
UNIVERSITÀ DEGLI STUDI DI GENOVA
SCUOLA POLITECNICA

DIME
Dipartimento di Ingegneria Meccanica, Energetica,

Gestionale e dei Trasporti

TESI DI LAUREA MAGISTRALE
IN INGEGNERIA MECCANICA - ENERGIA E AERONAUTICA

Implementation of a Surrogate Model in CEASIOMpy
using a Multi-Fidelity strategy for aerodynamic coefficients

prediction

Relatori:
Chiar.mo Prof. Alessandro Bottaro

Dott. Ing. Jan B. Vos

Dott. Giacomo Benedetti Allievo:

Giacomo Gronda

Marzo 2025

Sommario

Questa tesi esplora l’applicazione di algoritmi di Machine Learning alle simulazioni CFD,
con particolare attenzione allo sviluppo, test e validazione di due nuovi moduli per il soft-
ware CEASIOMpy, sviluppato e mantenuto da Airinnova e CFS Engineering. I moduli con-
sentono l’addestramento e l’uso di modelli surrogati basati su una strategia Multi-Fedeltà
per la previsione di coefficienti aerodinamici chiave, fondamentali nella valutazione delle
prestazioni aerodinamiche degli aeromobili. Il lavoro si inserisce nella fase preliminare
della progettazione aeronautica, in cui numerose configurazioni con molteplici parametri
sconosciuti devono essere analizzate. Tradizionalmente, la valutazione di queste configu-
razioni richiede centinaia di test in galleria del vento e migliaia di simulazioni CFD ad alta
e bassa fedeltà, con costi computazionali elevati. Il modello surrogato sviluppato in questa
tesi mira a ridurre tale onere computazionale, fornendo approssimazioni accurate a basso
costo dei modelli ad alta fedeltà in funzione delle variabili di progetto. Il nuovo modulo si
integra facilmente con i tool già esistenti di CEASIOMpy, in particolare con PyAVL, GMSH
e SU2Run, elementi chiave per l’impostazione e l’esecuzione delle simulazioni CFD. Un
aspetto innovativo del lavoro è l’implementazione di un approccio Multi-Fedeltà che sup-
porta più livelli di dati a bassa fedeltà, aumentando la flessibilità e l’adattabilità del pro-
cesso di modellazione surrogata. La tesi inizia inquadrando il problema e presentando
un’analisi approfondita dello stato dell’arte. Successivamente, descrive la progettazione e
l’implementazione del modulo, illustrandone i principi e il funzionamento. L’approccio
Multi-Fedeltà combina l’efficienza delle simulazioni a bassa fedeltà con la precisione di
quelle ad alta fedeltà, sfruttando tecniche avanzate di campionamento basate sul Design of
Experiments (DoE). Vengono analizzati e impiegati diversi metodi di campionamento per
esplorare efficacemente lo spazio degli input, garantendo che le simulazioni a bassa fedeltà
coprano un ampio dominio, mentre quelle ad alta fedeltà si concentrino nelle regioni critiche.
L’efficacia del modulo è dimostrata dalla capacità di generare modelli surrogati in grado di
prevedere con accuratezza i coefficienti aerodinamici (CL,CD, etc.) con un notevole risparmio
di risorse computazionali. La tesi si conclude con una valutazione critica dei risultati ottenuti
e con suggerimenti per sviluppi futuri, tra cui l’estensione della strategia Multi-Fedeltà a
problemi di ottimizzazione multi-obiettivo nella progettazione aeronautica.

i

Abstract

This thesis explores the application of Machine Learning algorithms to CFD simulations.
Specifically, it focuses on the development, testing, and validation of two new modules for
the Python-based software CEASIOMpy, developed and maintained by Airinnova and CFS
Engineering. The two modules enables training and usage of surrogate models based on a
Multi-Fidelity strategy to predict key aerodynamic coefficients, which are essential for eval-
uating aircraft performance. The work is situated in the context of the preliminary design
phase of aircraft, where numerous configurations with a large number of unknown parame-
ters must be analyzed. Testing these configurations traditionally requires hundreds of wind
tunnel experiments and thousands of high and low-fidelity CFD simulations, which are com-
putationally expensive. The surrogate model developed in this thesis aims to reduce the
computational burden by providing low-cost yet accurate approximations of full-order mod-
els across different values of design variables. The new module integrates easily with existing
CEASIOMpy tools, particularly with pyAVL, GMSH and SU2Run, key modules for setting
up and performing CFD simulations. These simulations supply the high and low-fidelity
datasets required to train the surrogate model. Notably, the Multi-Fidelity approach imple-
mented in this work allows for multiple levels of low-fidelity data, further enhancing the
flexibility and adaptability of the surrogate modeling process. The thesis begins by framing
the problem and presenting a detailed state-of-the-art analysis. It then delves into the design
and implementation of the module, explaining its underlying principles and functionality.
The Multi-Fidelity approach combines the efficiency of low-fidelity simulations with the ac-
curacy of high-fidelity ones. A critical component of this strategy is an adequate sampling
technique, based on a Design of Experiments (DoE) methodology. Some sampling methods
are described and employed to efficiently explore the input space, ensuring that low-fidelity
simulations cover a broad domain, while high-fidelity simulations are concentrated in regions
requiring greater accuracy. The effectiveness of the module is demonstrated through its abil-
ity to generate surrogate models that accurately predict aerodynamic coefficients (CL,CD,
etc.) with significantly reduced computational resources. The thesis concludes with a criti-
cal evaluation of the results and suggestions for future work, including possible extensions
of the Multi-Fidelity strategy to multi-objective optimization problems in aircraft design.

ii

Ringraziamenti

Durante questi cinque anni (e mezzo) di università sono cambiato tanto, forse del tutto. Se
ciò è successo, lo devo principalmente alle persone che mi hanno accompagnato e che ho
incontrato lungo il percorso. Non credo che in queste poche righe, scritte anche un po’ per
consuetudine, riuscirò a ringraziare tutti come vorrei. . . ma voglio almeno citare le persone
più importanti.

Ringrazio innanzitutto il professor Bottaro, che mi ha permesso di vivere questa espe-
rienza fantastica. Poi Jan, che mi ha accolto nella splendida realtà di CFS Engineering, dove
Giacomo, Roman e Alan sono sempre stati disponibili ad aiutarmi e a condividere risate du-
rante le pause caffè. Un ringraziamento speciale a Giacomo, che sin da subito mi ha guidato
in questa nuova avventura, sopportando le mie mille domande e facendomi sentire parte della
vita a Losanna.

Il gruppo dell’uni: Lollo, Vitto, Matte, Fra, Cri, Anna, Peppo. . . e tutti gli altri. Com-
pagni di crisi, di cirulle e di risate. (P.S. Non me ne vogliano gli altri, ma una menzione
d’onore va a Fra, senza il quale oggi sarei ancora davanti ad Ansys).

Ringrazio poi mamma, papà e Franci, che mi hanno sostenuto in tutto. La Flo, che
con la sua infinita pazienza e capacità di comprendermi mi ha accompagnato fino a questo
traguardo.

Infine, i miei amici (in ordine alfabetico così non faccio torti: Buba, Cevvu, Ciccio, Giò,
Lollo, Mazzo, Nico, Pie, Saffio, Senny), che non vedevo l’ora di ritrovare ogni volta che
tornavo, perché sapevo che sarebbero stati sempre lì, pronti a ridere insieme e a rendere ogni
momento speciale

iii

Acknowledgements

The work carried out in this thesis was made in the framework of the Colossus project, funded
by the European Union under Grant Agreement no 101097120. The Swiss participation in
the Colossus project was supported by the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract number 22.00609.

iv

Contents

Sommario i

Abstract ii

Ringraziamenti iii

Acknowledgements iv

1 Introduction 1
1.1 Aircraft Conceptual Design . 2
1.2 Aerodynamic Forces and Coefficients . 4
1.3 Machine Learning for Aerodynamic Forces Prediction 10

2 Machine Learning applied to CFD 12
2.1 CFD Fundamentals . 12

2.1.1 Overview of CFD Approaches and Principal Equations 14
2.1.2 Meshing . 15
2.1.3 Simulations . 18

2.2 Machine Learning Fundamentals . 20
2.2.1 Machine Learning Categories . 21
2.2.2 Machine Learning General Framework 22

2.3 Surrogate Model . 26
2.3.1 Sampling . 27
2.3.2 Regression Models . 29
2.3.3 Optimization . 31

3 CEASIOMpy 33
3.1 Modules and Architecture . 34
3.2 CPACS . 35
3.3 Using of CEASIOMpy . 36

4 Multi-Fidelity Surrogate Model in CEASIOMpy 38
4.1 SMT Library . 38
4.2 Multi-Fidelity Strategy . 40
4.3 SMTrain Module . 42
4.4 SMUse Module . 47

v

5 Application Case Study 49
5.1 Variation of Angle of Attack . 49
5.2 Variation of Angle of Attack and Mach Number 51
5.3 Complete Multi-Fidelity Model Training 55

5.3.1 Definition of the Computational Domain 56
5.3.2 Low-Fidelity Simulations . 59
5.3.3 High-Fidelity Simulations and Multi-Fidelity Model Training . . . 60
5.3.4 Visualization and Model Comparison 61

6 Conclusions and Future Developments 66

References 68

Nomenclature 71

vi

1. Introduction

During the past decades, artificial intelligence (AI) has achieved remarkable success, trans-
forming various aspects of our lives. This transformation is evident in our daily routines, as
habits evolve under the relentless advancement of AI. Interestingly, the origins of artificial
intelligence date back much earlier than many might imagine. On August 31, 1955, the term
“artificial intelligence” was coined in a proposal for a “2-month, 10-man study of artificial
intelligence.” The workshop, held a year later in July and August 1956, is widely considered
the official birthdate of this groundbreaking field [1].

After its inception, the development of AI went through periods of slow progress, as the
world had to prepare for its full potential. However, at the dawn of the 21st century, AI
made a glorious comeback, driven by emerging massive computing power, the collection of
colossal datasets (the big data phenomenon), and advances in data analytics.

Artificial intelligence has since diversified into various fields, one of the most prominent
being Machine Learning (ML). Machine learning is the field of study that enables comput-
ers to learn from data and make decisions without explicit programming. It plays a critical
role in today’s data-driven world, with applications ranging from weather forecasting to en-
ergy exploration and environmental monitoring. For instance, analyzing data collected from
satellites and sensors using ML has become essential for these tasks.

Another domain where ML has proven to be invaluable is Computational Fluid Dynamics
(CFD). CFD is a branch of fluid mechanics that uses numerical analysis and algorithms to
solve and analyze problems involving fluid flows. These simulations are performed using
computers to calculate the interaction of liquids and gases with surfaces defined by boundary
conditions [2]. The precision and accuracy of CFD solutions are directly proportional to
computational costs, making time efficiency a critical factor in their implementation.

Given the importance of achieving accurate results in the shortest possible time, CFD
naturally aligns with machine learning algorithms as a powerful ally. Machine learning can
enhance CFD by reducing computational costs while maintaining solution accuracy, enabling
engineers to explore larger design spaces and optimize processes more effectively.

This synergy forms the foundation of the present work, which focuses on the develop-
ment of a module that combines CFD results with the synthesis and predictive capabilities
of machine learning.

The objective is to create a robust tool tailored to the conceptual design phase of aircraft,
where rapid exploration of configurations and performance predictions are essential. Specif-
ically, the module constructs a surrogate model by integrating results from CFD simulations
at different fidelity levels, effectively capturing the relationship between input parameters
and aerodynamic outputs. This approach allows for a more efficient use of computational

1

resources while preserving accuracy in aerodynamic predictions.
The developed module is part of the CEASIOMpy software environment, a multidis-

ciplinary tool designed for aircraft conceptual design. Using the combination of CFD and
machine learning, this module enhances the ability to quickly explore design alternatives and
predict aerodynamic performance, providing valuable support in the early stages of aircraft
development.

1.1. Aircraft Conceptual Design

The process of aircraft design is a very complex engineering task. It involves a combination
of disciplines that must be blended to yield the optimal configuration that meets the given
requirements. This is inevitably a highly iterative procedure consisting of alternating phases
of synthesis and analysis. The integration of advanced flying control systems with aerody-
namic and structural design is a unique and vital process. Aerodynamic performance must be
balanced across the operating speed range, blended with powerplant characteristics, ensur-
ing satisfactory control and stability, while at the same time minimizing structural penalties
and subsequent increases in mass [3]. At the same time, technical aspects must be taken in
conjunction with other critical factors such as safety, financial constraints, market demands,
and environmental impact.

The entire design process benefits greatly from the advanced tools available in computer-
aided design (CAD) and computer-aided manufacturing (CAM). The design process itself,
as well as the designed configuration, evolves over time: this can be visualized through the
product fidelity curve in Figure 1.1, which highlights the key phases of the design.

Figure 1.1. Impact of design phases on aircraft life-cycle cost

2

According to widely accepted descriptions, the aircraft design process is typically divided
into three main phases:

• Conceptual Design

• Preliminary Design

• Detail Design

The goal of the Conceptual Design phase is to identify a feasible concept and optimize
it as much as possible. During this phase, a large number of potential designs are generated
and evaluated against the requirements. The focus is on exploring multiple solutions and
narrowing them down to a few promising concepts for further analysis (e.g. fig. 1.2). This
phase involves making key decisions based on limited information, which can greatly impact
the outcome of the entire project. Computer simulations are used, and initial physical models
can be built to validate ideas.

Figure 1.2. Conceptual design of family of three business jets from AGILE4.0 project [4]

The next step, known as the Preliminary Design phase, involves refining the selected con-
cept to establish its feasibility. Detailed analyses and simulations are conducted to fine-tune
the geometry while shaping all the subsystems. The aim is to finalize the design character-
istics to a sufficient level of accuracy so that the aircraft can proceed to the manufacturing
stage. At this point, multidisciplinary design optimization (MDO) becomes critical. Teams
from distinct disciplines work in a distributed environment with individually defined vari-
ables, constraints, and computational tools. This phase plays a crucial role in verifying that
the aircraft concept meets performance, safety, and cost requirements [5].

The final phase, the Detail Design phase, focuses on fully defining all components and
systems of the aircraft in intricate detail. Manufacturing documentation is produced in this

3

phase, and the tools used, while similar to earlier stages, must provide the highest possible
accuracy. Only aircraft selected for production progress to this stage.

The earliest design process is a crucial stage, which commits up to 80 per cent of the
life-cycle cost, even though these costs will not appear on financial records until much later.
Any mistakes made during the conceptual or preliminary phases can have serious conse-
quences—at best, resulting in design inefficiencies, and at worst, leading to project cancel-
lation. Due to the high level of uncertainty at this stage, improvements to the conceptual
design phase offer the greatest potential for innovation and cost savings. For this reason, the
focus of this thesis is on enhancing the conceptual design stage by developing a surrogate
model strategy. The objective is to improve the fidelity of simulation results while reducing
computational time, thereby providing an effective tool for aircraft design optimization.

1.2. Aerodynamic Forces and Coefficients

In order to model and study the performance of an aircraft, it is necessary to know why it
flies. The fundamental components of an aircraft are the wings, which are responsible for
generating the lift that enables it to fly. The wings are bodies immersed in a fluid and, since
the fluid can flow around the body, the "point of contact" is any point on the surface of the
body, Thus, the transmission or application of mechanical forces between a solid body and
a fluid occurs at every point on the surface. These forces are generated by two primary
mechanisms: pressure and shear stress distribution over the body surface.

Regardless of the complexity of the body’s shape, these two mechanisms are solely re-
sponsible for the resultant aerodynamic forces R and moments M acting on the body. The
pressure p acts normal to the surface, while the shear stress τ acts tangentially [6]. Both p

and τ have units of force per unit area (e.g., Newtons per square meter).
The net aerodynamic force R and moment M are obtained by integrating the distributions

of p and τ over the entire body surface. These forces can be decomposed into components
relative to the freestream velocity V∞, as illustrated in Figure 1.3.

4

Figure 1.3. Resultant aerodynamic force and the components into which it splits

The chord c is the linear distance from the leading edge to the trailing edge of the body.
The components are defined as:

• L: Lift, the component of R perpendicular to V∞.

• D: Drag, the component of R parallel to V∞.

Alternatively, R can be decomposed into components perpendicular and parallel to the
chord line c of the body:

• N: Normal force, perpendicular to c.

• A: Axial force, parallel to c.

The angle of attack α is defined as the angle between V∞ and c, resulting in the following
relations between the two sets of force components:

L = N cosα −Asinα, (1.1)

D = N sinα +Acosα. (1.2)

The aerodynamic forces and moments on a body result from the integration of pressure
and shear stress distributions over its surface.

5

Considering a two-dimensional body with an upper surface and a lower surface, as de-
picted in Figure 1.4.

Figure 1.4. Nomenclature for the integration of pressure and shear stress distributions over
a two-dimensional body surface

Let su and sl be the distances along the upper and lower surfaces, respectively, measured
from the leading edge. At a given point, the pressure is normal to the surface and is oriented
at an angle θ relative to the perpendicular; shear stress is tangential to the surface and is
oriented at the same angle θ relative to the horizontal. The primes on N and A denote force
per unit span. The forces due to pressure p and shear stress τ on an elemental area dS can be
expressed as follows:

On the upper surface:

dN′
u =−pu cosθ dsu − τu sinθ dsu, (1.3)

dA′
u =−pu sinθ dsu + τu cosθ dsu. (1.4)

On the lower surface:
dN′

l = pl cosθ dsl − τl sinθ dsl, (1.5)

dA′
l = pl sinθ dsl + τl cosθ dsl. (1.6)

The total normal force N and axial force A per unit span are obtained by integrating over
the entire body surface from the leading edge (LE) to the trailing edge (TE):

N′ =
∫ TE

LE
(dNu +dNl) , (1.7)

6

A′ =
∫ TE

LE
(dAu +dAl) . (1.8)

The aerodynamic moment about a reference point (e.g., leading edge) can also be derived
by integrating the contributions of pressure and shear stress. By convention, moments that
tend to increase α (pitch up) are positive, and moments that tend to decrease α (pitch down)
are negative. For example, the moment per unit span about the leading edge is given by:

M′
LE =

∫ TE

LE

[
(pu cosθ + τu sinθ)x− (pu sinθ − τu cosθ)y

]
dsu

+
∫ TE

LE

[
(−pl cosθ + τl sinθ)x+(pl sinθ + τl cosθ)y

]
dsl.

(1.9)

From Equations 1.7 and 1.8, we see that the normal and axial forces on the body are due
to the distributed loads imposed by the pressure and shear stress distributions. Moreover,
these distributed loads generate a moment about the leading edge, as given by Equation
1.9. As we can see from Figure 1.3, the resultant force should be located on the body such
that it produces the same effect as the distributed loads. The center of pressure is the point
on the body where the resultant aerodynamic force acts, and it can be computed from the
aerodynamic moment. For a given reference point, the center of pressure location xcp relative
to the chord length c is given by:

xcp =−M
L
. (1.10)

The center of pressure is particularly useful in analyzing stability and control, as it rep-
resents the point at which the aerodynamic force can be assumed to act.

These forces can be expressed in dimensionless form using aerodynamic coefficients,
which are functions of freestream conditions and reference quantities. The lift, drag, and
moment coefficients, along with the center of pressure, play a fundamental role in the study
and design of aerodynamic systems.

Dimensionless Aerodynamic Coefficients

The aerodynamic characteristics of a body are more fundamentally described by the force
and moment coefficients than by the actual forces and moments themselves.

Lift, drag, and moment depend on the density of the air ρ∞, the relative velocity V∞, the
air’s viscosity and compressibility (µ∞ and a∞, where a∞ is the speed of sound), the surface
area over which the air flows S, the shape of the body, and the body’s inclination to the flow

7

α .

L = L(ρ∞,V∞,S,α,µ∞,a∞), (1.11)

D = D(ρ∞,V∞,S,α,µ∞,a∞), (1.12)

M = M(ρ∞,V∞,S,α,µ∞,a∞). (1.13)

The aerodynamic forces and moments are often expressed in dimensionless form using
the freestream dynamic pressure q∞ and appropriate reference quantities. The freestream
dynamic pressure is defined as:

q∞ =
1
2

ρ∞V 2
∞, (1.14)

where ρ∞ is the freestream density and V∞ is the freestream velocity. Using q∞, the force and
moment coefficients are defined as follows:

CL =
L

q∞S
, (1.15)

CD =
D

q∞S
, (1.16)

CM =
M

q∞Sl
, (1.17)

where S is the reference area and l is the reference length.
The choice of S and l depends on the geometry of the body. For example, for an airfoil,

S is typically the planform area, and l is the chord length. These coefficients allow for a
consistent comparison of aerodynamic performance across different shapes and conditions.

Lift and drag coefficients play a strong role in the preliminary design and performance
analysis of airplanes: they are much more than just the conveniently defined terms discussed
so far, they are fundamental quantities, which make the difference between intelligent engi-
neering and simply groping in the dark.

Let us define two fundamental dimensionless numbers for the aerodynamics context,
namely the Reynolds and Mach numbers:

Re =
ρV L

µ
, (1.18)

M =
V
a
, (1.19)

The method of dimensional analysis (a very powerful and elegant approach used to iden-
tify governing nondimensional parameters in a physical problem) leads to the following re-

8

sult [6]. For a given body shape, we have:

CL = φ(α,Re,M∞), (1.20)

CD = ψ(α,Re,M∞), (1.21)

CM = χ(α,Re,M∞). (1.22)

The variation of the aerodynamic coefficients CL, CD, and CM with the angle of attack
α provides valuable insights into the behavior of the aerodynamic forces and moments for a
given body. These variations are critical for understanding and predicting the performance
and stability of aircraft.

For the lift coefficient CL, its variation with α follows a characteristic trend. In the linear
region of the lift curve, CL increases approximately linearly with α , as shown in Figure 1.5.
The slope of this linear portion, known as the lift-curve slope, is denoted by a0 and represents
the rate of change of CL per degree of α . Theoretical and experimental results agree closely in
this region. Notably, there exists a specific angle of attack, αL=0, at which the lift coefficient
becomes zero. For positively cambered bodies, αL=0 is negative, while for symmetric shapes,
αL=0 = 0◦.

As α increases beyond the linear range, the lift coefficient reaches a maximum value,
(CL)max, before decreasing due to flow separation. This phenomenon, known as stall, marks
the onset of nonlinear aerodynamic behavior and significantly impacts performance and con-
trol.

Figure 1.5. Sketch of a generic lift curve

The drag coefficient CD also varies with α , as depicted in Figure 1.6. For small angles
of attack, CD remains relatively low and shows a nearly parabolic relationship with CL. The
minimum drag coefficient, (CD)min, occurs at a specific angle of attack where the drag is

9

minimized. As α increases, CD rises sharply due to the growing influence of pressure drag,
which results from flow separation over the body.

Figure 1.6. Sketch of a generic drag curve

The moment coefficient CM around a specified reference point (e.g., the quarter-chord
point) provides insight into the aerodynamic stability of the body. Figure 1.7 illustrates
the variation of CM with α . Within the linear range, CM exhibits a nearly constant slope,
m0 = dCM/dα . However, as α increases and flow separation occurs, CM becomes nonlinear,
reflecting the destabilizing effects of separated flow.

Figure 1.7. Sketch of a generic moment curve

1.3. Machine Learning for Aerodynamic Forces Prediction

The design and optimization of an aircraft require the evaluation of aerodynamic forces
across a vast range of configurations. This analysis is fundamental for assessing performance
limits, ensuring safety, and improving efficiency.

10

Computational Fluid Dynamics (CFD) has revolutionized this process by reducing de-
pendence on wind tunnel testing and flight experiments. However, high-fidelity CFD sim-
ulations remain computationally expensive, especially when extensive parametric studies
are needed. Machine Learning (ML) provides an effective solution by learning complex
aerodynamic behaviors from existing datasets, significantly reducing the number of required
simulations.

By integrating ML techniques, engineers can efficiently predict aerodynamic forces such
as lift, drag, and moments, capturing the nonlinear dependencies on key flight parameters
like angle of attack, Mach number, and altitude. Additionally, ML facilitates multi-fidelity
modeling by combining data from high- and low-fidelity simulations, enhancing prediction
accuracy and optimizing computational resources.

This capability enables rapid aerodynamic assessments, making real-time design opti-
mization and flight control applications more feasible. As a result, ML is becoming an
essential tool in modern aerospace engineering, complementing traditional simulation-based
approaches.

11

2. Machine Learning applied to CFD

The potential of Machine Learning applied to CFD has already been briefly introduced in
the previous chapter. This chapter will explore the state of the art, the theory and the main
descriptive equations of both technologies. Particular attention will be paid to the software
used to run the simulations and the algorithms implemented in the python codes behind the
modules developed.

2.1. CFD Fundamentals

Computational Fluid Dynamics, usually abbreviated as CFD, is a branch of fluid mechanics
that uses numerical analysis and algorithms to solve and analyse problems involving fluid
flows. Computers are used to perform the calculations necessary to simulate the interaction
of liquids and gases with surfaces defined by boundary conditions.

CFD has evolved from a mathematical curiosity to an indispensable tool in almost every
branch of fluid dynamics, and it is fair to say that this technology has had an enormous
impact on both commercial and military aircraft design.

CFD makes it possible to model the airflow around aircraft to predict lift and drag, known
as external aerodynamics; for that and many other reasons it’s increasingly being used by in-
dustries in multi-disciplinary design and analysis of aerospace products. CFD can also sim-
ulate complex systems within the aircraft’s interior, such as cabin air circulation, to predict
air quality.

The complete CFD process is divided into many steps, for instance we can refer to Fig-
ure 2.1 and take a brief look at the five showed steps.

To be correct, before the five steps shown, a preliminary step is necessary in which the
flow problem is formulated. During this preliminary step, several questions must be an-
swered: What is the objective of the analysis? What is the easiest way to obtain those
objectives? What dimensionality of the spatial model is required? What temporal model-
ing is appropriate? (steady or unsteady), what is the nature of the viscous flow? (inviscid,
laminar, turbulent), etc... Then, the choice of approach depends on the desired fidelity of the
solution. For example, simpler methods, such as potential flow models, may be sufficient
to capture basic aerodynamic characteristics in inviscid and irrotational flows. In contrast,
higher-fidelity methods, such as the Euler equations or Reynolds-Averaged Navier-Stokes

(RANS) equations, are necessary to account for compressibility effects or the influence of
viscous forces and turbulence.

12

Figure 2.1. General Steps to perform CFD Analysis

After formulating the flow problem, the first step is to model the geometry, usually using
CAD software. Simplifications balance accuracy with computational effort, while the flow
domain is defined with boundaries aligning to the body or open for flow entry and exit. The
design must match the generation of the grid and its topology.

The second step is meshing, which consists of discretizing the domain into a grid, where
the governing fluid equations are solved within each cell. To improve computational effi-
ciency, the meshing process can be performed in parallel by distributing different cell groups
across multiple processors, whether on a high-performance computing (HPC) system or a
standard multi-core architecture [7].

The third fundamental step in CFD, physics definition, involves specifying the physical
conditions and parameters for the simulation. This includes defining boundary and initial
conditions for the flow domain, selecting appropriate models (e.g., turbulence or chem-
istry), and determining the simulation strategy, such as time-marching or space-marching
approaches. Additionally, input files containing grid and flow data, along with boundary
condition information, must be prepared to ensure consistency with the simulation setup.

Then, during the solving step, the simulation runs using different possible settings, such
as interactive or batch processing, and can also be distributed across multiple processors. As
the simulation progresses, the results are monitored to check if a "converged" solution has
been reached, meaning the iterative process has stabilized.

At the end, once a converged solution is reached, the post-processing phase involves

13

extracting key flow properties such as thrust, lift, and drag from the computed flowfield.
These results can then be compared with analytical, computational, or experimental data to
assess their accuracy and validity, though validation is not always feasible in every case.

2.1.1. Overview of CFD Approaches and Principal Equations

Every CFD tool, whether commercial or open source, uses a mathematical model and numer-
ical method to predict the desired flow physics. The most common CFD tools are based on
the Navier-Stokes (N-S) equations. These equations are a set of coupled partial differential
equations that describe the relationships between velocity, pressure, temperature, density,
and the forces acting on a moving fluid:

∂ρ

∂ t
+∇ · (ρu) = 0 (Continuity Equation) (2.1)

∂ (ρu)
∂ t

+∇ · (ρuu) =−∇p+∇ · τ +Su (Momentum Equation) (2.2)

∂ (ρet)

∂ t
+∇ · (ρetu) =−∇ ·q−∇ · (pu)+ τ : ∇u+Set (Energy Equation) (2.3)

where ρ is the density, u is the velocity vector, p is the pressure, τ is the viscous stress
tensor, et is the total energy per unit volume, q is the heat flux, and Su and Set are the source
terms for momentum and energy, respectively.

The complexity of solving the N-S equations depends on the assumptions and approx-
imations applied to the flow problem. In this study, three levels of fidelity have been con-
sidered for simulation: the panel method, the Euler equations, and the Reynolds-Averaged

Navier-Stokes (RANS) equations.

Panel Methods

This approach simplifies the governing equations by assuming potential flow, where the fluid
is inviscid and irrotational. The velocity field can be expressed as the gradient of a scalar
potential φ , which satisfies Laplace’s equation:

∇
2
φ = 0 (2.4)

Panel methods are computationally efficient for predicting aerodynamic properties, such as
lift and drag, but do not capture viscous effects or rotational flows.

14

Euler Equations

The Euler equations are derived by neglecting viscous terms in the N-S equations, assuming
inviscid flow. These equations consist of the conservation of mass, momentum, and energy:

∂ρ

∂ t
+∇ · (ρ u⃗) = 0 (Continuity Equation) (2.5)

∂ (ρ u⃗)
∂ t

+∇ · (ρ u⃗⃗u)+∇p = 0 (Momentum Equation) (2.6)

∂ (ρet)

∂ t
+∇ · [(ρet + p)⃗u] = 0 (Energy Equation) (2.7)

Euler equations are suitable for capturing shock waves and flow features in high-speed
regimes but cannot model boundary layers or viscous effects.

Reynolds-Averaged Navier-Stokes (RANS) Equations

To model turbulent flows, the N-S equations are averaged over time, introducing additional
terms known as Reynolds stresses. The resulting RANS equations are:

∂ ρ̄

∂ t
+∇ · (ρ̄ ¯⃗u) = 0 (Continuity Equation) (2.8)

∂ (ρ̄ ¯⃗u)
∂ t

+∇ · (ρ̄ ¯⃗u ¯⃗u)+∇ p̄ = ∇ ·
(
τ̄ −ρ u⃗′⃗u′

)
+ ρ̄ g⃗ (Momentum Equation) (2.9)

Turbulence models, such as Spalart-Allmaras k − ε or k −ω , are introduced to close the
equations by relating Reynolds stresses to mean flow quantities. RANS provides a balance
between computational cost and accuracy, making it a standard approach for solving complex
engineering problems involving viscous flows.

2.1.2. Meshing

Mesh generation is a pre-processing step in computational fluid simulations that involves
discretizing the domain of interest into smaller elements [8]. In this process, the geometry
is divided into a collection of simple shapes, such as triangles or quadrilaterals in 2D, and
tetrahedra or hexahedra in 3D. These elements are arranged so that they share faces, edges, or
nodes at their intersections, ensuring a continuous representation of the domain. The quality
and resolution of the mesh significantly impact the accuracy and efficiency of the simulation.

The process of mesh generation can be broadly classified into two categories based on
the topology of the elements that fill the domain. These two basic categories are known
as structured and unstructured meshes. A structured mesh is defined as a set of quad or
hexahedral elements with an implicit connectivity of the points in the mesh. The structured
mesh generation for complex geometries is a time-consuming task due to the possible need of

15

breaking the domain manually into several blocks depending on the nature of the geometry.
An unstructured mesh is defined as a set of elements, commonly triangles or tetrahedra, with
explicitly defined connectivity. The unstructured mesh generation process involves two main
steps: point creation and the definition of connectivity between these points.

Flexibility and automation make unstructured meshes a favorable choice. In fact, it is
well known that they have an advantage over structured meshes when handling complex
geometries.

However, the accuracy of the solution may be lower compared to structured meshes due
to the presence of skewed elements in sensitive regions like boundary layers.

In particular, this type of mesh is not recommended for RANS simulations, as it struggles
to capture viscous effects, which involve the interaction between the fluid and walls in the
boundary layer region.

To address this issue and combine the advantages of both structured and unstructured
meshes, a common approach is hybrid mesh generation. In a hybrid mesh, the viscous region
is filled with prismatic or hexahedral cells, while the rest of the domain is discretized with
tetrahedral cells. This approach not only reduces the total number of elements compared to
a fully unstructured mesh with similar resolution but also improves the accuracy in viscous
regions due to the rectangular shape of the elements.

Since numerical simulations have proven critical for aircraft design and manufacture,
mesh quality evaluation is a very important part of the process. Unfortunately, defining
whether a mesh is good or poor quality is a very difficult task. The many meshing programs
that have been developed in recent years allow the user to vary an infinite number of proper-
ties, thickening elements, changing the shape of elements or adapting elements to the flow.
Thereby CFD professionals with experience are required to frequently check and evaluate
the current mesh quality and make timely adjustments.

What is certain is that computational time is an important factor to be taken into account.
The use of very dense meshes does not always lead to better solutions. In fact, once a
certain number of elements is reached into which the domain is divided, the solution of
the calculation does not improve significantly and the only thing that is achieved by further
increasing the number of mesh elements is to increase the time required for the calculation.
In order to find the right number of mesh elements, it is necessary to carry out what is
known as mesh independence, i.e. the study of the evolution of the performance parameters
characteristic of the case being studied as the number of elements increases.

Mesh quality is crucial in computational simulations. Several metrics help evaluate and
optimize mesh properties:

• Aspect Ratio (AR): Measures the shape quality of elements, particularly tetrahedra. It

16

is defined as:
AR =

lmax

hmin
.

A lower AR improves numerical stability.

• Orthogonality: Evaluates the angle between adjacent elements. It is given by:

cosθ =
s⃗ · n⃗
|⃗s||⃗n|

.

Higher orthogonality enhances solver convergence.

• Skewness: Measures deviation from ideal shapes. Defined as:

Skewness = 90◦−Minimum Angle.

Values above 60◦-70◦ can cause solver issues.

• Additional Metrics: Include volume and Jacobian determinant, ensuring correct ele-
ment mapping.

These criteria help improve mesh reliability in simulations.
The process of grid generation is in general extremely complex and requires dedicated

software tools to help in defining grids that follow the solid surfaces. For this thesis work,
the open-source software GMSH© was used, which is automatically installed together with
the CEASIOMpy packages. GMSH© is an automatic 3D finite element mesh generator
with build-in pre- and post-processing facilities [9]. Developed by Christophe Geuzaine and
Jean-François Remacle since 1997, GMSH© contains 4 modules: for geometry description,
meshing, solving and post-processing.

Figure 2.2. Example of an euleran mesh generated with GMSH software

In combination with the meshing module, Pentagrow© from SUMO© was used to gener-
ate the prism layer for RANS simulations. Pentagrow is a command line tool that generates

17

hybrid pentahedral-tetrahedral meshes around existing surface meshes. Prism layer is so
called because of the way in which the faces of the core mesh are projected onto the solid
boundary, resulting in prism-shaped cells. The resolution of the boundary layer requires the
grid to be clustered in a direction normal to the surface, with the distance of the first grid
point from the wall being well within the laminar sublayer of the boundary layer. For turbu-
lent flows, if a wall-resolving approach is used, the first point on the wall should have a y+

value of less than 1.0. However, for a wall-function approach, a higher y+ (typically > 30)
value is typically required.

Figure 2.3. Example of a RANS mesh generated with GMSH and Pentagrow software

2.1.3. Simulations

Once the mesh is generated, several important choices must be made before proceeding with
numerical simulations. The selection of the governing equations, turbulence model, and nu-
merical schemes significantly influences the accuracy and stability of the results. One key
decision is whether to solve the inviscid Euler equations or the viscous Navier-Stokes equa-
tions. For high-Reynolds-number flows, turbulence modeling is essential, and different ap-
proaches such as RANS (Reynolds-Averaged Navier-Stokes), LES (Large Eddy Simulation),
or hybrid methods can be employed. Additionally, boundary conditions must be carefully
defined to ensure a realistic representation of the physical problem, while grid refinement
studies help assess the sensitivity of the solution to mesh resolution.

To perform the simulations, we used the SU2© software suite from Stanford University,
which is automatically installed with the CEASIOMpy packages.

SU2© is a suite of tools written in C++ for the numerical solution of partial differen-
tial equations (PDE) and performing PDE constrained optimization. The core of the suite
is a Reynolds-averaged Navier–Stokes (RANS) solver capable of simulating the compress-
ible, turbulent flows that are representative of many problems in aerospace and mechanical
engineering [10].

18

The SU2 software package includes many tools:

• SU2 MSH: the tool for grid adaptation based on different techniques.

• SU2 CFD: the module to solve direct, adjoint, and linearized problems for the Euler,
Navier-Stokes, and Reynolds-Averaged Navier-Stokes (RANS) equation sets.

• SU2 DOT: this module calculates the partial derivative of a functional, taking into
account the variation of the aerodynamic surface.

• SU2 DEF: calculates the geometrical deformation of surfaces.

• SU2 GEO: the tool to preprocess geometrical information; it is used to compute the
geometric constraints.

• SU2 SOL: the tool that generates output files with volume and surface solutions.

One of the main benefits of SU2 is that it is an open-source software package. The
software is also well-documented and well-maintained, with a strong community of users
and developers who are constantly working to improve the software and add new features.

Using SU2, both Euler and RANS simulations were conducted. The turbulence model
(Spalart-Allmaras), CFL number, boundary conditions, and number of iterations were de-
fined in the configuration file.

Euler simulations were performed on an unstructured mesh, while RANS simulations
used a hybrid mesh with prism layers to better capture boundary layer effects. This setup
allowed for an assessment of the impact on numerical accuracy and computational cost.

Convergence criteria were carefully monitored by tracking residuals, lift and drag coef-
ficients, and other aerodynamic parameters. Mesh refinement studies were also conducted
to ensure grid independence of the results, reducing numerical errors. Additionally, post-
processing tools within SU2 were used to analyze the aerodynamic coefficients, visualize
flow fields using pressure and velocity contours, and evaluate convergence behavior through
residual plots. This ensured a comprehensive assessment of the simulation results, allow-
ing for iterative improvements in mesh quality, turbulence modelling, and solver settings to
enhance the reliability and accuracy of the numerical predictions.

19

Figure 2.4. Example of a Config File where all SU2 settings are written

2.2. Machine Learning Fundamentals

Machine learning (ML) is a specialized field within artificial intelligence (AI). While both
disciplines are closely related, they have distinct objectives: ML aims at improving systems
performance using self-learning algorithms, while AI tries to mimic natural intelligence solv-
ing complex problems and enabling decision making (although not maximizing the system
efficiency) [11]. In essence, ML focuses on enabling systems to improve autonomously
through experience, whereas AI seeks to emulate human-like cognitive processes. Arthur
Samuel, famous for developing a checkers-playing program, provided a foundational defi-
nition: "Machine learning is defined as the field of study that gives computers the ability to

learn without being explicitly programmed." Complementing this, another perspective de-
scribes ML as "the technique that improves system performance by learning from experience

via computational methods [12]."

In the context of computer systems, experience is typically represented as data. The
primary task of machine learning is to design algorithms that can process this data to build
predictive models. These models, trained on existing data, enable the system to make ac-

20

curate predictions on new, unseen observations. Thus, while computer science as a whole
studies algorithms in general, machine learning specifically focuses on the development and
refinement of algorithms capable of learning autonomously from data.

Currently, machine learning capabilities are advancing at an incredible rate, and fluid
mechanics is beginning to tap into the full potential of these powerful methods. Many tasks
in fluid mechanics, such as reduced-order modelling, shape optimization, uncertainty quan-
tification, and feedback control, may be posed as optimization and regression tasks. Machine
learning can dramatically improve optimization performance and reduce convergence time.
Moreover, it is also employed for dimensionality reduction, identifying low-dimensional
manifolds and discrete flow regimes, which significantly enhance understanding.

Artificial intelligence (AI) and machine learning (ML) have been introduced in the
aerospace industry for various applications connected to the reduction of aircraft’s envi-
ronmental impact, including data interpretation, system management, customer service or
aircraft modelling and to generate new high-fidelity databases at a reduced (economic and
CPU) cost , solving problems of optimization, flow control, or even providing optimal sen-
sors distributions for solid mechanics or aeroelasticity applications [11]

Machine learning models can also be viewed as an evolution of statistical models. Both
statistical and ML models start with a dataset, which may vary in size and sparsity, impacting
the model’s accuracy. However, the key difference lies in their objectives: statistics draws
population inferences from a sample, and machine learning finds generalizable predictive
patterns [13].

Machine learning models differ from simpler statistical models in that they do not neces-
sarily assume a specific form for the data. Instead, they are data-driven, learning relationships
directly from the data with greater flexibility. Additionally, these models can be significantly
more complex, often at the expense of interpretability. For instance, neural networks can
have multiple layers, each with varying numbers of nodes, and utilize different activation
functions [14].

These models are needed when, starting from a dataset of inputs, we aim to predict
outputs without necessarily knowing the underlying relationship. This approach is often
described as "black-box," meaning that while we do not understand how the model relates
inputs to outputs, we achieve satisfactory results, which is sufficient for our purposes. A
surrogate model is a clear example of a machine learning model, and it will be discussed in
greater detail in the following chapter.

2.2.1. Machine Learning Categories

Machine learning relies on a variety of algorithms to solve data-related problems. Data sci-
entists often highlight that there is no universal, one-size-fits-all algorithm, and the choice

21

depends on the task and the data involved. Generally, machine learning algorithms can be
categorized into three main types: supervised learning, unsupervised learning, and rein-

forcement learning.
Supervised learning involves training a model to map inputs to outputs using labeled

data, where the correct answers are provided. This approach enables the algorithm to gen-
eralize from examples to make predictions on new data. Common supervised learning algo-
rithms include regression, which predicts continuous numerical values (e.g., house prices),
and classification, which predicts discrete categories (e.g., identifying spam emails).

Unsupervised learning, in contrast, works with unlabeled data. The algorithm identifies
patterns or relationships without explicit guidance. Clustering is a common unsupervised
method used to group similar data points, such as segmenting customers for marketing pur-
poses or analyzing biological data like DNA sequences. Another example is anomaly de-
tection, which identifies deviations from normal patterns, often used in fraud detection and
quality control.

Reinforcement learning is a less common category that focuses on enabling an agent to
learn by interacting with its environment and maximizing cumulative rewards. It is used
in applications like robotics and video games, where systems learn from their actions to
improve performance.

Figure 2.5. Machine learning methods: a general overview. Classification extracted from
[15]. In bold, the most popular techniques in the field of aerospace engineering

2.2.2. Machine Learning General Framework

A machine learning pipeline refers to the sequence of steps or processes involved in devel-
oping and applying a machine learning model. This pipeline is not universal, for this report
we follow a general framework illustrated in 2.6.

22

Figure 2.6. A general set of steps to define a machine learning pipeline

Problem Definition

This can be considered "step zero". Defining the problem in a meaningful way is critical,
as poorly defined problems lead to useless outcomes. It is essential to identify appropriate
independent variables and define the valid range for each parameter, understanding how these
choices influence the solution. This requires knowledge of the physics and mathematics
underlying the problem, as well as the origin of the data being used.

Data Building

Machine learning requires data as a foundation. Many machine learning models are well-
suited for tabular data, which is among the most common and popular data formats. Tabular
data is structured into rows and columns, where each column represents a feature or variable,
and each row corresponds to an individual sample or data point. Columns are typically
categorized into inputs and outputs, and the quality of the relationships between them directly
affects the performance of the resulting model.

Modern machine learning models can handle diverse data sources simultaneously, such
as high- and low-fidelity simulations or experimental data. This capability is particularly
valuable in fields like mechanical and aerospace engineering, where large volumes of het-
erogeneous data are common.

Another crucial concept in handling large datasets is sampling, which involves selecting
a subset of data or design points from a larger dataset or design space. One of the main strate-
gies to achieve an optimal sampling is Design of Experiments (DoE), a structured approach
that ensures a well-distributed and representative selection of points to maximize the infor-
mation gained from simulations or experiments. Popular sampling methods include Random

Sampling, Latin Hypercube Sampling, and Adaptive Sampling, each offering different ad-
vantages depending on the problem complexity and the desired accuracy of the surrogate
model.

23

Additionally, bias can play a significant role in machine learning. Data bias can lead to
models that are not generalizable, resulting in poor performance on unseen data. It is crucial
to monitor data sources and ensure the training set represents the real-world variability accu-
rately. Bias can come from several sources, including sampling bias, measurement bias, or
model bias. Ensuring that the data are diverse and representative helps mitigate these issues
and improves the robustness of the model.

Data Preprocessing

Data pre-processing is a crucial phase in machine learning that involves transforming raw
data into a form suitable for modeling. The complexity of this process depends on the type
of data available, but it is essential for ensuring that machine learning and deep learning
algorithms perform optimally. The first step in data pre-processing is Exploratory Data

Analysis (EDA), where patterns, correlations, and anomalies in the dataset are identified.
This stage is vital because understanding the relationships in the data allows for informed
decisions on how to manipulate it for better model performance.

Following EDA, the next step is feature engineering. The goal of feature engineering is
to enhance or manipulate the dataset in ways that improve the predictive power of the model.
During this phase, it is important to focus on correlation and variance:

Correlation refers to the relationship between input and output variables. Highly corre-
lated features can provide valuable insights into which variables influence the output. If many
inputs are correlated, it may be better to eliminate redundant variables to avoid collinearity,
which can distort the model’s interpretation.

Variance measures the dispersion of data points. Features that capture the majority of the
data’s variance are typically more significant. High-variance features are considered more
important because they carry more information about the data’s overall behavior.

Additionally, data cleaning, reduction, transformation, and enrichment are essential tasks
in feature engineering. These manipulations are necessary to handle missing values, imbal-
anced datasets, small sample sizes, or converting categorical data into numerical form or
vice versa. Such transformations are critical for improving model accuracy and making the
dataset more suitable for machine learning tasks.

After preprocessing, a crucial step is data splitting, which divides the data into three
subsets: training data, validation data, and test data. Typically, this is done using random
selection, with splits like 70% for training, 20% for validation, and 10% for testing. Training
data is used to adjust the internal parameters of the model. The validation data helps in
evaluating the model’s error during training, guiding the optimization process. The test data,
kept separate from the training and validation data, is used to assess the model’s performance
on unseen data, providing an unbiased evaluation. This approach ensures that the model is

24

not overfitting the training data and can generalize well to new data.

Choosing an Appropriate Technique

Choosing the right machine learning algorithm is crucial and depends on the nature of the
data and the problem at hand. Algorithms for regression, classification, clustering, and di-
mensionality reduction offer various tools for tackling different tasks. For this report, the
focus will be on regression models which will be explored in detail in the next chapters.
When selecting an algorithm, considerations include the size and type of the dataset, inter-
pretability requirements, computational resources, and the desired balance between bias and
variance.

Training and Evaluating

Training a machine learning model involves teaching it to learn from the input data and ad-
justing its internal parameters to minimize the error. The training phase consists of feeding
the model with a large set of training data and updating its parameters using a specific algo-
rithm, such as Stochastic Gradient Descent (SGD). The outcome of this phase is a trained

model, which can then be deployed for inference or prediction tasks.
In addition to selecting the appropriate algorithm, one of the critical steps in training is

finding an optimal set of hyperparameters. Hyperparameters are values that guide the learn-
ing process, such as the learning rate, number of layers in a neural network, or batch size.
The process of hyperparameter optimization is essential because these values significantly
impact the performance of the model. Common optimization techniques include grid search,
random search, and Bayesian optimization.

During training, a typical procedure involves the following steps:

1. Presenting a batch of randomly sampled training data.

2. Calculating the loss function, which quantifies the error between the model’s predic-
tions and the actual outcomes.

3. Computing the gradient of the loss function with respect to the model’s parameters.

4. Adjusting the parameters in the direction of the negative gradient, scaled by a chosen
learning rate.

5. Repeating this process until the loss function converges or reaches an acceptable
threshold.

25

One of the most widely used methods in ML training is Stochastic Gradient Descent

(SGD). SGD minimizes the loss function by updating model parameters based on the gradi-
ent of the loss with respect to the model’s parameters. The key feature of SGD is that the
gradient is calculated from a randomly selected subset of the data, which introduces ran-
domness into the training process, helping the model avoid getting stuck in local minima and
improving its ability to generalize.

It’s also important to discuss evaluation metrics, which are used to assess how well a
model is performing. These metrics provide quantitative measures of the model’s accuracy,
robustness, and generalizability. Common metrics for regression models include:

• Mean Squared Error (MSE): Measures the average squared difference between the
predicted and actual values. It is commonly used as the loss function for gradient
descent algorithms.

• Root Mean Squared Error (RMSE): Provides an estimate of the error in the same units
as the target variable, offering a practical understanding of how much error to expect
from the model.

• Mean Absolute Error (MAE): Computes the average absolute difference between the
predicted and actual values, providing a robust measure of error.

These evaluation metrics, along with the results from testing and validation, help refine
the model by identifying areas where it underperforms, allowing practitioners to make neces-
sary adjustments. Regular evaluation and fine-tuning lead to better generalization, ensuring
the model works effectively across various real-world scenarios.

Deployment

The deployment phase applies the trained model to new data for predictions. While training
is computationally intensive and requires large datasets, inference is typically faster and less
resource-intensive. In some cases, incremental learning combines training and inference by
continuously updating the model with new data during its deployment. This approach is
especially useful in dynamic environments where data evolves over time.

2.3. Surrogate Model

Surrogate models are simplified approximations of more complex, higher-order models.
They are used to map input data to outputs when the actual relationship between the two
is unknown or computationally expensive to evaluate [16]. Surrogate models can thus be
seen as simple representations of complex systems with a trade-off between accuracy and
computational efficiency. This trade-off is a critical consideration during their construction.

26

In general, surrogate modeling refers to a set of techniques that utilize previously sampled
data to build predictive models. Usually they are constructed using computer experiments,
where the design parameters span a carefully chosen range of values within the design space.
These values are selected following specific criteria or patterns, often employing a technique
known as the Design of Experiments (DoE).

The computationally expensive simulations are conducted at these selected points, and
the corresponding responses are recorded. Based on this input/output data, the behavior of
the complex simulation is approximated using simplified functional relationships, referred
to as surrogate models. Consequently, the detailed nature of the original simulation becomes
secondary, with the surrogate model serving as a computationally efficient, and above all
very fast, approximation of the system [17].

In the aeronautical sector, surrogate modeling techniques have been extensively applied
to aerodynamic analysis and optimization. For instance, in the initial stages of the design
process, computational fluid dynamics (CFD) simulations can be aided by surrogate models
capable of predicting aerodynamic performance with reasonable precision [18]. This reduces
reliance on expensive simulations or experiments, minimizing the number of required tests.

In the machine learning domain, surrogate models based on artificial neural networks

(ANNs) and support vector machines (SVMs) have also been employed for aerodynamic
coefficient prediction, aerodynamic design, and robust design or uncertainty quantification.

One of the most widely used methods for building surrogate models is Kriging, which
has proven to be particularly effective in applications such as airfoil design [19].

The implementation of surrogate models in CEASIOMpy leverages the Surrogate Mod-

elling Toolbox (SMT), an open-source Python package that provides a suite of surrogate
modelling methods [20].

2.3.1. Sampling

Sampling is critical to the resulting accuracy and usefulness of a machine learning model.
It refers to the process of selecting a subset of data or cases from a larger dataset or design
space, akin to design exploration studies conducted with simulations.

Sampling methods are numerous and can be broadly divided into two main categories:

• Probability Sampling: Every element of the population has an equal chance of being
selected. Probability sampling provides the best opportunity to create a sample that is
truly representative of the population.

• Non-Probability Sampling: Not all elements have an equal chance of being selected.
As a result, there is a higher risk of obtaining a non-representative sample, which may
lead to non-generalizable results.

27

If the objective is to explore the entire domain effectively to train the surrogate model, the
choice will naturally lean towards probability sampling. As discussed in the Data Building

section of Chapter 2.2.2, popular sampling methods include Random Sampling, Latin Hy-

percube Sampling (LHS), and Adaptive Sampling. A closer examination of these methods
helps in understanding the newly implemented algorithm, which incorporates all of them.

• Random Sampling: Every individual sample or item in the population has an equal
chance of being selected. Simple random sampling provides an impartial, represen-
tative dataset while offsetting confounding effects from known and unknown factors.
This method is the most straightforward of all probability sampling techniques, re-
quiring only a single random selection and little prior knowledge of the population.
Because it relies on randomization, research performed on such a sample generally
has high internal and external validity and a reduced risk of biases, such as sampling
bias or selection bias.

• Latin Hypercube Sampling: This method involves dividing the range of each input pa-
rameter into non-overlapping intervals based on the desired sample size. LHS is rooted
in the Latin square design, where each row and column contains a single sample. A
hypercube extends this principle to multiple dimensions, allowing for sampling across
several dimensions and hyperplanes. One-dimensional LHS divides the domain into n

equal partitions, with a random data point chosen in each partition. LHS is particularly
effective when it is essential to efficiently explore and fill the entire parameter space
while minimizing the number of samples required. It roughly corresponds to random
sampling with guaranteed space filling properties even for small sampling size.

28

Figure 2.7. An example of a Latin Hypercube Sampling of a general domain

• Adaptive Sampling: Rather than being a specific method, adaptive sampling is a gen-
eral approach to sampling problems. It is particularly suitable for cases where the
sampled characteristic is rare or spatially clustered. Adaptive sampling allows the se-
lection of observations to depend on prior observations. For instance, initial samples
can be used to build an initial model. Regions of interest, such as areas with high sen-
sitivity or variance, are then identified, and additional samples are adaptively added
to these regions to improve model accuracy. An adaptive sampling strategy is imple-
mented in the SMTrain module, which uses the extreme values of the domain as initial
samples and then refines the model with high variance points.

2.3.2. Regression Models

To implement a surrogate model, various algorithms can be chosen. This section details the
implementation of Kriging, utilizing the SMT Toolbox, as it is a fundamental component of
the multi-fidelity strategy.

Kriging Model

The Kriging model was initially developed in the field of geostatistics by Danie G. Krige.
Later, Sacks et al. (1989) extended it to computer simulation experiments. The Kriging
model, also known as Gaussian process regression, is a method of interpolation based on
Gaussian process governed by prior covariances. It is an unbiased estimation method (which

29

means that, on average, it introduces no systematic error) that can not only predict the re-
sponse values of unknown samples but also quantify the uncertainty of these predictions [21].
This method uses a limited set of sampled data points to estimate the value of a variable over
a continuous spatial field. The Kriging model was chosen to approximate the objective func-
tion because of its accuracy and robustness with small data sets [22].

Unlike simpler methods such as Inverse Distance Weighted Interpolation, linear regres-
sion, or Gaussian decays, Kriging leverages the spatial correlation between sampled points
to interpolate values in the spatial field. The interpolation is based on the spatial arrangement
of the empirical observations rather than on a presumed model of spatial distribution.

The Kriging model approximates a target function ŷ based on a set of m design points for
q dependent variables and n independent variables. These design points are represented as:

X =
[
x(i)j

]
, i = 1, . . . ,m, j = 1, . . . ,n ∈ Rm×n, (2.10)

Y =
[
y(i)j

]
, i = 1, . . . ,m, j = 1, . . . ,q ∈ Rm×q. (2.11)

At an unsampled location x∗, the Kriging approximation for the target function is given
by:

ŷk(x∗) = F(β:,k,x∗)+ ek, k = 1, . . . ,q, (2.12)

where F is the deterministic trend modeled by a regression function, and e is a stochastic
term representing local deviations. The regression component F can be constant, linear, or
quadratic:

F(β ,x∗) =
n

∑
h=1

βh,kx∗h +β0,k. (2.13)

The stochastic term e is modeled as a realization of a Gaussian process with zero mean
and covariance:

cov[Z(x(i)),Z(x(j))] = σ
2R(x(i),x(j)), (2.14)

where R is the correlation function.
The correlation between points x(i) and x(j) is defined as:

R(x(i),x(j)) =
n

∏
l=1

exp(−θl|x
(i)
l − x(j)

l |pl), (2.15)

where θl ≥ 0 are the hyperparameters, and pl ∈ [1,2]. Common correlation functions include:

• Exponential: p = 1

• Gaussian: p = 2

• Matérn 5/2: A more flexible correlation suitable for differentiable functions.

30

In the SMT Toolbox library, a Python tool that will be breefly discussed in Section 4.1, these
are denoted as abs_exp, squar_exp, matern52, among others.

The m×m correlation matrix for the observed data points is:

Ψ = [ψi, j], ψi, j = exp(−d(x(i),x(j))), i, j = 1, . . . ,m. (2.16)

The correlation vector between the unsampled location x∗ and observed data is:

ψ = [ψk], ψk = exp(−d(x∗,xk)), k = 1, . . . ,m. (2.17)

The final Kriging prediction at x∗ is given by:

ŷ(x∗) = F(β ,x∗)+ψ
T

Ψ
−1(Y −F). (2.18)

Here, Y −F represents the discrepancies between the observed data and the regression
model, centered around the m sample points. These discrepancies are weighted by Ψ−1 and
added to the regression predictor F(x∗).

The confidence in the Kriging prediction is quantified by the mean squared error:

ŝ2(x∗) = σ
2
[

1−ψ
T

Ψ
−1

ψ +
1−1T Ψ−1ψ

1T Ψ−11

]
. (2.19)

If x∗ is close to the sample points, the confidence in the prediction is higher, reflected by
a smaller value of ŝ2(x∗).

2.3.3. Optimization

In machine learning, it is crucial to distinguish between parameters and hyperparameters.
Hyperparameters are set prior to training and govern the learning process, whereas parame-
ters are learned from the model during the training phase.

To optimize these hyperparameters, different optimization strategies could be used.
Among the most common approaches, we find grid search, which systematically explores a
predefined set of values, and random search, which selects values randomly within a given
range. While these methods can be effective, they often require a large number of eval-
uations, making them computationally expensive, especially when dealing with complex
models.

For this reason, Bayesian optimization has been chosen for this work. Unlike grid or
random search, Bayesian optimization builds a probabilistic model of the objective function
and strategically selects the most promising hyperparameter values. This allows it to find
good solutions with fewer evaluations, reducing computational cost while maintaining high

31

performance.
Bayesian optimization is based on a surrogate probabilistic model, typically a Gaus-

sian Process (GP), which approximates the true objective function by considering both the
predicted value and the uncertainty associated with it. This model is iteratively refined as
new evaluations are performed. The next point to evaluate is chosen using an acquisition

function, which balances exploration (testing less certain regions) and exploitation (refining
known good regions).

Among the most common acquisition functions, the Expected Improvement (EI) is used
in this work. It is defined as:

EI(x) = E[max(0, f (x)− f ∗)]

where f (x) is the predicted function value at point x, and f ∗ is the best observed value
so far. The EI function selects points where the expected improvement over the current best
solution is maximized, allowing the optimization process to efficiently explore the hyperpa-
rameter space.

The main advantage of Bayesian optimization lies in its ability to reduce the number
of function evaluations needed to reach a good solution, making it particularly suitable for
expensive-to-train models.

32

3. CEASIOMpy

CEASIOM (Computerised Environment for Aircraft Synthesis and Integrated Optimisation
Methods) is a powerful framework tool that integrates discipline-specific tools for conceptual
design [23]. It was developed within the SimSAC project, funded by the European Commis-
sion’s 6th Framework Program on Research, Technological Development and Demonstration
and is mainly based on Matlab code. Then, in 2015, began the AGILE project, granted by
the European Commission and coordinated by the DLR (German Aerospace Centre), whose
target was multidisciplinary optimization using distributed analysis frameworks. The project
aimed to reduce the time-to-market and development costs of new aircraft, which are two
critical objectives for the aeronautical industry. In this context that CFS Engineering, in
collaboration with Airinnova, started to develop the CEASIOMpy version entirely based
on Python environment. CEASIOMpy is freely available to the public as an open-source
software downloadable from GitHub. The fact that the software programming language is
Python makes it even simpler and easier to use, as Python is a very popular language in the
scientific and engineering communities due to its simplicity and versatility.

Figure 3.1. CEASIOMpy logo

CEASIOMpy offers a suite of tools tailored to various aircraft design disciplines, en-
abling the creation of complex design and optimization workflows for both conventional and
unconventional aircraft configurations. The software is composed of domain-specific mod-
ules that can be interconnected in different sequences, depending on the specific application.
A typical workflow to perform valuable CFD simulations looks like:

33

Figure 3.2. Example of CEASIOMpy workflow

3.1. Modules and Architecture

CEASIOMpy integrates into one application the main design disciplines: aerodynamics,
structures and flight dynamics, impacting on the aircraft’s performance. The modules that
make up the frameworks are numerous and the programme is regularly updated with new
ones. As can be read on the GuitHub page, the main modules are as follows:

• General Modules: This module provides tools of different types, which are very useful
for the conceptual design of the aircraft. Among these tools are the two described in
this report, which allows a surrogate model to be trained and used to predict the values
of the aerodynamic coefficients.

• Geometry and Mesh Module: This module is useful for handling the geometry def-
inition and meshing process. Most of the tools that make up this module process a
CPACS file and allow the user to generate a 3D mesh, that can then be used with other
tools according to a user-defined workflow.

• Aerodynamics Module: This module offers the most advanced tools of the software,
which are for aerodynamic analysis. These tools allow numerical simulations to be
carried out at different levels of fidelity:

– CLCalculator: Determines the lift coefficient CL of an aircraft to sustain a cruise
flight, for a given Mach number, altitude, and mass.

– PyAVL: A vortex lattice method (VLM) solver for low-fidelity aerodynamic com-
putations.

– SU2Run: Prepares and runs calculations with the CFD code SU2, allowing Euler
and RANS simulations.

• Weight and Balance Module: This module provides tools to estimate the weight and
balance of an aircraft, a critical step in the design process that directly affects the
performance and safety of the aircraft.

34

• Mission Analysis Module: This module will allow users to simulate the flight of an air-
craft, considering factors such as fuel consumption, altitude, and weather conditions.

• Structure Module: This module is currently under developing, it will provide structural
analysis tools. These tools will enable users to evaluate the strength and durability of
the aircraft’s components, ensuring safety and reliability. Through the AeroFrame

module, it is possible to perform an aeroelastic analysis of the aircraft.

3.2. CPACS

CEASIOMpy is based on the open-standard format CPACS, a Common Parametric Aircraft
Configuration Schema. It is a data definition for the air transportation system which is devel-
oped by the German Aerospace Center DLR. CPACS enables engineers to exchange infor-
mation between their tools. It is therefore a driver for multi-disciplinary and multi-fidelity
design in distributed environments. The CPACS format is structured in a hierarchical man-
ner, intended to encompass all aspects of aircraft design from more general considerations
to the most detailed definition. The components of the aircraft model are sorted by type
(fuselages, wings, engines, etc.) like in Figure 3.3.

Figure 3.3. Example of CPACS hierarchical structure

Of course, all the tools are harmonised to use CPACS format files for input and output.
This greatly simplifies communication between the different tools, but also requires the use
of Python-specific libraries. The library in question is TiXI, which is a fast and simple

35

XML interface library that can be used by applications written in C, C++, Fortran, JAVA and
Python.

3.3. Using of CEASIOMpy

As mentioned above, CEASIOMpy is open source software, so one can easily download it
from its page on GitHub by cloning the [24] repository. Once cloned in the computer, the
user will need to follow the installation steps, after which it can be opened from the command
prompt after activating the ceasiompy environment.

To improve accessibility, CEASIOMpy features an intuitive Graphical User Interface
(GUI) that streamlines user interaction. This interface allows for efficient management of
inputs, visualization of results, and customization of workflows, making CEASIOMpy a
valuable resource for both novice and experienced designers alike.

The configuration of CEASIOpy starts by asking the user for the folder where the results
will be stored and the geometry to be studied, with the possibility of 3D visualization.

Figure 3.4. First page of CEASIOMpy configuration

The next step is to configure the Workflow by selecting the modules of interest for the
study to be performed. An example of a workflow that can be constructed for the training
and the use of a surrogate model sees the selection in series of SMTrain for the training,
SMUse for the use and SaveAeroCoefficients for the visualization of the results.

36

Figure 3.5. CEASIOMpy Workflow with the three modules selected

After that, we move on to the individual module Settings, which will be discussed in
details in sections 4.3 and 4.4.

37

4. Multi-Fidelity Surrogate Model in CEASIOMpy

The aim of the thesis was to develop a new module, written in the Python language, involving
the implementation of a surrogate model based on a machine learning strategy that exploits
multi-fidelity (M-F) CFD simulations. The use of this surrogate model makes it possible to
predict key aerodynamic coefficients such as CL, CD, and CM, essential for the evaluation of
aerodynamic performance.

What distinguishes and characterises the algorithm is the multi-fidelity strategy, which is
particularly suitable for predicting and modelling the aerodynamic data of aircraft throughout
their entire flight envelope. M-F is essentially a model management methodology. It uses a
set of CFD methods with varying degrees of fidelity and computational expense or a single
physical model evaluated on meshes of varying resolutions. A low-fidelity CFD method is
used to automatically compute hundreds or thousands of solutions at points in the parameter
space selected with a Design of Experiments (DoE) tool. A few points in the parameter space
are computed using a medium and then a high-fidelity CFD method; these points are selected
following an adaptive sampling logic described in the following sections. That algorithm is
the base of two modules developed for CEASIOMpy. These modules, written entirely in the
Python language, are necessary to train the model and then use the trained model to make
predictions.

4.1. SMT Library

The Surrogate Modeling Toolbox (SMT) [25] is an open-source project originally developed
through a collaboration between ONERA, NASA, ISAE-SUPAERO/ICA, and the University
of Michigan. Today, Polytechnique Montréal and the University of California San Diego also
contribute to its development.

SMT is a Python package designed to provide an easy-to-use library of surrogate mod-
els while facilitating the implementation of additional methods. Several other packages for
surrogate modeling exist across different programming languages, such as Scikit-learn [26]
in Python and SUMO [27] in MATLAB.

In addition to surrogate modeling techniques, SMT includes sampling methods, which
are essential for constructing surrogate models. The library is organized into three main
modules: sampling methods, benchmarking problems, and surrogate models. The sampling
methods module implements various sampling techniques, the benchmarking problems mod-
ule provides test functions for evaluation, and the surrogate models module offers different
modeling techniques. Each module follows a unified interface, ensuring consistency across
methods. Every implemented method adheres to this interface by defining the required func-
tions, making SMT a flexible and extensible tool for surrogate modeling.

38

Table 1 lists the surrogate modelling methods currently available in SMT and summarizes
the advantages and disadvantages of each method.

Table 1. Surrogate modeling methods provided by SMT

Method Advantages (+) and disadvantages (-)
Kriging + Prediction variance, flexible

- Costly if number of inputs or training points is large
- Numerical issues when points are too close to each other

KPLS + Prediction variance, fast construction
+ Suitable for high-dimensional problems
- Numerical issues when points are too close to each other

KPLSK + Prediction variance, fast construction
+ Suitable for high-dimensional problems
- Numerical issues when points are too close to each other

GE-KPLS + Prediction variance, fast construction
+ Suitable for high-dimensional problems
+ Control of the correlation matrix size
- Numerical issues when points are too close to each other
- Choice of step parameter is not intuitive

RMTS + Fast prediction
+ Training scales well up to 105 training points
+ No issues with points that are too close to each other
- Poor scaling with number of inputs above 4
- Slow training overall

RBF + Simple, only a single tuning parameter
+ Fast training for small number of training points
- Susceptible to oscillations
- Numerical issues when points are too close to each other

IDW + Simple, no training required
- Derivatives are zero at training points
- Poor overall accuracy

LS + Simple, fast construction
- Accurate only for linear problems

QP + Simple, fast construction
- Large number of points required for large number of inputs

Kriging models (also known as Gaussian processes) are one of SMT’s key features.

SMT Toolbox Features

The SMT Toolbox provides several functionalities for implementing Kriging models. Specif-
ically, it automatically normalizes input and output data before training the model.

The main available hyperparameters in the toolbox are:

• Poly: Defines a global trend in the model. It determines the type of regression function

39

used to approximate the underlying data structure. Depending on the selected option,
the model can assume a constant mean, a linear trend, or even a quadratic variation in
the response. Available options are: constant, linear, quadratic.

• Corr: Controls the spatial correlation structure of the model. The choice of correlation
function affects how the model interpolates between points and the smoothness of
the predicted surface. Different correlation functions can capture varying levels of
smoothness and periodicity in the data. Available correlation functions are: pow_exp,
abs_exp, squar_exp, squar_sin_exp, matern52, matern32.

• Theta0: This parameter specifies the initial value of the spatial correlation length be-
tween points. It serves as a starting point for the optimization process that fine-tunes
the model’s correlation behavior. Proper tuning of this parameter impacts the sensitiv-
ity of the model to changes in input values.

• Nugget: Introduces a regularization component to improve numerical stability. It is
particularly useful when working with noisy data, as it allows the model to accommo-
date small fluctuations instead of forcing an exact interpolation.

• Hyper_opt: This setting determines the optimization algorithm used to estimate the
hyperparameters of the model. A well-chosen optimization method ensures that the
model maximizes its likelihood and provides the best possible fit to the data. Supported
methods are two: Cobyla and TNC.

• Rho regressor: This hyperparameter is relevant in multi-fidelity modeling, where it
captures the relationship between low- and high-fidelity data. It helps the model learn
from coarse approximations while refining predictions based on high-accuracy data.

Additionally, the toolbox requires the output training data to be provided as a one-
dimensional vector.

4.2. Multi-Fidelity Strategy

Multi-Fidelity modelling is based on the assumption that in addition to an HF model that
is sufficiently accurate but has a high computational cost, an LF model is used that is less
accurate but also considerably less computationally demanding [28].

Building the multi-fidelity model has two main steps:

1. Populate the aerodynamic database over the whole flight envelope by the dense low-
fidelity data samples.

2. Correct the data using the sparse high-fidelity samples.

40

The most popular method currently used is a correction-based method. The correction
is called bridge function, scaling function or calibration and it can be divided into three dis-
tinct types. First, in the multiplicative scaling approach, a scaling function is constructed
to represent the ratio between the HF and LF models. Second, in the additive scaling ap-
proach, a scaling function is constructed to capture the differences between the HF and LF
models. The additive bridge function should also be of low order but of higher order than
the multiplicative one. In general, additive functions are more accurate and robust than the
multiplicative ones. Finally, in the hybrid scaling approach, scaling functions are constructed
to utilize the advantages of both the multiplicative and additive scaling approaches.

For the present work, an additive bridge function approach introduced by Kennedy and
O’Hagan was adopted [29], as it is the approach proposed by SMT Library for the formula-
tion of Multi-Fidelity Kriging:

yhigh(x) = ρ(x)ŷlow(x)+ δ̂ (x), (3.1)

where:

• yhigh(x) represents the high-fidelity model output,

• ylow(x) is the low-fidelity model output,

• ρ(x) is a scaling function that adjusts the low-fidelity prediction (constant, linear or
quadratic),

• δ̂ (x) is the discrepancy function that captures the difference between the high- and
low-fidelity models.

The implementation here follows the one proposed by Le Gratiet [30]. It offers the
advantage of being recursive, it can easily be extended to various levels of fidelity and offers
better scaling for high numbers of samples. An important assumption in using this recursive
formulation is the fact that this method only uses nested sampling training points. So, if we
have two fidelity levels (HF and LF):

XHF ⊂ XLF . (3.2)

This means that every high-fidelity sample must correspond to a low-fidelity one, ensur-
ing consistency across levels. This structure allows for better information transfer between
fidelities and improves the efficiency of the surrogate model.

This must therefore be taken into account in the implementation of the algorithm, which
includes a data search method to be explored that is shown in the next section.

41

4.3. SMTrain Module

The first module, SMTrain, is designed to train the surrogate model. The training process
can be performed at three different fidelity levels, corresponding to the approximation meth-
ods used in simulations: the panel method (VLM), the Eulerian method, and the RANS
method. The choice of these fidelity levels is aligned with the existing modules in CEA-
SIOMpy, namely PyAVL and SU2. Consequently, an integration strategy was devised to
ensure compatibility between the new module and the existing framework.

The module has been designed to allow users to customize their workflow. Firstly, users
can choose to train the surrogate model with one, two, or three fidelity levels. Increasing
the number of fidelity levels enhances the accuracy of the predictions but also increases the
training time. Additionally, users can either provide their own datasets, containing numer-
ical results to train the model, or define the domain ranges and integrate the module into a
workflow with PyAVL or SU2.

42

(a) First part of the SMTrain module interface

(b) Second part of the SMTrain module interface

Figure 4.1. GUI for the settings of SMTrain module

The datasets provided by the user must be in tabular form (CSV format). The first four

43

columns should contain the values of altitude, Mach number, angle of attack, and sideslip
angle for each data point, while the last columns should contain the aerodynamic coefficients.

If the user chooses to generate data from scratch by defining the domain ranges, the
implemented sampling algorithm is the Latin Hypercube Sampling (LHS). This method en-
sures an intelligent selection of sample points, providing a comprehensive representation of
the flight domain while minimizing the number of required points.

The sampled domain points must be consistent with the physical flight envelope. How-
ever, the Design of Experiments (DOE) techniques typically operate on rectangular (or cubic,
in a 3D space) domains. This presents a challenge because the flight envelope of an aircraft
is not a simple rectangular domain; maneuverability varies with altitude and speed. There-
fore, users need to have prior knowledge of the aircraft’s flight envelope to ensure proper
sampling.

After sampling, the generated dataset is written into the CPACS file using the Tixi library,
creating the so-called aeromap.

Once the dataset is obtained—either from user input or from simulations—it is used to
train a surrogate model and make predictions. To ensure proper training, the data is split into
three subsets, based on user specifications. By default, the dataset is divided as follows: 70%
for training, 20% for validation, and 10% for testing.

• The training set is used to adjust the internal parameters of the model so that it can
best capture the relationship between inputs and outputs.

• The validation set is used for hyperparameter tuning, ensuring the best model config-
uration.

• The test set is used to evaluate the predictive performance of the model by computing
its error on unseen data.

Hyperparameter tuning is performed, as discussed in Section 2.3.3, using Bayesian opti-
mization. The hyperparameters are described in detail at the end of Section 2.3.2, but here
we provide a brief overview of the optimization strategy. Initially, models optimized solely
based on the objective function often produced unrealistic, highly oscillatory curves. To ad-
dress this issue, an additional term was introduced in the objective function: the variance,
penalized by a factor λ , which is also included in the optimization process. This modification
led to a significant improvement in the smoothness of the generated curves while maintaining
a low RMSE in the results.

44

(a) First part of the Bayesian Optimization process

(b) Second part of the Bayesian Optimization process.

Figure 4.2. Python function that performs the Bayesian Optimization and trains the final
module

After completing the optimization procedure, the final model is saved, and a validation
plot is generated. This plot compares the actual test values (ytest) with the predicted values
obtained from Xtest, an example is shown in Figure4.3

45

Figure 4.3. Example of predicted VS actual coefficients

At this stage, if the user has enabled the option "Suggest New Points," the algorithm iden-
tifies points where the model’s predictions significantly deviate from the simulation results.
These points are selected based on their variance, and the user can specify the percentage of
points to be further refined or use the module’s default setting. Additionally, the algorithm
automatically adds points at the domain boundaries, where prediction accuracy is typically
lower, requiring higher-fidelity refinement.

This strategy can be iterated for additional fidelity levels, progressively improving the
accuracy of the predictions. The multi-fidelity fusion method employed is described in Sec-
tion 4.2.

If the user has selected the "Design of Experiments" option along with "Two Levels" of
fidelity, the code will automatically execute an iterative loop based on an adaptive sampling
strategy. Similar to the previous approach, adaptive sampling selects points with the highest
variance; however, in this case, points are not specified as a fraction by the user but are
instead added one at a time during each iteration. The results for these high-variance points
are refined using Euler or RANS simulations. From the GUI, users must specify an RMSE
threshold, which is compared to the RMSE of the model at each iteration. Once the model’s
RMSE falls below the specified threshold, the loop stops, and the trained model is saved.
While this approach may seem computationally expensive, the number of nested points can
be significantly lower, potentially leading to an overall reduction in computational time.

46

4.4. SMUse Module

The second module, SMUse, is responsible for making predictions using the trained surro-
gate model. The user can utilize this module in two different ways:

• By providing a dataset containing the input parameters for which predictions are re-
quired, along with a previously trained surrogate model.

• By placing this module directly after SMTrain in the workflow, in which case it auto-
matically retrieves the trained model without requiring user input.

Figure 4.4. GUI for the settings of SMUse module

Once the input dataset and surrogate model are available, the module performs the nec-
essary predictions. The results are then saved in a CSV file and visualized through plots to
help analyze the model’s behavior.

Following the SMUse module, users can optionally integrate the SaveAeroCoefficents.
The module has been expanded from previous possibilities to display the surrogate

model’s results.
This module is then designed to generate response surfaces and graphical representations

of aerodynamic coefficients with respect to selected variables.

47

Figure 4.5. GUI for the settings of a Response Surface in SaveAereoCoefficients

Users can specify which parameters should remain constant while visualizing the varia-
tion of others. This feature allows for an intuitive analysis of how aerodynamic coefficients
change within the defined domain, providing a valuable tool for model interpretation and
validation.

These graphs are visible in the CEASIOMpy Results section.

48

5. Application Case Study

To validate the implemented model and assess the effectiveness of it, the results obtained
in this study are compared with those presented in [31] and [32]. The goal is to replicate
the methodologies described in these works and evaluate the performance of the surrogate
models in different test scenarios.

The first two test cases follow the procedure outlined in [31], where two simple Kriging
models are trained and their predictions are evaluated. To replicate the results, the SMTrain
module was used for model training, and SMUse was employed for generating predictions.
The accuracy of these models is then assessed by comparing their predictions against ref-
erence aerodynamic data, demonstrating their validity in interpolating aerodynamic coeffi-
cients.

The third test case presents a more complex and realistic application of SMTrain. In this
case, the methodology described in [32] is followed, utilizing an updated dataset to train
a multi-fidelity Kriging model. The response surfaces and aerodynamic coefficient distri-
butions obtained with this method are then compared with those generated using a simple
Kriging model trained without Bayesian optimization. This comparison, conducted through
the SaveAeroCoefficients module, provides insight into the advantages and limitations of
multi-fidelity modeling in aerodynamic analysis.

This study aims to provide a structured validation of the implemented methodology,
demonstrating its reliability in surrogate-based aerodynamic modeling and highlighting po-
tential improvements for future applications.

5.1. Variation of Angle of Attack

The first test with the surrogate model aims to predict aerodynamic coefficients for Angles
of Attack (AoA) that were not explicitly calculated. To assess the model’s performance,
different numbers of training points are used. This test is conducted using aerodynamic data
from PyAVL, following the workflow shown in Figure 5.1.

Figure 5.1. CEASIOMpy workflow for training and using the surrogate model for AoA
prediction

49

The test is performed using the unmanned aerial vehicle OPTIMALE, a Medium Altitude
Long Endurance (MALE) aircraft with a conventional low-wing configuration and a T-tail.
The OPTIMALE configuration was developed as part of the German AeroStruct research
project [33] and has been used in several European projects, including AGILE [4]. Using
CEASIOMpy’s CPACS visualization and modification tool (CPACSCreator), the aircraft ge-
ometry can be visualized:

Figure 5.2. OPTIMALE CPACS configuration in CPACSCreator

To determine the minimum number of training points needed for an accurate surrogate
model, a simple Kriging model is trained with different dataset sizes, ranging from 17 down
to only 3 AoA values, while keeping altitude, Mach number, and sideslip angle constant:

• Altitude: 10,000 m

• Mach Number: 0.5

• Angle of Attack: from -3◦ to 14◦

• Angle of Sideslip: 0◦

The predicted CD values from the surrogate model are then compared at two intermediate
AoA values (1.5◦ and 6.5◦) against those calculated with PyAVL. It is important to note that
the SMTrain module requires at least 4 points to function correctly. Therefore, to train

50

a model with only 3 points, a simple Kriging model without Bayesian optimization (i.e.,
without a validation set) is used.

The error between the predicted and actual results is evaluated using the absolute per-

centage error. Figure 5.3 shows how the error decreases as the number of training points
increases. For this simple case, a model trained with 6 points achieves a prediction error
below 0.1% (specifically, 0.07%), which is well within acceptable limits.

Figure 5.3. Prediction error of CD at AoA = 1.5◦

This first test confirms the predictive capability of the module. In particular, it highlights
how the Kriging algorithm is well-suited for working with small datasets. This justifies the
choice of the model, which proves to be highly useful in aeronautical applications where
obtaining new simulation points is often time-consuming.

5.2. Variation of Angle of Attack and Mach Number

In this second test, an additional variable is introduced: a simple Kriging model is trained
using a set of points at different AoA and Mach numbers while keeping altitude and AoS
constant. The objective is to assess the accuracy of the predictions by directly comparing
them with the actual results. Furthermore, to evaluate the impact of Latin Hypercube Sam-
pling (LHS) on prediction accuracy, two different input distributions are analyzed.

Aerodynamic data for this test are obtained from Euler simulations, following a workflow
similar to the previous test, but using the SU2 module instead of PyAVL.

51

The simulations are performed on a simple geometry known as labAR, which serves as
a baseline test case in the CEASIOMpy environment implementation process. This model is
shown in Figure 5.4.

Figure 5.4. LabAR CPACS configuration in CPACSCreator

To use the SU2 solver, a computational mesh is required. This mesh was generated using
the CPACS2GMSH module in CEASIOMpy. It is a 3D unstructured mesh with 3.4 millions
elements, obtained after a mesh independence analysis, as shown in Figure 5.5. Several
meshes with increasing element counts were tested, and the lift and drag coefficients were
monitored to identify the point at which further refinement produced negligible changes
in aerodynamic results. The selected mesh size represents the optimal trade-off where the
aerodynamic coefficients converge, ensuring reliable predictions without excessive compu-
tational cost.

52

Figure 5.5. Mesh independence study with Lift and Drag Coefficients against the number of
elements of the mesh

Two different training sets, each containing 25 points, are used and are visualized in
Figure 5.6 and Figure 5.7.

Figure 5.6. Distribution of AoA and Mach number values for the training set, same of [31]

53

Figure 5.7. Distribution of AoA and Mach number values for the training set, using a Latin
Hypercube Sampling

For each dataset, three models were trained, one for each aerodynamic coefficient. The
SMT library also allows the training of multi-output models, which can predict multiple
coefficients simultaneously. However, this approach increases training complexity, requiring
more data points and often resulting in slightly less accurate predictions. Since training a
single-output surrogate model, even with a few dozen optimization iterations, takes only a
few seconds, the decision was made to train three separate models instead.

Table 2 presents a comparison between the aerodynamic coefficients obtained from SU2
and those predicted by the surrogate model. The test points vary in Mach number and AoA.
It is worth noting that the percentage errors are consistently low (generally below 0.25%),
confirming the effectiveness of hyperparameter optimization in reducing errors while keep-
ing the number of training iterations limited.

The table includes predictions from models trained on both a grid search sampled dataset
and one generated using Latin Hypercube Sampling. In general, the LHS-trained model
tends to yield lower errors (highlighted in bold), although for such small errors, the improve-
ment is not always significant.

54

Altitude Mach AoA AoS Source CL CD Cm

10000 0.35 3 0 SU2 0.1615 0.0014 -0.3133

Predicted 0.1616 -0.0008 -0.3139

Error % 0.0104 0.2230 0.0577

Predicted with LHS 0.1617 0.0009 -0.3132

Error % 0.0256 0.0534 0.0112

10000 0.45 -3 0 SU2 -0.1662 0.0018 0.3227

Predicted -0.1668 0.0027 0.3229

Error % 0.0556 0.0917 0.0137

Predicted with LHS -0.1662 0.0015 0.3219

Error % 0.0036 0.0281 0.0839

10000 0.55 -3 0 SU2 -0.1728 0.0022 0.3363

Predicted -0.1721 0.0044 0.3309

Error % 0.0783 0.2162 0.5344

Predicted with LHS -0.1733 0.0025 0.3380

Error % 0.0476 0.0272 0.1778

Table 2. Comparison between aerodynamic coefficients predicted by the surrogate model
and calculated using SU2, lower error for predictions are highlighted in bold

This model training strategy could be applied to real-world cases where users need re-
liable aerodynamic predictions. For example, it could be used to generate aerodynamic
databases for stability and mission analysis.

5.3. Complete Multi-Fidelity Model Training

This test case considers the D150 conceptual aircraft configuration, a regional jetliner that
does not correspond to an existing aircraft, but is similar to an Airbus A320 or a Boeing 737.
The aircraft geometry is provided through a CPACS file and imported into the module; it is
shown in Figure 5.8.

55

Figure 5.8. Visualization of the D150 aircraft using CPACSCreator module.

This test case uses the module with two fidelity levels: low-fidelity results are obtained
from the PyAVL module, while medium-fidelity results are computed using the SU2Run
module with the Euler solver.

Three surrogate models are trained for the three coefficients CL, CD and CM, obtaining for
each a low RMSE value below 5%. Additionally, the final visualization will include response
surfaces for all three models, along with graphs showing variations with respect to the angle
of attack at a specific altitude, keeping Mach number as a parameter at three different values.
Furthermore, a comparison will be made with models trained without Bayesian optimization,
using a simple Kriging algorithm trained solely on the dataset of Eulerian values.

5.3.1. Definition of the Computational Domain

The first step involves defining the computational domain by varying three parameters: flight
altitude, Mach number, and angle of attack. The domain is provided to the code in the form
of a CSV file, an example of which is shown in Figure 5.9.

56

Figure 5.9. Aeromap example in a CSV file

The three-dimensional domain is defined by the following ranges:

• Altitude: between 9000 m and 11000 m

• Mach Number: from 0.5 to 0.9

• Angle of Attack: from -5◦ to 15◦

To optimize the selection of input data, the domain is sampled using the Latin Hypercube
Sampling (LHS) method, ensuring an efficient Design of Experiments (DoE). However, this
domain initially represents only a set of triplets (altitude, Mach number, angle of attack)
without considering the aircraft’s actual flight envelope.

A commercial airliner operates within the constraints of a flight maneuver diagram,
which defines operational limits based on load factor, maneuvering capabilities, and air-
speed. Aerodynamic forces such as lift and drag vary significantly with two of the three
parameters defining the domain: velocity and angle of attack. As a result, the domain is
further refined by limiting the angle of attack as the Mach number increases, according to
structural and aerodynamic constraints. The updated domain is shown in Figure 5.10 and
Figure 5.11.

57

Figure 5.10. Two dimensional visualization of the update domain

Figure 5.11. Three dimensional visualization of the update domain

58

5.3.2. Low-Fidelity Simulations

The next step is to set up and run the PyAVL module, which uses the panel method to perform
very fast simulations. This Vortex Lattice Method (VLM) represents lifting surfaces, such as
wings, as vortex surfaces, neglecting profile thickness and fluid viscosity. Consequently, the
aerodynamic coefficients, particularly the drag coefficient (CD), are approximate, but they
still provide a useful initial estimate.

These points form an aerodynamic database (aeromap) that is later used to refine the
predictions with higher-fidelity simulations. The obtained input-output pairs (denoted as X

and y) are split into three datasets for training, validation, and testing of the surrogate model.
Following the standard approach, the split is 70% for training, 20% for validation, and 10%
for testing. These datasets serve distinct purposes: training is used to fit the model, validation
is employed for hyperparameter tuning, and the test set is used to evaluate model accuracy
and prevent overfitting.

Hyperparameter tuning is performed via Bayesian optimization, as described in Sec-
tion 2.3.3. Once training is completed, the code suggests additional sampling points based
on three criteria:

• Selection of points with the highest variance in predictions

• Inclusion of the maximum and minimum angle of attack values

• Addition of points where Mach number is greater than 0.7, since VLM methods be-
come increasingly inaccurate at high Mach numbers

The new dataset, shown in Figure 5.12, ensures the Multi-Fidelity Kriging algorithm has
a nested structure, meaning the refined solutions share the same input values as the initial
dataset.

59

Figure 5.12. Three dimensional visualization of the update domain with new points

5.3.3. High-Fidelity Simulations and Multi-Fidelity Model Training

With the updated dataset, Eulerian simulations are performed using the SU2 module. A 3D
Eulerian mesh is generated with the GMSH software, containing 4.2 millions tetrahedral
elements (Figures 5.13 and 5.14) and using as reference the mesh indipendence analysis
performed in [34]. Eulerian simulations provide more accurate results than VLM methods,
but they are significantly more computationally expensive. While Eulerian simulations cap-
ture compressibility effects, they still neglect viscous effects, leading to an underestimation
of the drag coefficient.

Figure 5.13. Complete D150 mesh created with GMSH

60

Figure 5.14. Detail of the D150 wing mesh created with GMSH

Once the results from SU2 are collected, the Multi-Fidelity Kriging models are trained.
As described in the previous chapter, the algorithm merges the low- and high-fidelity data to
enhance prediction accuracy. The hyperparameter tuning process is repeated, and the model
is selected based on the lowest combined RMSE and variance values. The final RMSE is
below 0.01 for all three models, achieving the target error threshold of less than 5%.

5.3.4. Visualization and Model Comparison

To evaluate the performance of the trained models, response surfaces for the aerodynamic
coefficients (CL, CD, and CM) are plotted as functions of the angle of attack and Mach number
at a fixed altitude. Additionally, 2D plots of the aerodynamic coefficients as functions of
the angle of attack are provided for three different Mach numbers (0.5, 0.65, and 0.8). The
scatter points from numerical simulations are overlaid on these plots to visually assess model
accuracy.

The images on the left show the response surfaces with scattered data points overlaid. The
color scale represents the increasing values of the aerodynamic coefficient plotted on the z-
axis, making the response surface easier to interpret. The black scatter points correspond to
results from PyAVL simulations, while the red points represent data from SU2 simulations.
The same simulation points are shown in the images on the right, this time as dots and
crosses, representing slices of the response surface at the three specified Mach numbers.

The CL plot shows that the Euler and VLM results initially agree at low angles of attack.
However, as the angle of attack increases, the panel method (VLM) fails to capture flow
separation effects because it relies on the potential flow approximation. In contrast, the
Euler simulations are able to account for compressibility effects, leading to a more realistic
trend that aligns with typical aerodynamic behavior. It is important to note that the degree
to which the surrogate model follows the high-fidelity simulations is itself an optimization
parameter.

The CD plot also reveals a significant difference between the VLM and Euler results. As

61

mentioned earlier, neither method accounts for viscous effects. The surrogate model predicts
higher drag than the low-fidelity samples because they do not capture wave drag. This is
a promising indication that the surrogate model successfully incorporates compressibility
effects from the high-fidelity data.

Moreover, the impact of compressibility effects becomes even more evident at higher
flow velocities, as the discrepancy between the VLM and Euler results increases with Mach
number. This trend is expected, as compressibility corrections become increasingly im-
portant in transonic conditions, where shock waves and nonlinear aerodynamic phenomena
significantly influence drag.

The CM plots appear to be less accurately approximated compared to the other coeffi-
cients. One possible reason is that moment coefficients are more sensitive to small variations
in flow conditions and require more refined modeling to achieve high accuracy. Addition-
ally, discrepancies between the Euler and VLM results may stem from the fact that the VLM
method does not fully capture aerodynamic center shifts at higher angles of attack.

Figures 5.15 illustrate these results, highlighting the influence of Mach number on aero-
dynamic coefficients.

62

(a) Response surface for CL

(b) Curves of CL for different Mach numbers at
a fixed altitude

(c) Response surface for CD

(d) Curves of CD for different Mach numbers at
a fixed altitude

(e) Response surface for CM

(f) Curves of CM for different Mach numbers at
a fixed altitude

Figure 5.15. Response surfaces (left) and aerodynamic coefficient variations (right) for CL,
CD, and CM

63

Finally, a comparison is made with models trained using only the Kriging algorithm on
Eulerian data, without Bayesian optimization. Figure 5.16 presents the response surfaces
and aerodynamic coefficient variations predicted by this simpler model.

Compared to the Bayesian-optimized model (Figure 5.15), the Kriging-only approach
shows larger errors, particularly in regions where the Eulerian dataset is sparse. This is evi-
dent in the response surfaces, which appear less smooth and more prone to oscillations. Ad-
ditionally, the aerodynamic coefficient curves exhibit greater discrepancies at higher Mach
numbers and angles of attack.

Despite these differences, the root mean square error (RMSE) for the Kriging-only model
remains below 5% for CL (0.029) and CD (0.046), but exceeds this threshold for CM (0.089).
This suggests that while the Kriging model alone can provide reasonably accurate predictions
for lift and drag, its performance in capturing the moment coefficient is less reliable. Further
tuning or the use of additional data could help reduce this error.

64

(a) Response surface for CL (Kriging only)
(b) Curves of CL for different Mach numbers

(Kriging only)

(c) Response surface for CD (Kriging only)
(d) Curves of CD for different Mach numbers

(Kriging only)

(e) Response surface for CM (Kriging only)
(f) Curves of CM for different Mach numbers

(Kriging only)

Figure 5.16. Response surfaces (left) and aerodynamic coefficient variations (right) for the
Kriging-only model. The predictions show greater errors compared to the

Bayesian-optimized approach.

65

6. Conclusions and Future Developments

This thesis presented the development and implementation of two Python-based modules that
enable the training and subsequent use of a surrogate model based on a multi-fidelity strat-
egy. These modules can be used independently or integrated into a CEASIOMpy workflow,
providing a valuable tool for the preliminary design phase of an aircraft. Their functionalities
have been validated through an application case study, initially using two simpler test cases
to assess the accuracy of the surrogate models in controlled conditions. The methodology
was then applied to a more complex and comprehensive case to evaluate the performance of
the approach in a realistic scenario.

However, the addition of a third fidelity level was not achieved due to convergence is-
sues encountered in SU2 when performing RANS simulations on complex geometries and
demanding configurations. While Eulerian simulations did not present difficulties, RANS
cases were affected by the onset of shock waves on surfaces, such as the upper wing, and
significant flow separation at high angles of attack, particularly in transonic regimes. These
challenges prevented the successful integration of higher-fidelity data into the multi-fidelity
framework.

The results obtained confirm that surrogate modeling can significantly reduce computa-
tional costs while maintaining high accuracy in predicting aerodynamic coefficients. The
ability to merge different fidelity levels in a single predictive framework has proven to be a
promising approach, offering a balance between computational efficiency and precision.

Based on the work carried out, several possible future developments can be identified:
Firstly, it would be interesting to explore the Co-Kriging algorithm, also available in the

SMT library. Unlike the standard multi-fidelity Kriging approach, Co-Kriging allows the use
of non-nested data points. This would enable the combination of different datasets, providing
greater flexibility. However, implementing this method might introduce additional complex-
ity, requiring careful parameter tuning to achieve optimal results. While non-nested data
provide more flexibility, they may lead to inconsistencies between fidelity levels, making
the modeling process more challenging. In contrast, using nested data ensures a structured
relationship between fidelities, simplifying the information transfer and improving model
stability. Furthermore, Co-Kriging would necessitate updating the entire CEASIOMpy envi-
ronment to a newer Python version, which could be a considerable effort for developers.

Another possible improvement is the implementation of a more advanced adaptive sam-
pling strategy, such as the one suggested by Mengmeng et al. [32]. This strategy incorporates
additional criteria, such as maximum curvature (MaxHessian) and the Expected Improve-
ment Function, to determine the most relevant points for high-fidelity simulations. Introduc-
ing such a technique could enhance model accuracy by focusing computational resources on

66

the most critical regions of the design space.
A natural extension of this work would be the development of an optimization module for

aircraft geometry. This module could leverage the surrogate model and response surfaces to
perform shape optimization, identifying optimal values for aerodynamic coefficients while
adjusting parameters such as wing position, chord length, or taper ratio. The optimization
process could be carried out using gradient-based or gradient-free methods, depending on the
nature of the objective function and constraints. A potential approach would be to employ
genetic algorithms or particle swarm optimization for exploring a broad range of configu-
rations efficiently. Additionally, incorporating constraints related to structural integrity and
manufacturability would ensure the feasibility of the optimized design.

Furthermore, an adjoint-based optimization approach could be considered, where the
best configuration is determined with respect to a specific coefficient defined as the variable
of interest. The adjoint method is particularly advantageous for high-dimensional design
spaces, as it provides sensitivity information with respect to multiple design variables at a
computational cost independent of their number. This approach could be applied in a frame-
work where the surrogate model accelerates the evaluation of aerodynamic performance,
while the adjoint method refines the design by providing precise gradient information. Inte-
grating these techniques into a hybrid optimization strategy could significantly enhance the
efficiency and accuracy of the design process.

In summary, the work presented in this thesis provides a foundation for integrating ma-
chine learning techniques into aircraft design workflows. Future advancements will further
refine aerodynamic prediction and design optimization, making them increasingly practical
and effective for real-world aerospace engineering challenges.

67

References

[1] Gil Press. “A Very Short History of Artificial Intelligence (AI)”. In: Forbes (2016).
URL: https://www.forbes.com/sites/gilpress/2016/12/30/a- very-
short-history-of-artificial-intelligence-ai/.

[2] Ideen Sadrehaghighi. Essentials of CFD. CFD Open Series, 2023.

[3] Denis Howe. Aircraft Conceptual Design Synthesis. London: Professional Engineer-
ing Publishing Ltd, 2000.

[4] J. H. Bussemaker et al. “Collaborative Design of a Business Jet Family Using the
AGILE 4.0 MBSE Environment”. In: AIAA AVIATION 2022 Forum. Chicago, USA,
2022. DOI: 10.2514/6.2022-3446.

[5] Mengmeng Zhang. “Contributions to Variable Fidelity MDO Framework for Collab-
orative and Integrated Aircraft Design”. PhD thesis. Stockholm, Sweden: KTH Royal
Institute of Technology, 2015. URL: https://www.diva-portal.org/smash/get/
diva2:793740/FULLTEXT01.pdf.

[6] Jr. John D. Anderson. Fundamentals of Aerodynamics. 6th ed. New York: McGraw-
Hill Education, 2017.

[7] Ansys Inc. What is Computational Fluid Dynamics? 2025. URL: https://www.
ansys.com/simulation-topics/what-is-computational-fluid-dynamics.

[8] Ideen Sadrehaghighi. Mesh Generation in CFD. CFD Open Series, 2020. ISBN: 979-
8-6876-1234-5.

[9] Christophe Geuzaine and Jean-François Remacle. Gmsh Reference Manual. Gmsh
Development Team. 2025. URL: https://gmsh.info.

[10] Thomas D. Economon et al. “SU2: An Open-Source Suite for Multiphysics Simula-
tion and Design”. In: AIAA Journal 54.3 (2016), pp. 828–846. DOI: 10.2514/1.
J053813.

[11] Soledad Le Clainche et al. “Improving aircraft performance using machine learning:
A review”. In: Aerospace Science and Technology 130 (2023), p. 107792. DOI: 10.
1016/j.ast.2022.107792.

[12] Zhi-Hua Zhou and Shaowu Liu. Machine Learning. Singapore: Springer Nature Sin-
gapore, 2021. DOI: 10.1007/978-981-15-2282-6.

[13] Danilo Bzdok, Naomi Altman, and Martin Krzywinski. “Statistics versus machine
learning”. In: Nature Methods 15.4 (2018), pp. 233–234. DOI: 10.1038/nmeth.4642.
URL: https://www.nature.com/articles/nmeth.4642.

68

https://www.forbes.com/sites/gilpress/2016/12/30/a-very-short-history-of-artificial-intelligence-ai/
https://www.forbes.com/sites/gilpress/2016/12/30/a-very-short-history-of-artificial-intelligence-ai/
https://doi.org/10.2514/6.2022-3446
https://www.diva-portal.org/smash/get/diva2:793740/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:793740/FULLTEXT01.pdf
https://www.ansys.com/simulation-topics/what-is-computational-fluid-dynamics
https://www.ansys.com/simulation-topics/what-is-computational-fluid-dynamics
https://gmsh.info
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/1.J053813
https://doi.org/10.1016/j.ast.2022.107792
https://doi.org/10.1016/j.ast.2022.107792
https://doi.org/10.1007/978-981-15-2282-6
https://doi.org/10.1038/nmeth.4642
https://www.nature.com/articles/nmeth.4642

[14] Justin Hodges. Approaching Machine Learning Problems in Computational Fluid Dy-

namics and Computer Aided Engineering Applications: A Monograph for Beginners.
Independently published, 2024. ISBN: 979-8-87870-231-7. URL: https : / / www .
amazon.com/dp/B0CZF4YN31.

[15] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Machine Learning
for Fluid Mechanics”. In: Annual Review of Fluid Mechanics 52 (2020), pp. 477–508.
DOI: 10.1146/annurev-fluid-010719-060214.

[16] Bianca Williams and Selen Cremaschi. “Novel Tool for Selecting Surrogate Modeling
Techniques for Surface Approximation”. In: 31st European Symposium on Computer

Aided Process Engineering. Ed. by Metin Türkay and Rafiqul Gani. Vol. 50. Elsevier,
2021, pp. 127–132. DOI: 10.1016/B978-0-12-823377-1.50022-0.

[17] Mandar N. Thombre, Heinz A. Preisig, and Misganaw B. Addis. “Developing Sur-
rogate Models via Computer Based Experiments”. In: 12th International Symposium

on Process Systems Engineering and 25th European Symposium on Computer Aided

Process Engineering. Ed. by Krist V. Gernaey, Jakob K. Huusom, and Rafiqul Gani.
Elsevier, 2015, pp. 157–162. DOI: 10.1016/B978-0-444-63578-5.50032-5.

[18] E. Andrés-Pérez and C. Paulete-Periáñez. “On the Application of Surrogate Regres-
sion Models for Aerodynamic Coefficient Prediction”. In: Complex & Intelligent Sys-

tems 7 (2021), pp. 2025–2038. DOI: 10.1007/s40747-021-00352-9.

[19] Jichao Li, Mohamed A. Bouhlel, and Joaquim R. R. A. Martins. “Data-Based Ap-
proach for Fast Airfoil Analysis and Optimization”. In: AIAA Journal 56.6 (2018),
pp. 2177–2190. DOI: 10.2514/1.J056602.

[20] M. A. Bouhlel et al. “A Python Surrogate Modeling Framework with Derivatives”.
In: Advances in Engineering Software 135 (2019), p. 102662. DOI: 10.1016/j.
advengsoft.2019.03.005.

[21] Chunlin He et al. “A Review of Surrogate-Assisted Evolutionary Algorithms for Ex-
pensive Optimization Problems”. In: Expert Systems with Applications 202 (2023),
p. 117193. DOI: 10.1016/j.eswa.2022.117193.

[22] Timothy W. Simpson et al. “Metamodels for Computer-Based Engineering Design:
Survey and Recommendations”. In: Engineering with Computers 17 (2001), pp. 129–
150. DOI: 10.1007/PL00007198.

[23] Arthur Rizzi. “Modeling and Simulating Aircraft Stability and Control—The SimSAC
Project”. In: Progress in Aerospace Sciences 47 (6 2011), pp. 318–368. DOI: 10.
1016/j.paerosci.2011.05.003.

69

https://www.amazon.com/dp/B0CZF4YN31
https://www.amazon.com/dp/B0CZF4YN31
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1016/B978-0-12-823377-1.50022-0
https://doi.org/10.1016/B978-0-444-63578-5.50032-5
https://doi.org/10.1007/s40747-021-00352-9
https://doi.org/10.2514/1.J056602
https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1016/j.eswa.2022.117193
https://doi.org/10.1007/PL00007198
https://doi.org/10.1016/j.paerosci.2011.05.003
https://doi.org/10.1016/j.paerosci.2011.05.003

[24] CFS Engineering. CEASIOMpy: Open Source Conceptual Aircraft Design Environ-

ment. Accessed: 2025-03-21. 2024. URL: https://github.com/cfsengineering/
CEASIOMpy.

[25] Mohamed Amine Bouhlel et al. SMT: Surrogate Modeling Toolbox. Accessed: 2025-
03-21. 2024. URL: https://smt.readthedocs.io/en/latest/.

[26] Fabian Pedregosa et al. Scikit-learn: Machine Learning in Python. Accessed: 2025-
03-21. 2024. URL: https://scikit-learn.org/stable/.

[27] DLR - German Aerospace Center. SUMO: Simulation of Urban MObility. Accessed:
2025-03-21. 2024. URL: https://sumo.dlr.de/docs/index.html.

[28] F. A. C. Viana et al. “Special Section on Multidisciplinary Design Optimization:
Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really
Come?” In: AIAA Journal 52.4 (2014), pp. 670–690. DOI: 10.2514/1.J052940.

[29] M. C. Kennedy and A. O’Hagan. “Bayesian Calibration of Computer Models”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63.3
(2001), pp. 425–464. DOI: 10.1111/1467-9868.00294.

[30] L. Le Gratiet. “Multi-Fidelity Gaussian Process Regression for Computer Experi-
ments”. PhD thesis. Université Paris-Diderot - Paris VII, 2013. URL: https://tel.
archives-ouvertes.fr/tel-00822156.

[31] Vivien Riolo Aidan Jungo and Jan B. Vos. “Using Surrogate Models to Speed up
the Creation of Aerodynamic Databases in CEASIOMpy”. In: EWADE-READ 2020

(2020).

[32] Mengmeng Zhang et al. “Data Fusion and Aerodynamic Surrogate Modeling for
Handling Qualities Analysis”. In: Aerospace Science and Technology 98 (2020),
p. 105703. DOI: 10.1016/j.ast.2019.105703.

[33] Ralf Heinrich, ed. AeroStruct: Enable and Learn How to Integrate Flexibility in De-

sign. Vol. 138. Notes on Numerical Fluid Mechanics and Multidisciplinary Design.
Springer International Publishing, 2018. ISBN: 978-3-319-72019-7. DOI: 10.1007/
978-3-319-72020-3. URL: https://link.springer.com/book/10.1007/978-
3-319-72020-3.

[34] Aidan Jungo et al. “Benchmarking New CEASIOM with CPACS Adoption for Aero-
dynamic Analysis and Flight Simulation”. In: Aircraft Engineering and Aerospace

Technology 90.4 (2018), pp. 613–626.

70

https://github.com/cfsengineering/CEASIOMpy
https://github.com/cfsengineering/CEASIOMpy
https://smt.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
https://sumo.dlr.de/docs/index.html
https://doi.org/10.2514/1.J052940
https://doi.org/10.1111/1467-9868.00294
https://tel.archives-ouvertes.fr/tel-00822156
https://tel.archives-ouvertes.fr/tel-00822156
https://doi.org/10.1016/j.ast.2019.105703
https://doi.org/10.1007/978-3-319-72020-3
https://doi.org/10.1007/978-3-319-72020-3
https://link.springer.com/book/10.1007/978-3-319-72020-3
https://link.springer.com/book/10.1007/978-3-319-72020-3

Nomenclature

Symbol Definition
α Angle of attack (deg)
β Sideslip angle (deg)
p Pressure (Pa)
T Temperature (K)
η Efficiency
µ Dynamic viscosity (Pa·s)
ν Kinematic viscosity (m2/s)
τ Shear stress (Pa)
θ Angle relative to the perpendicular (deg)
δ Discrepancy function
q∞ Freestream dynamic pressure (Pa)
Re Reynolds number
g Gravity acceleration (m/s2)
t Time (s)
M Mach number (–)
ρ Air density (kg/m3)
V∞ Freestream velocity (m/s)
a Speed of sound (m/s)
e Energy (J)
u Velocity (m/s)
y+ Non-dimensional wall distance
xcp Center of pressure location (m)
c Chord (m)
l Reference length (m)
S Reference area (m2)
D Drag force (N)
L Lift force (N)
Mmoment Moment (Nm)
N Normal force (N)
A Axial force (N)
CD Drag coefficient
CL Lift coefficient
CM Moment coefficient
R Resultant aerodynamic forces (N)

71

∇ Gradient
∂ Partial derivative
d Derivative
λ Variance penalty factor
m Design points
n Independent variables
X ∈ Rm×n Design matrix
Y ∈ Rm×q Response matrix
x∗ Unsampled location
ŷk(x∗) Kriging prediction
σ2 Process variance
R(x(i),x(j)) Correlation function
θl Correlation hyperparameter
ŝ2(x∗) Prediction MSE
1 Ones vector
ψ Correlation vector

Superscripts and Subscripts

∞ Freestream condition

eq Equivalent

m Mean

max Maximum

min Minimum

LE Leading edge

T E Trailing edge

u Upper surface

l Lower surface

x x-direction

y y-direction

z z-direction

Abbreviations and Acronyms
AI Artificial Intelligence
ANN Artificial Neural Networks
AR Aspect Ratio
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy Number

72

CPACS Common Parametric Aircraft Configuration Schema
CPU Central Processing Unit
CSV Comma-separated values
DoE Design of Experiments
DLR German Aerospace Centre
EDA Exploratory Data Analysis
EI Expected improvement
HPC High-Performance Computing
GP Gaussian process
GUI Graphical User Interface
LES Large Eddy Simulation
LHS Latin Hypercube Sampling
MAE Mean Absolute Error
MDO Multidisciplinary Design Optimization
ML Machine Learning
MSE Mean Squared Error
LF Low Fidelity
HF High Fidelity
MF Multi-Fidelity
PDE Partial Differential Equations
RANS Reynolds-Averaged Navier-Stokes
RMSE Root Mean Squared Error
SGD Stochastic Gradient Descent
SMT Surrogate Modeling Toolbox
SVM Support Vector Machines
VLM Vortex Lattice Method

73

	Sommario
	Abstract
	Ringraziamenti
	Acknowledgements
	Introduction
	Aircraft Conceptual Design
	Aerodynamic Forces and Coefficients
	Machine Learning for Aerodynamic Forces Prediction

	Machine Learning applied to CFD
	CFD Fundamentals
	Overview of CFD Approaches and Principal Equations
	Meshing
	Simulations

	Machine Learning Fundamentals
	Machine Learning Categories
	Machine Learning General Framework

	Surrogate Model
	Sampling
	Regression Models
	Optimization

	CEASIOMpy
	Modules and Architecture
	CPACS
	Using of CEASIOMpy

	Multi-Fidelity Surrogate Model in CEASIOMpy
	SMT Library
	Multi-Fidelity Strategy
	SMTrain Module
	SMUse Module

	Application Case Study
	Variation of Angle of Attack
	Variation of Angle of Attack and Mach Number
	Complete Multi-Fidelity Model Training
	Definition of the Computational Domain
	Low-Fidelity Simulations
	High-Fidelity Simulations and Multi-Fidelity Model Training
	Visualization and Model Comparison

	Conclusions and Future Developments
	References
	Nomenclature

