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Abstract
Drop formation is a very interesting and common phenomenon that can be seen

in a wide range of occurrences, both natural and man-made, from rain drops to

ink-jet printers and spray atomizers. It is also a topic that fascinated scientists

for centuries and the mathematical description pioneered by Young and Laplace

opened the door to their systematic study. Drop formation starts with an elon-

gated filament, or liquid bridge, which connects the drop to the body of liquid

that subsequently necks by capillary action and breaks into droplets.

The main goal of this thesis is to develop a tool for investigating the stability

of the equilibrium state of liquid bridges, which is the last connection between the

drop and the body of liquid. For this aim, bifurcation theory and linear stability

analysis have been used by developing a MATLAB code, and adopting numerical

tool, like pseudo-arclength continuation and the Newton-Raphson method.

After some historical considerations, the one-dimensional model by Eggers

and Dupont is presented. A brief description of bifurcation and linear stability

analysis is provided with some examples linked to our topic. On this basis,

details and issues on the numerical procedure and methods in use are accurately

explained and the validation of our tool is presented. Finally, the results of

the stability analysis are shown on the influence of characteristic dimensionless

parameters on breakup.
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Sommario
La formazione di gocce è un fenomeno comune e molto interessante, visibile ogni

giorno in una grande varietà di eventi, sia naturali che artificiali. Molte appli-

cazioni ingegneristiche utilizzano questo meccanismo per arrivare a scopi differ-

enti; per averne un’idea, basti solo pensare alla verniciatura delle carrozzerie delle

automobili, agli iniettori di combustibile per motori a combustione interna o alle

stampanti a getto d’inchiostro. Inoltre, nella nostra vita di tutti i giorni assisti-

amo continuamente a questa manifestazione; chiunque di noi è familiare con la

noiosa formazione delle goccioline dal rubinetto o lo spray di profumi e deodoranti

solo per citarne alcuni.

Ognuna di queste applicazioni ha come scopo la formazione di gocce di dimen-

sioni controllate a seconda del tipo di utilizzo. Esistono molti modi per produrle

ma, essenzialmente, da una riserva di liquido si forma un filamento allungato di

liquido (o ”ponte liquido”); questo successivamente si assottiglia formando una

strizione e, infine, si rompe dando vita alla goccia.

Lo scopo principale di questa tesi è quello di sviluppare uno strumento per

analizzare la stabilità dei punti di equilibrio del ponte liquido, ultima connessione

tra la goccia e il resto del filamento. A tal scopo è stato sviluppato un codice in

MATLAB che si basa strumenti come la teoria della biforcazione e quella della

stabilità lineare, assieme a metodi di continuazione della soluzione e di calcolo

degli zeri.

Nella prima parte di questa tesi, dopo un’introduzione al problema e alla

storia delle ricerche scientifiche, viene presentato il modello semplificato utilizzato

in questo studio. Successivamente vengono descritti in dettaglio gli strumenti

matematici utilizzati e le procedure numeriche. Infine, vengono mostrati i risultati

ottenuti e i possibili sviluppi futuri. Nel dettaglio, la tesi si suddivide in sette

sezioni, di seguito descritte in modo esaustivo.

La prima sezione è puramente introduttiva; dopo una primo inquadramento

del fenomeno della formazione delle gocce, viene fatta una panoramica degli

sviluppo delle ricerche su questo argomento nel corso degli anni.
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La seconda sezione riguarda il modello fisico-matematico utilizzato per de-

scrivere il ponte liquido. Si tratta di un modello mono-dimensionale noto in

letteratura e proposto da Eggers e Dupont nel 1994, di cui viene presentata in

modo riassuntivo la sua derivazione partendo dalle equazioni di Navier-Stokes.

Nella terza sezione, si descrive la teoria della biforcazione, il suo utilizzo e

le maggiori considerazioni che si possono trarre da essa. Viene inoltre trattato

l’utilizzo del diagramma di biforcazione e analizzati i principali punti d’interesse

che si possono incontrare in questo studio.

La quarta sezione è dedicata alla teoria della stabilità lineare; viene presen-

tato il procedimento generale e alcuni risultati generici. Oltre a ciò, viene fatta

un’attenta analisi del diagramma di stabilità del ponte liquido.

La quinta sezione raggruppa tutti i metodi numerici utilizzati per sviluppare

il codice di calcolo: di ognuno si descrive la teoria, l’implementazione numerica e

si analizzano i limiti e i benefici che possono dare.

Infine, la sesta e settima sezione sono dedicate rispettivamente ai risultati e

alle conclusioni e sviluppi futuri.
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1 Introduction

From rain drops to very tiny, pico-litre sized drops produced in an ink-jet printer,

drop formation is seen in a wide range of occurrences, both natural and man-

made. This common physical occurrence is driven by surface tension of the liquid,

which tends to minimize the interface area between immiscible fluids.

A variety of modern engineering applications employ drop formation to achieve

different purposes. Just to give an idea, we can mention: spray-painting (figure

1.1(e)), liquid fuel atomizer for internal combustion engine (figure 1.1(a)), ink-jet

printing (figure 1.1(f)), agricultural irrigation, medical diagnostics, manufactur-

ing.

However, droplets formation is also present in our everyday environment in

kitchens, showers, pharmaceutical sprays and cosmetics, and are also used for

our entertainment, and for our security. Everyone is familiar with the annoying

formations of droplets from faucet (figure 1.1(d)), the spray of a perfume bottle

(figure 1.1(b)), fire extinguishers or dropper (figure 1.1(c)).

All of these processes have as ultimate goal to produce drops of controlled

volumes and compositions depending upon the final requirement. There are sev-

eral methods to produce drops from nozzles. In all of these methods, essentially,

an elongating liquid filament or a liquid bridge is formed connecting two ”blobs”

or reservoirs of the liquid. This filament subsequently thins or necks by capillary

action or by externally applied strains, and breaks forming individual drops.

In this thesis the focus will be on the breakup of liquid bridge which is the

last thin connection between the drop and the macroscopic body of liquid. In

particular, we will investigate the stability of the equilibrium state since it can be a

guide to the dynamics of the system: looking at steady states and bifurcations can

tell us more about the dynamics of a liquid bridge’s evolution and the phenomenon

of the creation of drop.

On the analytical side, linear stability analysis is a basic but precious tool.

Anyway, non linear effects are important - if not dominant - in the dynamics

of the process. Numerically, solving the Navier-Stokes equation (NSE) for these
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Example of applications employing drop formation: (a) fuel injector,
(b) spray of a perfume bottle, (c) dropper, (d) falling droplet from a faucet, (e)
spray painting, (f ) drops from a bank of ink-jet nozzles
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problems remains a challenging task in term of computational effort, due to the

high resolution needed near break-up. For this reason, reduced-order models

have been developed in the past and are available in the literature. In this thesis

we will employ a one-dimensional model, based on a lowest-order expansion in

Taylor series of the Navier-Stokes equations, to model the liquid bridge. We will

also employ bifurcation methods and linear stability theory to investigate the

equilibria of liquid bridges.

Apart from its own interest on ground for natural capillary systems, the liquid

bridge configuration offers some unique characteristics that makes it interesting

for fluid physics research under microgravity. On the one side, the liquid bridge

is the simplest mechanical model of the floating zone technique of crystal growth,

a key process in material sciences for purification in a crucible-free configuration.

On the other side, a particular instance of liquid bridges (the cylindrical shape)

is one of the simpler free interfaces one can establish in space; the other (sim-

plest) cases, the flat surface and the sphere are much more difficult to handle.

Consequently, the liquid bridge configuration has been extensively used to study

a number of difficult problems, like Marangoni convection.

For the importance on basic research and the wide range of applications,

droplet formation is a topic that fascinated scientists for centuries. We present

here some history about scientific research on jets and droplets. Most of the

information come from [6, 7, 9, 18].

1.1 History

Flows involving free surfaces lend themselves to observation, and thus have been

scrutinized for hundreds of years. The earliest theoretical work was concerned

almost exclusively with the equilibrium shapes of fluid bodies, and with the stabil-

ity of the motion around those shapes. Experimentalists, always being confronted

with physical reality, were much less able to ignore the strongly non-linear nature

of hydrodynamics. Thus many of the non-linear phenomena, that are the focus

of attention today, had already been reported 170 years ago. However, with no
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theory in place to put these observations into perspective, non-linear phenomena

took the back seat to other issues, and were soon forgotten.

Figure 1.2: The breakup of liquid jet from Savart’s original paper [24]. It clearly
shows the succession of main and satellite drops as well as drop pscillations

The first mention of drop formation in the scientific literature is in a book by

Mariotte (1686) on the motion of fluids. He notes that a stream of water flowing

from a hole in the bottom of a container decays into drops. Like many authors

after him, he assumed that gravity, or other external forces, are responsible for

the process.

Mariotte argued that a falling jet acquires a speed corresponding to free fall

v = π
√

2gx at a distance x from the nozzle. Then, mass conservation gives the

relation for the radius h of the jet

h =

[
Q

π
√

2gx

]1/2

,

where Q is the flow rate. The ideas of Mariotte suggest that cohesive forces

provide a certain tensile strength σ of water, which has to be overcome by gravity

for the jet to break.

One hundred years later, a great contribution to the resolution of this problem

was made by Laplace [4] and Young [29], who published their celebrated work,

demonstrating the crucial role of the mean curvature, made up of contributions

from both the axial and the radial curvature. The subtle point which leads

to the fallacy of earlier authors is that surface tension can act in two different

ways: while for a hanging drop it indeed acts like an elastic membrane, once a

cylindrical shape is reached the radial curvature drives the breakup! Namely, the

system is driven towards a state having a smaller surface area, and thus towards a
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smaller jet radius, which eventually goes to zero. Thus paradoxically, the greater

the cohesion between the particles (and thus the surface tension γ), the faster

breakup occurs.

The basis for a more thorough understanding of drop formation was laid

in 1833 by Savart [24], who very carefully investigated the decay of fluid jets.

He was the first to recognize that the breakup of liquid jets is governed by laws

independent of the circumstances under which the jet is produced, breakup always

occurs independently of the direction of gravity, the type of fluid, or the jet

velocity and radius, and thus must be an intrinsic property of the fluid motion.

Without photography at Savart’s disposal, experimental observation of drop

breakup is very difficult, since the timescale on which it takes place is very short.

Yet, Savart was able to extract a remarkably accurate and complete picture of the

actual breakup process using his naked eye alone. To this end, he used a black

belt, interrupted by narrow white stripes, which moved in a direction parallel

to the jet. This effectively permitted a stroboscopic observation of the jet. To

confirm beyond doubt the fact that the jet breaks up into drops and thus becomes

discontinuous, Savart moved a ”slender object” swiftly across the jet, and found

that it stayed dry most of the time.

Savarts insight into the dynamics of breakup is best summarized by figure 1.2

taken from his paper [24]. To the left one sees the continuous jet as it leaves

the nozzle. Perturbations grow on the jet, until it breaks up into drops, at a

point labelled a. Near a an elongated neck has formed between two bulges which

later become drops. After breakup, in between two such drops, a much smaller

”satellite” drop is always visible. Owing to perturbations received when they

were formed, the drops continue to oscillate around a spherical shape. Only the

very last moments leading to drop formation are not quite resolved in figure 1.2.

The crucial role of surface tension was recognized in 1849 by Plateau [21],

who confined himself mostly to the study of equilibrium shapes and whether a

given perturbation imposed on a fluid cylinder would grow or not. Namely, any

perturbation that leads to a reduction of surface area is favoured by surface ten-

sion, and will thus grow. This makes all sinusoidal perturbations with wavelength
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Figure 1.3: Breakup of liquid column of oil suspended in a mixture of alcohol and
water from Plateau [21]

longer than 2π unstable.

A little earlier (1843), Plateau had developed his own experimental technique

to study drop breakup [20], by suspending a liquid bridge in another liquid of the

same density in a so-called ”Plateau tank”, thus eliminating the effects of gravity.

Yet this research was focused on predicting whether a particular configuration

would be stable or not (figure 1.3).

Following up on Plateaus insight, Rayleigh [22] realized that to understand

the breakup process the flow dynamics has to be taken into account. He noticed
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(a) (b)

(c) (d)

Figure 1.4: Plate I of Rayleigh’s ”some applications of photography” (1891) show-
ing the destabilization of a jet of air into water (a) and of a water jet in air (b).
Rayleigh notes that the air jet destabilizes faster than the water jet. Details of
the breakup process and the recoil of initially straight ”ligaments” between the
drops, sometimes breaking themselves before they have recoiled, we shown in
figure (c) and (d).
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that surface tension has to work against inertia, which opposes fluid motion over

long distances. By considering small sinusoidal perturbations on a fluid cylinder

of radius r, Rayleigh found that there is an optimal wavelength, λR ≈ 9r, at which

perturbations grow fastest, and which sets the typical size of drops. Analysing

data Savart had obtained almost 50 years earlier, Rayleigh was able to confirm

his theory to within 3%. Accordingly, the time scale τ on which perturbations

grow and eventually break the jet is given by a balance of surface tension and

inertia, and thus

τ =

√
r3ρ

γ

where ρ is the density, r the radius of the thread and γ the coefficient of surface

tension of the fluid. This tells us two important things: substituting the values

for the physical properties of water and r = 1 mm, one finds that τ is 4 ms,

meaning that the last stages of pinching happen very fast, far below the time

resolution of the eye. Secondly, as pinching progresses and r gets smaller, the

time scale becomes shorter and pinching precipitates to form a drop in a finite

time.

Rayleigh’s linear stability calculation of a fluid cylinder only permits to de-

scribe the initial growth of instabilities as they initiate near the nozzle. It certainly

fails to describe the details of drop breakup leading to, among others, the forma-

tion of satellite drops. Linear stability analysis is however quite a good predictor

of important quantities like the continuous length of the jet. Of course, as soon as

the perturbations are no longer small, non-linear effects become important, and

eventually dominate close to breakup. The features of this non-linear dynamics

were revealed in increasingly sophisticated experiments.

Rayleigh was well aware of the intricacies of the last stages of breakup, and

published some experimental pictures himself (Rayleigh (1891)). Unfortunately,

these pictures were produced by a single short spark, so they only transmit a rough

idea of the dynamics of the process. However, it is again clear that satellite drops,

or entire sequences of them, are produced by elongated necks between two main

drops. Clearly, what is needed for a more complete understanding is a sequence
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of photographs showing how one evolves into the other.

We have to wait till the work of Lenard [14] in 1887 who records a sequence

showing the dynamics close to breakup, leading to the separation of drop. It

shows for the first time the origin of the satellite drop (figure 1.5): first the neck

breaks close to the main drop and then it also pinches on the side toward the

nozzle just before it can snap back. Thus, the sequence demonstrates that the

satellite drop comes from an elongated neck, the form of which is imposed by the

asymmetry of the profile close to the pinch point: on one side it is very flat, on

the other it merges into the spherical shape of a drop.

Figure 1.5: A sequence of pictures of a drop of water falling from a pipette from
the experiment of Lenard [14]. For the first time, the sequence of events leading
to satellite drop formation can be appreciated.

More recently, experimental techniques have also become available with suffi-

cient resolution in space and time to look at the immediate vicinity of the point

of breakup. Notable examples include the jet experiments in 1970 of Rutland

and Jameson as well as those of Goedde and Yuen for water jets and in 1996 of

Kowalewski for jets of high-viscosity fluids. A momentous paper in 1990 by Pere-

grine, Shoker, and Symon not only helped to crystallize some of the theoretical

ideas, but also contained the first high-resolution pictures of water falling from a

tap.

By comparison, the development of computer codes that would permit the

calculation of free-surface flows from first principles has been slow. Owing to the

difficulties involved in implementing both moving boundaries and surface tension,
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resolution has not been possible anywhere near the experimentally attainable

limit, even with present-day computers. Only gradually did the theoretical tools

evolve that allowed for an analytical description of the non-linear dynamics close

to breakup. The first was developed in the theory of waves and often goes by the

name of ”lubrication theory” or ”the shallow-water approximation” by Peregrine

in 1972. It captures non-linear effects in the limit of small depths compared

with a typical wavelength. During the 1970s, lubrication approximations were

developed for the corresponding axisymmetric problem, to study drop formation

in ink-jet printers. This is of particular relevance since a jet does not break up

uniformly, as predicted by linear theory, but rather into main drops and much

smaller ”satellite” drops. The satellite drops fundamentally limit the print quality

attainable with this technology, as drops of different sizes are deflected differently

by an electric field which should direct the stream of droplets to a given position

on the paper.

Thus a fully non-linear theory is needed to understand and to control the for-

mation of satellite. The first dynamical equation, based on lubrication ideas, was

introduced in 1974 by Lee for the inviscid case. His non-linear simulations indeed

showed the formation of satellite drops. But it took two decades until systematic

approximations of the Navier-Stokes equation were found that included viscosity

(Bechtel, Forest and Lin; Eggers and Dupont [8]).

With the beginning of the space era in the late 1960s arose the need to know

better about capillary systems and the opportunity to experiment in a much

better environment with them than on the ground. Research in low-gravity fluid

physics has gone hands-in-hands with space exploration due to the need to solve

new technological problems like liquid gauging and sloshing in spacecraft tanks,

and to better understand old technological problems like wetting and spreading,

breaking of drops, jets and liquid bridges, etc. It started in Europe with the

space era in the sixties, but only reached critical size in the seventies after the

Call-for-Ideas for the Spacelab experiments (ESRO-1974), that matured around

ESAs Fluid Physics Module (FPM) flown in the first Spacelab payload in 1983.
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2 The liquid bridge

A single-connected blob of liquid is called drop if it is completely surrounded by

another fluid (isolated drop) or in touch just one solid surface in a single-connected

solid-liquid interface (captive drop). If the liquid touches more solid boundaries

(unconnected solid-liquid interface) it is called a liquid bridge (see figure 2.1), the

common case being a liquid bridge spanning between two solid surface. If the

liquid mass is issuing through a hole in a solid, it is called jet. Of course, these

simple geometries might be combined and thus compound geometries, like a drop

inside a drop or a jet inside a jet might appear.

Figure 2.1: Various configurations of liquid bridges between solid supports

In this work, we consider only the special case of a liquid bridge. Liquid

bridges occur in a variety of physical and technological situations and a great deal

of theoretical and experimental work has been done to determine axisymmetric

equilibria for various disk configurations, bridge slenderness and rotations. There

have also been numerous investigations of the dynamics of axisymmetric liquid

bridges subject to excitations and some research has been performed also on

non-axisymmetric bridge stability

2.1 Geometrical configuration

In the simplest configuration, a liquid bridge consists of a mass of liquid held by

surface tension forces between two parallel solid disks, as sketched in figure 2.2.



2 THE LIQUID BRIDGE 18

Figure 2.2: Geometry and coordinate system of a generic liquid bridge

The two circular end-disks can have different radii R1 and R2 with an ec-

centricity 2E, and can be separated to form a gap of reduced distance L. The

liquid bridge has a density ρ, a surface tension γ, and holds a volume of liquid V .

Other important parameters are the gravity g, divided into axial gz and lateral

gl component, the pressure jump p at the interface and the kinematic viscosity ν

of the liquid.

Such fluid configuration can be uniquely defined by the following set of dimen-

sionless parameters: the slenderness Λ = L/2R0, where R0 = (R1+R2)/2 is the

mean radius, which is used as characteristic length; the dimensionless volume

V/(πR2
0L) defined as the ratio of the physical volume of the liquid bridge to the

volume of a cylinder of the same length and radius; the dimensionless eccen-

tricity e = E/R0; the Bond number B = ρgR2
0/γ which is a measure of the ratio

between gravitational and surface forces; the Weber number We = ρROu0/γ

which is a measure of the relative importance of the fluid’s inertia compared to

its surface tension, where uo is the velocity at the inlet; the Ohnesorge number

Oh = ν/(
√
ργR0) which is the ratio between the viscous force and the inertia
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and surface forces.

Because of the large number of parameters involved, a complete study of the

equilibrium shape and stability limits of liquid bridges is a very hard task. In this

work, we consider an axisymmetric configuration (e = gl = 0) with equal solid

disks (R1 = R2 = R0) and no axial acceleration (gz) as sketched in figure 2.3.

L 

R
0
 

h
(z

) 

u(z) 

γ 

Liquid 

(ρ,ν) 

Figure 2.3: Sketch of liquid bridge model

2.2 The mathematical formulation

From the mathematical point of view, shapes of liquid bridges are described by the

full Navier-Stokes equation with free surface boundary conditions; unfortunately

this is very complicated, for both analytical and numerical studies since the zone

about to pinch off requires very high resolution. Thus, a reduction of the physical

problem to an easier model will give huge savings in computer time, this better

approaching the singularity. There already exist some one-dimensional equations

for axi-symmetric free surface flows ([3, 8, 13]). Our choice falls on the one-

dimensional model developed by Eggers and Dupont [8] due to its simple but

efficient structure.
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The model starts from the Navier-Stokes equations in cylindrical coordinates

for an axisymmetric column of fluid, i.e.

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

= −1

ρ

∂p

∂r
+ ν

(
∂2ur
∂r2

+
∂2ur
∂z2

+
1

r

∂ur
∂r
− ur
r2

)
(2.1a)

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

= −1

ρ

∂p

∂z
+ ν

(
∂2uz
∂r2

+
∂2uz
∂z2

+
1

r

∂uz
∂r

)
− g (2.1b)

where uz is the velocity along the axis, ur the velocity along the radial direction,

and the continuity equation

∂ur
∂r

+
∂uz
∂z

+
ur
r

= 0. (2.2)

To equation (2.1) and (2.2) we have to add the balance of normal forces

n · σ · n = −γ
(

1

R1

+
1

R2

)
(2.3)

and tangential forces

n · σ · t = 0 (2.4)

where σ is the stress tensor, n is the outward normal, R1 and R2 are the principal

radii of curvature.

Finally, the surface has to move with the velocity field at the boundary

∂h

∂t
+ uz

∂h

∂z
= vr|r=h (2.5)

where h(z, t) is the radial coordinate of the interface.

Using the Taylor series to expand with respect to r and solving the equation to

lowest order in r, it is easy to obtain the Eggers-Dupont one-dimensional model :
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∂tu =− uuz −
pz
ρ

+
3ν (h2uz)

h2
(2.6a)

p =γ

[
1

h (1 + h2z)
1/2
− hzz

(1 + h2z)
3/2

]
(2.6b)

∂th =− uhz −
1

2
uzh (2.6c)

where the subscript ”z” denotes the partial derivative with respect to z.

This set of equations (2.6) has to be solved for z ∈ [0, L] imposing the follow-

ing boundary conditions:

h (0) = h (L) = R0 (2.7a)

u (0) = u (L) = u0 (2.7b)

For this simplified system, the mass conservation law has to be imposed:

V = π

∫ L

0

h2dz (2.8)

The set of equation (2.6), (2.7) and (2.8) will concern us for the rest of this

work.
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3 Bifurcation theory

A bifurcation of a dynamical system is a qualitative change in its dynamics pro-

duced by varying parameters. A bifurcation occurs when a smooth change made

to the parameter values (the bifurcation parameters) of a system causes a sud-

den ”qualitative” or topological change in its behaviour. One goal of bifurcation

theory is to produce parameter space maps or bifurcation diagrams that shows

the possible long-term values (equilibria/fixed points or periodic orbits) of a sys-

tem as a function of a bifurcation parameter in the system. Two examples of

bifurcation diagrams with different axe are presented in figure 3.1 and 3.2.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.4

0.5

0.6

0.7

0.8

0.9

1

p

V
/V

0

Bifurcation diagram for L= 3

 

 
unstable
stable
bifurcation point

Figure 3.1: Volume-pressure bifurcation diagram for vanishing Weber number

3.1 Stationary solution

A first step in the bifurcation analysis consists in determining the stationary

solution branches of equations (2.6). Let x = (u, h) be the state variable, in
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vector notation equations (2.6) can be written as ẋ = f(x). Equilibrium points,

also called stationary solutions, xs = (us, hs) are points where the system remains

in the same state as time elapses, in every observable way. Then, they are defined

by ẋ = 0 and satisfy the equation

f(xs) = 0

In our case, stationary states of (2.6) are solutions of the algebraic system:

−uuz −
pz
ρ

+
3ν (h2uz)

h2
= 0 (3.1a)

−uhz −
1

2
uzh = 0 (3.1b)

where

p = γ

[
1

h (1 + h2z)
− hzz

(1 + h2z)

]
with its boundary conditions and mass conservation property:

h (0) = h (L) = R0 (3.2)

u (0) = u (L) = u0 (3.3)

V = π

∫ L

0

h2dz (3.4)

Every parameter in (3.1) can be use as bifurcation parameter in order to build

a bifurcation diagram. The curves in diagrams of figure 3.1 and 3.2 represent the

branches of solutions to (3.1), i.e., the equilibria point of system (2.6).

3.2 Bifurcation diagram

The purpose of the diagram is to display qualitative information about equilibria,

across all equations ẋ = f(x), obtained by varying physical parameters appearing

in f . An example of bifurcation diagram of system (3.1) using the Weber number

as bifurcation parameter is presented in figure 3.2. However, it has long been
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realized that once a bifurcation diagram has been determined, either numerically

or analytically, certain conclusion concerning stability proprieties can be made

with little or no additional analysis.
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Figure 3.2: Minimum radius-Weber number bifurcation diagram

Maddocks in [16] demonstrates that the stability can be determined by ex-

amining equilibria in the bifurcation diagram. It is well known from bifurcation

theory that if a stable branch undergoes a turning point, then there is a change

in stability at the turning point. Maddocks further says that, in preferred coordi-

nates, each turning point involves a change in sign of an eigenvalue and, moreover,

it gives criteria to specify that change (e.g. plus to minus).

The theorem by Maddocks [16] considers minimization problems of the form

F (u) = G(u)− λH(u)

where F is a functional and G is the object to minimize subject to H prescribe
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(the constrained problem) or subject to λ prescribed (the unconstrained problem)

and demonstrate (see figure 3.3):

Theorem (Maddocks) Consider solution curves in the H − λ pre-

ferred diagram with a simple fold and without branch points. For the

unconstrained problem, as the fold is traversed (decreasing H), the

number of negative eigenvalues of the Jacobi equation changes from k

to k + 1 if the fold opens to the right and from k to k − 1 if the fold

opens to the left. For the constrained problem, as the fold is traversed

(increasing A), the number of negative eigenvalues changes from j to

j + 1 if the fold opens upward and from j to j − 1 if the fold opens

downward.

In our case, the exact surface of static equilibrium is also an equilibrium

surface of the model (2.6) which minimizes the potential energy of the system.

In this work, we have developed a first case where the system is subject to a

prescribed volume V = constant that leads to take the pressure as bifurcation

parameter. In the second case the system is subject to a prescribed Weber number

using the shape of the interface as parameter.

3.3 Singular point

A local bifurcation occurs when a parameter change causes the stability of an

equilibrium (or fixed point) to change and it is called bifurcation point.

There are different types of bifurcations. We start with a classification of the

different local bifurcations, that is, the bifurcations that involve equilibria. These

bifurcations can be classified in terms of the eigenvalues of the Jacobian matrix

associated with the (parameter-dependent) equilibrium.

Hence, we can think of the bifurcation as a movement of eigenvalue(s) through

the imaginary axis as a parameter is varied. For vector fields, there are two

generic cases: either one eigenvalue moves through the origin, or a pair of complex

conjugated eigenvalues moves through the imaginary axis.

Examples of local bifurcation that appear in figure 3.2 are:
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(a) (b)

(c) (d)

Figure 3.3: Change in number of negative eigenvalues at a turning point, for
the constrained (figure a and b) and unconstrained (figure c and d) problems,
respectively

Saddle-node (fold) bifurcation The saddle-node bifurcation is characterised

by the fact that on one side of the bifurcation two equilibria exist, while

on the other side of the bifurcation these two equilibria disappear. This

bifurcation is localized where the branch curve turns back and it is as-

sociated to one eigenvalue ”moving through” the origin. The bifurcation
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point can be thought of as the point where the two equilibria collide. The

saddle-node bifurcation can take place in any system and is, in fact, a very

typical bifurcation to happen when a parameter is varied. Maybe because

this bifurcation is so typical, it has a lot of other names like fold bifurcation,

tangent bifurcation, limit point bifurcation or turning point bifurcation. In

figure 3.2 the turning point bifurcation is marked with F;

Hopf bifurcation In the mathematical theory of bifurcations, a Hopf or PoincaréAndronovHopf

bifurcation, named after Henri Poincaré, Eberhard Hopf, and Aleksandr An-

dronov, is a local bifurcation in which a fixed point of a dynamical system

looses stability as a pair of complex conjugate eigenvalues of the linearised

system around the fixed point cross the imaginary axis of the complex plane.

(points H);

Branch point is where two different branches intersect (point B).
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4 Linear stability analysis

Stability theory studies the stability of a dynamical systems under small pertur-

bations of initial conditions. Stability means that the system goes back to its

original state after it is submitted to a small external perturbation. Formally, a

stationary solution xs is stable if, starting from initial values x(t) that are suffi-

ciently close to the equilibrium, the system approaches the steady state as time

goes to infinity

x(t)
t→∞−−−→ xs

Otherwise, the response tend to grow and the stationary solution is called unsta-

ble.

A classical example of stable state is a ball in a bowl, as shown in figure

4.1(a). If we move the ball from the original state to a disturbed state, after

some oscillations it goes back to its original state. On the other hand, a ball on a

hilltop (figure 4.1(b)) is an unstable state because every disturbance will produce

an ever-increasing change from the original state.

Before we begin the analysis of our problem, it is worth to outline the basic

general procedure involved in a linear stability analysis:

1. specify the governing non-linear equations and related boundary conditions;

2. find the steady state;

3. subject the steady state to a small perturbation of order δ;

4. linearise the equations: substitute the perturbed form into the governing

equations, expand in Taylor series with respect to the perturbation δ around

the steady state and neglect second order term O(δ2) and higher;

5. analyse the eigenvalue of the Jacobian matrix J to find stable and unstable

steady states.
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(a) stable equilibrium

(b) unstable equilibrium

Figure 4.1: Classical example of stability

4.1 The linearisation

In our case, the governing equations are the set (2.6) presented in section 2.2.

Let x = (u, h, p) be the state vector and x0 = (U, H, P ) an equilibrium

point. To linearise the governing equations, we add a small perturbation δx to

the stationary point x0 and substitute the perturbed state into the governing

equations, the perturbed state is:

u→U + δu (4.1)

h→H + δh (4.2)

p→P + δp, (4.3)
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and the governing equations (2.6) become

∂t(U + δu) =− (U + δu)(Uz + δuz)−
(P + δp)z

ρ
+

+
3ν [(H + δh)2(U + δu)z]

(H + δh)2
(4.4a)

(P + δp) =γ

{
1

(H + δh) [1 + (H + δh)2z]
1/2
− (H + δh)zz

[1 + (H + δh)2z]
3/2

}
(4.4b)

∂t(H + δh) =− (U + δu)(H + δh)z −
1

2
(U + δu)z(H + δh). (4.4c)

Recalling the first order Taylor series

(1 + x)α = 1 + αx

with α ∈ R, the expansions of some term in equation (4.4) are:

1

(H + δh)2
=

1

H2

(
1 +

δh

H

)2 =
1

H2

(
1− 2

δh

H

)
(4.5)

1

[1 + (Hz + δhz)2]
1/2

=
1

(1 +H2
z + 2Hzδhz)

1/2
=

=
1

(1 +H2
z )1/2

(
1 +

2Hzδhz

1 +H2
z

)1/2
=

1

(1 +H2
z )1/2

(
1− Hzδhz

1 +H2
z

)
(4.6)

In the same way as before we can achieve:

1

(H + δh)
=

1

H

(
1− δh

H

)
(4.7)
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1

[1 + (Hz + δhz)2]
3/2

=
1

(1 +H2
z )3/2

(
1− 3

Hzδhz
1 +H2

z

)
(4.8)

Substituting expansion (4.5)-(4.8) in equations (4.4), and neglecting second

order terms and higher, we finally arrived at the linearised equation:

∂δu

∂t
=− Uδuz − Uzδu−

δpz
ρ
− 6νHzUz

H2
δh+

+
6νUz
H

δhz
6νHz

H
δuz + 3νδuzz (4.9a)

∂δh

∂t
=− Uδhz − Uzδu−

1

2
Hδuzh−

1

2
Uzδh (4.9b)

with

δp = γ

[
− 1

H2a1/2
δh−

(
Hz

Ha3/2
− 3HzHzz

a5/2

)
δhz −

1

a3/2
δhzz

]
calling a = 1 +H2

z .

4.2 The stability analysis

The study of the stability of a non-linear dynamic system start with the the study

of the linearised system

ẋ = Ax (4.10)

where A is a linear operator. In our case, A is represented by the linearisation

(4.9)

A =

[
−Uz +

(
6νHz

H
− U

)
∂
∂z

1
ρ
∂L
∂z
− 6νHzUz

H
+
(
6νUz

h

)
∂
∂z

−Hz − 1
2
H ∂

∂z
−1

2
Uz − U ∂

∂z

]
(4.11)

with

L = γ

[
− 1

H2a1/2
−
(

Hz

Ha3/2
− 3HzHzz

a5/2

)
∂

∂z
− 1

a3/2
∂2

∂z2

]
is the differential operator from the pressure equation.

The main purpose in studying the stability of a dynamical system is to know

whether a perturbation of solution grows, stays constant or shrinks as t → ∞.

This can usually be answered just by examining the eigenvalues of the linear
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operator A:

• if all eigenvalues s have strictly negative real part, then all solutions of

(4.10) approach zero exponentially and the equilibrium point x0 is consid-

ered stable;

• if at least one eigenvalue has a positive real part, the majority of solutions

of the linearised system grows exponentially and x0 is unstable;

• If some pairs of complex-conjugate eigenvalues have zero real parts with dis-

tinct imaginary parts, then the corresponding solutions oscillate and neither

decay nor grow as t→∞.

4.3 Stability diagram

A typical linear stability curve for the limit case without acceleration (Bo = 0) is

shown in figure 4.2 (dashed line). For axisymmetric liquid bridges with e = Bo =

We = 0 and equal disks, early stability studies were published more than 20 year

age by Gillette and Dayson [10]. Later studies on axisymmetric perturbations by

Martinez [17, 23] and on arbitrary perturbations by Slobozhanin [25, 26] led to

the construction of the stability region.

According to these works, the boundary of the stability region in the Λ − V
plane is unclosed and consist of three parts. On the upper boundary the bridge

looses its stability with respect to non-axisymmetric perturbations. The maxi-

mum volume limit is determined by a non-axisymmetric deformation of the liquid

bridge interface and a possible spreading of the liquid over the lateral surfaces

of the end-disks. On the lower boundary, the minimum volume stability limit

is driven by an axisymmetric perturbation. For large slenderness, Λ > 2.13, on

the right part of boundary, the stability limit is determined by the appearance of

a pitch-fork bifurcation to unstable equilibrium with non-symmetric shape with

respect to the middle plane parallel to the disks. This means that when the

stability limit is reached, the breakage of the liquid bridge causes two drops of

different volume. On the left part of the boundary a detachment is characterized
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Figure 4.2: Typical stability diagram of liquid bridges between equal disks with
small constant axial acceleration (Bo = 0.1 solid line) and no acceleration (Bo = 0
dashed line) [Slobozhanin and Perales [27]]
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by small slenderness (Λ < 2.31); the stability limit is due to a turning point

in the bifurcation diagram and the associated unstable equilibrium shapes are

still symmetric with respect to the middle plane parallel to the disks. The cor-

responding drops appearing after the breaking will be of equal size. Finally, if

the slenderness is small enough, there is another minimum limit volume due to

a possible detachment of liquid bridge interface from the edges of disks (curve

OD).

The influence of axial gravity on the character of deformation of the first

and second parts of the boundary corresponding to Bo = 0 was determined by

Barmin et al. [2]. According to the results mentioned above, for each non-zero

value of the Bond number the stability diagram of capillary liquid bridges can be

represented by a single closed piecewise curve on the Λ− V plane.

Liquid bridge configurations represented by points inside the region bounded

by this curve are stable whereas those lying outside are unstable. A typical

stability limit curve for small Bond numbers (Bo = 0.1) is shown in figure 4.2

with a solid line. In such a stability limit it is possible to distinguish three different

parts. For volumes V < 1 and small slenderness, the instability is governed by the

detachment of the interface (the wetting line) from the edges of the top disk (curve

OD in figure 4.2 corresponds to zero wetting angle). Another part of the stability

limit curve, corresponding to a minimum in the volume, is characterized by the

axisymmetric breakage of the liquid bridge (curve DC where point C is always

below the point of maximum slenderness B), such a part of the stability curve

being known in the literature as the minimum volume stability limit. Finally, the

last part of the curve (curve OABC) is characterized by the loss of axisymmetry

of the equilibrium shapes, i.e., a non-axisymmetric deformation appears.
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5 Numerical procedure

In this section we will present the numerical methods to develop a MATLAB

code. Particularly, we illustrate the numerical techniques used in the analysis of

bifurcation and the method used to perform the continuation of solutions.

The numerical approximation were computed using an algorithm that builds

the differentiation matrix using the spectral collocation method based on Cheby-

shev polynomial [28].

5.1 The NewtonRaphson method

As presented in section 3.1, in bifurcation analysis the first thing to do is finding

the stationary solution branches (or solution paths). Stationary solution xs are

defined as solutions of the (non-linear) vector equation f(x) = 0. The classi-

cal way to solve this problem is the NewtonRaphson method that let you find

successively better approximations to the zeroes of a real-values function.

Through a linearisation of f using Taylor series expansion, one obtains

0 = f(xs) ≈ f(x0) + f ′(x0) · (xs − x0)

where x0 is an approximation of xs and f ′(x0) is the Jacobian matrix evaluated

at x0. The above relation set a way to a better approximation x1 by solving

x1 = x0 −
f(x0)

f ′(x0)
(5.1)

Applying equation (5.1) repeatedly produces a series of better approximation

x1, x2, x3, . . .

Under certain assumptions (the most important of which is non-singularity

of the Jacobian at the solution), one can guarantee quadratic convergence in a

neighbourhood of the solution. This means that both f(xn) and xs − xn go
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quickly to zero. In practice, however, the usual assumptions ensuring this rate

of convergence are not always satisfied. Therefore we often encounter limitations

on the rate of convergence.

The main limitation is due to the initial guess. For many difficult problems an

arbitrary initial guess x0 does not lead to convergence of the sequence produced

by equation (5.1) because x0 may be too far away from a solution.

There are lot of technique to improve the convergence efficiency of the New-

tonRaphson method. Our choice falls on using a continuation method to predict

the initial guess from previous solutions. This method will be presented better

in next section.

5.2 Continuation of solution - Pseudo-arclength continu-

ation

Numerical continuation is a technique to compute a consecutive sequence of points

which approximate the desired branch. The idea behind this method is to gener-

ate the next point xi+1 making a prediction from a found point xi on the curve.

Then the predicted point is corrected to satisfying a chosen tolerance criterion

‖f(xi)‖ ≤ ε for some ε > 0.

According to [5], one of the most popular continuation method is the pseudo-

arclength continuation. It can be formulated as

f(x1, λ1) = 0, (x1 − x0)T ẋ0 + (λ1 − λ0)λ̇0 −∆s = 0

that is a more useful approximation for computations of the arclength continua-

tion.

Geometrically interpreted, this method finds a solution (x1, λ1) to f(x, λ) = 0

in a hyperplane that is at distance ∆s from (x0, λ0) and that is perpendicular to

the direction vector (ẋ0, λ̇0) as presented in figure 5.1.
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Figure 5.1: Graphical interpretation of pseudo-arclength continuation

5.3 Bifurcation point and branch switching

The location of bifurcation points is important to individuate secondary branch

passing through our path. After the identification of a bifurcation point, the

second direction has to be computed and the path switch to the second branch.

Let

F (x) =

(
f(x)

(x− x0)T ẋ0 −∆s

)
and let x0 be a bifurcation point, then

Fx =

(
fx

ẋT0

)

change sign at x0, as shown in [5]. The determinant of the Jacobian Fx is mon-

itored along the solution branch. Points where determinant changes sign are

marked as bifurcation point and the branch switching method is called to follow
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the second branch.

Since x0 is a simple singular point and N(fx(x0)) = Span(φ1, φ2), the direc-

tion vector has the form of ẋ0 = α1φ1 + β1φ2. The direction of the bifurcation

branch x′0 = α2φ1 +β2φ2 can be calculated evaluating α and β that correspond to

the linearly independent solutions of the Algebraic Bifurcation Equation [Keller

[12]]

c11α
2 + 2c12αβ + c22β

2 = 0

.

We can take φ1 to be the direction of the ”given” branch at the bifurcation

point, i.e. φ1 = ẋ0, and choose φ2 ⊥ φ1. Then φ2 is a null vectors of Fx(x0).

Then, the first solution on the new bifurcation branch can be computed with

the pseudo-archlength continuation method:

f(x) = 0

(x1 − x0)Tx′0 −∆s = 0

However, a less expensive in computer time and more efficient way to switch

branch is to use the vector φ2 rather than the real direction x′0 (orthogonal direc-

tion method). The branch switching procedure then simply consists of computing

the null vector φ2, followed by the pseudo-archlength continuation method:

f(x) = 0

(x1 − x0)Tφ2 −∆s = 0

5.4 Step-size control

Step-size control is an important issue in these algorithms. Too small step-sizes

lead to unnecessary work been done, while too big step-sizes can lead to losing

details of the curve or finding any solution. An easy and reliable method is

convergence-dependent control.

Consider the computation of a next point using step size δi. If the computation
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(a) (b)

Figure 5.2: Comparison between the correct (a) and the orthogonal (b) direction

converged, let n denote the Newton iterations needed. Then the new step-size

δi+1 will be selected as follow

δi+1 =


δi · δdec if not converged

δi · δinc if converged and n < nmin

δi otherwise

5.5 Numerical differentiation

The evaluation of the Jacobian in equation (5.1) mostly is expensive. Because

analytic expressions for the partial derivatives of f are often unavailable, imple-

mentations of the Newton method make use of numerical differentiation.

The simplest method is to use finite difference approximations .A simple two-

point estimation is to compute the slope of a nearby secant line through the

points (x, f(x)) and (x+ ε, f(x+ ε)). Choosing a small number ε that represents

a small change in x, the slope of this line is

f(x+ ε) + f(x)

ε

This expression is Newton’s difference quotient. The slope of this secant line
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differs from the slope of the tangent line by an amount that is approximately

proportional to ε. As ε approaches zero, the slope of the secant line approaches

the slope of the tangent line. Therefore, the true derivative of f at x is the limit

of the value of the difference quotient as the secant lines get closer and closer to

being a tangent line:
f(x+ ε) + f(x)

ε

ε→0−−→ f ′(x)

The following algorithm can be used to calculate an approximation of f ′(x),

let zk be the k− th column of the Jacobian f ′, U and V two auxiliary n-vectors:

Algorithm 1 Numerical differentiation

Evaluate U = f(x)
Choose a small ε > 0
for k = 1 to n do
xk = xk + ε
Evaluate the vector V = f(x)
zz = V−U

ε

end for

5.6 Code validation

A very important task in developing a code is the validation. The computational

method is tested first by simulating the classical stability of a cylinder. In Par-

ticular, we compare our stability analysis with the analytical dispersion relation

from Eggers and Dupont work [8].

They start with a cylinder of radius r0 that receives a sinusoidal perturbation

of wavelength λ = 2π/k; then

r(z, t) =r0 [1 + ε(t) cos(kz)]

v(z, t) =ε(t)v0 sin(kz)

Assuming ε(t) = ε0e
ωt, solving to lowest order in ε equation (2.6a) and (2.6c) give
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Figure 5.3: Comparison between code (square) and theory (line) for different
value of viscosity

respectively

ωv0 = −
(
γ

ρ

)(
k

r0
− r0k3

)
− 3νv0k

2

ω = −1

2
v0k

that gives us the relation

ω2 = ω2
0

1

2

[
(r0k)2 − (r0k)4

]
− 3νωk2 (5.2)

with ω2
0 =

γ

r30ρ
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Solution of (5.2) gives the dispersion relation:

ω = ω0

{[
(kr0)

2 1

2

(
1− (kr0)

2)+
9

4

lv
r0

(kr0)
4

] 1
2

− 3

2

(
lv
r0

) 1
2

(kr0)
2

}
(5.3)

where lv = ν2ρ/γ a viscous length-scale.

Our comparison with the dispersion relation (5.3) for three viscosity values is

shown in figure 5.3. Our results fits perfectly the theory from [8]. As expected,

there is an instability for wavelength longer than the perimeter, i.e. for wave-

number less than 1/R0.

p
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Bifurcation diagram L = π
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Figure 5.4: Comparison between our code and Lowry and Steen results [15]

The second step was comparing our continuations code with the bifurcation

diagram done by Lowry and Steen in [15]. Figure 5.4 is an example of our

comparison. As we can see, our results match very well the bifurcation curve
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drawn by Lowry and Steen. Our code also predict very well the bifurcation point

and the change in stability at the fold.

5.7 Code for integration in time

In this work has also been developed a time integration algorithm of the system

(2.6). Due to the non-linear behaviour of the system, a combination of finite

difference method and Newton-Raphson method has been used to follow the time

evolution of the system.

Let now q be the state vector and f the non-linear function, system (2.6) can

be rewrite as
∂q

∂t
= f(q)

Using finite difference implicit method, previous equation become

qi+1 − qi

dt
= f(qi+1)

and finally

qi+1 + dt · f(qi+1)− qi = 0 (5.4)

Since f is not a linear function of qi+1, equation (5.4) can not be rewrite

with linear operator and solving in qi+1. A way to do it is changing variable

qi+1 = qi+1
0 + δ where qi+1

0 is a predicted next step solution and δ is a small

variation. Then, we can rewrite the system as

qi+1
0 + δ − dt · f(qi+1

0 + δ)− qi = 0

Since δ is a small variation around qi+1
0 , we can use a linear approximation

and f(qi+1
0 + δ) become f(qi+1

0 ) + Jδ where J is Jacobian matrix.

Then, the new equation can be written as

qi+1
0 + δ − dt

(
f(qi+1

0 ) + Jδ
)
− qi = 0
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qi+1
0 − dt · f(qi+1

0 )− qi︸ ︷︷ ︸
A

+ (I − dt · J)︸ ︷︷ ︸
B

δ = 0 (5.5)

Now, A and B are known as function of previous step solution and predicted

next step solution. We have to add to equation 5.5 the boundary condition:

u(x = 0) =U(t) (5.6a)

u(x = L) =U(t) (5.6b)

h(x = 0) =R0 (5.6c)

h(x = L) =R0 (5.6d)

where R0 is the end-disk radius of liquid bridge and U(t) is function depending

on time.

Value of δ can easily evaluate solving δ = A−1(−B) and then the next-step

state vector qi+1 = qi+1
0 + δ. This have to be iterate till F (qi+1) = 0 is satisfied.

Then, qi+1 is the real next-step solution

The following algorithm is an example of time integration using this method

Algorithm 2 Time integration

Final time T
Time step ∆t
Initial guess q0
Tolerance tol
for i = 0 : ∆t : T do

Prediction next step solution qi+1

while A > tol do
Evaluate A = qi+1 + ∆t · f(qi+1)− qi
Evaluate B = I −∆t · J
Adding boundary condition to A and B
δ = B−1(−A)
Correction of next step solution qi+1 = qi+1 + δ

end while
end for
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6 Simulation results

The aim of this thesis comes from recent studies by Hoepffner and Paré [11] who

have studied the escape from pinch-off of a liquid filament. Our ideas was to model

the connection between the body of liquid and the drop as a liquid bridge and to

study its stability for better understanding the phenomenon of ”escaping”. Then,

our purpose was to build a MATLAB based code of the simplified one-dimensional

model of liquid bridge presented in section 2.2 in order to analyse the stability

and the influence of Ohnesorge and Weber numbers on the equilibrium points.

Furthermore, a time-integration algorithm has been developed to dynamically

simulate the evolution of liquid bridge to compare to quasi-static solutions done

on GERRIS Flow Solver [1].

In the first part of this section, we analyse the influence of Weber number on

the stability limit of liquid bridges. Our attention will be focused on the lower

limit of the stability diagram, especially on thin bridges (V < Vcyl) with small

slenderness 1 < λ < 3. Finally, the quality of one-dimensional approximation in

predicting the breakup of liquid bridge will be analysed in comparison with an

axisymmetric model based on GERRIS Flow Solver.

6.1 Influence of Weber number on stability limit

In absence of acceleration and rotating velocity, it is well known that there is a

critical slenderness for long cylindrical liquid bridges so that for Λ values smaller

that critical, liquid bridges are stable. This stability limit, usually denoted the

”Plateau-Rayleigh limit”, occurs at Λ = π. The influence of centrifugal forces

when the liquid bridge rotates as a solid body depends on the value of the Weber

number and it has been analysed both theoretically and experimentally.

According to the stability limit [19], the maximum stable slenderness is

Λcrit =

{
π

(2We+1)
1/2

We < 1
3

π
2We

We > 1
3

(6.1)
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In figure 6.1 numerical results are presented on the maximum stable cylinder

length Lcrit compared to equation (6.1).

We

Λ

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.1: Influence of Weber number on the maximum stable cylinder length.
Comparison between numerical result (black line) and equation (6.1)

As expected, the introduction of a Weber number based on the inlet flow

velocity does not change the physics and the our maximum stable slenderness is

the same as that of a rotating liquid bridge. The approximation of the influence

of Weber number based on inlet velocity on the well known stability limit for a

cylindrical bridge Λ = π appears to be valid for a larger range of values than

shown in (6.1).

In general, the validity of equation (6.1) means that the system is unstable

when the smallest phase speed on the bridge becomes less than the fluid velocity.

Another important aspect of our investigation is the influence of Weber num-

ber on the minimum volume stability limits. Diagrams in figure 6.2 show how

Weber number shifts up the minimum volume limit on the bifurcation diagram.
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Figure 6.2: Influence of the Weber number on the bifurcation diagram for several
slenderness. Numbers on the curves indicate the value of the Weber number



6 SIMULATION RESULTS 48

2.0
1.0

1.5

0.5

0.0

Λ

V
/V

cy
l

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.3: Minimum stable volume of liquid bridges. Numbers on the curves
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Results show that the presence of inlet flow velocity decreases the stability

region in the Λ− V plane, no matter the liquid bridge configuration is. In figure

6.3 the lower limit of stability diagram shift with variations of the Weber number

is shown.

Another useful way to represent the bifurcation is to diagram a representative

point of the equilibrium shape as a function of one bifurcation parameter.

To characterise the shape in a single parameter one may use the extreme

radius, i.e. the radius at the centre plane between discs, where the bulge or

neck appears. However, it is better to use the radius at a quarter of the length,

R1/4, because this is also applicable to amphora-like deformations appearing with

other loads and can give information on the symmetry of the shape. Another

characteristic parameter that we use is the minimum radius of the liquid bridge

because it gives information about the size of the neck. Figure 6.4 gives an

example of the minimum radius as function of the Weber number, while figure

6.5(b) is an example of bifurcation using the radius at a quarter of the length as

representative points.

In figure 6.5 the different equilibrium interfaces that can be observed in a

liquid bridge by varying Weber number are presented. As can be easily seen in

figure 6.5(a), the use of the minimum radius as characteristic parameter gives a

better idea of the neck size. However, this parameter can not distinguish between

two asymmetric shape which is possible using the radius at a quarter of the length

6.5(b).

Two distinct branches have been identified, that can be better seen in figure

6.6.

6.2 Influence of Ohnesorge number (Oh)

Let us call forward the interface with minimum radius positioned downward along

the flow and backward the interface with minimum upward (shape 3 and 4 of figure

6.5(c) respectively). The viscosity has an important role in changing the shape of

the bifurcation diagram. In figure 6.6 how the viscosity modifies the bifurcation
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Figure 6.4: Examples of bifurcation diagrams. Numbers on the curve indicate
the value of volume
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Figure 6.5: Examples of interface shapes (c) of bifurcation diagram (a) and (b)
(red lines are interfaces, blue lines are the velocity profile
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curve in We-minimum radius coordinate is presented.

The main change is the appearance for Oh 6= 0 of two different paths for the

asymmetric shape of interface, one for the backward and one for the forward,

while for Oh = 0 they collide in only one path. Another important change in the

first branch due to the viscosity is the decrease of stability limit at lower Weber

number as the viscosity increase.

Indeed, viscosity is responsible for the disappearance of the second branch

and for changing its stability. As we can see in figure 6.6, the second branch

disappear for viscosity greater than Oh ' 2.95 × 10−2, while for viscosity larger

than Oh ' 1.5× 10−2 the Hopf bifurcation is no longer available.

6.3 Comparison with quasi-static simulations

The bifurcation diagram obtained from these equations in the case of Λ = 1 is

compared with quasi-static result of time-integration algorithm based on Eggers

equation (2.6) and with axisymmetric simulations with the GERRIS Flow Solver

(see figure 6.7, 6.8, 6.9). Results show a good agreement, especially for ratios of

volume V < 0, 9. The comparison is less satisfactory for V close to 1, especially

during the swing phase of the interface (the red area just before the breakage in

figure 6.9).

While for V . 0.85 the one-dimensional model appears to predict with great

accuracy the breaking point, for greater volumes the occurrence of nonlinear effect

(oscillation) limits the use of this simplified model (see figure 6.7). In support of

this, dynamical simulations based on one-dimensional model can not ”jump” the

second branch of solution and go straight to the breakage (see figure 6.8 and 6.9).
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Figure 6.6: Influence of Ohnesorge number on bifurcation diagram



6 SIMULATION RESULTS 54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Λ = 1, Oh = 210

−2

We

H
m
in

0.90

0.85

0.80

0.76

0.71

0.66
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7 Conclusions and future work

The main objective of this thesis was to develop a tool to study the stability of

liquid bridges to better understand the complex phenomenon of drop formation

and the peculiar effect of ”escape” from breakup [11]. This aim has been reached

developing a MATLAB code capable of numerically solving the fluid flow based

on Eggers and Dupont one-dimensional model, supported by the implementa-

tion of a method for continuation of solution, bifurcation point detection and

branch switching. Furthermore, a time-integration algorithm has been developed

to compare solutions of the one-dimensional model with dynamical solutions.

Therefore, the stability of the capillary bridge has been numerically investi-

gated in two different ways, the static and quasi-static case. The results obtained

are in good agreement with the theoretical results in the literature.

In addition, the comparison with axisymmetry GERRIS simulations in the

Λ = 1 case shows a very good agreement for the first branch but a limit in

describing the ”jump” to slapping state. For V . 0.85, the neck of the bridge,

initially in the middle of the capillary bridge, decreases progressively and moves

downstream of the system (in the same direction as the velocity), then tends to

break. If the aspect ratio of the bridge is quite large (Λ ≈ 3), the bridge will

come close to Rayleigh-Plateau instability and thus the neck stay in the middle

of the system and tends to break at zero Weber number. In this case, the one-

dimensional model predicts with good accuracy the break point. For V & 0.85,

more complex behaviour occurs, including nonlinear oscillations. The dynamic

simulations suggest the presence of a second unstable branch of solutions which

can not be predicted with accuracy with the use of the one-dimensional model.

There are various developments of this work which are worth to be carried out.

Among them, further examination on the influence of parameters on the second

branch which is the possible key to understand the ”escape” phenomenon. In

addition, a two-dimensional model can be developed to achieve better results for

the slapping zone, to include all phenomena that a one-dimensional model may

not be able to capture.
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[4] P. S. de Laplace. Méchanique Céleste. Courier, Paris, 1805. Supplement au

X Libre.

[5] E. Doedel, H. B. Keller, and J. P. Kernevez. Numerical analysis and control of

bifurcation problems: (i) bifurcaion in finite dimensions. Int. J. Bifurcation

and Chaos, 1(3):493–520, 1991.

[6] J. Eggers. Nonlinear dynamics and breakup of free-surface flows. Review of

Modern Physics, 69(3):865–929, 1997.

[7] J. Eggers. A brief history of drop formation. In P. Alart, O. Maisonneuve,

and R. Rockafellar, editors, Nonsmooth Mechanics and Analysis, volume 12

of Advances in Mechanics and Mathematics, pages 163–172. Springer US,

2006.

[8] J. Eggers and T. F. Dupont. Drop formation in a one-dimensional approxi-

mation of the Navier-Stokes equation. J. Fluid Mech., 262:205–221, 1994.

[9] J. Eggers and E. Villermaux. Physics of liquid jets. Rep. Prog.Phys., 71:1–79,

2008.

[10] R. Gillette and R. Dayson. Stability of fluid interfaces of revolution between

equal solid circular plates. Chem. Eng. J., 2:44–54, 1971.

[11] J. Hoepffner and G. Paré. Recoil of a liquid filament: escape from pinch-off

through creation of a vortex. J. Fluid Mech., 734:183–197, 2013.



REFERENCES 60

[12] H. B. Keller. Applications of Bifurcation Theory, chapter Numerical solution

of bifurcation and nonlinear aigenvalue problems, pages 359–284. Academic

Press, 1977.

[13] H. C. Lee. Drop formation in a liquid jet. IBM J. Res. Dev., 18:364–369,

1974.

[14] P. Lenard. Ann. Phys. Chem., 30:209, 1887.

[15] B. J. Lowry and P. H. Steen. Capillary surfaces: stability from families of

equilibria with application to the liquid bridge. Proceedings: Mathematical

and Physical Sciences, 449:441–439, 1995.

[16] J. Maddocks. Stability and folds. Arch. Rational Mech. Anal., 99(4):301–328,

1987.

[17] I. Martinez. Stability of axisymmetric liquid bridges. In ESA SP-191, page

267. Europen Space Agency, Paris, 1983.

[18] I. Martinez and J. M. Perales. Mechanical behaviour of liquid bridges in

microgravity. In R. Monti, editor, Physics of Fluids in Microgravity, pages

21–45. Taylor & Francis, 2001.

[19] J. Meseguer, L. A. Slobozhanin, and J. M. Perales. A revview on the stability

of liquid bridges. Adv. Space Res., 16:5–14, 1995.

[20] J. Plateau. Acad. Sci. Bruxelles Mm., 16:3, 1843.

[21] J. Plateau. Acad. Sci. Bruxelles Mm., 23:5, 1849.

[22] L. Rayleigh. Proc. London Math. Soc., 10:4, 1879. appeared in the vol. of

1878.

[23] A. Sanz and I. Martinez. Minimum volume for a liquid bridge between equal

disks. J. Colloid Interface Sci., 93:235, 1983.

[24] F. Savart. Ann. Chim., 53:337, 1833. plates in vol. 54.



REFERENCES 61

[25] L. A. Slobozhanin. Problems on the stability of liquids in equilibrium, apear-

ing in spatial technology. In Hydromechanics and Heat and Mass Transfer

in Zero-Gravity, page 9. Nauka, Moscow, 1982.

[26] L. A. Slobozhanin. Some problems of equilibrium stability of zero-g liquid

bridges. In Hydromechanics and Heat/Mass Transfer in Micro-gravity, page

185. Gordon and Bleach, Philadelphia, 1992.

[27] L. A. Slobozhanin, J. I. D. Alexander, and V. D. Patel. The stability margin

for stable weightless liquid bridges. Phys. Fluids, 14:209–224, 2002.

[28] J. A. Weideman and S. C. Reddy. A matlab differentiation matrix suite.

ACM Trans. Math. Softw., 26(4):465–519, 2000.

[29] T. Young. Philos. TRans. R. Soc. London, 95:65–87, 1804.


