reynolds number is a phenomenon
of great engineering interest because of its applicability in industrial
processes. Just to name a few: ink-jet printing, emulsi�cation process
and polymer extrusion. Motivated by these possible applications, we
study the stability of coaxial biphasic jets in micro-channels. The
physical con�guration observed is a variant of the classical Rayleigh-
Plateau problem, where we impose wall con�nement. In previous
studies it has been observed experimentally the transition between
situations where the �ow takes the forms of a jet (jetting regime)
or where it forms droplets (dripping regime). These two regimes are
explained with the �ow being convectively unstable or absolutely un-
stable. Performing local stability analysis for various axial coordinate
of the �ow, we analyze the developing region and we propose an inter-
pretation of the mechanisms that rule the transition between jetting
and dripping regime.
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Preface

The work presented in this project is the result of a collaboration be-
tween the Laboratory of Fluid Mechanics and Instabilities (LFMI),
EPFL, Lausanne (Switzerland), and the Department of Civil, Chemi-
cal and Environmental Engineering, University of Genova. The work
has been carried out under the supervision of Alessandro Bottaro
(UNIGE) and François Gallaire, head director of the LFMI-EPFL.
The whole active has been realized, between September 2012 and
February 2013 at the EPFL, as part of a wider project focused on
the stability analysis of �ows at low Reynolds number; this is done
in order to be able to predict droplets formation in micro-channels.

In the �rst stage of the project I have written a MATLAB code,
using the boundary element method, to simulate numerically the
physical phenomenon. In the second stage I have adapted an in-
house MATLAB code (from LFMI) to my problem. These two tools
make possible to perform stability analysis on the �ow studied. The
numerical tool that I have developed in the frame of the project will
be used to carry on studies on the stability of �ows characterized
from low Reynolds number and axisymmetric con�gurations.
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Introduction

Stability of jets is of great engineering interest since the work of
Rayleigh [1] and Plateau [2] about jets instability; in fact it is very
common to �nd this kind of phenomena in many industrial applica-
tions from energy generation to chemical processes. The jets analyzed
in this project model those found in applications, like ink-jet prin-
ters (�gure 1). Ink-printers are very interesting to study because the
same technology could also be used to manufacture high technology
products, for example polymer extrusion of use in the microchip in-
dustry (�gure 2). Other applications vary from food to biomedical
industry, for example in the second one it could be important to know
if a drug injected in vein forms droplets before or after it touches the
organ to which it is destined.

The jets present in the applications described above belong to a
particular class: coaxial con�ned jets at low Reynolds number. The
con�guration of the system we will study is composed of a micro-
channel (the size of the radius of the channel is about 10−4m) where
two immiscible �uids touch each other (cf. �gure 2.2); the two �u-
ids can not mix because of surface tension. From experimental and
analytical studies this con�guration has always yielded an instability
that leads to droplets formation, as we can see in �gure 4. Sometimes
the droplet is formed just outside the inlet (dripping) and sometimes
we can identify a jet after which the droplet is formed (jetting). In [5]
the stability of the fully developed �ow (for which an analytical solu-
tion exists under lubrication theory simpli�cation) has been studied;
the �ow is always locally unstable, the criterion to predict dripping
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Figure 1: Ink-jets, experimental study by Steve Hoath in [3].

Figure 2: Polymer extrusion presented in [4], the �ow of hexadecane
push the polymer at the tip of the nozzle that detaching forms the
droplets.
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Figure 3: Flow con�guration, experimental study presented in [5].

Figure 4: Two di�erent regimes of droplets formation, jetting and
dripping, experimental study presented in [5].
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or jetting regime is to look if the instability is absolute or convective.
If it is absolute the instability is strong enough for the disturbance
to move upstream and the dripping regime is thus formed; otherwise
the instability is washed away from the �ow and the jetting regime is
reached. In [5] a qualitatively good transition region between drip-
ping and jetting regime is found, although in some cases the di�erence
between the experimental results and the analytical solutions seems
quite signi�cant.

In this project the main idea is to perform local stability analy-
sis in the developing region, where we believe important mechanisms
regarding the droplets formation are localized. In this way, not ap-
plying lubrication theory, we hope to have a deeper understanding of
the phenomenon and to �nd better agreement with the experimental
results.

What is done, more in detail, is to �nd a stable con�guration
of the system; since this is not physically possible, we will force the
system to be stable. This stable con�guration is found numerically
with a code written in MATLAB in the frame of this work, using
the boundary elements method. How this is done will be explained
in chapter 1. Once the stable con�guration is reached we perform
local stability analysis in the region close to the inlet. In practice
we add small perturbations at the stable solution and look if the
con�guration remains stable or not. The method to do this will be
explained in chapter 2. From the results in the developing region
we should capture e�ects which are not taken into account when
looking only at the developed region. For example, we could �nd
that a �ow that has a convective mode in the developed region is
actually characterized from an absolute instability in the developing
region, this eventually leading to a dripping regime. On the other
hand a convective mode in the developing region could wash away an
absolute mode coming from the developed region, yielding the jetting
regime.
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Chapter 1

Base �ow calculations

1.1 The base

To perform the stability analysis we �rst need a stationary con�gu-
ration of the system, the base �ow is in fact a so called �xed point,
a base con�guration that does not change if not perturbed. In our
case we have a coaxial jet and we expect droplets formation when the
interface between the �uids touches the axis. Droplets formation is
thought to be caused from the surface tension between the two �uids
that drives the instability (ref. [1] and [2]).

In order to �nd a solution without droplets formation we neglect
the terms responsible of the instability, this will be discussed more in
detail in the next section. In �gure 1.1 we can see a base �ow obtained
numerically with the boundary elements method code developed in
this project, from this is possible to perform a local stability analysis
as it will be described in chapter 2.
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Figure 1.1: Base �ow computed with boundary element method.

Figure 1.2: Observed domain.
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1.2 Mathematical formulation of the pro-

blem

The phenomenon we want to observe allows us to do the following
simplifying hypothesis

• Reynolds number tends to 0, this means that the inertial forces
are negligible compared to the viscous forces

• Stationary �ow

• Axisymmetric �ow

• Gravity terms negligible

Considering the hypothesis, the governing equations of the problem
are the stationary Stokes and continuity equations for incompressi-
ble �ows for each �uid (domain 1 and 2, cf. �gure 1.2), neglecting
external forces:

∇Pi + µi∇2Ui = 0,

∇ ·Ui = 0, i = 1, 2

with the following boundary conditions: no slip at the wall and sym-
metry at the axis

Uz(R2) = 0, Ur(R2) = 0,
∂Uz

∂r
= 0, Ur = 0,

∂P

∂r
= 0.

The inner and outer domains are then coupled with the following
interface conditions:
continuity of tangential stress

tT (σ2 − σ1) n = 0,

where t and n are the tangential and normal unit vectors at the
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Figure 1.3: Normal and tangential unit vector to the interface.

interface (�gure 1.3) and σ is the Newtonian stress tensor

σ =

 −Pi + 2µi
∂Uzi

∂z
µi

(
∂Uzi

∂r
+

∂Uri

∂z

)
µi

(
∂Uzi

∂r
+

∂Uri

∂z

)
−Pi + 2µi

∂Uri

∂r

 i = 1, 2.

Discontinuity of normal stress due to surface tension

nT (σ2 − σ1)n = γ
1

R‖
.

Note that we use only the curvature given by the in�ection of the
interface in the meridional plane (the plane containing the axis), this
is because we want to �nd a stable solution of the system (base �ow)
and the azimuthal component 1/R⊥ causes the instability of the �ow.

What we are doing is to force the system to be stable, we will add
1/R⊥ later, together with the perturbations.
The continuity of the velocities across the interface reads:

Ur1(R0) = Ur2(R0), Uz1(R0) = Uz2(R0),

and the impermeability of the interface is

Ur − Uz
∂R0

∂z
= 0,

R0 being the position of the interface.
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Figure 1.4: Example of the computation of the velocity in (x0, y0)
with boundary integral equations.

1.3 Stokes as boundary integral equation

To treat interface problems like the one we want to analyze it is very
convenient to reformulate the governing equations of the system as
integral equations

αu(x0) = −
∮
l

G(x,x0)f(x)dl + µ

∮
l

u(x)T (x,x0)n(x)dl. (1.1)

In equation 1.1 we have the boundary integral formulation of the
Stokes equation given in [6] for a domain Ω closed from a boundary
l.

α =


0 if x0 /∈ Ω

4πµ if x0 ∈ l
8πµ if x0 ∈ Ω− l

G and T are the Green's functions for an axisymmetic domain, from
a physical point of view they propagate the information applied at
the boundaries, in terms of stresses f and velocities u, to the other
parts of the domain (n is the unit vector normal to the boundary
pointing inside the domain).
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Figure 1.5: The two di�erent domains coupled with the interface
conditions.

For example to compute the velocity in (x0, y0) in �gure 1.4 we
just have to perform an integration along the boundary l using equa-
tion 1.1 with α = 8πµ. This has many advantages, for example there
is no need to mesh the inner domain, on the other hand the nume-
rical treatment of the integral equation can be problematic in some
situations. As stated before, the implementation of this kind of equa-
tion for a problem with interface is quite straightforward, in fact we
can imagine to have two separate domains in which we want to solve
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Stokes equations (�gure 1.5)

αu(x0) =−
∫
l1

G(x,x0)f(x)dl

+ µ1

∫
l1

u(x)T (x,x0)n(x)dl

−
∫
int

G(x,x0)f(x)dl

+ µ1

∫
int

u(x)T (x,x0)n(x)dl,

(1.2)

βu(x0) =−
∫
l2

G(x,x0)f(x)dl

+ µ2

∫
l2

u(x)T (x,x0)n(x)dl

−
∫
int

G(x,x0)f(x)dl

+ µ2

∫
int

u(x)T (x,x0)n(x)dl.

(1.3)

For these two domains we have the integral equations, 1.2 and 1.3,
respectively. Summing 1.2 and 1.3 and taking into account the con-
tinuity of the velocities and the discontinuity of the normal stress at
the interface ∆f = f2 + f1 = γ(1/R‖), we obtain

(α + β)u(x0) =−
∫
l1+l2

G(x,x0)f(x)dl

+ µ1

∫
l1

u(x)T (x,x0)n(x)dl

+ µ2

∫
l2

u(x)T (x,x0)n(x)dl

−
∫
int

G(x,x0)∆f(x)dl

+ (µ2 − µ1)

∫
int

u(x)T (x,x0)n(x)dl,

(1.4)
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where

α + β =



0 if x0 /∈ Ω1 + Ω2

4πµ1 if x0 ∈ l1
4πµ2 if x0 ∈ l2
8πµ1 if x0 ∈ Ω1 − l1
8πµ2 if x0 ∈ Ω2 − l2
4π(µ1 + µ2) if x0 ∈ interface.

The signs in equation 1.4, in the part regarding the interface, come
from having considered positive the normal to the interface pointing
inside the domain 2 (�gure 1.5). Once the governing equation is
determined, we impose the boundary conditions in order to close the
problem. In every point of the domain we have four variables, stresses
and velocities in the axial and radial direction, in every point of the
boundary we impose two of them. Looking at �gure 1.2 we impose

• no slip condition at wall

• uniform normal stress and zero radial velocity at the outlet

• bi-Poiseuille axial velocity and zero radial velocity at the inlet

there is no need to impose anything on the axis because the Green's
functions already take in account the axisymmetric character of the
problem.

1.4 Numerical method

In this section it is explained how the integral equation 1.4 is solved
numerically. In �gure 1.6 we can see how we discretize the boundaries.
The position of the interface in the �gure 1.6 is a guess position from
which we start the calculation, what we do is to �nd the velocities in
the interface nodes and move them with these velocities after having
�xed a ∆t.
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Figure 1.6: Discretization of the problem.

This process is carried out until the velocities in these nodes sati-
sfy the interface condition of impermeability, velocity normal to the
interface equal to zero (very small in our discretized case). In �gure
1.7 we see an example of evolution of the interface after a few it-
erations. This approach is very good from a physical point of view,
because it uses a physical criterion to move the interface, on the other
hand we must be very careful because of its explicit nature.

In fact, if we take too high ∆t the information given from one
node is moved too far (moving the node itself with its velocity) and
this gives rise to numerical oscillations. The nodes distribution is
done with the aim to have a �ner mesh where we have discontinuous
changes in viscosity (where the interface touches inlet and outlet) and
where we have a change in the boundary condition imposed (corner
points). We also have a higher density of nodes at the interface close
to the inlet, where the interface will bend more and the computation
of the curvature will need to be more accurate. In every node in
�gure 1.6 a six points Gauss integration of the Green's functions is
performed, assuming stresses and velocities constants (cf. �gure 1.8).
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Figure 1.7: Iterative process to �nd the interface position.

Figure 1.8: Six points Gauss integration for every node.
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Figure 1.9: Green's function behavior around the singularity.

Hence on the single node we have∫ b

a

G(x,x0)f(x)dl ≈ fab
∫ b

a

G(x,x0)dl ≈ fab
6∑

i=1

G(xi,x0)wi,

where wi are the Gauss weights associated to the di�erent Gauss
points. What we just described is the standard treatment of the
integration around a node but when x→ x0 we have to do something
di�erent. In that case in fact the Green's functions exhibit a singular
behavior. Let's take a look at the Green's functions more in detail:

G =

(
Gxx Gxy

Gyx Gyy

)
,Tx =

(
Txxx Txxy
Txyx Txyy

)
,Ty =

(
Tyxx Tyxy
Tyyx Tyyy

)
.

Except for Gxx and Gyy, all the other components have a qualitative
behavior like the function in �gure 1.9 around the singularity in x =
x0. In these cases the error we introduce integrating on the Gauss
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Figure 1.10: Green's function behavior around the singularity.

point is zero because the values of the integrals on the right and on
the left of the singularity are equals with opposite signs. For Gxx and
Gyy the approach is di�erent, in fact they have a behavior like that
illustrated in �gure 1.10, and this creates an important problem in
term of accuracy of the numerical integral, because the contribution
to the integral of the interval between the closer Gauss point to the
singularity and the singularity itself is not taken in account. Let's
look at the analytical expression of Gxx where x = (x, r) and x0 =
(x0, r0)

Gxx(x,x0) =
4r√

(x− x0)2 + (r + r0)2

(
F +

(x− x0)2

(r − r0)2
E

)
,

The term that goes to in�nity is F , what we do is to use a local
analytical expression for it, in [6] is proposes

F ≈ ln |x− x0|+ ... E ≈ 1 + ...

16



Taking the �rst order expansion we obtain the local approximation

Gxx(x,x0) ≈ −2 ln |x− x0|+ 1, (1.5)

since 1.5 is analytically integrable, we can write∫ b

a

Gxx(x,x0)dl =

∫ b

a

(Gxx(x,x0) + 2 ln |x− x0|+ 1)dl+∫ b

a

(−2 ln |x− x0|+ 1)dl =∫ b

a

(Gxx(x,x0) + 2 ln |x− x0|+ 1)dl

+
[
− 2|x− x0| ln |x− x0|+ 3|x− x0|

]b
a
.

In this way we subtract the diverging part from the numerical integral
and add it in an analytical form, keeping a good accuracy. Now
that we have the integrals of the Green's functions for every nodes,
we perform a numerical integral of the entire boundary l using the
rectangle method. If we have N nodes we obtain∮

l

G(x,x0)f(x)dl ≈
N∑

n=1

fn

( 6∑
i=1

G(xi,x0)wi

)
n

.

This leads to a linear problem (2N unknowns in 2N equations) that
once solved provides the velocities and the stresses on the boundaries
and on the interface. These results are used as boundary conditions
to run a FreeFem [7] simulation using the �nite elements method.
We have chosen this approach because it would have taken too long
(in the frame of this project) to have access to all the quantities
we need to perform local stability analysis (stress tensor gradient)
with the boundary elements method. On the other hand with the
boundary elements method it is much easier to �nd the interface
position, in �gure 1.11 we can see a convergence study on the error
on the interface position in the fully developed region computed with

17
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Figure 1.11: Convergence study.

Figure 1.12: FreeFem mesh for domain 1 and 2.
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Figure 1.13: Zoom of FreeFem mesh close to the inlet for domain 1
and 2.

the boundary elements method, compared to the analytical solution.

FreeFem computations have been carried on by Edouard Boujo a
former Phd student at LFMI-EPFL; in these computations domain 1
and 2 are computed separately like two di�erent �ows, in �gure 1.12
we can see the mesh in FreeFem based on the domain con�guration
found with the boundary elements method, imposing the velocities
as boundaries conditions, in �gure 1.13 we may notice how the mesh
is �ner close to inlet where our study is focused. In this way we �nd
the pressure �eld (�gure 1.14), axial and radial velocities �elds (�gure
1.15 and 1.16) in all the domain and we obtain all the quantities we
need to perform local stability analysis.

19



Figure 1.14: Pressure �eld for domain 1 and 2.

Figure 1.15: Axial velocity �eld for domain 1 and 2.

Figure 1.16: Radial velocity �eld for domain 1 and 2.

20



Figure 1.17: Interface position for di�erent �ow rate ratio, λ = 0.6,
Ka = 10.

Figure 1.18: Interface position for di�erent viscosity ratio, Q = 0.5,
Ka = 10.

1.5 Results from the base �ow calculations

The problem is treated in function of three dimensionless numbers:
the �ow rate ratio, the viscosity ratio and the capillary number

Q =
Q1

Q2

, λ =
µ1

µ2

, Ka =
∂zpR

2
2

γ
.

Here are reported some �ow con�guration obtained with the bound-
ary elements method code previously mentioned. As for the analyti-
cal description we can notice how the interface position at the outlet
varies when we change �ow rate and viscosity ratios. Increasing the
�ow rate and the viscosity ratio will move the interface toward the
wall and vice versa, we can observe this behavior in �gure 1.17 and
1.18. The duration of the calculations is very dependent on the value
of the surface tension and on the velocity of the �ow; these parame-
ters are taken into account with the capillary number. The larger the
pressure gradient is the more the velocity is high and the movement

21



of the interface is fast; then the calculation is fast. Opposite behavior
is found when the surface tension is large, because this tends to make
the computation numerically unstable.
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Chapter 2

Local linear stability analysis

2.1 How does it work

The aim of the stability analysis is to understand if a certain physical
con�guration is stable when we apply small perturbations on it. The
con�gurations to which we are going to add perturbations are called
�xed points, this means that they wouldn't change their state if not
perturbed. One common example of stable and unstable con�gura-
tion is the ball at the bottom of the valley or on the top of a mountain
(�gure 2.1). In the �rst case if we move the ball of an in�nitesimal
space (small perturbation), the ball will return in the initial position
after an oscillation around the �xed point. In the second case the

Figure 2.1: Stable and unstable con�gurations.
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Figure 2.2: Physical con�guration, in blue velocities pro�le computed
with the MATLAB code developed in the project.

ball will start to fall down until it reaches a valley (another stable
solution).

In our case the �xed point is a stationary and stable solution (base
�ow) of the �ow we are considering. What we want to understand
is if this �ow maintains its con�guration once it has been perturbed.
Taking small perturbations of pressure, velocities and interface posi-
tion compared with the order of magnitude of the quantities of the
base �ow, it is possible to linearize the governing equations for the
perturbations around the �xed point (base �ow) and look for their
behavior around it.

When the stability analysis is performed on a �ow which is con-
sidered completely developed, a local stability analysis is being per-
formed. In our case we will consider a coaxial jet, we will perform this
kind of analysis in di�erent sections of the developing region, taking
each time the velocity pro�le of the section we are studying (�gure
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2.2). We are thus doing a "local" analysis of a (mildly) non-parallel
�ow.

2.2 Mathematical formulation of the pro-

blem

The assumptions of the local analysis lead to some important simpli-
�cations such as

Ur = 0,
∂

∂z
= 0,

from a physical point of view this means that the radial velocity
is very small everywhere and the evolution of the �ow in the axial
direction is slow compared to the wavelength of the perturbation.
As it was stated in the previous section, small perturbations will
be summed to the quantities of the unperturbed �ow, the base �ow
(capitol letters for the base �ow quantities). That is

Ūz

Ūr

P̄
R̄

 =


Uz + εuz
0 + εur
P + εp
R0 + εη

 with ε� 1.

Replacing the unperturbed quantities with the perturbed ones in the
governing equations it is found

r : −∂P
∂r
− ε∂p

∂r
+ µ

[
1

r

∂

∂r

(
rε
∂ur
∂r

)
+ ε

∂2ur
∂z2

− εur
r2

]
= 0,

z : −∂P
∂z
− ε∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂Uz

∂r
+ rε

∂uz
∂r

)
+
∂2Uz

∂z2
+ ε

∂2uz
∂z2

]
= 0,

ε
∂ur
∂r

+ ε
ur
r

+
∂Uz

∂z
+ ε

∂uz
∂z

= 0.

Canceling the part verifying the governing equations for the base �ow
and taking only the terms of order ε, we reach the linearized equation
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for the perturbations

r : −∂p
∂r

+ µ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

]
= 0,

z : −∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

]
= 0,

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0.

In the same way we obtain the linearized boundary conditions

no slip at the wall: uz(R2) = 0, ur(R2) = 0,

symmetry on the axis: ur(0) = 0,
∂uz
∂r

∣∣∣
0

= 0,
∂p

∂r

∣∣∣
0

= 0.

For the linearized interface conditions we have to consider the pertur-
bation of the interface itself, than the conditions should be imposed
at R0 + εη.

Let's see how these conditions should be applied, for example for
the continuity of axial velocity

Uz1(R0 + εη) + εuz1(R0 + εη) = Uz2(R0 + εη) + εuz2(R0 + εη). (2.1)

The problem is that from the computation of the base �ow we don't
know the position of the perturbed interface. We can however carry
out a Taylor expansion around R0, the unperturbed interface point,
to extract the quantities in the perturbed location (�gure 2.3). Let's
see an example for a generic function f

f(R0 + εη) = f(R0) +
∂f

∂r

∣∣∣
R0

εη.

In our case we obtain, for the continuity of the axial velocity

Uz1(R0 + εη) + εuz1(R0 + εη) =Uz1(R0) +
∂Uz1

∂r

∣∣∣
R0

εη

+ εuz1(R0) +
∂uz1
∂r

∣∣∣
R0

ε2η,
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Figure 2.3: "Flattening" hypothesis.

and similarly for the outer domain. Replacing in 2.1 and neglecting
the terms which satisfy the base �ow interface conditions and the
terms of order ε2 and smaller, we have:

uz1(R0) +
∂Uz1

∂r

∣∣∣
R0

η = uz2(R0) +
∂Uz2

∂r

∣∣∣
R0

η.

Following the same process we come to the other linearized interface
conditions,
the continuity of radial velocities

ur1(R0) +
∂Ur1

∂r

∣∣∣
R0

η = ur2(R0) +
∂Ur2

∂r

∣∣∣
R0

η,

that becomes ur1(R0) = ur2(R0) because Ur = 0 everywhere.
The continuity of the tangential stress reads:

tT [(σ2 + εe2)− (σ1 + εe1)]n = 0,

where e is the Newtonian stress tensor for the perturbation and n
and t are the perturbed normal and tangential unit vectors to the
interface (�gure 2.3)

n =

(
− ∂η

∂z
, 1

)T

, t =

(
1 ,

∂η

∂z

)T

,
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we then come to write:(
µ2
∂2Uz2

∂r2
−µ1

∂2Uz1

∂r2

)
η+µ2

(
∂uz2
∂r

+
∂ur2
∂z

)
−µ1

(
∂uz1
∂r

+
∂ur1
∂z

)
= 0,

The balance of normal stress reads:

nT [(σ2 + εe2)− (σ1 + εe1)]n = γ

(
1

R̄‖
+

1

R̄⊥

)
,

that �nally leads to(
∂P1

∂r
− ∂P2

∂r

)
η + 2

(
µ1
∂Uz1

∂r
− µ2

∂Uz2

∂r

)
∂η

∂z
+ p1 − p2

−2µ1
∂uz1
∂r

+ 2µ2
∂uz2
∂r

= −γ
(
η

R2
0

+
∂2η

∂z2

)
.

Finally, the kinematic interface condition is:

∂η

∂t

∣∣∣∣
R0

= ur1(R0)− U int
z

∂η

∂z

∣∣∣∣
R0

.

The unknowns of the problem are than substituted with the modal
expansion

ur = ûr(r)e
i(kz−ωt), uz = ûz(r)e

i(kz−ωt),

p = p̂(r)ei(kz−ωt), η = η̂ei(kz−ωt).

Writing the unknowns in this way we split the radial evolution of the
perturbations and the axial and temporal evolutions of the perturba-
tions, the latter are included in the exponential term.

What we will do is to perturb the system in the space along the
axial direction, choosing a certain wavelength, trough k and see how
it will react in time, looking at the ω we will �nd. More in detail
we set a linear system containing the discretized Stokes equations for
domain 1 and 2 coupled with the interface condition equations. The
system has the following form:

Aϕ = 0,
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where ϕ is the unknowns vector

ϕ =

(
ûr1 ûz1 p̂1 ûr2 ûz2 p̂2 η̂

)T

,

and A is the matrix of the coe�cients of the linear system, which we
can write schematically as:

A =

[Domain 1] [0]
[0] [Domain 2]

[interface conditions]


This system has non trivial solution if and only if det(A) = 0; once
k is �xed, the previous condition leads to an eigenvalue problem for
ω. We can then �nd the complex parameter that determines the
temporal evolution of the perturbations

ω = ωr + iωi.

From the way in which the modal expansion is formulated, the com-
plex part of ω will give the temporal evolution of the perturbation,
i.e. its growth rate, the real part will give the temporal frequency of
the perturbation.

2.3 Numerical method

In this project, the system shown in the previous section is solved
numerically with a in-house MATLAB code using a spectral method.
The code, �rst developed by Francesco Viola (former Phd student
at the LFMI-EPFL) to perform stability analysis on �ows at high
Reynolds number, has been adapted for problems with interfaces
at low Reynolds numbers. Replacing the unknowns of the problem
with their modal expansion we obtain, for a function f(r, z, t) =
f̂(r)ei(kz−ωt)

∂f

∂z
= f̂(r)ikei(kz−ωt),

∂f

∂t
= −f̂(r)iωei(kz−ωt),

∂f

∂r
=
∂f̂

∂r
ei(kz−ωt),
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this leads to a system of ODEs in r. The governing equation are
modi�ed as follow:
Stokes equation

r : µi

(
1

r

dûrj
dr

+
d2ûrj
dr2

− ûrik2 −
ûrj
r2

)
− dpj

dr
= 0,

z : µi

(
1

r

dûzj
dr

+
d2ûzj
dr2

− ûzjk2
)
− ikpj = 0,

mass continuity

ûrj
r

+
dûrj
dr

+ ikûzj = 0, j = 1, 2

impermeability of the interface

−iωη̂ = ûr1 − U int
z kzη̂,

no slip condition at the wall

ûr2(R2) = 0, ûz2(R2) = 0,

symmetry condition at the axis:

ûr1(0) = 0,
∂ûz1
∂r

∣∣∣∣
0

= 0,
∂p̂1
∂r

∣∣∣∣
0

= 0,

continuity of the velocity at the interface

ûr1(R0) = ûr2(R0),

ûz1(R0) +
∂Uz1

∂r

∣∣∣
R0

η̂ = ûz2(R0) +
∂Uz2

∂r

∣∣∣
R0

η̂,

continuity of tangential stress(
µ2
∂2Uz2

∂r2
−µ1

∂2Uz1

∂r2

)
η̂+µ2

(
∂ûz2
∂r

+ikûr2

)
−µ1

(
∂ûz1
∂r

+ikûr1

)
= 0,
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Figure 2.4: Chebyshev polynomials of di�erent degree.

balance of normal stress(
∂P1

∂r
− ∂P2

∂r

)
η̂ + 2

(
µ1
∂Uz1

∂r
− µ2

∂Uz2

∂r

)
ikη̂ + p̂1 − p̂2

−2µ1
∂ûz1
∂r

+ 2µ2
∂ûz2
∂r

= −γ
(

1

R2
0

− k2
)
η̂.

To perform the derivatives the domain is discretized in the radial
direction, thus every ODE become a system of linear equation. To
ensure a good accuracy without high computational cost the code
employs Chebyshev polynomials.

The nodes are determined from the roots of the Chebyshev poly-
nomial, they are as much as the degree of the polynomial. In �gure
2.4 we can see Chebyshev polynomial of di�erent degrees. Using this
kind of discretization, every node gives information to all the others.
The computation of the derivate of a generic function f will be given
by the product between a full matrix times the vector containing the
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Figure 2.5: Fitting the nodes in the physical domain.

values of f in the nodes.
f ′1
f ′2
...
f ′n

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



f1
f2
...
fn


The main advantage of this method is a really fast convergence (expo-
nential if the function is smooth), this makes the method convenient
even if we have fully populated matrices. A drawback of the spec-
tral collocation method is the fact that the distribution of the nodes
is determined from the polynomials and it is not straightforward to
modify it.

In our code we have just changed the starting and ending point
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of the polynomial (previously de�ned between −1 and 1) performing
a linear mapping (�gure 2.5) to �t the physical domain we had to
analyze. Calling s the original independent variable of the Cheby-
shev polynomial and R0 the position of the interface, the physical
coordinate is for the domain 1 and 2 respectively

r1 =
s+ 1

2
R0, r2 = R0 + (R2 −R0)

s+ 1

2
.

From this change of coordinate also the derivatives vary:
�rst derivatives

∂f

∂r1
=
∂f

∂s

∂s

∂r1
=
∂f

∂s

2

R0

,

∂f

∂r2
=
∂f

∂s

∂s

∂r2
=
∂f

∂s

2

R2 −R0

,

second derivatives, taking in account that s is a linear function of r

∂2f

∂r21
=

∂f

∂s∂r1

∂s

∂r1
+
∂f

∂s

∂2s

∂r21
=
∂2f

∂s2

(
∂s

∂r1

)2

=
∂2f

∂s2
4

R2
0

,

∂2f

∂r22
=
∂2f

∂s2
4

(R2 −R0)2
.

In �gure 2.6 we can see a study on the convergence of the method that
considers the error on the maximum value of ωi compared with the
analytical solution in the completely developed region. This demon-
strates that a resolution with 20 Chebyshev points (for each domain)
is perfectly adequate for our purpose. The linear system is �nally
structured in the following way

[Stokes r direction]1 0 0
[Stokes z direction]1 0 0

[Continuity]1 0 0
0 [Stokes r direction]2 0
0 [Stokes z direction]2 0
0 [Continuity]2 0

impermeability of the interface





[ûr1 ]
[ûz1 ]
[p̂1]
[ûr2 ]
[ûz2 ]
[p̂2]
η̂


= 0.
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Figure 2.6: Convergence study.

The rows in squared bracket are the ones that contain derivatives in
the radial direction, each of those is actually formed from as many
lines as the number of nodes. The �rst and last lines of these sections
contain the boundary and interface conditions. In order to have a
non trivial solution the determinant of the matrix is set equal to zero
leading to an eigenvalue problem to identify ω.

2.4 How to look at the results

To better treat the problem, we use the same adimensionalization as
in [5]:

Q =
Q1

Q2

, λ =
µ1

µ2

, Ka =
−∂zpR2

2

γ
, k̃ = kR1, ω̃ =

16ωµ2R2

γ
.

As function of Q, λ and Ka it is possible to uniquely determine
the shape of the interface and the velocity at the interface, we can
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Figure 2.7: Interface position for Q = 0.7, λ = 0.5, Ka ≈ 1, R1 = 0.5.

thus study the problem in function of the independent dimensionless
variable k̃ and dependent variable ω̃.

From the numerical results in �gure 2.8, we can observe that ω̃
has always the same shape also in di�erent sections, that is also the
shape of the analytical form found in [5] in the fully developed region:

ω̃ = αk̃ + iA

((
k̃

b

)2

−
(
k̃

b

)4)
.

The di�erence in our case is that A, b, and α, here constants once
Q, λ and Ka are chosen, depend on the axial coordinate at which we
perform the analysis,

ω̃(z) = α(z)k̃ + iA(z)

((
k̃

b(z)

)2

−
(

k̃

b(z)

)4)
.

Taking the base �ow con�guration in �gure 2.7, we can see the nu-
merical results for di�erent axial coordinates in �gure 2.8. Having
noticed this similarity, we follow the same criterion used [5] to un-
derstand if the regime is convective or absolutely unstable (cf. �g
2.9), and than if we expect to have jetting or dripping regime. In
fact we can �nd the back velocity v− and front velocity v+ of the
perturbation imposing

v =
ω̃i

k̃i
,

∂ω̃i

∂k̃r
= 0, v =

∂ω̃i

∂k̃i
,
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Figure 2.8: Real and imaginary part of ω̃ for Q = 0.7, λ = 0.5,
Ka ≈ 1, R1 = 0.5.
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Figure 2.9: Wave packets propagating downstream and upstream
respectively.

this criterion leads to

v± = α(z)± A(z)

(√
7 + 5

12b(z)2
−
√

7 + 5

36b(z)4

)√
24b(z)2√

7− 1
.

We are interested in the back velocity v−, because if it is positive
the wave packet is washed away from the �ow, if it's negative the
perturbation can go upstream and propagate toward the inlet region
leading to dripping regime (�gure 2.9). Let's see an example of v−
in function of the axial coordinate (�gure 2.10) We can observe that
close to the inlet we have an absolute regime, this is physically co-
herent because at the inlet the interface velocity is zero and then the
perturbation can easily go upstream.

For this reason we will always expect an absolutely unstable region
close to the inlet because the velocity at the interface we will not be
high enough to wash the perturbation away. This is why we put
another restriction for the instability to be absolute: we say that the
length of the absolute region LABS, has to be long enough to allow
the growth of the perturbation. Thus the minimum wavelength of
the perturbation λmin must be shorter than the length of the absolute
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Figure 2.10: Regime of the instability for Q = 0.7, λ = 0.5, Ka ≈ 1,
R1 = 0.5.

region
LABS > λmin.

We should de�ne λmin with the frequency corresponding to the ab-
solute mode of the perturbation, however we can de�ne in �rst ap-
proximation

λmin =
2π

kcut off
.

In the example in �gure 2.10 we have LABS ≈ 0.125, much shorter
that λmin, and in this case, an absolute instability is not expected.
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Chapter 3

Results

3.1 Axial dependency of the results

In this chapter we will present the di�erences in the results of the local
stability analysis computed in the region close to the inlet, compared
with the results found for the fully developed �ow. We also com-
pare the results to the analytical solutions and experimental data
presented in [5]. Taking the �ow con�guration in �gure 3.1, we can
observe the strong dependence of ω̃ on the axial coordinate when we
have a considerable change of interface position between inlet and
fully developed �ow. In fact, in this case we have a position of the
interface around 0.5 (adimensional unit length) at the outlet and 0.1
at the inlet. Looking at �gure 3.2, we notice the di�erent behavior of

Figure 3.1: Interface position for Q = 0.7, λ = 0.5, Ka = 1, R1 = 0.1.
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Figure 3.2: Real and imaginary part of ω̃ for Q = 0.7, λ = 0.5,
Ka = 1, R1 = 0.1.
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Figure 3.3: Regime of the instability for ω̃ for Q = 0.7, λ = 0.5,
Ka = 1, R1 = 0.1.

both real and imaginary part of ω̃ at di�erent sections. This under-
lines the fact that it is indeed important to analyze the developing
region because it could give quite di�erent results from the region
where the �ow is fully developed. In �gure 3.3 we observe that the
regime of the instability is convective everywhere in this case since the
velocity of the upstream front of the wave packet is always positive.

3.2 Comparison with previous studies

Here we analyze a case that in the analytic solution proposed in [5]
is on the threshold between absolute and convective instability (the
con�guration is shown in �gure 3.4). In �gure 3.5 we can see the blue
point, that identify the case we analyze, overlapped to the line that
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Figure 3.4: Interface position for Q = 0.5636, λ = 0.2, Ka = 1,
R1 = 0.2.
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Figure 3.5: Absolute and convective regions in the (x,Ka) plane
found analytically in [5].
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Figure 3.6: Real part of ω̃ for Q = 0.5636, λ = 0.2, Ka = 1, R1 = 0.2.

gives the threshold between absolute and convective region found
in [5]. This is a really interesting situation to observe because we
can understand if our model gives a more convectively or absolutely
unstable solution with respect to the analytical solution cited before.

In �gure 3.6 and 3.7 the real and complex part of ω̃ are shown,
and from these the nature of the instability can be inferred (cf. �g.
3.8 where results at di�erent sections z are reported). In �gure 3.9
we can see the eigenfunctions corresponding to the maximum value
of v− in the developing region and to the fully developed region. To
compare the results shown in 3.8 with the analytical solution we have
to look at the fully developed �ow, that corresponds to the v− values
on the right of the graph. Here we can notice a clearly convective be-
havior, and this agrees well with the experimental results in [5], where
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Figure 3.7: Imaginary part of ω̃ for Q = 0.5636, λ = 0.2, Ka = 1,
R1 = 0.2.
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Figure 3.8: Regime of the instability for ω̃ for Q = 0.5636, λ = 0.2,
Ka = 1, R1 = 0.2.
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Figure 3.9: Eigenfunctions for z = 0.3 and z = 3.5.
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Figure 3.10: Experimental results (gray symbols for dripping, black
symbols for jetting) and analytical prediction (absolute to the left of
the line, convective to the right of the line) showed in [5] in the plane
de�ned from the inner and outer �ow rate (Qi, Qe).
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Figure 3.11: Droplets formation in an intermediate regime between
dripping and jetting, experimental study presented in [5].

the experimental data give jetting regime (convective), whereas the
analytical solution indicates an absolutely unstable behavior. In �-
gure 3.10 we can notice that the di�erences between experimental
data and analytical solutions are signi�cant, considering that a loga-
rithmic scale is used.

It is also of great interest the peak for v− that we �nd in the
developing region; since this value is higher then the value found for
the fully developed region, we could expect a positive v− even if it
is negative in the fully developed region. This particular behavior of
v− (observed both in �g. 3.3 and �g. 3.8) could explain why in some
cases the droplets form neither at the inlet nor in the fully developed
region, but in the middle (cf. �g. 3.11). It is possible that the
disturbance moves upstream from the fully developed region toward
the inlet, and this movement would stop when v− changes sign.
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Conclusions and future

developments

3.3 Conclusions

The tool developed in this project makes possible to perform local
stability analysis on a coaxial jet for di�erent axial coordinates, from
the inlet to the fully developed region. What has been observed
is the regime (absolute or convective instability) of di�erent �ows
at di�erent sections in order to determine whenever the system will
give rise to droplets formation at the inlet (dripping) or in the fully
developed region (jetting).

The study has the purpose to improve our understanding of the
results obtained in [5], for the transition between absolute and con-
vective regime. To do that we have focused our attention on values
of the parameters governing the problem, for which the �ow is close
to threshold between absolute and convective regime. Doing this
we have been able to have a good comparison between our model,
the analytical solutions and the experimental results presented in [5].
The results found are in good agreement with the experimental data;
in addition they provide a basis for a better understanding of the
phenomena going on in the developing region of the �ow.
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Figure 3.12: Hypothesis on the behavior of the parameter v− in the
case of a mixed absolute and convective regime, v− determines the
absolute (when is negative) or convective (when is positive) regime
of the �ow.
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3.4 Future developments

The �rst attempt to improve these results would be to �nd a �ow
that exhibits a convective regime and absolute regime together, one
in developing region and the other in the fully developing region (cf.
�g. 3.12). This case would be of great interest in justifying the
transition between dripping and jetting.

The following step would be to perform a global stability analy-
sis, in order to take into account the variation of the system in the
axial direction. This is probably the best theoretical tool to analyze
this phenomenon and remains the main idea to follow in a possible
continuation of this project.
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