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Prefazione
Questa tesi si propone di studiare il comportamento di un moto fluido su una parete
scabra infusa di lubrificante, quantificando la peculiare caratteristica di slittamento
che questa classe di superfici presenta e la possibile riduzione di resistenza d’attrito.
L’analisi è stata condotta sia per superfici superidrofobiche che per quelle infuse da
un lubrificante liquido, comunemente chiamate "LIS". Lo studio è principalmente
relativo al moto fluido in regime laminare, ma vengono anche presentati alcuni
risultati per il caso turbolento.

La prima parte della tesi presenta un approccio teorico alla formulazione del prob-
lema, fornendo inoltre una breve panoramica sulla teoria dell’omogeneizzazione
asintotica e delle condizioni al contorno effetive adottate.
La seconda parte, invece, riporta i risultati ottenuti tramite simulazioni numeriche,
i quali mostrano l’influenza che caratteristiche geometriche e perdita di lubrificante
hanno sul termine di slittamento λ.

Abstract
This work aims to investigate the behaviour of a fluid flow over a rough surface
infused by a lubricant, by quantifying the slip that these surfaces can produce and
the possible reduction in the skin-friction drag. The analysis has been conducted
for both superhydrophobic and liquid-infused configurations. The study is mainly
concerned with the laminar flow regime, although some results for turbulence are
reported and discussed.

In the first part of the thesis, a theoretical formulation for the problem is described,
providing insights on the application of the asymptotic homogenization theory and
the upscaled effective boundary conditions adopted. Later, the Navier-slip length λ
is evaluated numerically for surfaces with different geometric features, highlighting
the role of lubricant depletion. The consequent effects on the skin-friction drag and
on the flow rate through the channel are assessed.
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Symbology
Symbols

H . . . . . . . . . . . . . . . . . . . . . . . . . Half-channel height

e . . . . . . . . . . . . . . . . . . . . . . . . . Square groove’s size

p . . . . . . . . . . . . . . . . . . . . . . . . . Pressure

u . . . . . . . . . . . . . . . . . . . . . . . . . Velocity vector

µ . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic viscosity

λ . . . . . . . . . . . . . . . . . . . . . . . . . Navier-slip coefficient

Q . . . . . . . . . . . . . . . . . . . . . . . . . Volumetric flow rate

ϵ . . . . . . . . . . . . . . . . . . . . . . . . . Ratio of the length scales

l . . . . . . . . . . . . . . . . . . . . . . . . . Microscopic length scale

L . . . . . . . . . . . . . . . . . . . . . . . . . Macroscopic length scale

ρ . . . . . . . . . . . . . . . . . . . . . . . . . Density

t . . . . . . . . . . . . . . . . . . . . . . . . . Time

Re . . . . . . . . . . . . . . . . . . . . . . . . . Macroscopic Reynolds number

R . . . . . . . . . . . . . . . . . . . . . . . . . Microscopic Reynolds number

Iβσ . . . . . . . . . . . . . . . . . . . . . . . . . Fluid-solid interface

S . . . . . . . . . . . . . . . . . . . . . . . . . Traction vector

kit f . . . . . . . . . . . . . . . . . . . . . . . . . Interface permeability coefficient

α . . . . . . . . . . . . . . . . . . . . . . . . . Lubricant area fraction

d . . . . . . . . . . . . . . . . . . . . . . . . . Depletion
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ϕs . . . . . . . . . . . . . . . . . . . . . . . . . Solid area fraction

µR . . . . . . . . . . . . . . . . . . . . . . . . . Viscosity ratio

uτ . . . . . . . . . . . . . . . . . . . . . . . . . Shear velocity

τw . . . . . . . . . . . . . . . . . . . . . . . . . Shear stress

∆U+ . . . . . . . . . . . . . . . . . . . . . . . . . Roughness function

c f . . . . . . . . . . . . . . . . . . . . . . . . . Friction factor

k . . . . . . . . . . . . . . . . . . . . . . . . . Von Karman constant

Reτ . . . . . . . . . . . . . . . . . . . . . . . . . Shear velocity Reynolds number
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1 Introduction

Efficient drag-reducing techniques are capable of reducing wall friction for a given
flow rate over the surface or increasing the fluid flow under a given driving pres-
sure gradient. Thanks to its economic and environmental benefits, achieving drag
reduction is a crucial step in the design of any system interacting with a fluid flow in
relative motion. Much of the research on drag reduction in both laminar and turbu-
lent flows is focused on modifying the no-slip wall boundary condition. Regarding
this, superhydrophobic surfaces (SHS) are an excellent solution to the problem, due
to their capability of reducing drag in water flows by up to 50%.

SHS are gas-cushioned surfaces where air fills the roughness of the wall. This feature
can be achieved using chemical treatments so that the surface is functionalized to
have large contact angles for water, which is essential in maintaining the air inside
the asperities when the wall is submerged. Due to the much smaller viscosity of
air than that of water, the shear in the regions where the fluid slips over the air-
filled cavities is widely reduced; the shear in the rest of the wall remains large as a
consequence of the no-slip condition. If the local shear stress is integrated over the
entire surface, a remarkable decrease in drag can be noticed.

However, SHS have some significant drawbacks. The main issue is related to the air-
water interface, which originates once the working fluid flows over the air pockets.
Experiments indicate that this interface is prone to collapse under pressure fluctu-
ations and physical stresses, which would allow the gas to dissolve into the liquid.
Once the asperities are partially or totally flooded with water, the drag-reducing
mechanism deteriorates and even a drag increase relative to the case of a smooth
no-slip surface can take place. Therefore, SHS are not ideal for several practical
applications.

In this regard, a new class of surfaces have been recently studied as a potential
alternative, where a liquid lubricant infuses the solid surface, filling the roughness
of the wall as well. The presence of a liquid lubricant enhances the performance of
the surface in terms of interface stability between the external flow and the lubricant,
maintaining at the same time the ability to reduce drag.

The aim of this work is to investigate and quantify the effective slip over both
superhydrophobic and liquid-infused surfaces, and to understand their potentiality
in real world’s applications.
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2 State of the Art

2.1 A new frontier in drag reduction
Liquid-infused surfaces (LIS) are a novel, passive method of drag reduction.
They are inspired by the the Nepenthes Pitcher Plants, which rely on the movement
of liquid lubricants to facilitate mobility of the fluid-fluid interface [1].
The interest in this new class of surfaces results from the need to enhance the perfor-
mance of superhydrophobic surfaces.
LIS are composed of a liquid lubricant that is trapped within chemically matched
roughness elements and is immiscible with external fluids. The presence of a lubri-
cant offers several benefits. The liquid-lubricant interface is slippery, preventing the
attachment of microorganisms and resulting in an anti-fouling surface [2][3], which
is instrumental, for example, in naval applications. Additionally, the slipping effect
that occurs when the external fluid flows over the lubricant reduces the frictional
resistance exerted on the surface [4][5]. Finally, the shear at the fluid-fluid interface
exerted by the external flow over the trapped lubricant can set it in a recirculating
motion, as shown in figure 2.1b, enhancing heat and mass transfer rate between the
solid surface and the external fluid [6].

Figure 2.1: Flow over a solid surface: the no-slip condition holds everywhere (left). Flow
over a groove filled with lubricant: the velocity at the liquid-lubricant interface is non-zero
(right).

At present, liquid-infused surfaces represent the most significant alternative to SHS
due to their inherently robustness to pressure changes, which provides integrity
at the fluid-fluid interface, preventing a rapid depletion of the lubricant from the
pockets. As mentioned by Van Buren & Smits (2017) in their study [7], there are two
significant parameters that guarantee the integrity of the interface: Bond and Weber
numbers.
The Bond number Bo = (ρe − ρl)gl2/γ, is defined as the ratio of the buoyancy force
to the capillary force. ρe and ρl are, respectively, the densities of the external and
lubricant fluids, l is the characteristic length scale of the surface asperities and γ is the
interfacial tension. Since the lubricant and the external fluid have different densities,
the resulting buoyancy force can deplete the lubricant by overcoming the capillary
force holding the fluid in. The Weber number We = ρeu2l/γ, is the ratio between
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the inertial force and the capillary force. A large value of the Weber number means
that the inertia force can overcome the capillary force and allow the infused liquid
to escape. The infused and the external liquids need to be immiscible for a good
performance, since even a small depletion of lubricant will cause an overall drag
increase [8], so both the Weber and Bond numbers need to be small to avoid failure.
Other fundamental parameters governing the performance of LIS are: the viscosity
ratio N = µe/µl, where µe and µl are the viscosities of the external and lubricating
fluids. The Reynolds number Re = ρeul/µe, where u is the characteristic flow velocity
and l is a characteristic length scale; Reynolds number is the ratio of the inertial forces
to the viscous forces. And last, the surface geometry. A common parameter used
to express the geometry feature of the problem is the fluid area fraction a = Al/At,
where Al is the surface area of the exposed lubricant fluid and At is the total surface
area.

2.2 Drag reduction framework
To fully understand how LIS work, we need to give a closer look at the coupling
between the lubricant and the working fluid.
Since a liquid lubricant will most likely have a considerably higher viscosity com-
pared to air, infusing the lubricant for the benefit of fluid-fluid interfacial stability
can be detrimental from the viewpoint of drag reduction.
As previously mentioned, on LIS, regions of small intrinsic slip (originating from
low molecular interactions between the solid wall and the working fluid) are in-
terspersed with regions of large slip (in which the working fluid is in contact with
the lubricant). When the external fluid flows over the latter scenario, recirculation
occurs inside the pockets filled with lubricant, which supports a finite interfacial slip
velocity.
Let’s consider an example where a working fluid flows over a groove filled with
lubricant. The two fluids are chosen to be immiscible and to maintain a flat interface.
Two conditions are applied:


ue = ul
1
µe

∂ue

∂y

∣∣∣∣∣
i
=

1
µl

∂ul

∂y

∣∣∣∣∣
i

(2.1)

where ue and ul are the velocities of the external and lubricating fluids respectively,
and ∂u/∂y is the surface-normal gradient of the streamwise velocity.
These conditions state that, locally along the interface, the external fluid and the
lubricant must both exhibit the same velocity and shear stress.
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Figure 2.2: Fluid flow over LIS in spanwise configuration (a) and streamwise configuration
(b). Illustration from Fu et al. (2017) [1]

The slip velocity established at the interface is the essential responsible for drag
reduction, because the external flow will have a smaller local velocity gradient over
the liquid-lubricant interface compared to the flow over the no-slip regions.
In particular, the second matching condition shows that if the two fluid have differ-
ent dynamic viscosities, there will be a discontinuity in the velocity gradient at the
interface. As the viscosity within the roughness increases, the fluid-fluid interface is
able to sustain a higher slip velocity.
The interfacial slip is quantified with the slip length, which is the imaginary distance
beyond the solid wall at which the linear extrapolation of the fluid velocity vanishes
to zero.
Since large local slip does not always translate into an overall slip effect, due for
example to the presence of impurities of the asperities, it is common to characterize
LIS with an effective slip length λ: the equivalent slip required on a smooth surface
that would produce the same flow conditions far away from the composite surface.
Effective drag reduction involves the integration of all the individual, localized slip-
ping effects along the fluid-lubricant interfaces as a macroscopic boundary condition
for the flow.
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2.3 One case of experimental research
Experiments have been conducted to understand the potential of LIS in practical
applications. In particular, the work from Van Buren & Smits [7] reached a drag
reduction using LIS as high as 35%.
The experiment were conducted in a Taylor-Couette rheometer facility, where an
outer cylinder rotates around the inner treated one. The latter presents longitudinal
grooves on the lateral surface.
The gap between the two cylinders is d = Ro − Ri = 2mm, where Ro and Ri are re-
spectively the radius of the outer and the inner cylinders, and the cylinder height is
H = 80mm.
Once the outer cylinder is put into rotation at angular velocity ω, it causes charac-
teristic surface velocity u = ωRo and a torque T on the stationary inner cylinder.
The characteristic dimension of the grooves is w, ranging from 100 µm to 800 µm, to
better understand the impact of the size of the features.

Figure 2.3: Experimental set-up of the Taylor-Couette facility. Illustration from Van Buren
& Smits [7].

Longitudinal grooves were tested with water, as a baseline case, air and alkane oils.
To obtain a liquid-infused surface, the inner cylinder were firs dip-coated in the
infused liquid, and then immediately submerged in water in order to limit the ex-
posure of the lubricant to air, since the lower-viscosity alkanes are very volatile. The
tests were conducted measuring the torque performed on the inner cylinder, which
is related to the drag reduction as follows: DR = (T0 − T)/T0, where T0 is the torque
measured in the baseline case with water inside the grooves.
Results show that generally the torque increases with Reynolds number because at
higher spin rates there’s more friction drag on the inner cylinder. But they also show
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that employing air or alkanes liquids decreases the cylinder torque at fixed Reynolds
number. In addition, for all groove sizes the measures exhibit a general trend where
higher viscosity ratios result in a larger drag reduction.

Figure 2.4: Cylinder torque as a function of Reynolds number for several cases represented
by their viscosity ratio. In this case, w is fixed at 400µm. Illustration from Van Buren &
Smits (2017) [7].

As shown in figure 2.4, there are some higher-viscosity oils that produce larger drag
reduction than the lower-viscosity cases, particularly for the w = 400µm case. This
in unexpected, and the most likely cause of this behaviour is surface failure of the
lower-viscosity oils, possibly due to instabilities on the interface.
For the largest groove size, w = 800µm, at the higher Reynolds numbers, the drag
reduction decreases with increasing Reynolds number. But this was explained by a
visual inspection, showing a partial failure under these conditions. Increasing the
fluid area fraction also helped in increasing the level of drag reduction.
In conclusion, the experimental tests demonstrated that a drag reduction in turbulent
Taylor-Couette flow with liquid-infused surfaces was not only possible, but reached
excellent results comparable to the performance of SHS.
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2.4 The depletion problem
Despite their excellent characteristics, liquid-infused surfaces suffer from a signifi-
cant problem. It seems that even a slight lubricant loss decreases slip to the point of
making the lubricant superfluous.
Most of the models used to study LIS assume that the fluid-lubricant interface is
pinned at the top of the surface topography and is flat and non-deformable. How-
ever, under realistic conditions, the interface is not pinned at the top of the surface
topography and lubricant depletion occurs due to the shear stress or static pressure
imposed by the external fluid.
A study from Vega-Sánchez & Neto (2022) [8] investigated the behaviour of partially
filled cavities, and also the effect on slip of the position and the curvature of the
fluid-lubricant interface.
They reported numerical simulations that quantify the effective fluid slip over a LIS
containing grooves filled with lubricant, oriented perpendicular to the flow direction.

Figure 2.5: Definition of the parameters used to model a Couette flow over transverse grooves
in the case of partially filled groove. Illustration from Vega-Sánchez & Neto (2022) [8].

To investigate the effective slip in a domain where the interface is not pinned at
the top of the groove, two parameters are defined: one is the lubricant filled ratio
ψ = Vo − Vc, where Vo and Vc correspond to the lubricant and cavity volume,
respectively. And the other is the lubricant contact angle θ, which is defined as the
angle formed between the fluid-lubricant interface and the fluid-solid interface.
The results from their work show that the effective slip length strongly depends on
the lubricant contact angle and reaches a maximum value for a slightly protruding
interface (θ = 107◦), and increases with increasing the viscosity ratio.
In addition, they demonstrated that for a wetting lubricant (θ ∼ 30◦) which produces
a highly concave interface, the slip length is no larger than in the case with no
lubricant at all, regardless of the viscosity of the lubricant. This is also in direct
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conflict with the previous studies on LIS, where a common practice to increase
lubricant retention was to select lubricants which fully wet the solid substrate.

Figure 2.6: (b) Effect of lubricant loss on effective slip length λe as a function of the contact
angle θ. Here, the viscosity ratio N = 10 is representative of a realistic liquid lubricant
scenario. (c) Normalized velocity magnitude for the cases A and B in panel b. The streamlines
are shown in white, and the lubricant volume is highlighted with a thick black line. Illustration
from Vega-Sánchez & Neto (2022) [8].

As shown in figure 2.6b, a lubricant loss of just 10% of the cavity volume induces a
drastic decrease of the slip length; when the lubricant loss is 20 and 50% of Vc, the
values of the effective slip length λe are equal to the case of no lubricant in the cavity.
Also, once the lubricant loss is larger than 20% of the cavity volume, the decrease
in λe is the same regardless of the contact angle θ and therefore the shape of the
interface. This demonstrate how λe is much more sensitive to changes in the filling
ratio ψ than of the contact angle, meaning that lubricant depletion affects the slip
length more than the shape of the interface itself.
With regard to the fully filled cavity case, they found that a slightly concave or convex
interface offers a ball bearing effect to the working fluid, enhancing the overall slip
in the system. However, strongly concave interfaces lose this effect as the external
fluid is forced to enter in the cavity. On the other hand, highly convex interfaces are
an obstacle for the flow, which negatively impacts the effective slip length.
In the partially filled case, the ball bearing effect is decreased by the fact that the
interface is below the corners of the cavity, causing the external fluid to enter into
the cavity.
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2.5 Nanobubbles: a potential explanation to the slip observed
on LIS

So far, liquid-infused surfaces seem to be an excellent substitute to SHS, providing a
significant drag reduction.
Several studies have found that LIS are able to reduce frictional drag even when
the viscosity of the lubricant is larger than that of the working fluid, which is quite
counterintuitive. Indeed, very few explanations for this discrepancy have been pro-
vided, such as low sensitivity of experimental measurements or large variation in
the surface roughness resulting in large uncertainty in the quantification of the slip
length.
Recently, a study from Neto et al. (2022) [9], have found a disruptive discovery that
could explain the large interfacial slip observed on LIS. They investigated the flow
of water across microchannels over nanowrinkled Teflon surfaces, in both superhy-
drophobic and liquid-infused states.
The measurements revealed the nucleation of nanobubbles of the thickness of the
order of 100 nm in plain Milli-Q water. In addition, the magnitude of the slip length
was seen to increase with increasing the air content in the flowing water.
The main reasons why nanobubbles nucleation in LIS has never been taken into
account are: the assumption that when the lubricant is depleted, the external fluid
immediately fills the gaps, and the fact that acquiring experimental evidences of
nanobubbles on a structured surface is very complex. The researchers of this study
were able to identify this unexpected phenomenon thanks to their ability to map at
the same time the lubricant film and the nanobubbles underwater.
To image directly nanobubbles on LIS they used meniscus force measurements: a
subset of atomic force microscopy (AFM) force spectroscopy in which the dominant
force on the cantilever is due to the formation of a liquid meniscus around the AFM
tip [10].

Figure 2.7: Force curve from which the nanobubbles and oil thicknesses are extracted (left).
AFM tip approaching a nanobuble over a layer of oil (right). Illustration from Neto et al.
(2022) [10].
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A significant reduction in the pressure drop was measured when water flowed
over infused surfaces [9]. The large slip observed in their experiments have been
explained as a consequence of two factors: the recirculation within the lubricant
pockets, which occurs since the velocity and shear stress in the flowing fluid are
expected to match those in the lubricant interface, forcing the lubricant into a recir-
culating motion; the effect due to the presence of a lubricant of much lower viscosity,
such as air, that would produce an easily observable reduction in the pressure drop.
The nucleation of bubbles is due to the air dissolved in the water and in the lubricant,
and they stick on exposed areas of the surface roughness. Once formed, the bubbles
are stable under the imposed conditions. In addition, this stability was confirmed
by the fact that the drag reduction effect was maintained for more than 24 hours.
Since the lubricant is free to flow over the bubbles, it is possible that a oil layer can
reduce the rate of air dissolution from the bubble into the external fluid.
As mentioned in the study, the effect of the nanobubbles on the slip is twofold: they
reduce the overall roughness of the surface and provide a shear-free interface which
significantly increases the local slip in comparison with the liquid lubricant counter-
part.
The presence of air bubbles would explain the counterintuitive phenomena where a
huge slip is observed even when the viscosity of the lubricant is larger than that of
the working fluid. However, other studies need to be done to confirm the presence
of nanobubbles and to well understand their mechanism of creation and effect on
slip.

Figure 2.8: (a) Schematic set-up of the microchannel used in their study. The external fluid
is water (blue), flowing from inlet to outlet over the lubricant (yellow) infused surface.
(b) Flow over a lubricant-infused rippled surface containing a nanobubble. Illustration from
Neto et al. (2022) [9].
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3 Theoretical Formulation

The problem is approached by analyzing two different scenarios: the first one is a
bi-dimensional, laminar, fully developed Poiseuille flow in a channel, which is the
baseline case. The height of the channel is 2H. In the second one, the same flow
conditions are applied, but the structure of the solid wall is different. The surface
of the channel presents patterned square grooves filled with lubricant. We call e the
characteristic dimension of the grooves.
In the latter case, a finite velocity is supported at the interface between the working
flow and the lubricant inside the grooves, reducing the overall area of zero-slip at
the wall compared with the baseline case. Also, the presence of these protrusions
within the channel reduces the cross section area, and therefore decreases the bulk
flow.

Figure 3.1: Laminar, fully developed Poiseuille flow in a smooth channel: the no-slip condition
holds everywhere.

Figure 3.2: Flow in a channel where boundary walls present square grooves filled with
lubricant. The velocity at the walls takes a finite values at the fluid-lubricant interface.
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3.1 Initial equations
We start from the laminar, steady, incompressible Navier-Stokes momentum equa-
tion for a newtonian fluid

0 = −
∂p̂
∂x̂
+ µ

∂2û
∂ŷ2 (3.1)

Note that every parameter that presents the " .̂ " symbol is dimensional in space
and/or time.
The integration of the momentum equation results in the following velocity profile:

µû =
∂p̂
∂x̂

ŷ2

2
+ c1 ŷ + c2 (3.2)

Two boundary conditions are applied to found c1 and c2. The fist one is the Navier-
slip condition, which imposes that at the fluid-lubricant interface the normal velocity
gradient is proportional to the slip length λ̂x. Whereas the second condition exploit
the symmetry of the problem.


ŷ = e→ û = λ̂x

∂û
∂ŷ

ŷ = H→
∂û
∂ŷ
= 0

(3.3)

By applying the boundary conditions the values for c1 and c2 are determined:

c1 = −H
∂p̂
∂x̂

c2 = µλ̂x
∂û
∂ŷ

∣∣∣∣∣
y=e
−
∂p̂
∂x̂

e2

2
+H

∂p̂
∂x̂

e (3.4)

where

µ
∂û
∂ŷ

∣∣∣∣∣
y=e
=
∂p̂
∂x̂

e −
∂p̂
∂x̂

H (3.5)

The velocity profile of the working fluid flow is therefore:

û =
1
µ

∂p̂
∂x̂

( y2

2
−Hŷ + λ̂xe − λ̂xH −

e2

2
+ eH

)
(3.6)
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3.2 Evaluation of the Navier-slip coefficient
To compare the two cases (smooth and micro-structured channel), the percent varia-
tion in volumetric flow rate ∆Q% = (ûbulk − û0)/û0 is defined, where û0 is the average
velocity of the profile in the smooth channel and ûbulk is the average velocity of the
flow in the lubricated one.
Starting with the expressions of the velocity profile of the fluid flow, the average
velocity in both configurations are calculated:

û0 = −
1
µ

∂p̂
∂x̂

1
3

H2 (3.7)

ûbulk =
1
µ

∂p̂
∂x̂

[
−

H2

3
+ eH − e2 +

e3

3H
+ λ̂x

(
2e −

e2

H
−H
)
−

e3

12H

]
(3.8)

Consequently, ∆Q% assumes the following form:

∆Q% =
ûbulk − û0

û0
= −

3e
H
+

3e2

H2 −
e3

H3 + λ̂x

( 3
H
−

6e
H2 +

3e2

H3

)
(3.9)

By rearranging equation 3.9, it’s possible to extrapolate λ̂x normalized by the param-
eter H, as a function of e and ∆Q%:

λ̂x

H
=

3e
H −

3e2

H2 +
e3

H3 + ∆Q%

3 − 6e
H +

3e2

H2

(3.10)

Figure 3.3: Trends for λ̂x/H as a function of e/H at different values of ∆Q%.
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The values for λ̂x/H are shown in figure 3.3, evaluated at different values of ∆Q%.
Basically, an increase in the size of the grooves, governed by the parameter e/H,
involves a larger slip at the liquid-lubricant interface. This is consistent with the fact
that there is a larger area of the solid surface where the wall shear stress is reduced.
Furthermore, it is clear that an increase in the flow rate through the channel is reached
when slip occurs, confirming the beneficial effects of the lubricant.

3.3 An additional scenario
A further case of fluid flow have been studied in the exact same way, just as a
comparison. This time, only one side of the channel is infused with lubricant,
whereas the other side is a simple solid wall.
The velocity profile for this case is:

û =
1
µ

∂p̂
∂x̂

{ ŷ2

2
+
( ŷ − 2H

e − 2H

)[
λ̂x

( e2

2 − 2eH + 2H2

e − 2H − λ̂x

)
−

e2

2
+ 2H2

]}
− 2H2 (3.11)

Figure 3.4 shows the results found for this scenario.

Figure 3.4: Trends for λ̂x/H against e/H for different values of ∆Q%.

The results confirm the expected behaviour of the non-symmetric channel, since for
a specific geometry of the grooves, a larger slip λ̂x is required to obtain the desired
volumetric flow rate.
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4 Asymptotic Homogenization

Solving a fluid flow over a rough wall is highly difficult. The flow is influenced by
the micro-structured boundaries, where complex interactions take place as the fluid
passes near the surface corrugations [11].
A common way to approach this type of problems is to apply the homogenization
theory, which relies on the separation of scales, dividing the domain of interest into
two different regions: the macroscopic region and the microscopic layer, each one
characterised by a dimensional length scale.
By doing this, we can replace the solid wall with a virtual plane at which effective
boundary conditions for the velocity are applied, to mimic the behaviour of the
rough surface. Solving the fluid flow for the macroscopic region becomes much
easier since we need no more to take into account details of near-wall fluid phenom-
ena; the use of homogenization is thus particularly useful in numerical modelling of
microtextured surfaces.
The aim is then to establish effective boundary conditions at the fictitious interface
that match both the macroscopic and microscopic regions; the condition for homog-
enization to be applied is the separation of scale: we define the parameter ϵ, as the
ratio of microscopic to macroscopic length scales

ϵ =
l
L
<< 1 (4.1)

This parameter allows to tie the macroscopic and microscopic worlds.
The following dissertation about asymptotic homogenization is based on the analysis
of a simple case of fluid flow over horizontal rough surface.

4.1 Governing equations and boundary conditions
The dimensional mass and momentum conservation equations governing the distri-
bution of velocity are:

∂ûi

∂x̂i
= 0 (4.2)

ρ
(
∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j

)
= −

∂p̂
∂x̂i
+ µ

∂2ûi

∂x̂2
j

(4.3)

where i = 1, 2, 3 refers to the directions x̂, ŷ, ẑ and the velocity components are
denoted as û1 = û, û2 = v̂, û3 = ŵ, ρ is the fluid density and µ is the dynamic
viscosity of the bulk fluid.
We now define appropriate scales for the two regions. Note that from now on in
this chapter we will refer to macroscopic parameters with capital case letters and to
microscopic parameters with small case letters.
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Macro-scales

• L : length scale

• Û : velocity scale

• ρÛ2 : pressure scale

•
L
Û

: time scale

Micro-scales

• l : length scale

• û : velocity scale

• µ
û
l

: pressure scale

•
l
û

: time scale

Once the scales are defined, we need to normalize every parameter of the governing
equations to find the dimensionless equations of the problem.

Macro

• Xi =
X̂i

L

• Ui =
Ûi

Û

• P =
P̂
ρ Û2

• T =
t̂ Û
L

The dimensionless continuity equation is:

∂Ui

∂Xi
= 0 (4.4)

The dimensionless momentum equation is:

∂Ui

∂T
+U j

∂Ui

∂X j
= −

∂P
∂Xi
+

1
Re
∂2Ui

∂X2
j

(4.5)

where Re = (ρÛL)/µ is the Reynolds number of the macroscopic problem.
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Micro

• xi =
x̂i

l

• ui =
ûi

û

• p =
p̂ l
µ û

• t =
t̂ û
l

The dimensionless continuity equation is:

∂ui

∂xi
= 0 (4.6)

The dimensionless momentum equation is:

R

(
∂ui

∂t
+ u j

∂ui

∂x j

)
= −

∂p
∂xi
+
∂2ui

∂x2
j

(4.7)

where R = (ρlû)/µ is the Reynolds number of the microscopic problem.
Equation (4.7) can be rewritten as follows, since R = ϵ2Re:

ϵ2Re
(
∂ui

∂t
+ u j

∂ui

∂x j

)
= −

∂p
∂xi
+
∂2ui

∂x2
j

(4.8)

Boundary conditions of the problem

No-slip condition at the physical interface Iβσ, between the fluid phase and the solid
wall:

ui = 0 (4.9)

Continuity of the velocity vector at the virtual plane:

ui|y=y∞ =
1
ϵ

Ui

∣∣∣∣∣
Y=Y∞

(4.10)

Continuity of the components of the traction vector at the interface between the two
regions:

(
∂u1

∂x2
+
∂u2

∂x1

)∣∣∣∣∣
y=y∞
=
(
∂U1

∂X2
+
∂U2

∂X1

)∣∣∣∣∣
Y=Y∞

(4.11)
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(
−p + 2

∂u2

∂x2

)∣∣∣∣∣
y=y∞
=
(
−ReP + 2

∂U2

∂X2

)∣∣∣∣∣
Y=Y∞

(4.12)

(
∂u3

∂x2
+
∂u2

∂x3

)∣∣∣∣∣
y=y∞
=
(
∂U3

∂X2
+
∂U2

∂X3

)∣∣∣∣∣
Y=Y∞

(4.13)

4.2 Asymptotic analysis
An asymptotic analysis is then conducted on the microscopic problem, which is
reconstructed at different orders of the parameter ϵ. Every variable of the problem
is expressed in the following form:

f = ϵ0 f (0) + ϵ1 f (1) + ϵ2 f (2) + ... + ϵn f (n) (4.14)

So, for example, the velocity components and the pressure are:

ui = ϵ
0u(0)

i + ϵ
1u(1)

i + ϵ
2u(2)

i + ... + ϵ
nu(n)

i (4.15)

p = ϵ0p(0) + ϵ1p(1) + ϵ2p(2) + ... + ϵnp(n) (4.16)

Assuming that the macroscopic and microscopic variables are independent, the chain
rule for the derivation becomes:

∂
∂xi
→

∂
∂xi
+ ϵ

∂
∂Xi

(4.17)

∂2

∂x2
i

→
∂2

∂x2
i

+ ϵ2 ∂
2

∂X2
i

+ 2ϵ
∂2

∂xi∂Xi
(4.18)

Let’s now introduce the asymptotic progressions in the homogenized microscopic
equations, reconstructed at the primary order O(ϵ0).
Continuity equation:

∂u(0)
i

∂xi
= 0 (4.19)

Momentum equation:

−
∂p(0)

∂xi
+
∂2u(0)

i

∂x2
j

= 0 (4.20)

20



Boundary conditions:

u(0)
i = 0 at Iβσ (4.21)

(∂u(0)
1

∂x2
+
∂u(0)

2

∂x1

)∣∣∣∣∣
y=y∞
= S12 (4.22)

(
−p(0) + 2

∂u(0)
2

∂x2

)∣∣∣∣∣
y=y∞
= S22 (4.23)

(∂u(0)
3

∂x2
+
∂u(0)

2

∂x3

)∣∣∣∣∣
y=y∞
= S32 (4.24)

where S12, S22, S32 are the components of the traction vector S, exerted on the surface
at y∞ by the external (macroscopic) fluid flow.
Since the problem, given by equations from 4.19 to 4.24, is linear and forced by the
traction vector S, a generic solution of the problem can be expressed in the following
form:


u(0)

1 = u†11S12 + u†12S22 + u†13S23

u(0)
2 = u†21S12 + u†22S22 + u†23S23

u(0)
3 = u†31S12 + u†32S22 + u†33S23

p(0) = p†1S12 + p†2S22 + p†3S23

(4.25)

The parameters marked with the "†" sign are called auxiliary variables.
In order to solve the problem, it is necessary to substitute every variable u(0)

i and p(0)

in the dimensionless Navier-Stokes equations and boundary conditions, which will
give the values for the auxiliary variables.

4.3 Effective boundary conditions
For an incompressible, steady, laminar flow in a channel bounded by a rough wall,
dimensional effective boundary conditions valid up to second-order O(ϵ2) are:

û|ŷ=0 = λ̂x

(
∂û
∂ŷ
+
∂v̂
∂x̂

)∣∣∣∣∣
ŷ=0
+

k̂it f
xy

µ
∂
∂x̂

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
ŷ=0

(4.26)

v̂|ŷ=0 = −kit f
xy
∂
∂x̂

(
∂û
∂ŷ
+
∂v̂
∂x̂

)∣∣∣∣∣
ŷ=0
−kit f

zy
∂
∂ẑ

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
ŷ=0

(4.27)

ŵ|ŷ=0 = λ̂z

(
∂ŵ
∂ŷ
+
∂v̂
∂ẑ

)∣∣∣∣∣
ŷ=0
+

k̂it f
zy

µ
∂
∂ẑ

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
ŷ=0

(4.28)
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evaluated at ŷ = 0.
The new parameters of the boundary conditions, λ̂x, λ̂z, k̂it f

xy , k̂it f
zy , correspond to the

auxiliary variables that come from asymptotic analysis.
In particular, λ̂x and λ̂z are the components of the Navier-slip vector λ̂ = (λ̂x, 0, λ̂z),
also called effective slip length, while k̂it f

xy and k̂it f
zy are the components of a second

order tensor and are called interface permeability coefficients.
The auxiliary variables (λ̂x, λ̂z, k̂

it f
xy , k̂

it f
zy ) are homogeneous to, respectively, a length

and a surface area, and correspond to the product of their dimensionless counterpart
times l and l2:

λ̂x = λx l (4.29)

λ̂z = λz l (4.30)

k̂it f
xy = kit f

xy l2 (4.31)

k̂it f
zy = kit f

zy l2 (4.32)

These coefficients are intrinsic to the geometric characteristics of the boundary, and
do not depend on the Reynolds number.
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5 Modelling and Simulation of Superhydrophobic
and Liquid-Infused Surfaces

Numerical simulations of laminar flow were performed to evaluate the slip param-
eters λx and λz over superhydrophobic and liquid-infused surfaces, using water as
working fluid. To have a better understanding of these classes of surfaces we stud-
ied both the streamwise and spanwise configurations, analyzing the behaviour for
different values of depletion and the characteristic groove’s size α (ranging from 0.1
to 0.8).
The data collected from simulations have been processed to get the results shown in
the following.

5.1 CFD software
STAR-CCM+ by CD-Adapco is the main software we used for simulations, though
we adopted also COMSOL Multiphysics for several cases.
STAR-CCM+ is a computational fluid dynamics software that enables to simulate
multi-physics systems that operate in real conditions, in both 2D and 3D.
To run a simulation on this software, the following steps need to be done:

• Definition of all the parameters and field functions;

• Design of the geometry of the problem;

• Set up of the boundary conditions for the domain;

• Mesh generation;

• Visualization and analysis of the results.

A brief sketch of the domain we studied is reported in figure 5.1, where l is the pitch
distance of the unit cell, α is the lubricant surface area, d is the depletion of lubricant
and y∞ is the height of the unit cell.
To evaluate the effective slip length, the software solves a Laplace problem for the
velocity field. A flux in the direction perpendicular to that of the domain is imposed
on the upper boundary to establish the desired fluid flow.
The mesh can be built in polygonal, triangular or rectangular cells; the finer the mesh
the more accurate the results will be. A very useful feature for our work, was the
possibility to make a finer mesh in the lower part of the domain, where slip occurs,
and leaving a coarser mesh in rest of it to ease the overall calculations.
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Figure 5.1: Sketch of the domain used for simulations. The desired boundary conditions are
imposed on every side: zero-shear stress (red line), no-slip (blue line), periodic flow conditions
(lateral sides) and imposed flux (upper side).

Figure 5.2: Settings for the geometry and boundary conditions in a Star-CCM+ simulation.
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Figure 5.3: Mesh of the entire domain.

Figure 5.4: (a) Lower part of the domain with a finer mesh. (b) Velocity field during a
simulation.
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5.2 Superhydrophobic surfaces
It is well known from literature, that the amount of slip, quantified by the slip length,
is mainly associated to the structural features of the surface and affected by the state
of the liquid gas interface [12].
Direct numerical simulations over longitudinal superhydrophobic square grooves
show that the ratio λx/λz, for the values we found, is constant and equal to 2 for no
depletion, as shown by figure 5.5 (black solid line in the figure). This is in agreement
with the relation by Philip (1972) [13]:

λx = 2λz =
l
π

ln
{
sec
[
π
2

(1 − ϕs)
]}

(5.1)

where l is the pitch distance of the domain and ϕs is the solid area fraction, which
corresponds to αsh in our study.
As depletion increases, the maximum value of the ratio λx/λz is shifted to larger
values of αsh.

Figure 5.5: λx and λz against αsh for no depletion (left). Trends for the ratio λx/λz against
αsh for different values of depletion (right).

The first results are then in good agreement with previous studies.
By studying the behavior of slip, we noticed that the main parameters affecting the
slip coefficients are the depletion d and the groove’s size αsh.
The following figures are the processed results from simulations. In general, the
depletion affects negatively the slip at the liquid-gas interface [8]. Instead, as the
groove’s size increases, the slip increases too, as expected by the theoretical formu-
lation in chapter 3.
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Streamwise configuration

This section presents the results for longitudinal square grooves.
Three pairs of figures show the Navier slip coefficients λx and λz as functions of the
depletion and the groove’s size.

Figure 5.6: Trends for λx as a functions of αsh for different values of depletion (left). Trends
for the deviation of λx in respect of λx in the case of zero depletion, as a function of d, for
different values of αsh (right).

Figure 5.7: Trends for λz as a functions of αsh for different values of depletion (left). Trends
for the deviation of λz in respect of λz in the case of zero depletion, as a function of d, for
different values of αsh (right).
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Figure 5.8: Trends for λx − λz as a functions of αsh for different values of depletion (left).
Trends for the deviation of λx − λz in respect of λx − λz in the case of zero depletion, as a
function of d, for different values of αsh (right).

Considering the left images, λx is much larger than λz for the longitudinal case. Also,
an increase in the depletion always worsen the slippage, as expected. The values of
d go from 0% to 20%.
Right figures plot (λ− λ0)/λ0, which is the deviation of λ in respect of the value of λ
in case of no depletion, against d.

Spanwise configuration

The same study has been conducted in case of transverse square grooves.
The results for this configuration, conversely to the longitudinal case, show that λz

is much larger than λx. But, aside from that, the surface reacts in the same way when
it comes to change the values of depletion and groove’s size.

Figure 5.9: Trends for λx as a functions of αsh for different values of depletion (left). Trends
for the deviation of λx in respect of λx in the case of zero depletion, as a function of d, for
different values of αsh (right).
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Figure 5.10: Trends for λz as a functions of αsh for different values of depletion (left). Trends
for the deviation of λz in respect of λz in the case of zero depletion, as a function of d, for
different values of αsh (right).

Figure 5.11: Trends for λx − λz as a functions of αsh for different values of depletion (left).
Trends for the deviation of λx − λz in respect of λx − λz in the case of zero depletion, as a
function of d, for different values of αsh (right).
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5.3 MATLAB code
By combining the theoretical approach and the results from numerical simulations,
a simple MATLAB code has been developed to create something useful and concrete
for users.
Symmetric and non-symmetric channels from chapter 3 are the scenarios where this
code is applied. All the values of the slip coefficients λx and λz, from simulations,
are stored in form of matrixes. Once the code is run, it is asked to the user to set the
parameters of the problem: the orientation of external flow in respect of the grooves,
the ratio e/H, the ratio l/H and the desired value of α.

Figure 5.12: Settings of the desired parameters for the case of analysis.

Figure 5.12 shows an example of application where α = 0.27. The code works also for
values of α that are not strictly the ones we used in simulations, but are in between
of them. This is possible thanks to a linear extrapolation.
The output is composed of two graphs: the upper one shows the trends for λx, λz

and λx−λz against the percentage of depletion. In the lower one there are the trends
for volumetric flow rate ∆Q% and the pressure gradient ∆ f orcing%, both in respect
of the baseline case of figure 3.1.

Figure 5.13: Output of the code.
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5.4 Liquid-infused surfaces

5.4.1 Numerical approach

Numerical simulations have been performed over LIS. We investigated the behaviour
of three different liquid lubricants and compared the results with the superhydropho-
bic case. The lubricants at issue are: heptane (µR = 0.37), FC-3283 (µR = 1.5) and
FC-70 (µR = 23). The viscosity ratio µR is defined as the ratio between the viscosity
of the lubricant and the one of water.
This time, the simulations require to study a multi-phase fluid flow in the domain.
The slip coefficients are evaluated at the fluid-fluid interface, considering also few
cases of depletion for the lubricant.
The results obtained are shown in figure 5.14, and they are quite surprising. It is
clear from the figure that depletion plays a very important role. However, some-
thing unexpected related to the viscosity ratio happens. It seems that this parameter
mainly influences the slipping effect, and worsen the performance of the surface
when µR > 1.

Figure 5.14: Trends for the coefficient λx against α for different types of lubricant: air
µR = 0.018 (red lines), heptane µR = 0.37 (green lines), FC-3283 µR = 1.5 (yellow lines)
and FC-70 µR = 23 (blue lines).

Indeed, when µR < 1, the liquid lubricant provides a good effect in terms of slip
length, showing a behaviour similar to the case of air. Nevertheless, as µR becomes
slightly larger than 1, such as for the FC-3283, the slippage of the surfaces almost
vanish to the point of a no-slip condition, jeopardising every benefits from infusing
the solid surface with a lubricant.
Another interesting point is that, when µR > 1 the depletion seems to have a positive
effect. This could be explained with the fact that the larger the depletion, the less
lubricant with a high viscosity is present on the surface.
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5.4.2 A look into the literature

A comparison between two studies from the literature have been conducted to have
a wider overview on the effect of viscosity ratio on LIS.
First, we evaluated the slip coefficients λx and λz using a theoretical relation from
Belyaev & Vinogradova (2010) [14]. They studied superhydrophobic surfaces with
alternating slip and no-slip areas, and proposed an analytical relation between the
effective slip lengths and surface geometric parameters for longitudinal (xi = x) and
transverse (xi = z) groove configurations [15]:

λxi ≃

l ln
[
sec
(
πα
2

)]
Ki +

l
λ̄xi

ln
[
sec
(
πα
2

)
+ tan

(
πα
2

)] (5.2)

where l is the pitch distance in laminar case, Ki = π and 2π for the longitudinal and
transverse grooves, respectively, and λ̄xi are the constant slip lengths defined as:

λ̄x =
1.12
π
µRe tanh

(
πD

e

)
(5.3)

λ̄z =
0.342
π

µRe tanh
(
πD

e

)
(5.4)

Then, we extrapolated the values of λx and λz from a numerical study by Bottaro et
al. (2018) [16], and compared the results.

Figure 5.15: Trends for the effective slip length against µR, ranging from 0.018 to 50, at
α = 0.3 (black), α = 0.5 (red) and α = 0.7 (blue). The lines represent the values of λ
evaluated from the theoretical relation, whereas the symbols (circles for longitudinal and
triangles for transverse) are the values of the slip length from Bottaro et al. (2018) [16].

32



Figure 5.15 shows the trends for the effective slip length λ, in both longitudinal (λx)
and transverse (λz) configurations, as function of the viscosity ratio µR, for three
different values of the parameter α.
The results from the theoretical relation match very well those from the numerical
study [16]. Moreover, the trends from these results confirm what we previously have
found about the great influence of viscosity ratio. As µR increases, the slipping effect
is reduced, up to vanishing at some point. Plus, the geometric features of the surface
significantly influences this large drop in λ due to the viscosity ratio, as shown by
the blue lines in the figure, that represent the case α = 0.7.
What emerges from this study is that infusing a surface with a liquid lubricant not
necessary brings to a drag reduction. If the viscosity of the lubricant is much larger
than that of the external fluid, it could even worsen the surface to the point of a drag
increase.
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6 What about Turbulence?

A brief investigation of a turbulent fluid flow over lubricant-infused surfaces (SHS
and LIS) has been conducted to understand the effect of slip on turbulence.
First of all, to set up the turbulent problem, it is necessary to define the pitch distance
in wall units:

l+ =
ρuτl
µ

(6.1)

The parameter uτ =
√
τw/ρ, defined in the conventional manner with respect to the

wall shear stress, is the friction velocity, and τw is the shear stress exerted by the
external fluid on the surface. Similarly, the Navier-slip coefficients can be expressed
in wall units as

λ+x =
ρuτλ̂x

µ
= l+λx (6.2)

λ+z =
ρuτλ̂z

µ
= l+λz (6.3)

To evaluate λx and λz, we used the theoretical relation 5.2, discussed in the previous
chapter.

For small values of l+, we can assume the difference between λ+x and λ+z to be equal
to the roughness function ∆U+:

∆λ+ = λ+x − λ
+
z = ∆U+ (6.4)

The friction factor, expressed as a power series of the parameter A up to third order,
is defined in respect of a smooth channel case:

∆c f

c f0
=

c fi − c f0

c f0
=

A3

8
−

A2

2
+ A (6.5)

The parameter A is expressed by the following relation:

A =
∆U+

(2c f0)−
1
2 + (2k)−1

(6.6)

where k = 0.4 is the von Kármán constant and c f0 ≈ 0.00813 for the case of smooth

channel when Reτ = 180. Simply, the drag reduction (DR) is equal to −
∆c f

c f0
.
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The results we propose in the following tables are compared to those reached by
Chang et. al (2019) [15].
The three lubricants for this study are air (SHS), heptane (LIS) and FC-70 (LIS). The
parameter α is set to 0.8, while the ratio between the depth of the groove and the
pitch distance l changes for every case in the way shown by table 6.1.

Viscosity ratio µR Depth / l λx λz

1 0.018 0.08 / 0.021 0.361 0.176
2 0.37 0.04 / 0.021 0.212 0.083
3 23 0.02 / 0.021 0.008 0.002
4 0.018 0.08 / 0.042 0.361 0.176
5 0.37 0.04 / 0.042 0.212 0.083
6 23 0.02 / 0.042 0.007 0.002
7 0.018 0.08 / 0.084 0.361 0.176
8 0.37 0.04 / 0.084 0.208 0.081
9 23 0.02 / 0.084 0.006 0.002

Table 6.1: Effective slip length values for different lubricant and geometric features

The values of λx and λz, evaluated with equation 5.2, are then multiplied by three
different values of l+, to eventually find the percentage drag reduction up to third
order, with equation 6.5. The last column of table 6.2 shows the percentage drag
reduction from the mentioned study.

Viscosity ratio µR l+ DR % DR % [15]

1 0.018 3.78 5.89 % 7 %
2 0.37 3.78 4.16 % 4.6 %
3 23 3.78 0.18 % /

4 0.018 7.56 11.42 % 12.7 %
5 0.37 7.56 8.14 % 9.1 %
6 23 7.56 0.34 % /

7 0.018 15.12 21.5 % 21.1 %
8 0.37 15.12 15.37 % 12.7 %
9 23 15.12 0.52 % /

Table 6.2: Drag reduction results and comparison with a study from the literature.

The values of drag reduction that we found are in well agreement with the work by
Chang et al. (2019) [15].
Also in turbulent flows, air maintains the best performance, while increasing the
viscosity of the lubricant brings in the inevitable decrease of drag reduction. In
addition, another time, a larger geometry feature improves the ability of the surface
in reducing friction drag, but the case µR >> 1 is always almost useless.
Due to the complexity of the turbulent problem, further studies are necessary to fully
explore the effect of lubricant-infused surfaces under different circumstances.
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7 Conclusions

In this study, we investigated the slip occurring at fluid-fluid interface when a solid
surface is infused with lubricant. The work provides numerical evidences of the
drag reduction that can be achieved by lubricant-infused surfaces, in both laminar
and turbulent fluid flows, and also an overview on asymptotic homogenization. The
performance of superhydrophobic and liquid-infused surfaces have been analyzed
and compared.

The results obtained, based on effective boundary conditions of the slip velocities,
confirm the well known dominance of SHS in reducing drag, but also demonstrate
that LIS can achieve values of drag reduction comparable to those reached by SHS,
until µR < 1. This is particularly significant for future applications, thanks to the
interface stability that a liquid lubricant can guarantee. In addition, to have a wider
understanding of the problem, each case have been tested for different values of
depletion and α.

A simple MATLAB code was created to allows users to quantify the slip length and
the percentage change in the flow rate for the laminar flow in a channel bounded be
infused walls, requiring only to set the geometric features of the problem. Further,
some theoretical calculations of the drag reduction caused by SHS and LIS under
turbulence were done and the results were found to be in good agreement with
findings from the literature, confirming the validity of the work.

Along with the fascination of the physical and mathematical study of fluid flows
over slippery surfaces, the aim of this research is to help the design of such surfaces
in order to implement them in practical engineered applications.
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