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Abstract

A passive actuation technique, that entails covering the suction side of an aerofoil with a

poro-elastic carpet, is investigated in this thesis. This technique is inspired from the covert

or pop-up feathers used by some birds during landing and perching manoeuvres. In the first

part of this thesis, numerical modeling of the coupled fluid-structure interaction problem is

performed for a low Reynolds number regime, characteristic of micro aerial vehicles. The

immersed boundary technique is employed, which offers the advantage of using Cartesian

grids for complex geometries. By suitably selecting the characteristics of the carpet, to syn-

chronise characteristic time scales of the fluid and the structural systems, significant drag

reduction and/or lift enhancement can be achieved, associated with modifications of the

length scales of the shed vortices and a mild intensification of their intensity. A parametric

analysis shows that such a coating is able to affect the topology of the flow in the proximity

of the rear of the aerofoil, by adapting spontaneously to the separated flow.

In the second part of this thesis, reduced order models are obtained for vortex-shedding,

both from a smooth aerofoil as well as from an aerofoil coated with the feather-like actu-

ators, based on the computations performed in the first part of this thesis. The models,

derived using perturbation techniques, aid in our understanding of the physics of the fluid-

structure interaction problem in the presence of such a poro-elastic coating. The reduced

order models indicate the presence of distinct regimes that are dependent on the flow and

coating characteristics. Besides, the outputs from these models are found to be capable

of reconciling with the computational results, hence highlighting the advantages of using

reduced-order models. In addition, results from prototype simulations for “simpler” flows

(such as the flow over a flat plate with such a poro-elastic coating) are seen to relate with

the results yielded by the reduced-order models. The models and the parameter studies
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performed thus provide insight into the selection of optimal coating parameters to enable

flow control at low Reynolds numbers.
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Chapter 1

Passive flow control actuators and
their applications

Introduction

The desire of mankind to venture into territories outside the “usual” terrestrial limits, for

instance into the skies or within deep waters, can almost unambiguously be attributed as

the prime motivation for designing mechanisms resembling those found in nature. Much

later in human history, when locomotion outside the limitations of land slowly began to be

perceived as a necessity than just a means of recreation, it was natural for man to start

observing movement of flying or swimming creatures more minutely, and trying to see up

to what extent they can be mimicked. It is thus not surprising that optimization of flight

performance, by manipulating fluid flows, has been a very active research area for a number

of years now.

In the last half century, when exploitation of nature and its resources has been progressively

becoming a global concern, the focus of flight optimization can be particularly seen as in-

stances of optimization of fuel use in commercial air transport, achieved by decreasing the

drag and/or increasing the mean lift, delaying stall, noise reduction and/or even influencing

the transition to turbulence [1]. Apart from the immediate implications of flight optimiza-
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tion in the commercial arena, these goals are also sought while designing unmanned aerial

vehicles (UAVs) and micro aerial vehicles (MAVs). These are essentially aircraft, some of

which are very small, that, owing to their design suitability, can accomplish several tasks

that human-operated aircraft can not perform. These tasks are often referred to as 3-D

(“dull, dirty and dangerous”). This chapter presents an aspect of mimicking flight in nature

that has been applied extensively in various areas of human endeavour.

1.1 UAVs and MAVs

In this section, an introduction is given about UAVs and MAVs, their prime attributes and

limitations, their applications and finally advantages of employing these, for specific missions.

1.1.1 Unmanned aerial vehicles

UAVs, or unmanned aerial vehicles, as the name suggests, are aircrafts without human pi-

lots on board. Their flight is either controlled autonomously by computers in the vehicle, or

under the remote control of a navigator, a pilot on the ground or in another vehicle. Histor-

ically, UAVs were simple aircraft controlled by pilots remotely, but autonomous control is

being used over the recent past. They can typically travel at altitudes of around 600m with

a range of up to 5 km (Wasp III), up to as high altitudes as 15-20 km and range of over 200

km (RQ-4 Global Hawk) (cf. figure 1.1).

UAVs are primarily deputed for military applications such as providing targets simulating

enemy aircrafts and missiles to aerial and ground gunnery, battlefield intelligence, capability

for high-risk combats. However, increasingly civil applications, such as firefighting and mon-

itoring of pipelines, cargo transport and UAV-related research and development activities,

are also coming under its purview.
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Figure 1.1: Left: Wasp III Small Unmanned Aircraft System, a small remote-controlled
UAV that is powered by rechargeable lithium ion batteries and has a wingspan of 72.3
cm, empty weight of 430 g, range of 5 km and maximum speed of 65 kmph (Source
- http://en.wikipedia.org/wiki/AeroVironment Wasp III). Right: RQ-4 Global Hawk, a
“High Altitude Long Endurance”(HALE) conventional UAV that can fly as a surveillance
aircraft at an altitude of approximately 19-20 km and at a speed of approximately 560 kmph.
(Source - http://en.wikipedia.org/wiki/Northrop Grumman RQ-4 Global Hawk).

1.1.2 Micro aerial vehicles

MAVs are a class of UAVs, that have a size restriction whose operation may not involve

human intervention at all. Very recent MAVs can typically have wingspans as less as 15

centimetres and weights of just 100 g, with a payload consisting of a camera or some sensors,

weighing only 20 g. MAVs can typically fly at low altitudes of around 100m, at a cruise speed

of 50 kmph for 30-60 minutes. Research in MAV development is motivated by commercial

as well as military purposes, with insect-sized aircraft reported recently, an example being

the Delfly Micro that measures 10 cm and weighs 3 grams, which thus compares with the

dimensions of a dragonfly (cf. figure 1.2).

The design of these machines became achievable in the last one-and-a-half to two decades,

owing to advances in miniaturization in the areas of propulsion, aviation and electronics.

MAVs are usually deputed for missions involving spying and surveillance in battlefields,

rescue of hostages, fire as well as radio-activity detection, weather forecast - to name a few.

However, their size limitations and other characteristics, like high manoeuvrability, high

efficiency, and noise reduction, impose certain restrictions on their design. Some of these

include the requirement of anti-collision detection systems and real-time data acquisition
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Figure 1.2: Left: The Delfly Micro, a very small remote-controlled aircraft with
camera, weighing just 3 grams and measuring 10 cm (Source - http://www.delfly.nl/
?site=DIII&menu=home&lang=en, website of Delfly project, TU Delft). Right:
The dragonfly Yellow-winged Darter, inspiration behind the Delfly Micro (Source -
http://en.wikipedia.org/wiki/Dragonfly).

systems to avoid easy detection, due to low-altitude and slow-speed cruising capabilities. All

of these characteristics have immediate applications to various problems that can be tackled

[2]. For instance, high manoeuvrability, like in insect flight, is desirable in applications like

earthquake search-and-rescue operations or exploring a radioactivity-contaminated building.

Issues like trade-off between size limitations and high efficiency becomes pertinent in the

design of light MAVs with acceptable lifetimes powered by batteries. Finally, noise reduction

is important in military operations, to ward off the threat of being detected by enemy

detection systems. It must also be noted that good MAVs need not be necessarily obtained

by reducing the dimensions of a good airplane. An important reason behind this fact is

that the aerodynamics for small Reynolds numbers, at which MAVs usually operate, is

qualitatively different from large Reynolds number aerodynamics for airplanes.

1.2 Flight in nature

Considering the amount of innovation that goes behind all these technological advances,

it is particularly worthwhile to analyse and emulate efficient flying mechanisms observed
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in nature, in the form of birds and insects. These mechanisms smartly optimize unsteady

aerodynamics to their advantage [3,4], having evolved and adapted over millions of years, and

having stood the test of time. Further, these flight systems are particularly suitable for low

Reynolds numbers, and even at very small length scales can offset the shortcomings of flows

in these regimes. Finally, at these length scales, power supplies from biological constructs

like muscles seem to be more robust compared to any engineered system vis-a-vis aspects

such as weight and energy efficiency. Some of these mechanisms have already been applied

in recent aircraft systems, such as vortex generators and slats/flaps on the leading edge,

while many several other mechanisms and the physics associated with them are yet to be

fully understood. It must however be noted that analysing which natural systems are most

efficient need not necessarily yield a better understanding of effective biomimetics, because

evolution is mostly perceived to progress in a non-linear manner.

Passive flow control : One such noteworthy instance of optimisation technique observed in

nature is that of covert feathers over the wings of some birds, which “pop-up”automatically

from the wings when the birds experience a drop in their flying abilities. This happens

particularly during landing or gliding phases, when a high angle of attack is needed to

produce sufficient aerodynamic lift (cf. figure 1.3). As an example, for perching manoeuvre

during landing, there is evidence of coverts popping up and vibrating when birds employ

high angles of attack.

  

Figure 1.3: Raising of coverts on birds wings, seen during landing or gliding. Left: Lesser
underwing coverts fully deflected (red arrow) during a gliding perching sequence [5]. Right:
Raising of compliant coverts on the wing of a Skua (Source - http://www.bionik.tu-berlin.de,
website of Bionik group of Prof. I. Rechenberg, TU Berlin).
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These feathers, or passive actuators, adapt their movement to the local, instantaneous flow

and control many undesirable physical phenomena that lead to a decrease in the aerodynamic

performance. This has interesting applications for MAVs that operate at high angles of

attack, though the Reynolds number regimes are much lower.

1.3 Aerodynamics at low Reynolds numbers

An interesting aspect of flight observed in nature is that it spans a wide range of chord-

Reynolds numbers, starting from as low as about 1000 - for insects like houseflies or mosquitoes

- to around 50,000 or more - for birds like eagles. The key to effectively implementing the

envisaged passive controls on aerodynamic configurations, thus highly depends on the un-

derstanding of the physics occurring across this wide spectrum of Reynolds numbers. For

example, in the low Reynolds number regime, of the order of 1000, viscous forces are very

significant. As a consequence, there is increased drag, reduced lift-to-drag ratios and hence

reduced propelling efficiency, in contrast to higher Reynolds numbers cases, such as in a

conventional aircraft. This fact can be seen from the work of McMasters and Henderson [6],

where the results on the variation of lift and drag for fixed aerofoils for a large Reynolds

number range are presented (cf. figure 1.4).

  

Figure 1.4: Dependence of the maximal lift (left) and the minimal drag (right), in terms of
normalised coefficients, on Reynolds number for smooth fixed aerofoils [6].

Moreover, flows with low Reynolds numbers usually maintain laminarity, whereas higher
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Reynolds number flows are often subject to transition to turbulence, whose prevention is

itself a fluid-dynamic challenge in its own right [7,8]. One method to achieve this is by

employing biomimetic rough skins to induce approximately optimal perturbations. These

perturbations are capable of changing the mean velocity profiles at the highest order, owing

to high amplification. It has also been found that the presence of flexible surface(s) on a

body, which can excite itself into vibration, can also affect the separation and transition

points of the flow.

Many natural flyers, on account of flying at relatively low Reynolds numbers, restrict them-

selves to maintaining laminar flow, which, in general, is less capable of handling adverse

pressure gradients in the boundary layer and thus is more susceptible to separation, when

compared to a turbulent boundary layer. To study the effect of covert feathers in a relatively

simple set-up that is also closer to flight observed in nature, flow control in a laminar regime

is considered as the scope of this thesis.

1.4 Applications to flight technology

1.4.1 MAVs and UAVs

The management of flow separation in low Reynolds number regime becomes crucial for de-

signing MAVs and UAVs. In fact, aerodynamic and propulsion factors put severe constraints

on MAVs, like narrow ranges of airspeed as well as angle of attack, rendering the vehicle

more vulnerable to gust upset. Shape optimization (or morphing) techniques with the use

of passive actuators or flaps, indeed seem to have the ability to generate aerodynamic forces

and moments required to stabilize and manoeuvre MAVs, without penalizing their weight

and energy constraints. In the recent past, the research and design of fixed-wing MAVs

has focussed on low Reynolds number regimes, where a fixed wing has inferior performance

compared to MAVs with flapping or rotary wings.
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1.4.2 Conventional aircraft

In the design of aircraft, all of which travel at high Reynolds numbers, it is important to

arrive at a trade-off between optimum lift and drag. While a larger wing is bound to yield

higher lift and hence decrease the distance required for landing and take-off, it will also lead

to a higher drag when the aircraft is cruising. To even out these differences and achieve

optimum fuel economy (by optimising the lift-to-drag ratio), high-lift devices, such as flaps

and slats, have been commonly used in aircraft design. However, these devices have to be

actively controlled - for instance, flaps have to be lowered into the flow for extra lift. In

this context, the use of movable flaps that are self-actuated can be a promising passive flow

control technique. The use of such movable flaps has been experimentally tested on an

aircraft with laminar wing [9].

1.5 Other applications

The study of flow past a layer of feather-like protrusions or in the presence of some roughness

on aerodynamic surfaces is useful even outside the realm of aerospace and related applica-

tions. Instances of this range from studies on plant growth affected by wind-induced plant

motion [10,11,12] to how some optimum roughness on the surface of sports balls can modify

its performance [13].

1.5.1 Wind-crop interaction and plant growth

In the study of thick bundles of immersed vegetation and wind-exposed plants, the plant

movement is coupled with the nearby fluid flow, and the movement of each individual plant,

taken to be a one-dimensional oscillator, also accounts for interactions with its immediate

neighbours, modeled by means of elastic contacts between the stems. The inclusion of elastic

collisions between adjacent plants fundamentally modified the linear nature of the dynamics
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of canopy oscillations to one having non-linear characteristic, as well as its increase its

resonant eigenfrequency, when it was exposed to one or more gusts of wind. These changes

are believed to guard against phenomena such as stem lodging, which are known to affect

the plant growth. Further, when two-way coupling is included in the model, a frequency

lock-in mechanism is demonstrated, similar to vortex induced vibrations. Strong coupling

has also been observed between wind and plants, by which the dynamics of wind is modified

by the motion of plants (cf. figure 1.5).

  

Figure 1.5: Differences between flow in a boundary layer (left panels) and in a canopy layer
(right panels). Top panels: Wind profile and eddy structure; bottom panels: Spectrum of
oscillations of the streamwise velocity [12].

1.5.2 Aerodynamics of sports balls

In cricket, fast bowlers swing the ball with the primary seam maintaining a small angle with

the airflow. Under suitable conditions such as a prominent seam, the laminar boundary

layer is bypassed by the seam into a turbulent one on one side of the ball which is kept

rough, hence aiding in relatively late boundary-layer separation compared to the nonseam

side which is kept polished. Such an asymmetry in boundary-layer separation results in an

asymmetry in pressure distribution, producing the side force leading to the swing. Base-ball

aerodynamics also follows similar principles. In the case of golf, the balls are covered with
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round dimples to lower the critical Reynolds number of transition to turbulence, without

resulting in artificial thickening of the boundary layer (cf. figure 1.6).

  

Figure 1.6: Comparison of drag dependence on Reynolds number for a golf ball and spheres
coated with sand grains, where k is the height of roughness of the sand-grain and d is the
ball diameter [14].

1.6 Overview of research: self-actuating movable flaps

Despite the difficulty of modern observation methods to keep an instant-by-instant account

of the details of the fast motion of birds, the covert feathers are believed to control flow

separation, by storing and then releasing energy in the boundary layer, according to the

instantaneous fluid flow. This, in turn, is thought to affect the vortex shedding by trapping

a vortex in front of the feathers, thus filling in the angle between the aerofoil and the feathers,

and in turn, restricting the shed vortices to the hind part of the aerofoil [15]. Hence, there

is a resultant delay in stall and a possible explanation to the efficient flight of birds under

conditions of high angles of attack or in gusty winds. These feathers act as sensors to

reverse flow (which is consequently followed by separation) and are activated automatically
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at the appropriate time. Thus, this feature of automatic activation, as opposed to active

control techniques which require an energy input to come into action, provides industry

with yet another reason to study ways to mimic this mechanism. Much experimental work

[16,17,18,19,20] has been done in this area. For instance, a layer of such flexible structures

over a given surface have been proved as feasible sensors for measuring wall shear stress in

time as well as along the surface of the sensors with high resolution and accuracy. Moreover,

the material used in such micro-pillars allowed these to be used as optical read-out sensors

and was found to function very well over a wide range of temperature as well as have high

impact strength. For SD8020 aerofoils, which are commonly used for MAV designs, use of a

flap of an optimal length, near the middle of the suction side, produced almost 50% increase

in lift at Reynolds numbers of around 40,000. Further, the breakdown of lift with increase in

angle of attack was less drastic, when such self-activated movable flaps were used. The use of

leading edge flaps was also seen to augment lift and decrease the drag at some angles greater

than 20◦, in addition to acting as transition devices at regimes of low Reynolds numbers.

Consequently, these could prevent formation of separation bubbles and decreasing speeds at

which stall occurred, during phases of manoeuvring and gliding. At higher Reynolds numbers

of the order of 106, flaps closer to the trailing edge blocked the reverse flow from the trailing

edge to peak of the suction, yielding delay in flow separation and a lift enhancement of more

than 10%. It has also been shown experimentally that when surface hairs are longer as well

as more closely spaced to each other, compared to those employed in sensory applications,

these align with the direction of streamwise flow and induce damping in disturbances of high

frequency that occur due to the passing of turbulent sweeps, and transfer of energy from

smaller to larger scales. This consequently leads to streak stabilization in the streamwise

direction, thus yielding turbulent drag reduction.

Computational work [21,22,23,24] has also been done simulating this behaviour - however,

the Reynolds numbers at which these have been performed are typically at least one or

two orders less than the regimes at which experimental work has been done. The results

obtained indeed prove the effectiveness of a poroelastic coating over a surface. For instance,

a substantial drop in the mean drag, lift and drag fluctuations, as well as a noteworthy
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increase in mean lift, has been observed [21,22,23]. Further, such a porous layer is also

capable of reducing vortex-induced vibrations of certain flexible bodies by a factor of three

or more [24].

1.7 Practical implementation of the control

The implementation of the envisaged control approach in UAVs and MAVs requires, for

example, the use of a technique known as surface flocking, which is a process of permanently

depositing many small natural or synthetic fibre particles onto a surface. The end result

is a fuzzy surface that is velvety to the touch (cf. figure 1.7 (a)). Although flocking is an

old technique, it was only recently realised that the process yields surfaces with excellent

noise and vibration dampening qualities, leading to a wealth of applications, such as shock

mounting brackets, sunroof tracks, seals and HVAC ducts. Nowadays, the flocking is usually

done by the application of a high-voltage electric field. In a flocking machine, the ”flock” is

given a negative charge whilst the substrate is earthed. Flock material flies vertically onto

the substrate attaching to previously applied glue (cf. figure 1.7 (b)). A number of different

substrates can be flocked including textiles, fabric, woven fabric, paper, PVC and other types

of plastics, etc.

  

Figure 1.7: Left: Lower half of a T-shirt printed using flocking technique; Right: Schematic
of the flocking process - 1, 2 and 3 stand for the flock, the glue and the substrate respectively.
(Source - http://en.wikipedia.org/wiki/Flocking (texture)).
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The selection of the material constituting the flocks (its density and Young’s modulus),

the surface density of flocks, the flock’s length and diameter, their particular placement

on the surface, etc. represent parameters to be chosen appropriately, for example on the

basis of Euler-Bernoulli slender beam theory. Supposing a beam/flock/fiber of cylindrical

cross-section clamped on the surface at one end, and free to vibrate at the other, in the

limit of large slenderness ratio s (where s = 4h/d, h flock length, and d flock cross-sectional

diameter), i.e. for s > 100, the first wavenumber of vibration of the beam along its axis

is λ = 1.875 [25]. The frequency of oscillation of the beam is ω = λ2E0.5/(shρ0.5), with E

the Young modulus (in Pascal) of individual structural elements, and ρ the density of the

material forming the coating. The characteristic time scale of vibrations of the structural

elements is finally given by Tbeam = 7.15 h2ρ0.5/(dE0.5). To provide synchronisation of the

coating and the fluid time scale, it is thus sufficient to choose the length of the flocks h,

their diameter d, the density of the material ρ and its Young modulus E in such a way as

to render Tbeam comparable to the characteristic time scale of the fluid flow.

As an example, for the case of the shedding of flow structures behind an airfoil with a

dominant frequency between 10 and 100 [Hz], it is appropriate to choose rubber fibres of

length h of the order of one centimeter, with h/d = 25. In conditions of small strain the

Young modulus of rubber is in the range E = 107− 108 Pa, and its density is approximately

ρ = 1100 kg/m3, so that Tbeam can vary between 1.9− 6× 10−2 seconds.

1.8 Connections with non-linear dynamics

For flow over objects with blunt leading edges, such as many aerofoils (which are nothing

but two-dimensional cross-sections of the wings of birds or even aeroplanes) at low Reynolds

numbers at angles of attack of moderate magnitudes, the pressure gradients on their surfaces

increase and lead to separated flow. This results in increase in the size of the wake and

pressure losses therein, consequently resulting in the total drag being dominated by pressure

drag. Hence such configurations can be considered as bluff bodies. Ever since Roshko [26]

13



quantified the period of vortex-shedding behind a bluff body in 1955, this phenomenon has

been widely investigated, both numerically as well as experimentally. Amongst all bluff

bodies, the case of circular cylinder is most frequently investigated, primarily due to the

simplicity in its geometry. Bishop and Hassan [27] did pioneering work to model such bluff

body dynamics using a self-excited oscillator. Work in similar areas was done by many

others, some of whom include Hartlen and Currie [28], Currie and Turnball [29], Skop and

Griffin [30], Iwan and Blevins [31] - to name a few. The motivation behind such work

was to extract reduced-order models for vortex-shedding, which could possibly also predict

complex phenomena such as instabilities, vortex-induced vibrations (VIVs) and transition

to turbulence. Again, the idea behind developing reduced-order models was to develop a

theory for vortex-shedding and VIVs that was as unified as possible, from a relatively small

set of time and resource-expensive computational or experimental data, especially for large

real-life mechanical objects.

The basic idea behind making use of a self-excited oscillator to model vortex-shedding from

a (stationary) bluff body was that for a given set of parameters - such as the Reynolds

number, geometry of the body, thickness of the body or angle of incidence with the flow -

the long time history of the oscillatory forces on the body are periodic and not dependent

on initial conditions. Prototype self-excited oscillators include the Rayleigh and van der Pol

oscillators, both of which have cubic non-linearities. These and small modifications thereof

have been tested as reduced-order models for vortex-shedding behind cylinders by many

authors.

Given a stationary bluff body, once the reduced-order model for vortex-shedding from it is

extracted, this low-order dynamics can be coupled with some other dynamics (possibly even

in a non-linear manner). This other part of dynamics can take the form of forced periodic

oscillations of the body or even using flow-compliant structures on this body (as in the case

of the work in this thesis), to understand the interaction between the various frequencies in

the system and possibly control them by modifying the forcing.
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1.9 Organization

This thesis demonstrates the effectiveness of using a passive flow control strategy (which has

its roots in flight observed in nature) as outlined in §1.2, to improve aerodynamic perfor-

mance of a symmetric aerofoil in a laminar flow regime. This passive actuation technique

entails in covering the suction side of the aerofoil with a poro-elastic carpet. Numerical

modeling of the coupled fluid-structure interaction problem is performed for a low Reynolds

number regime, characteristic of micro aerial vehicles. This thesis also attempts to char-

acterise the structural parameters that can yield optimal performance enhancement. This

section presents a concise overview of the technical chapters contained in this thesis. A

review of relevant literature is presented wherever necessary in the various chapters.

Chapter 2 presents the computational method to study the two-dimensional incompress-

ible viscous unsteady flow around a symmetric aerofoil, coated with a poro-elastic layer

of passive flow-compliant actuators. In order to simplify the computational study of flow

over an aerofoil, the immersed boundary technique is employed, which offers the advantage

of using Cartesian grids for complex geometries. Firstly, the particular formulation of the

immersed boundary method used in this thesis is explained. Then, the characteristics of

flow around an aerofoil, without any such coating, at angles of attack over a wide range,

are studied and validated against results in literature. This is followed by an outline of the

numerical procedure used to study the flow around the aerofoil with a poro-elastic coating,

and the associated two-way fluid-structure interaction problem.

Chapter 3 presents the simulation results obtained from the numerical procedure outlined

in Chapter 2. For the computations for aerofoil coated with compliant actuators, charac-

teristics of such a carpet are selected to synchronise the characteristic time scales of the

fluid and structural systems. After presenting details of this selection, modifications in flow

characteristics, that can in turn be associated to changes in aerodynamic performance, have

been examined. A parametric study of the major structural properties of the actuators is
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also presented, which helps in characterising ”optimal” structural parameters.

Chapter 4 further examines the simulation results from the previous chapter, specifically

the characteristics of vortex-shedding. These properties are analysed both in the time and

Fourier domains, to extract a reduced-order model for this phenomenon. The various pa-

rameters in this model are appropriately selected so that the results from this model match

well with the computational results.

Next, to optimise the aerodynamic performance, the reduced-order model for the same aero-

foil coated with a poro-elastic layer of compliant actuators, is obtained in Chapter 5. From

this, an attempt is made to characterise what structure parameters should, as well as, should

not be used for this passive flow control technique.

Chapter 6 lists the conclusions derived from the technical results in this thesis, and out-

lines perspectives and recommendations for improvements in future.
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Chapter 2

Numerical model for a coated aerofoil

Introduction

In this chapter, the numerical procedure to study the two-dimensional incompressible viscous

unsteady flow around a NACA0012 aerofoil, coated with a poro-elastic layer of flow-compliant

actuators, is presented. Numerical modeling of the coupled fluid-structure interaction prob-

lem is performed for a low Reynolds number regime, characteristic of micro aerial vehicles.

The immersed boundary method (referred to as IB method henceforth) is employed, which

offers the advantage of using Cartesian grids for complex geometries. To begin with, charac-

teristics of the flow around an aerofoil, without any coating of compliant feathers (henceforth

referred to as “smooth”), at angles of attack over a wide range, is studied, and validated

against results in literature. This is followed by an outline of the numerical procedure used

to study the flow around the same aerofoil that is covered on the suction side with a poro-

elastic carpet. The use of IB method is again very convenient to numerically capture the

dynamics of the compliant feathers in the poro-elastic carpet, as against the conventional

approaches of using dynamic structured or unstructured grids.

After giving a brief background of the IB method, its advantages over other approaches

employing grids that possibly change with time, is outlined in section 2.1. In section 2.2, the

particular IB method used in this thesis is described, accompanied by its physical motiva-
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tion. This is followed by a description of the numerical procedure, convergence, correctness

of boundary conditions and validation for a smooth aerofoil in sections 2.3, 2.4, 2.5 and 2.6

respectively. Section 2.7 presents the procedure for the two-way interaction between the

fluid and structure systems, and the resulting dynamics of the structure system.

A homogenized model of feather coating is considered, as described in §2.7.1. The coating

has the following key features which emulate the important properties of birds’ feathers:

(i) Porosity: the fluid can flow through the layer of feathers.

(ii) Anisotropy: the fluid is oriented along a specific direction as it enters the layer.

(iii) Compliance: the layer can deform and adapt to the surrounding flow.

It should be noted that the design considerations of such passive actuators should also take

into account the basic premise that these control elements, when not in use (or in situations

of low or moderate angles of attack), should not have any negative impact on the quality of

the flow past the aerofoil.

Here, the shape adaptation abilities of this porous, compliant coating is tested numerically in

two dimensions and interpreted for separated flow on a symmetric aerofoil at a chord-based

Reynolds number Re equal to 1100. The numerical method is based on Favier et al. (2009),

which studies the effectiveness of a feather coating on a circular cylinder. However, since the

present study is for a stream-lined body of an aerofoil, it becomes more important to resolve

the flow structures close to the body, owing to the increased complexity of the shape.

Schematically, the computational domain is divided into three parts: the solid body or the

aerofoil, the surrounding fluid in movement and a mixed fluid-solid part corresponding to

the poro-elastic, compliant coating. The assumptions on state variables are that there is no

mass exchange between the fluid and solid parts; and the temperature is constant at all times.

18



2.1 Background of the IB method

The method of immersed boundaries was first developed by Charles Peskin in the seventees to

simulate cardiac mechanics and related blood flow. The noteworthy difference between this

method and approaches used before for complex geometries was that the complete simulation

was performed on a Cartesian grid which was non-conformal to the heart’s boundary. To

account for the forces on the boundary, a new formulation for imposing the effect of the

immersed boundary on the flow was introduced. A more recent account of this work can

be seen in Peskin (2002). Since this method first came into being, there have been many

changes as well as improvements made to it, to include various ranges of governing physical

parameters like the rigidity of the solid boundary and viscosity in the flow. Here, this

technique includes all non-conformal grid methods to simulate viscous flows around immersed

solid boundaries.

The advantages of the IB method become pertinent when it is compared with the methods

of body-conformal, structured as well as unstructured, grids. Despite the measure by which

an optimal cartesian grid scales with increasing Reynold’s number as compared to body-

conformal grids, the first advantage of the IB method is the absence of grid transformation

terms in the governing equations. Secondly, it is more adaptive to line-iterative techniques,

with a consequent reduction in computational costs. Further, it does not require iterative grid

generation, even for complex moving boundaries, since it uses a stationary, non-deforming

Cartesian grid and the equations are modified in the neighbourhood of the boundary.

In the following section, the Immersed Boundary formulation used in this thesis will be

outlined.

2.2 Boundary conditions on immersed bodies

As mentioned before, there exist different methods depending on the nature of the immersed

boundary - for instance, whether it is rigid or elastic. Peskin first developed it for elastic
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boundaries - specifically, for the muscle contraction in a beating heart. Since our focus is

on an aerofoil, the immersed boundary method for rigid boundaries will be outlined. Before

this, it is important to note that flows around rigid boundaries can not be considered as

a limiting case of flows around elastic boundaries, because elastic constitutive laws become

ill-posed in the rigid limit.

As indicated in Section 2.1, the fluid equations will need terms that account for forces on

boundaries immersed in the fluid. From the papers of Fadlun et al. (2000) and Mittal &

Iaccarino (2005), this volume force
−→
F (−→x s, t) due to an infinitesimal boundary element at

position −→x s at time t has the following expression:

−→
F (−→x s, t) = M

{
α

∫ t

0

[
−→
V (−→x s, t

′
)−
−→
U (−→x s, t

′
)]dt

′
+ β[
−→
V (−→x s, t)−

−→
U (−→x s, t)]

}
(2.1)

where M is a smooth scalar field (for instance, like a hyperbolic function), with the dimension

of density, and assumes the value one inside the body whose immersed boundary is under

consideration, and zero outside the body in the fluid domain. This function will be referred

to henceforth as the mask function.
−→
V (−→x s, t) is the velocity of the fluid desired at the bound-

ary, imposed as a boundary condition, and
−→
U (−→x s, t) is the fluid velocity variable. α and β

are positive constants with the dimensions of time−2 and time−1 respectively. The above

quantity can be interpreted as a feedback to the velocity difference
−→
V (−→x s, t)−

−→
U (−→x s, t) and

behaves in such a manner so as to impose
−→
U (−→x , t) =

−→
V (−→x , t) on the immersed boundary

over a long period of time. Here −→x is the local coordinate of the infinitesimal boundary

element being considered. In fact, the first term is the time average of the velocity differ-

ence over a time span beginning from the initial time to the present time, while the second

term is the resistance offered by the boundary surface element to assume a velocity
−→
U (−→x , t)

different from
−→
V (−→x , t). The parameters α and β are selected suitably so that the velocity

difference
−→
V (−→x s, t)−

−→
U (−→x s, t) within and on the immersed boundary is below a sufficiently

small threshold value, and is thus considered zero for practical purposes.

The above force expression reduces the behaviour of the system to that of a damped harmonic

oscillator. In fact, if we consider the incompressible Navier-Stokes’ equations (in dimensional

form) given by:
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ρ[
∂
−→
U

∂t
+ (
−→
U · 5)

−→
U ] = −5 p+ µ52 −→U +

−→
F ;5 ·

−→
U = 0 (2.2)

where
−→
U = (u, v) is the Eulerian velocity, p is the pressure, µ is the dynamic viscosity, ρ

is the density,
−→
F is a volume force and retain only the instantaneous acceleration term and

the force term and subtract the constant boundary velocity
−→
V from the velocity

−→
U , then we

get the following equation.

∂~q

∂t
≈ −
−→
F = −[α

∫ t

0

−→q (−→x s, t
′
)dt

′
+ β−→q (−→x s, t)] (2.3)

with −→q =
−→
V −

−→
U . Equation (2.3) describes the dynamics of a damped harmonic oscillator

with frequency (1/2π)
√
|α| and damping coefficient −β/(2

√
|α|),i.e, the force

−→
F brings back

−→
U to

−→
V as the former becomes different from the latter on the boundary. The damping

term of the force proportional to β helps the boundary velocity to converge to the target

velocity by reducing oscillations around it - just like a mass attached to a spring perturbed

from its equilibrium position behaves.

For an unsteady flow, it is known that |α| must be sufficiently large so that the restoring force

can react with a frequency larger than any frequency in the flow, and the optimal values of

the constants α and β can only be obtained empirically, as of now. However, some physical

limitations can be imposed on the magnitude of these parameters. For instance, a very large

α would in fact cause the restoring force term to become very large and the frequency of the

oscillations to tend to infinity. An analogy drawn with a spring-mass system tells us that

the spring breaks when the spring constant (which is analogous to the parameter α) is very

large. On the contrary, a large β implies high damping and as a result, a force that is not

that reactive. Some more insight on tuning these parameters is presented in sections 2.3.2

and 2.5.

21



2.3 Physical model & computational method for

aerofoil

2.3.1 Fluid domain equations

The simulation of the unsteady flow around the NACA0012 aerofoil, which is symmetric

about its mean camber line, is done by directly resolving the incompressible Navier-Stokes

and continuity equations (cf. equation 2.2) on a Cartesian grid in a two-dimensional periodic

domain by means of the immersed boundary method, as presented in §2.2. Now,
−→
F is a

volume force accounting for the effects of boundaries immersed in the domain, namely, the

aerofoil, the coating layer and a buffer zone. The buffer zone, located towards the end of the

computational domain, plays the role of damping the unsteady structures in the aerofoil’s

wake, before they reach the end of the domain. Since here we are considering a domain

with periodic boundary conditions, the buffer zone also enforces the periodic inflow-outflow

condition on the velocity field (cf. figure 2.1).

  

Figure 2.1: Schematic diagram of the computational domain showing the three boundaries
immersed in the fluid in movement - solid aerofoil, compliant coating and buffer zone.
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The total force
−→
F is thus decomposed as:

−→
F =

−→
F a +

−→
F b +

−→
F c. (2.4)

where
−→
F a and

−→
F b are the forces that render the fluid velocities equal to the values desired

on the boundaries of the aerofoil and the buffer layer, which are
−→
0 and the free-stream

velocity
−→
U∞ = (u∞, 0), respectively.

−→
F c is the force due to the compliant coating and will

be described in section 2.7.1. Mathematically,
−→
F a and

−→
F b are given by:

−→
F a = Ma

{
αa
∫ t

0

(
−→
0 −
−→
U )dt + βa(

−→
0 −
−→
U )

}
, (2.5)

−→
F b = M b

{
αb
∫ t

0

(
−→
U∞ −

−→
U )dt + βb(

−→
U∞ −

−→
U )

}
. (2.6)

This formulation of the immersed boundary method is referred to as feedback forcing, as

outlined in §2.2.

The mask functions Ma and M b involve tangent hyperbolic functions as defined below:

Definition of Ma:

A fixed set of equally spaced points is chosen on the upper boundary of the aerofoil. A similar

set of points with their abscissae similar to the points on the upper boundary is chosen on

the lower boundary of the aerofoil. In this thesis, we consider 400 points each on the upper

and lower boundaries. This complete set of points is referred to as � here. , i.e, � consists

of 800 points. A point P ≡ (x, y) within a square neighbourhood around the aerofoil, of area

equal to 4×D2 (D being the aerofoil chord length which is the characteristic length in the

problem), is first transformed to lie on a line parallel to the aerofoil’s central chord. This

point now is called Pr ≡ (xr, yr). If its abscissa xr lies between the abscissae xl and xl+1

of two points A ≡ (xl, yext(l)) and B ≡ (xl+1, yext(l + 1)) respectively on the outer bound-

ary of the aerofoil, the outer linear interpolant yextinterp of its ordinate yr is calculated as follows:

yextinterp(yr) = yext(l) +

{
yext(l + 1)− yext(l)

xl+1 − xl

}
(xr − xl) (2.7)

Similarly, if the abscissa xr lies between the abscissae xl and xl+1 of two points A
′ ≡

(xl, yint(l)) and B
′ ≡ (xl+1, yint(l+1)) respectively on the inner boundary of the aerofoil, the
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inner linear interpolant yintinterp of yr is calculated by:

yintinterp(yr) = yint(l) +

{
yint(l + 1)− yint(l)

xl+1 − xl

}
(xr − xl) (2.8)

The mask function at P is now defined as:

Ma(x, y) = 0.5[tanh(
200(yr − yintinterp(yr))

D
) + 1]

{
1− 0.5[tanh(

200(yr − yextinterp(yr))

D
) + 1]

}
(2.9)

Elsewhere, the value of this function is 0.

Definition of M b:

This definition is dependent on the horizontal length L of the computational domain under

consideration, and is given by:

M b(x, y) = 0.5[tanh
{

20(
x

L
− 0.8)

}
+ 1] + 0.5[tanh

{
20(

x

L
− 0.95)

}
+ 1] (2.10)

If this value is less than 10−2, it is redefined to be 0. Elsewhere, the value of this function is

0.

These recipes ensure that Ma and M b, as functions defined over the whole computational

domain, smoothly vary from 0 to 1.
−→
F c is the force due to the compliant coating, to obtain which again multiplication by a scalar

field M c (similar to M above) is involved. Some of these details will be outlined in section

2.7.1.

2.3.2 Tuning of the IB parameters

The optimal set of parameters is selected after monitoring the behaviour of the oscillations

of the IB forces. Parameters which yield forces that eventually have mean magnitude of the

order of 10−3 or lesser are taken to be optimal. Further, parameters which gave damped oscil-
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lations about their stabilized magnitudes of means were selected, to simulate the behaviour

of a damped oscillator which has a strong enough restoring force with optimal damping.

Also, these parameters acted so that the pressure did not show non-physical oscillations.

Some more restrictions on selecting the IB parameters for the buffer zone are outlined in

§2.5

2.3.3 Numerical resolution

:

The Navier-Stokes equations (2.2) are first normalized using the following scales for the vari-

ables:

~X ′ =
~X

D
; ~U ′ =

~U

u∞
;P
′
=

P

ρ(u∞)2
; t
′
=
tu∞
D

; ~F ′ =
~F

ρ(u∞)2

D

(2.11)

Henceforth, only the normalized equation will be used and the normalized variables therein

will be denoted without the superscript ′. The normalized equation thus reads as:

∂
−→
U

∂t
+ (
−→
U · 5)

−→
U = −5 p+

1

Re
52 −→U +

−→
F ;5 ·

−→
U = 0 (2.12)

where Re =
ρu∞D

µ
is the Reynolds number of the flow, based on the free-stream velocity

−→
U∞ = (u∞, 0) and the aerofoil chord length D.

The discretization is done on a staggered grid with the pressure defined in the cell midpoints,

the horizontal components of the velocity and force placed on the vertical cell interfaces; and

the vertical components of the velocity and force placed on the horizontal cell interfaces. To

impose incompressibility, the divergence of the velocity field is initialized to zero.

These equations are solved by employing a projection approach, which relies on the following

sequence of three steps:

1. Intermediate velocity field components
−→
U ∗ = (u∗, v∗) are calculated by updating the

present values with the convective and viscous terms. The convective part is calculated us-
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ing the explicit two-step Adams-Bashforth scheme while the viscous part is calculated using

the semi-implicit Crank-Nicolson method. This is formulated as:

−→
U ∗∗ =

−→
U n+∆t

−1.5(
−→
U n · 5)

−→
U n + 0.5(

−→
U n−1 · 5)

−→
U n−1︸ ︷︷ ︸

convective part by explicit two-step scheme

+
1

Re
(0.5152 −→U ∗∗ + 0.4952 −→U n)︸ ︷︷ ︸

viscous part by semi-implicit scheme


(2.13)

thus yielding the intermediate velocity field
−→
U ∗ as:

−→
U ∗ =

−→
U n + ∆t

{
−1.5(

−→
U n · 5)

−→
U n + 0.5(

−→
U n−1 · 5)

−→
U n−1 + 0.49

1

Re
52 −→U n

}
(2.14)

where
−→
U ∗ is in fact (I−0.51

∆t

Re
52)
−→
U ∗∗. The spatial derivatives involved here are computed

using centered differences for a non-uniform mesh.

2. The Laplacian of the pressure field at the next time step is calculated by imposing

the incompressibility condition on the velocity field. That is, using the pressure-correction

equation: −→
U rhs −

−→
U ∗

∆t
= −∇pn+1 +

−→
F n (2.15)

where
−→
U rhs = (I − 0.51

∆t

Re
52)
−→
U n+1. The divergence of (2.15) yields:

∆pn+1 =
∇.
−→
U∗

∆t
+∇.

−→
F n (2.16)

The pressure field at the next time step is calculated using the conjugate gradient method

for the Poisson equation. It should be noted that since periodic boundary conditions are

used, the conjugate gradient method for the pressure-Poisson solver can be safely used.

3. Finally the velocity field at the (n+1)th time-step is calculated after correcting the

pressure as shown below:

−→
U n+1 = (I − 0.51

∆t

Re
52)−1

{−→
U ∗ −∆t(∇pn+1) + ∆t(F n)

}
(2.17)
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The aerodynamic performance is measured in terms of the non-dimensional time-averaged

drag and lift coefficients derived from the instantaneous drag and lift coefficients, obtained

by integrating the horizontal and vertical components of the total force over the aerofoil.

That is, they are given respectively by:

(Cd)
n =

∫∫
(F n)x(x, y)dxdy

0.5ρD(u∞)2
(2.18)

(Cl)
n =

∫∫
(F n)y(x, y)dxdy

0.5ρD(u∞)2
(2.19)

2.4 Numerical convergence of the fluid model

Since a Cartesian grid is used for the computations, which is non-conformal to the shape

of the aerofoil, the mesh is concentrated near the aerofoil, to resolve the wake near it, and

sparse far away from it (cf. figure 2.2).

(a) (b)
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Figure 2.2: (a) Distribution of grid points over the whole computational domain; only one
in every 10 lines is shown; the aerofoil is at the domain’s centre, at the intersection of the
horizontal and vertical black bands. (b) Detail of the grid in the vicinity of the aerofoil.

At Re = 1100, given a fixed grid size, it is seen that whereas for a relatively small angle

of attack, a domain with dimensions 60D × 30D gives grid-converged results, for angles of

attack of around 40◦ going to high angles of around 70◦, a domain with transverse length of

50D or more (possibly, as big as 80D) is required. Once an optimal domain is decided upon,

grids with a number of cells ranging from 500× 300 to 1000× 600 cells are tested to decide
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on the optimal grid. For instance, at 70◦, the domain 50D × 50D with 700 × 500 cells has

been found to provide grid-converged average lift and drag coefficients (cf. figure 2.3).
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Figure 2.3: Spatial convergence of fluid solver. (a) Mean lift (bottom) and mean drag (top)
coefficients as functions of domain size (in units of D2), with mesh size fixed to 700x500. (b)
Mean lift coefficient, together with the instantaneous maximum and minimum values during
an oscillation cycle, as functions of the total number of grid points for a domain size fixed
to 50Dx50D.

2.5 Validity of boundary conditions

In all the simulations using periodic boundary conditions in this thesis, the forcing from the

buffer zone at the end of the computational domain (cf. fig. 2.1), induced by means of the

IB parameters αb and βb (cf. eqn. 2.6), ensured that no dominant frequencies enter the

inflow owing to such periodicity. For any given simulation, this fact has been ascertained by

examining the frequency spectrum of the inflow streamwise velocity and comparing it with

the frequency spectrum of some typical spatially-integrated quantity like the drag coefficient.

It has been ensured that the amplitude of such inflow frequencies is typically at least one

order less than that of the dominant frequencies in the flow, an instance of which is shown

in fig. 2.4.
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Figure 2.4: Comparison of the Fourier spectra of the drag coefficient (blue curve) with that of
the inlet streamwise velocity (red curve), for the NACA0012 aerofoil at an angle of incidence
of 22◦.

2.6 Validation of numerical method

To validate the immersed boundary technique, which also uses a non-uniform mesh here, the

time-averaged lift coefficients were computed for various angles of attack ranging from 20◦

to 70◦. They showed good comparison with the results of Soueid et al. (2009) (cf. fig. 2.5).

In addition, the results compared well with results from the commercial computational fluid

dynamics software FLUENT not only in the time domain but also in the frequency domain

(cf. fig. 2.6).

2.7 Feather layer model

Since the porous, compliant coating is meant to mimic a dense cluster of feathers (which is

infeasible to model owing to very large number of degrees of freedom), a discrete number

of reference beams, homogeneously spread over the layer, is chosen to approximate the

anisotropic compliant coating of variable porosity. Each reference beam is a rigid circular

cylinder, surrounded symmetrically by a control volume (cf. figure 2.7(a)). The dynamics
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Present computations
Soueid et al, (2009)

Figure 2.5: Comparison of time-averaged values of lift coefficients for the NACA0012 aerofoil
at various angles of attack, obtained from the fluid solver.
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of the reference beams, which are modelled as being connected to each other by non-linear

dampers and springs, is solved by a set of non-linear dynamical equilibrium equations (which

will be indicated in §2.7.2). The coupling between the fluid and structure is outlined next.

2.7.1 Coupling between fluid and structure

The interaction between the fluid and the coating is estimated as the drag force past a

cluster of long thin cylinders. This force per unit volume
−→
F c is split into the two components

tangential and normal to each such thin cylinder, of magnitudes F c
t and F c

n, respectively. To

approximate these, two variables are defined, namely the packing density φ, which captures

the variable porosity of the coating, and the unit orientation vector
−→
d of each feather in

the control volumes, which measures the anisotropic nature of the layer (cf. figure 2.7(b)).

The packing density is defined by φ =
Vfeather
Vlayer

, or the ratio of the volume occupied by the

feathers over the total sampling volume. Hence, it varies continuously with time between 0

and 1 within the coating.

  

(a) (b)

Figure 2.7: Feather layer model. (a) Homogenized approach; the thickest lines are the
reference beams, each of them being surrounded by control volumes. The position and
velocity of individual elements in a control volume (shown by thin lines) is interpolated from
the position and velocity of the reference beams. (b) Representation of the variable porosity
(in terms of the packing density variable) and anisotropy (in terms of the orientation vector)
of the layer - a darker shade stands for higher packing density.

For each point P in the fluid lying in some control volume of the coating, there corresponds

a velocity
−→
U c relative to the velocity

−→
V c of the feather on which P lies. This is given by
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−→
U c =

−→
U −

−→
V c, where

−→
U is the fluid velocity at P . The projection of this relative velocity

in the direction along the unit orientation vector
−→
d gives the tangential component with

magnitude U c
t , while the projection perpendicular to

−→
d gives the normal component, with

magnitude U c
n. Reynolds numbers corresponding to these tangential and normal components

are defined as Rect =
Uc
t dc
ν

and Recn = Uc
ndc
ν

respectively, where the length scale dc is the

diameter of the covert feather (i.e. of each thin cylinder).

The hypothesis is made that F c
n is a function of φ and Recn only, under the assumption

that Recn is not greater than 180. Making use of the model by Koch & Ladd (1997), which

proposes a linear approximation in terms of Recn, we get:

F cn
µU c

n

= c0(φ) + c1(φ)Recn, (2.20)

where F cn is the normal force per feather per unit length. The coefficient c0(φ) is the Stokes’

drag approximated using Brinkman’s law at the Stokes flow limit, while c1(φ) is the inertial

drag in the larger-than-zero Recn case and is estimated from the values assumed by the ratio

c1
c0

for different values of φ, as done by Koch and Ladd. Thus, F c
n =

4φ

πd2c
F cn.

As for the tangential component
F c
t

µUc
t
, a formula is derived (based on Favier et al. (2009))

for the case of steady axisymmetric flow in the Stokes regime between concentric cylinders.

By using Stokes equations in cylindrical coordinates and assuming that
∂

∂z
=

∂

∂θ
=

∂

∂t
,

ur = uθ = 0, one obtains:
−F c

t

µ
=
∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
(2.21)

with the boundary conditions u(r1) = 0 and
∂u

∂r
|r=r2 = 0, where r1 =

dc
2

and r2 − r1 is the

distance between two cylinders in the cluster. Taking φ =
∂u

∂r
, this equation becomes:

φ
′
(r) +

1

r
φ(r) +

F c
t

µ
= 0 (2.22)

which, alongwith the boundary condition
∂u

∂r
|r=r2 = 0, yields the solution:

φ(r) =
F c
t

2µ
(
r22
r
− r) (2.23)
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Using φ =
∂u

∂r
and the boundary condition u(r1) = 0, one obtains:

u(r) =
F c
t

4µ
(2r22ln

r

r1
+ r21 − r2) (2.24)

We now consider the incoming velocity with value U c
t and the mass flux J of the flow through

the space between the cylinders given by ρπ(r22 − r21)U c
t (1 − φ), where it should be recalled

that φ =
r21
r22

. J is also given by ρ
∫ 2π

0
dθ
∫ r2
r1
u(r)rdr. Equating these two values of J , one

gets:
F c
t

µU c
t

=
4

d2c

8φ(1− φ)

{φ− 1 + [2/(φ− 1)]lnφ− 2}
. (2.25)

These force components, which are obtained for each grid point in the control volumes are

transferred to the frame of the reference beams, by integration over each control volume.

It should be noted that the normal and tangential components of the force are respectively

dependent on the normal and tangential velocity components, which in turn are dependent on

the angles made by each of the reference beams with the aerofoil surface, and vice-versa. As

a consequence, depending on whether the normal or tangential force contributions is greater,

the feathers have a tendency to either favour or oppose alignment with the free-stream flow.

In this model, the condition is imposed on the reference beams that they should never make

a 90◦ or an obtuse angle to the free-stream flow.

2.7.2 Dynamics of the compliant coating

The forces in action are taken to be concentrated on N reference beams. The motion of such

thin rigid circular-cylindrical beams, hinged to the aerofoil surface, of length l and diameter

dc, are found in terms of the angular displacement about their equilibrium angle θeq, denoted

by θ(1), ...., θ(N). All angles involved in the structure model are defined with respect to the

positive horizontal axis. The different moments that are considered in the model are now

illustrated (cf. figure 2.8).

Rigidity: Each reference beam can oscillate within a sector[θmin, θmax] around its equilib-

rium angle θeq, its angular frequency being controlled by the rigidity parameter Kr (having
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Figure 2.8: Moments in the structure model.

dimensions [M ][L]2[T ]−2). The rigidity moment is then given by:

Mrigidity(k) = −Krf1[θ(k)]. (2.26)

where f1[θ(k)] = (T [θ(k)]−T (θeq))/T
′
(θeq), with T (θ) = tan

{
π

(θmax − θmin)
θ − π(θmax + θmin)

2(θmax − θmin)

}
.

It is to be noted that f1 is always an increasing function of θ, which vanishes at θeq. As a

consequence, the magnitude of the rigidity moment is greater when it is farther away from

θeq and close to zero in the neighbourhood of θeq (displaying a linear trend in θ with slope

1), exactly like the restoring force in a spring-mass system.

Interaction: Each reference beam is linked to its adjacent beams by non-linear springs of

stiffness Ki (having same dimensions as Kr), with progressive increase in the interaction

moment as two adjacent beams approach one another. This feature is modelled in the ex-

pression for the interaction moment given by:

Minteraction(k) = −Kif2[θ(k)]. (2.27)

where the non-linear function f2[θ(k)] =
tan{2lsin[

(θ(k)− θ(k + 1))

2
]
π

2
}

hcos{(θ(k) + θ(k + 1))

2
}

, with h as the

distance between two adjacent beams and l the beam’s length.

Dissipation: This takes into account the energy dissipation due to plastic deformation of
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each beam and friction between adjacent feathers, and is given by:

Mdissipation(k) = −Kdθ̇(k). (2.28)

where Kd is the dissipation parameter (having dimensions [M ][L]2[T ]−1) that controls the

magnitude of the energy lost.

Inertia: This moment is by virtue of the total mass M of all the feathers present in the

control volume surrounding a reference beam, and is given by:

Minertia(k) = M(
l

2
)2θ̈(k). (2.29)

External force from fluid: This force is obtained by integrating the volume force F c over

the control volume surrounding each reference beam, Vcontrol(k). It is given by:

Mexternal =
l

2
Fext(k) =

l

2

∫
Vcontrol(k)

‖F c
n‖dV. (2.30)

because the tangential component F c
t of the external force exerts no moment.

The dynamic equilibrium of the system of all reference beams is found by balancing the

above moments for each element. Thus, the equation for each reference beam (in dimen-

sional form) is:

Ml2c θ̈ +Krf1(θ) +Kif2(θ) +Kdθ̇ = lcFext. (2.31)

To compare the frequencies present in the structure with those in the flow, characteristic

frequencies corresponding to the rigidity, interaction and dissipation moments are defined by

ωr =
√
Kr/Ml2c , ωi =

√
Ki/Ml2c and ωd = Kd/Ml2c respectively (Doaré et al. (2004)). To

limit the number of independent parameters, the structure model is taken to be dominated

by rigidity effects. The equation is thus made dimensionless by using t∗c = tωr and µext =

Fext/(Mlcω
2
r), to yield:

θ̈ + γθ̇ + f1(θ) + κf2(θ) = µext. (2.32)

Here the parameters γ and κ are defined as ωd/ωr and ω2
i /ω

2
r respectively, and measure the

relative importance of each moment involved in the structure model.
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2.7.3 Numerical resolution of the structure model

The non-dimensional governing equation (2.31) is solved for each reference beam by using an

explicit four-step Runge-Kutta method. Since the mass of the beams considered is not too

small, use of an explicit method (as opposed to an implicit method) does not cause numerical

oscillations, that consequently delay the achievement of the final equilibrium. Between two

iterations in the whole fluid-structure interaction model, the dynamics of the coating is

calculated explicitly at each temporal sub-iteration.

The aerodynamic performance is measured again in terms of instantaneous as well as time-

averaged drag and lift forces (cf. equations 2.18 and 2.19), which now also incorporate the

force due to the structure on the fluid F c.

2.8 Summary of the two-way coupling

Since this fluid-structure interaction problem requires the simultaneous solution of the equa-

tions of both the structure and the flow, a weakly-coupled partitioned solver is used, as

summarized below:

(a) With the fluid velocity and pressure initialized to the free-stream velocity and zero respec-

tively, a direct numerical simulation of the unsteady incompressible Navier-Stokes equations

is performed, using the feedback forcing formulation of the immersed boundary method, as

discussed in sections 2.3.1 and 2.3.3.

(b) The configuration of the reference beams is initialized to the equilibrium angle about

which they oscillate while their velocities are initialized to zero. Control volumes around

each reference beam and their velocities are defined based on these, and are interpolated to

the reference frame of the grid in the fluid domain. The normal and tangential components

of the fluid-structure forcing are calculated, based on the fluid velocities in step (a) and

velocities at each grid point in the control volumes (cf. §2.7.1). The total force at each grid

point with index (i, j), denoted by F c
i,j, is now transferred to the frame of each reference
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beam (indexed by k) and denoted there by F c
k , by integrating it over the corresponding con-

trol volumes and multiplying by a smooth hyperbolic scalar field M c (which has the value 1

on the coating and is zero elsewhere).

(c) The dynamics of each reference beam is solved (cf. §2.7.2).

(d) With the positions and velocities of each reference beam found in step (c), the positions

and velocities at each grid point of the corresponding control volume are interpolated. With

these values and the fluid velocities in step (a), the normal and tangential components of the

structure-fluid forcing are found. The total force is evaluated by their resultant multiplied

by M c (cf. §2.3.1). The algorithm is depicted in a flowchart in figure 2.9.

  

Figure 2.9: Weakly-coupled algorithm for two-way fluid-structure interaction.
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Summary

A computational problem on the passive flow control over a NACA0012 aerofoil, using a

poro-elastic layer of compliant actuators, has been formulated. This problem has been dealt

with by the immersed boundary technique, wherein the feedback forcing formulation has

been used to treat the fluid part (in a Eulerian framework). On the other hand, the force

between the fluid and the structure parts (the latter simplified by a discrete set of elements)

has been evaluated as the drag force due to flow past a cluster of randomly-oriented, long,

thin cylinders. Finally, the discrete set of reference elements for the structure has been

modelled as non-linear spring-mass systems (in a Lagrangian framework). A weakly-coupled

partitioned solver puts together all these different components of the problem. This study

has been an extension of the model for a circular cylinder (developed by Favier et al. (2009)),

to a complex configuration of a NACA0012 aerofoil.

The results for flow in a low-Reynolds number regime, over the smooth aerofoil, have been

validated with results available in literature. The circumstances under which the present use

of periodic boundary conditions is valid, have also been established.

In the next chapter, results for the complete fluid-structure interaction problem are pre-

sented. Further, the modifications in flow fields, due to the presence of the poro-elastic

layer, have been interpreted.
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Chapter 3

Simulation results: Flow control with
coated aerofoils

Introduction

In this chapter, the results, obtained from the numerical procedure outlined in the last

chapter, are presented. For the computations for aerofoil coated with compliant actuators,

the characteristics of such a carpet have been selected so as to synchronize characteristic

time scales of the fluid and the structural systems. Details of such a selection are presented.

Further, modifications in flow characteristics, such as the pressure and vorticity fields, which

are associated to changes in aerodynamic performance, have been examined. A parametric

analysis of the major structural properties of the actuators is also presented, which helps in

characterizing “optimal ”structure parameters.

3.1 Aerofoil without control

In order to examine the effectiveness of the poro-elastic coating, the angle of attack at which

the lift-to-drag ratio starts to decrease drastically for a smooth aerofoil at incidence, should

be determined. For this, computations for angles of attack ranging from 20◦ to 70◦ are
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carried out. These computations are carried out as a special case where the poro-elastic

layer is set to be inactive, i.e, there is no force from fluid-to-structure and vice-versa. It

is observed that, unlike characteristic stall angles observed in several experiments at high

Reynolds numbers, the lift coefficient steadily decreases after around 40◦–45◦ angle of attack

(cf. figures 2.5 and 3.1(b)). Besides, the drag continues to increase along with increased

fluctuations around this point (cf. figure 3.1(a)).
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Figure 3.1: Dependence of the dimensionless coefficients of (a) time-averaged drag and (b)
time-averaged lift, as the angle of attack of a static NACA0012 aerofoil is varied from 20◦

to 70◦. The thick curves represent the mean values of drag and lift, while the dotted curves
above and below these thick curves represent the maximum and minimum values of the
instantaneous drag and lift coefficients in the course of the oscillations, respectively.

To determine the effectiveness of the feathers in optimizing the lift-to-drag ratio over the

entire range of angles, we will consider the physics at the angles of 22◦, 45◦ and 70◦. For

this, the signals of the drag and lift coefficients, plotted against time (non-dimensionalized

by the free-stream speed and the chord length), are first examined (cf. figure 3.2). It is to be

noted that the simulations conducted in this study are characterized by rather large angles

of attack, in order to consider cases of perching manoeuvre (and also owing to the fact that

due to a low-Re regime, the angle at which the lift starts to decrease is fairly large at around

45◦). Further, the use of long simulation times for such cases can be used to assess the initial

aerofoil performance during a perching manoeuvre of a bird.
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Figure 3.2: Time evolution of the drag (left) and lift (right) coefficients for angles of incidence
equal to 22◦ (top), 45◦ (middle) and 70◦ (bottom).
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To analyse the release of energy stored in the poro-elastic coating into the boundary layer,

which is believed to depend on a frequency synchronisation effect, a Fourier analysis is done

for each of these signals. Typically for a small angle of attack, like 22◦, a characteristic

frequency is observed in the power spectrum. On the contrary, for higher angles of attack,

like 45◦ and 70◦, this is not so. Further, for these angles, although the frequencies having

non-zero contribution in the power spectra of both the drag and lift signals are the same, the

amplitudes corresponding to them in these two signals are different (cf. figure 3.3). Some

physical insight into these observations will be provided in §3.4.

3.2 Investigation of the control parameters

The parameter space: We first summarize the parameters involved in this model. There

are three coefficients describing the intrinsic properties of the coating material, namely the

rigidity coefficient Kr, the interaction coefficient Ki and the dissipation coefficient Kd, as

outlined in §2.7.2. We also have the parameters corresponding to the equilibrium angle θeq,

the minimum and the maximum angles θmin and θmax, by which each reference element can

deflect. Then, there are the parameters giving the physical dimensions of each reference

beam, which is a thin circular cylinder – namely the mass m, the length l and its diameter

dc. Finally, we have the parameters that describe the concentration as well as the relative

placement of the coating on the aerofoil, namely the packing density φ, the number of ref-

erence beams N used to approximate the whole layer; and the coordinates of the points on

the aerofoil between which the coating is defined.

Choice of a suitable parameter subset: As indicated in §2.7.2, rigidity effects are taken

to predominate the structure model. This assumption helps in choosing a few crucial param-

eters out of the large parameter space outlined in the previous paragraph. The parameters

which are fixed for the whole investigation include N , l, dc and m. Also, the location of the

coating is fixed to 70% of the suction side of the aerofoil, a little away from the leading edge

(cf. Table 3.2). The aerofoil is kept smooth close to the trailing edge, because in the case
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Figure 3.3: Power spectra of the drag (left) and lift (right) signals for angles of attack equal
to 22◦ (top), 45◦ (middle) and 70◦ (bottom), corresponding to the time signals shown in
figure 3.2. Non-dimensional frequency is plotted along the horizontal axes.
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of 22◦, the trailing edge vortices were observed to orient the feathers close to the trailing

edge almost orthogonally to the flow, which led to some drop in aerodynamic performance.

The fixing of the location and extent of the coating, along with fixed N , sets the distance

h between two adjacent reference beams, which figures in the definition of the interaction

moment (cf. equation 2.26). Next, for this fixed h, l is taken equal to 8.5% of the aerofoil

chord length, to effectively model non-bending feathers. Further, l, apart from appearing

in the definition of the moment due to the force from the fluid, also figures in the moments

due to interaction and inertia (which are taken to be less significant than other terms). The

bristles’ diameter dc appears in the definition of the normal and tangential components of the

force between the fluid and the structure. As mentioned by Favier et al. (2009), this model

is in accordance to those developed by Koch & Ladd (1997) and Howells (1998), which are

valid only for moderate normal and tangential Reynolds numbers Rehn and Reht (defined in

§2.7.1). Here dc is fixed such that both Rehn and Reht do not exceed the value of 10. Finally

m, which figures only in the small contribution from the moment due to inertia, is fixed to a

suitable value equal to 12 (non-dimensionalized with respect to the mass of the fluid trapped

within a control volume surrounding a reference feather).

The parameters which were extensively studied are Kr and φ. Kr was tuned according to the

dominant frequencies observed in the uncontrolled flow, which correspond to the frequencies

of vortex shedding, as seen from the power spectra of the drag and lift signals for the smooth

aerofoil. For each of the values of Kr, Kd was fixed according to the following linear stability

analysis performed for the equation for coating’s dynamics (eqn. (2.31)), considering zero

external forcing from the fluid, about the equilibrium angle θeq (Favier et al. (2009)):

We obtain the following differential equation in terms of the “small” perturbation angle θ
′
:

θ̈′ + γθ̇′ + {(f1)
′
(θeq)}θ

′
+ κf2(θeq + θ

′
) = 0. (3.1)

This equation can be further simplified using the properties of f1 and f2 that (f1)
′
(θeq) = 1

(i.e, the restoring force owing to rigidity shows a linear trend near the equilibrium angle),

and f2(θeq + θ
′
) = 0 (i.e, force between neighbouring reference beams can be neglected near

the equilibrium angle as they do not touch each other), respectively. Now, assuming that
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the perturbation θ
′

behaves as eiω
∗
c t
∗
c , where ω∗c is non-dimensional characteristic frequency

of the structure model and t∗c is non-dimensional time variable (both normalized using the

rigidity frequency ωr), we obtain a quadratic equation for ω∗c with roots:

ω∗c =
iγ +

−
√

(4− γ2)
2

(3.2)

Fixing γ equal to 0.05, so that there is a small contribution from the dissipation term

compared to other terms, we get iω∗c t
∗
c = (−0.025 +

− 0.999i)t∗c . The real part of this

equation indicates that the system is asymptotically stable due to negative growth rate.

Further, for this value of γ, considering the real part of the value of ω∗c (which is +
−0.999), we

get that the dimensional characteristic frequency ωc is approximately equal to the rigidity

frequency ωr, in line with our hypothesis of the dominance of rigidity term.

Next, Ki was fixed to satisfy the identity ωd < ωi < ωr, where ωr, ωi and ωd have been

defined before in §2.7.2. Further, to have favourable comparison of
F cn
µU c

n

and
F ct
µU c

t

to the

theoretical model of Howells (1998), φ was chosen to lie roughly in the range [0.001, 0.01].

With the parameters chosen as above, now the values for θeq, θmin and θmax need to be

tuned. As for the parameter θeq, in the case of the angle of attack of 22◦, θeq = 0 (i.e.

the initial orientation of the reference beams being parallel to the free-stream) was seen to

yield better aerodynamic performance. Hence, for the other angles of attack of 45◦ and 70◦,

this configuration was fixed. Finally, for each of these angles of attack, the angular sector

[θmin, θmax] was chosen to have as high compliance as possible, although always restricting

the dynamics of the beams to acute positive angles.

3.3 Aerofoil with control

To control flow separation, it is necessary to optimize the release of energy stored in the

boundary layer, at appropriate instants of time. Thus, the idea behind finding the right

physical and structural parameters for the poro-elastic coating is to synchronize the vortex

shedding and the structures’ time scales, to try and trigger a near-resonant response capable
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of affecting profoundly the physics of this coupled problem. In the light of the fact that the

rigidity forces are taken to be predominant, this problem boils down to finding the rigidity

parameter Kr, for which the corresponding structure frequency ωr has a major contribution

in the power spectra of the drag or lift signals. Effective non-dimensional control parameters

are provided in Tables 3.1 and 3.2.

Angle of
attack,
α (de-
grees)

Rigidity
moment,
Kr

Interaction
moment,
Ki

Dissipation
moment,
Kd

Packing
density, φ

Angular
sector of
movement,
[θmin, θmax]
(degrees)

Flow fre-
quency,
ωfluid

22 8.9905 0.2034 0.0909 0.0085 [-60,21] 0.4772
45 6.8002 0.2034 0.079 0.0022 [-60,60] 0.4151
70 8.9905 0.2034 0.0909 0.0085 [-60,60] 0.4772

Table 3.1: Parameters which have been varied in the course of the parametric search; the
values provided here are those which guarantee the best control results. The normalization
of the structure moments and the flow frequency is done w.r.t the mass of the reference beam
M , half the length of the reference beam lc and the time scale of the free-stream, which is
the ratio between the aerofoil chord length D and the free-stream speed u∞.

Mass of reference beam, M 12
Length of reference beam, l 8.5× 10−2

Diameter of reference beam, dc 2× 10−3

Equilibrium angle/ Initial orientation
of reference beams, θeq (degrees)

0

Extent of the coating
70% of suction side, starting 0.1 units of
length after the leading edge and end-
ing 0.2 units before the trailing edge.

Number of reference beams used, N 8

Table 3.2: Parameters fixed throughout the course of the study. Here, length and diameter
of a reference beam are non-dimensionalized w.r.t the aerofoil chord length D.

With the parameter Kr so chosen and other parameters fixed as described in the previous
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paragraph, we get enhanced performance for all the three angles of attack of 22◦, 45◦ and

70◦. Specifically, we get 34.36% and 7.5% mean lift increase for 22◦ and 70◦ respectively; and

8.92% and 4.92% mean drag reduction for 45◦ and 70◦ respectively. In addition, we obtain

35.47%, 10.46% and 9.71% reduction in drag fluctuations for 22◦, 45◦ and 70◦ respectively;

and 7.15% reduction in lift fluctuations for 22◦ (cf. fig 3.4).

Some physical insight into why we get these improvements due to changes in the local flow

field, is provided in §3.4.

3.4 Physical interpretation of the control

3.4.1 Parametric study

A parametric analysis is done of the change in aerodynamic performance, first by varying

the rigidity moment Kr while keeping the packing density φ fixed and then by varying φ

while Kr is fixed at an optimum value. All the other parameters are chosen in accordance

with §3.2. Although these plots never show regular trends for any of the angles of attack

considered, it has been observed that the performance was enhanced (as outlined in §3.3)

when Kr was such that the dimensionless rigidity frequency was close to 0.4, over other

values of Kr. For instance,

(i) when the angle of attack is 22◦, since there was only one frequency, equal to 0.4772,

observed in the power spectra of drag and lift signals (cf. figures 3.3 (a) & 3.3 (b)), only

control elements with this rigidity frequency were tested, over an extensive range of packing

density (cf. figure 3.6 (a));

(ii) in the case of incidence equal to 45◦, control elements with rigidity frequency equal

to 0.4151 (with a suitable packing density) were seen to produce larger drag reduction, while

the mean lift remained roughly unchanged (cf. figures 3.5 (a) and 3.6 (b));

(iii) for an angle of 70◦, control elements with rigidity frequency equal to 0.4772 (and

a suitable packing density) produced higher drag reduction as well as lift enhancement (cf.
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Figure 3.4: Time evolution of the drag (left) and lift (right) coefficients for an aerofoil at
angles of attack 22◦ (top), 45◦ (middle) and 70◦ (bottom) - comparison between the cases of
aerofoil without control (solid, black lines) and aerofoil with control (blue, dashed lines).
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figures 3.5 (b) and 3.6 (c)) .
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Figure 3.5: Dependence of drag on structure frequency (determined by the rigidity moment
Kr) for (a) 45◦, and (b) 70◦. The structure frequencies are selected to match frequencies
observed in the flow. The thick curves represent the mean values of drag, while the dotted
curves above and below these thick curves represent the maximum and minimum values of
the instantaneous drag coefficients in the course of the oscillations. The arrows point to the
optimum cases shown in figure 3.4. In each of these cases, the values of minimum, mean and
maximum drag for the reference case (i.e. under uncontrolled conditions) is shown by the
black vertical line with cyan dots on the extreme left.

So the range of flow frequencies between 0.4 and 0.5 are probably significant to the flow

(vis-a-vis the Reynolds number 1100), more than its dependence on the angle of attack.

This possibly indicates that for controlling the flow at this Reynolds number, the natural

structural frequency should always lie in this range of values.

From the extensive parametric study, as summarized in figures 3.5 and 3.6, it can be seen

that it is very important to choose the right control parameters and some other choice is

likely to yield sub-optimal results, and possibly even increase in drag and/or decrease in lift

accompanied with unfavourable oscillations.
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Figure 3.6: Dependence of lift as the packing density φ is varied over an admissible range (in
accordance with Howells (1998)) for (a) 22◦, (b) 45◦, and (c) 70◦. The thick curves represent
the mean values of lift, while the dotted curves above and below these thick curves represent
the maximum and minimum values of the instantaneous lift coefficients in the course of the
oscillations. The arrows point to the cases shown in figure 3.4. In each of these cases, the
values of minimum, mean and maximum lift for the reference case (i.e. under uncontrolled
conditions) is shown by the black vertical line with cyan dots on the extreme left.
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3.4.2 Frequencies observed in the fluid-structure coupled system

To see the effects of the control on the flow field, it is important to first analyse the frequen-

cies in the flow for an aerodynamic body with control vis-a-vis the same aerodynamic body

without any control. To do this, again a Fourier analysis is done of the controlled signals

shown in figure 3.4 (depicted by blue, dashed lines).

The following observations are made for each of the cases:

In the case of an angle of attack of 22◦,

(i) the dominant frequencies in the drag and lift spectra under controlled conditions are

generally larger than for a smooth aerofoil;

(ii) in the spectrum of the drag signal (cf. figure 3.7 (a)), there are clusters of frequen-

cies - comprising several frequency components close to each other and in the vicinity of a

frequency with maximum amplitude. The dominant frequency (which is close to 1.2 here)

is within the last such cluster. However in the lift power spectrum, such frequency clusters

are absent and further, only one frequency is observed (cf. figure 3.7 (b)).

In the cases of angles 45◦ and 70◦:

(i) the spectra of controlled drag signals show energy spread over a large frequency range

(cf. figures 3.7 (c) and 3.7 (e)), as opposed to what was seen in the uncontrolled cases (cf.

figures 3.3 (c) and 3.3 (e)). In the case of 45◦, the range of frequencies measured is centered

around the value of 0.4, which was observed to dominate in the spectrum of the uncontrolled

drag signal. In the case of 70◦, frequencies with values 0.303 and 0.454 are observed, each of

which are close to frequencies seen in the spectrum of the uncontrolled drag signal (i.e. 0.3

and 0.45 respectively);

(ii) the spectra of controlled lift signals (cf. figures 3.7 (d) and 3.7 (f)) show one dominant

frequency in each of these cases - i.e. 0.198 and 0.1515 respectively (both being close to 0.2

and 0.1477 seen in the respective spectra of lift signals in uncontrolled conditions).

Thus, these observations appear to point to a frequency lock-in, or synchronization mecha-

nism, as outlined in Py et al. (2006).
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Figure 3.7: Power spectra of the drag (left) and lift (right) signals for incidence angles equal
to 22◦ (top), 45◦ (middle) and 70◦ (bottom) when the poro-elastic, compliant coating is used,
corresponding to the time signals shown in figure 3.4 (blue, dashed lines). Non-dimensional
frequency is plotted along the horizontal axes.
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3.4.3 Changes in flow field close to the aerofoil

Going beyond analysing new frequencies in the flow, we try to associate some physical

implications to these by examining the flow fields (taken here to be in terms of the pressure,

vorticity and wake profile) over suitable time windows, when the controlled flow, in each of

the cases, has reached a statistically steady state. These time windows are precisely the ones

over which the evolution of the instantaneous drag and lift coefficients are shown in figure

3.4.

(i) From the time-averaged pressure plots (cf. figure 3.8), we get information on the effect

of the coating on the mean pressure field.

In the case of an incidence equal to 45◦, there is a smaller mean pressure gradient as well

0.1
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α = 45º
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(d)(c) 0.1

0.05

0
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Figure 3.8: Time-averaged pressure field, depicted by isolines and colour plot for angles of
attack equal to 45◦ (top) and 70◦ (bottom). The panel on the left-hand side shows the
pressure field for a smooth aerofoil while that on the right-hand side is for a coated aerofoil.
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as a smaller magnitude of overall mean pressure on the suction side, which contributes to

reduced mean pressure drag and its fluctuations (cf. figures 3.8 (a) and (b)). This is also

observed in the case of 70◦, however to a lesser extent (cf. figures 3.8 (c) and (d)). In both

these cases, it can also be seen that the poro-elastic layer pushes the vortex (shown by the

dark blue “core”) farther away from the suction side, hence showing a modification in the

vortex shedding process.

(ii) Once the vortex shedding process reaches a steady state, the vorticity field at any

given instant also tells about the noteworthy contribution of the control elements.

α = 22º
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Figure 3.9: Colour plot of instantaneous vorticity field for angles of attack equal to 22◦

(top) and 70◦ (bottom). Left-hand side and right-hand side panels depict uncontrolled and
controlled cases respectively. It is interesting to note that, in the presence of the coating,
the shed vortices are more closely spaced than in the corresponding uncontrolled cases.
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Particularly for an angle of 22◦ there is an increase in the intensity of the shed vortices as

well as an appreciable increase in the Strouhal number (cf. figure 3.9 (a) and (b)). Some

increase in the vortex intensity can also be seen for an incidence of 70◦ (cf. figure 3.9 (c) and

(d)). This can be related to a change in the circulation around the aerofoil which in turn

explains an appreciable variation in lift in both cases. Further, in the case of 22◦, one also

sees a noticeable regularization in the vortex shedding phenomenon and a shortening of the

length scales of the vortices. In all cases it appears that the time-mean wake is narrower in

the vertical direction whenever the bristles are present on the upper surface of the aerofoil,

and this has a clear consequence on the integral momentum budget and, more particularly,

on the drag force experienced by the aerofoil.

3.5 Conclusions

The passive control of flow on a symmetric aerofoil using a dense poro-elastic coating has been

numerically studied, as a two-way coupled fluid-structure interaction problem. It is found

by a numerical parametric analysis that such a coating - owing to its properties of being

porous, compliant and anisotropic - is able to affect the topology of the flow in the proximity

of the rear of the aerofoil, by adapting spontaneously to the separated flow. The coating

modifies the vortex shedding process and also positively influences the pressure distribution,

hence changing the drag and lift forces as well as their fluctuations. This is achieved by a

synchronization of the oscillations of the structures onto a frequency which is comparable to

the natural frequency of the fluid system.

For a very low Reynolds number flow, sets of efficient control parameters have been found

over 20◦ to 70◦ range of angles of attack, where the complete behaviour from the increase

to the subsequent drop of the lift coefficient with the incidence angle is observed. This wide

spectrum of angles of attack is effectively captured by three angles - 22◦ (representing the

“before-stall ”regime), 45◦ (representing the “near-stall ”regime) and 70◦ (representing the

“after-stall ”regime). For instance, these passive actuators, with the right kind of properties,
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are capable of producing a high lift enhancement of more than 30% (for 22◦) and a moderate

lift increase of around 8% (for 70◦); a noteworthy drag reduction of around 9% (for 45◦) and

a moderate drag reduction of around 5% (for 70◦). In addition the drag and lift fluctuations

also see positive impact.

The next two chapters proceed towards characterizing the structural properties of the poro-

elastic carpet, that can yield desired flow characteristics, hence leading to desired aerody-

namic performance enhancement. This is achieved by examining the modifications intro-

duced in the flow over a flat plate, which is a simpler configuration than an airfoil.
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Chapter 4

Reduced order model for
vortex-shedding from smooth aerofoil

Introduction

The objective of this chapter is to derive a reduced-order model for the vortex-shedding

behind a symmetric aerofoil at an angle of attack to the free stream in a laminar flow regime.

The derivation of such a model is a crucial preliminary step in characterizing the structural

parameters of the poro-elastic layer of feathers used to coat a part of the aerofoil as in previ-

ous chapters, to obtain the desired modifications in the aerofoil’s aerodynamic performance.

This chapter addresses the case of the smooth aerofoil, whereas the effect of the coating will

be studied in the next chapter.

To extract a reduced-order model for the phenomenon of shedding of vortices, the char-

acteristics of vortex-shedding behind the aerofoil are analysed. Some signature of these

characteristics is in fact contained in a quantity obtained by globally integrating over the

computational domain - such as the lift and drag for this aerofoil. Hence, a reduced-order

model will be derived for the non-dimensional lift coefficient of the aerofoil. Once the low-
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order model is known, the various parameters in it are appropriately selected so that results

from this model match well with the computational results.

This chapter begins with an overview of some facts on non-linear dynamics in §4.1, that are

used to develop the low-order model for the smooth aerofoil. In §4.2, characteristics of the

time evolution of the aerofoil’s (non-dimensional) lift coefficient, that go into formulating the

low-order model, are highlighted. §4.3 details the development of the reduced-order model

while §4.4 derives its parameters, so that the model results match with computational results.

§4.5 compares the simulation results with those from the model. Finally, §4.6 presents results

on some regimes of model parameters for which existence of limit cycles for the developed

reduced-order model is guaranteed.

4.1 Characteristics of limit cycles

This section will highlight the characteristics of the system under consideration, particularly

in the context of its similarities with non-linear dynamical systems exhibiting limit cycles:

(i) Under the reasonable assumption that the equation modeling vortex-shedding behind

an aerofoil is autonomous (i.e, it does not depend explicitly on time), it is important to

note that only those autonomous equations which have negative linear damping and positive

non-linear damping are capable of producing limit cycles, since limit cycles are produced

from an interplay between linear and non-linear damping terms. Thus, if there is negative

linear damping in the system (which allows small perturbations to grow), then there must

be at least one counter-acting positive non-linear damping term (which will push large per-

turbations back to the equilibrium state). This point will also be detailed in §4.3.1.

(ii) Once the flow parameters, such as the Reynolds number and the shape of the body

around which the flow is occurring (in the present case, determined the parameters of the

aerofoil and its angle of attack), are fixed, the long time history of the vortex-shedding from

the body is periodic in the Reynolds number range of our consideration (cf. figure 4.2(a))

and independent of initial conditions. Such a system is said to be a self-excited oscillator.
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(iii) A two-dimensional autonomous dynamical system representing a self-excited oscil-

lator, such as the vortex-shedding behind an aerofoil (as will be illustrated in the next few

sections), exhibits a Hopf bifurcation as one of its parameters that varies across a critical

value. The variation of this parameter across such a critical value is often marked by the

creation or annihilation of a limit cycle, which in fact appear in the system being studied.

An illustration of this phenomenon, for the case of a two-dimensional dynamical system, will

be presented in §4.3.1.

4.2 Characteristics of vortex-shedding from aerofoil

In order to derive the reduced-order model for vortex-shedding behind an aerofoil, the aerofoil

is taken to be at an angle of attack of 10◦, with streamwise Neumann outflow boundary

condition at the end of the computational domain. The selection of this boundary condition

ensures that no extraneous frequency enters the domain inlet (as also illustrated §2.5). A

snapshot of the vortex pattern, after it has reached its steady-state, is shown in Figure 4.1.

  

Figure 4.1: Colour plot of instantaneous vortex pattern from an aerofoil at an incidence of
10◦.

To develop a low-order model for such vortex-shedding, the computational results for the

time evolution of the unsteady (non-dimensional) lift coefficient and its Fourier spectrum

will be considered. The characteristics of the lift coefficient for this configuration, in time

and frequency domains, is shown in Figure 4.2.
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Figure 4.2: Time evolution of lift coefficient (left); Fourier spectrum of lift coefficient (right).

It can be seen from Figure 4.2(b) that after a peak at the fundamental frequency ωs (which

is in fact the frequency of vortex-shedding), there is a peak with substantial amplitude at

2ωs (followed by a smaller peak at 3ωs). Such super-harmonics, where there is a larger peak

at twice that of the vortex-shedding frequency, are in marked contrast to those shown by the

oscillatory lift force on a stationary rigid cylinder, which shows a larger peak at three times

the frequency of vortex-shedding, at Reynolds numbers of the same order as considered in

this thesis [32,33]. To account for these super-harmonics of flow frequencies in the case of

the aerofoil, a non-linear model consisting of at least one quadratic non-linearity must be

considered.

However, an equation consisting of non-linearities of order at most two, and no higher-order

non-linearities (such as cubic or higher), does not model a self-excited oscillator, since for

each new initial condition, the dynamics settles down to a new closed orbit (hence showing

the non-existence of a limit cycle). This point will be detailed more in §4.4.3.

4.3 Development of reduced-order model

4.3.1 Condition for existence of Hopf bifurcations

Considering that a third-order non-linearity is required in the model equation for producing

a limit cycle, a necessary (but not sufficient) condition for the existence of a limit cycle is
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derived [34]. For this, a generic constant coefficient non-linear ordinary differential equation,

with all possible quadratic and cubic non-linearities, is taken:

d2x

dt2
+ x = c

dx

dt
+ α1x

2 + α2x
dx

dt
+ α3(

dx

dt
)2 + β1x

3 + β2x
2dx

dt
+ β3x(

dx

dt
)2 + β4(

dx

dt
)3 (4.1)

where c is the coefficient of linear damping, αi for i = 1, 2, 3, and βj for j = 1, 2, 3, 4 are

the coefficients of quadratic and cubic non-linear damping terms, respectively. It should

be noted that the origin is a fixed point of this equation. The necessary condition for the

existence of a limit cycle is expected to impose certain restrictions on these coefficients. For

deriving this criterion, Lindstedt’s method [35,36] is used, in which the basic idea is to find

solutions which are periodic for all time, by considering the frequency as an unknown, and

solving for it by imposing the requirement that the solution does not contain any secular

terms. For this, firstly, the variable x is scaled to lie within a small neighbourhood around

the origin, i.e, x is taken to be εy, where ε << 1 and y ∼ O(1) is the transformed variable.

Substituting this in equation (4.1) yields the following equation in terms of the variable y:

d2y

dt2
+ y = c

dy

dt
+ ε[α1y

2 +α2y
dy

dt
+α3(

dy

dt
)2] + ε2[β1y

3 +β2y
2dy

dt
+β3y(

dy

dt
)2 +β4(

dy

dt
)3] (4.2)

To understand the relative importance of linear and non-linear damping terms, the following

is done. Expanding c and y in power series in ε, given by c = c0 + c1ε + c2ε
2 + O(ε3)

and y = y0 + y1ε + y2ε
2 + O(ε3) respectively, substituting in equation (4.2), and separating

coefficients of like powers of ε, we get the equation at O(1) to be
d2y0
dt2

+ y0 = c0
dy0
dt

.

Since it is known that the basic state is periodic, c0 is set to 0 to be consistent with this.

Hence, the solution y to the O(ε0) approximation, y0, is A cos t+B sin t (where A and B are

arbitrary constants determined by initial conditions). Further, the equation at O(ε) is given

by
d2y1
dt2

+y1 = c1
dy0
dt

+α1y
2
0 +α2y0

dy0
dt

+α3(
dy0
dt

)2. To avoid secular terms (i.e, terms growing

without bound) in the O(ε) approximation to the solution y, c1 must be 0. This is because

the general solution for y1 is C cos t + D sin t (where C and D are arbitrary constants). If

a term such as c1
dy0
dt

is present, the particular solution for y1 will have to be of the form

t(E cos t+ F sin t) (where E and F are constants to be determined), making y1 unbounded.

The unboundedness of y1 is not allowed since we have assumed in the beginning that a limit
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cycle exists.

Thus, the coefficient of linear damping c is scaled to O(ε2), and is fixed as c = ε2µ. Hence

equation (4.2) now takes the form:

d2y

dt2
+ y = ε[α1y

2 +α2y
dy

dt
+α3(

dy

dt
)2] + ε2[µ

dy

dt
+β1y

3 +β2y
2dy

dt
+β3y(

dy

dt
)2 +β4(

dy

dt
)3] (4.3)

To employ Lindstedt’s method, the time variable is stretched and the new time variable is

set as τ = ωt, where ω and y(τ) are expanded as:

ω = ω0 + εω1 + ε2ω2 +O(ε3); y(τ) = y0(τ) + εy1(τ) + ε2y2(τ) +O(ε3) (4.4)

It is to be noted that ω0 = 1, because when ε = 0 the solution to equation (4.3) has a

frequency of 1.

Using equation (4.4) in equation (4.3) and collecting terms proportional to ε0(= 1), ε and ε2

yields the following three equations:

d2y0
dτ 2

+ y0 = 0; (4.5)

d2y1
dτ 2

+ y1 = −2ω1
d2y0
dτ 2

+ α1y
2
0 + α2y0

dy0
dτ

+ α3(
dy0
dτ

)2; (4.6)

d2y2
dτ 2

+ y2 =− 2ω1
d2y1
dτ 2
− (ω2

1 + 2ω2)
d2y0
dτ 2

+ 2α1y0y1 + α2

{
y0
dy1
dτ

+ y1
dy0
dτ

+ ω1y0
dy0
dτ

}
+ α3

{
2
dy0
dτ

dy1
dτ

+ 2ω1(
dy0
dτ

)2
}

+ µ
dy0
dτ

+ β1y
3
0 + β2y

2
0

dy0
dτ

+ β3y0(
dy0
dτ

)2 + β4(
dy0
dτ

)3

(4.7)

Taking the solution of equation (4.5) as y0(τ) = A cos τ , substituting in equation (4.6) yields

the coefficient of the secular term −2ω1
d2y0
dτ 2

as 2ω1A. Thus, for the vanishing of secular

terms (whose significance has been explained before equation (4.3) in this section), ω1 = 0

is needed, which gives the solution of y1 as:

y1(τ) =
A2

2
(α1 + α3) +

A2

6
(α3 − α1) cos 2τ +

A2

6
α2 sin 2τ (4.8)

Using these expressions in equation (4.7) and imposing that the coefficients of both sin τ and

cos τ (which are obtained by collecting the appropriate parts in all the terms but the first one,
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in the right hand side of equation (4.7)) must vanish for no secular terms (as outlined before

equation (4.3) in this section), one arrives at the following expressions for the amplitude A

and frequency ω2 respectively:

A = 2

√
−µ

α2(α1 + α3) + β2 + 3β4
; (4.9)

ω2 =
µ(10α2

1 + α2
2 + 10α1α3 + 4α2

3 + 9β1 + 3β3)

6α1α2 + 6α2α3 + 6β2 + 18β4
(4.10)

It can be seen that a limit cycle for the generic dynamical system (4.1) will exist if the

expression (4.9) for the amplitude A is real. For this, the linear damping coefficient µ and

the quantity α2(α1 +α3) +β2 + 3β4 must have opposite signs. Considering a situation where

α2(α1 + α3) + β2 + 3β4 is fixed, as µ varies from a positive to a negative real number, or

vice-versa, a limit cycle is either born or annihilated. This is exactly the situation of a Hopf

bifurcation. Further, system (4.1) always has a fixed point at the origin which is stable for

µ < 0 (case of positive linear damping) and unstable for µ > 0 (case of negative linear

damping). Also, in any of the cases of possible values of the coefficients of this system,

exactly one from the fixed point or the limit cycle can be unstable. This is owing to the

two-dimensional nature of the phase space, because trajectories which depart away the origin

must approach the limit cycle and continue to stay on it forever, and conversely, trajectories

that leave from the limit cycle will eventually collapse to the origin.

4.3.2 Application to the case of vortex-shedding

Since the characteristics for aerofoil vortex shedding are dependent only on the flow Reynolds

number and the aerofoil’s angle of attack, and not on the initial conditions, this system can be

expected to exhibit a stable limit cycle. Hence from the analysis in the previous paragraph,

the system has an unstable fixed point at the origin, which is possible only for µ > 0 -

i.e, case of negative linear damping. Based on the analysis in the previous paragraph, it is

possible to deduce which non-linear terms must be present in the generic system (4.1) to

yield limit cycles, independent of initial conditions.
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As outlined towards the end of §4.2, in the case of vortex shedding from rigid stationary

cylinders, the dominance of the third super-harmonic of the fundamental frequency over the

second indicates the presence of only cubic non-linearities in the low-order model equation

and no quadratic non-linearities, as studied in the past [32,33]. More generally, several

authors have written about reduced-order models for vortex-shedding, particularly behind

cylinders, which are standard examples of bluff bodies. While Bishop and Hassan [27] did

pioneering work to model the forces over a cylinder owing to vortex-shedding using a self-

excited oscillator, Hartlen and Currie [28], and Currie and Turnbull [29], formulated a model

based on the Rayleigh oscillator for the forces on rigid cylinders restrained by springs in the

streamwise direction but free to oscillate in the cross-flow direction, represented as:

d2x

dt2
+ x =

dx

dt
− (

dx

dt
)3 (4.11)

Skop and Griffin [30] later used a van der Pol-like oscillator, given as:

d2x

dt2
+ x =

dx

dt
− x2dx

dt
(4.12)

Nayfeh et al [37] investigated both the above wake-oscillator models to represent the lift force

on a stationary cylinder. Based on an analysis of the phase differences between the first and

third frequency harmonics, they arrived at the conclusion that the van der Pol oscillator

(given by equation (4.12)) accurately captures the lift coefficient in the steady as well as

transient states. To better approximate such phase differences between different harmonics,

Akhtar et al [38] later refined this model by adding a Duffing-type of cubic non-linearity to

the van der Pol oscillator model and obtained:

d2x

dt2
+ x =

dx

dt
− x2dx

dt
− x3 (4.13)

It must be noted that all the three models represented by equations (4.11), (4.12) and (4.13)

satisfy the necessary condition for the existence of a limit cycle (given by equation (4.9)),

thus indicating that limit cycles can indeed exist for all these cases. The fact that limit

cycles indeed exist for these cases is proved by means of other techniques.
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In the case of the aerofoil, to simplify our analysis of how the non-linearities of different or-

ders interact with each other, exactly one of the terms of quadratic and cubic non-linearities

will be taken to be non-zero. From equation (4.9), it can be seen that the coefficients β1 and

β3 (corresponding to the non-linear terms x3 and xẋ2) do not play any role for the amplitude

A to be real. In fact, if exactly one of α1, α2 or α3 is non-zero, and precisely one of β1 or

β3 is non-zero (with β2 and β4 being zero), then equation (4.9) yields that A is infinite, thus

violating the necessary condition for the existence of a limit cycle. Hence, the two non-linear

terms x3 and xẋ2 will be taken to be absent. The dependence of the existence of limit cycle

on the coefficients α1, α2, α3, β2 and β4 is summarised in the following table (with the linear

damping coefficient µ fixed to 1):

Case α1 α2 α3 β2 β4 Existence of limit cycle
1 1 0 0 -1 0 No
2 1 0 0 0 -1 No
3 0 1 0 -1 0 Yes

4 0 1 0 0 -1
Limit cycle exists only for
initial conditions with ẋ
negative or zero.

5 0 0 1 -1 0 No
6 0 0 1 0 -1 Yes

Table 4.1: Dependence of limit cycle existence on the non-linearities in equation (4.1).

From this table, it can be seen that only cases 3 and 6 yield limit cycles. A further compar-

ative analysis of the phase portraits (i.e plots of ẋ versus x), is presented in Figure 4.3.

It can be seen from this figure that the convergence to a limit cycle is faster in case 6,

in which the non-linearities involved are ẋ2 and ẋ3. Our physical system is one where the

limit cycle is attained fairly quickly, i.e. within a few oscillation time scales. Hence the

equation taken to model the system under consideration is:

d2x

dt2
+ x =

dx

dt
+ (

dx

dt
)2 − (

dx

dt
)3 (4.14)
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Figure 4.3: Limit cycles for cases 3 (blue curve) and 6 (red curve) of Table 4.1. The left
sub-figure considers an initial condition lying within both the limit cycles, while the right
sub-figure considers an initial condition lying outside both the limit cycles.

4.4 Derivation of model parameters

4.4.1 Solution by the method of multiple scales

Denoting the variable being modeled as CL, the non-dimensional lift coefficient, the model

equation, with all its unknown parameters, can be written as:

(
d2

dt2
+ ω2)CL = µ

d

dt
CL − α(

d

dt
CL)3 + β(

d

dt
CL)2 + ω2Lmean (4.15)

where the parameters µ, α and β are all positive. The presence of an extra constant ω2Lmean

here is to account for the fact that the mean lift coefficient CL for an aerofoil is non-zero.

To determine the parameters ω2, µ, α and β, the analytical form of the solution for equation

(4.15) is determined, which in turn is dependent on these parameters. Once the closed-form

solution is known, it is matched with the simulation results (for instance, like the one showed

in figure 4.2) to determine these model parameters.

Equation (4.15) will be solved by the method of multiple scales. The idea behind this method

is to construct uniformly valid approximations to the solutions of perturbation problems, for

small as well as large values of the independent variable. This method is pertinent in many
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typical perturbation problems, where solutions derived using simple perturbation expansions

are meaningful only for initial short intervals of time, with the errors progressively increasing

in magnitude as time progresses. This happens due to the appearance of secular terms in the

solution [35,39]. This problem is eliminated in the method of multiple scales by introducing

fast and slow scale variables for one independent variable (such as time t), and subsequently

treating these variables as the new independent variables. This resulting additional free-

dom from the new independent variables is used to remove secular terms (which lead to the

blow-up of solutions), by putting solvability constraints on the approximate solution. This

procedure will be outlined in detail for solving the problem under consideration.

We consider the problem when the damping and nonlinearities are weak; that is, we take µ,

α and β to be of O(δ), where δ << 1 is a bookkeeping parameter. The method of multiple

scales is used to determine a second-order approximate solution in δ for the lift coefficient. To

achieve this, equation (4.15) is first transformed into a complex-valued first-order equation

by means of the mapping CL(t) = ζ(t)+ ζ̄(t) subject to the constraint ĊL(t) = ιω[ζ(t)− ζ̄(t)].

This constraint means that the amplitude of CL(t) does not change with time, which is natu-

ral to impose since the objective is to arrive at a model for the steady-state vortex-shedding.

Solving for ζ and ζ̄ yields:

ζ(t) =
1

2
(CL(t)− ι

ω
ĊL(t)); ζ̄(t) =

1

2
(CL(t) +

ι

ω
ĊL(t)). (4.16)

Differentiating the first of equations (4.16) to obtain C̈L(t) in terms of ζ, and substituting

these expressions for CL, ĊL and C̈L in equation (4.15), one obtains the following first-order

equation in complex variables:

ζ̇ = ιωζ− ι

2
ωLmean+

δ

2
µ(ζ− ζ̄) +

δ

2
αω2(ζ3−3ζ2ζ̄+ 3ζζ̄2− ζ̄3) +

δ

2
βιω(ζ2−2ζζ̄+ ζ̄2) (4.17)

Now, introducing the fast, slow and slower time scales given by T0 = t, T1 = δt, and T2 = δ2t,

respectively, ζ is expanded as:

ζ = Σ2
j=0δ

jζj(T0, T1, T2) +O(δ3) (4.18)

In terms of these three time scales, the time derivative d
dt

is given by D0 +δD1 +δ2D2, where

Dj = ∂
∂Tj

. Substituting this expression for ζ, along with the analogous expression for ζ̄, in
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equation (4.17) and separating coefficients of powers of δ0(= 1), δ1, and δ2 yields:

D0ζ0 − ιωζ0 = − ι
2
ωLmean (4.19)

D0ζ1−ιωζ1 = −D1ζ0+
µ

2
(ζ0− ζ̄0)+

α

2
ω2(ζ30−3ζ20 ζ̄0+3ζ0ζ̄

2
0− ζ̄30 )+

β

2
ιω(ζ20−2ζ0ζ̄0+ ζ̄20 ) (4.20)

D0ζ2 − ιωζ2 = −D2ζ0 −D1ζ1 +
µ

2
(ζ1 − ζ̄1) +

3α

2
ω2(ζ20ζ1 − ζ20 ζ̄1 + ζ̄20ζ1 − ζ̄20 ζ̄1 − 2ζ0ζ̄0ζ1 + 2ζ0ζ̄0ζ̄1)

+ βιω(ζ0ζ1 − ζ0ζ̄1 − ζ̄0ζ1 + ζ̄0ζ̄1)

(4.21)

The solution for equation (4.19) is given by ζ0(T0, T1, T2) = A(T1, T2) exp(ιωT0) +
Lmean

2
,

which on substitution in equation (4.20) yields:

D0ζ1 − ιωζ1 =

{
µ

2
A− 3α

2
ω2A2Ā− ∂A

∂T1

}
exp(ιωT0) +

β

2
ιωA2 exp(2ιωT0) +

α

2
ω2A3 exp(3ιωT0)

+

{
3α

2
ω2Ā2A− µ

2
Ā

}
exp(−ιωT0) +

β

2
ιωĀ2 exp(−2ιωT0)−

α

2
ω2Ā3 exp(−3ιωT0)

− βιωAĀ
(4.22)

Eliminating the terms proportional to exp(ιωT0) that lead to secular terms in the solution

for ζ (as explained in §4.3.1), the first solvability condition is obtained:

∂A

∂T1
=
µ

2
A− 3α

2
ω2A2Ā (4.23)

Thus, the solution for equation (4.22) becomes:

ζ1(T0, T1, T2) = βAĀ +
β

2
A2 exp(2ιωT0) −

ι

4
αωA3 exp(3ιωT0) +

{
−ι
4ω
µĀ+

3ι

4
αωĀ2A

}
exp(−ιωT0)

− β

6
Ā2 exp(−2ιωT0)−

ι

8
αωĀ3 exp(−3ιωT0)

(4.24)

Substitution of ζ0 and ζ1 in equation (4.21), and elimination of secular terms (as done for

equation (4.22)) results in the second solvability condition:

∂A

∂T2
= − ι

8ω
µ2A+

{
3

4
ιµαω − 2

3
ιβ2ω

}
A2Ā− 27

16
ια2ω3A3Ā2 (4.25)
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Also, from ζ0 and ζ1, the final solution is obtained:

ζ(T0, T1, T2) =
Lmean

2
+ A exp(ιωT0) + δ[βAĀ +

β

2
A2 exp(2ιωT0) −

ι

4
αωA3 exp(3ιωT0)

+

{
−ι
4ω
µĀ+

3ι

4
αωĀ2A

}
exp(−ιωT0)−

β

6
Ā2 exp(−2ιωT0)−

ι

8
αωĀ3 exp(−3ιωT0)]

+O(δ2)

(4.26)

Thus CL(t), after neglecting terms of O(δ2), is given by:

CL(t) = Lmean + A exp(ιωt) + Ā exp(−ιωt) + δ[2βAĀ+

{
ι

4ω
µA− 3ι

4
αωA2Ā

}
exp(ιωt)

+
β

3
A2 exp(2ιωt)− ι

8
αωA3 exp(3ιωt) +

{
−ι
4ω
µĀ+

3ι

4
αωĀ2A

}
exp(−ιωt) +

β

3
Ā2 exp(−2ιωt)

+
ι

8
αωĀ3 exp(−3ιωt)]

(4.27)

Also, combining the two solvability conditions from equations (4.23) and (4.25), one obtains:

dA

dt
= δ

∂A

∂T1
+ δ2

∂A

∂T2

= δ

{
µ

2
A− 3α

2
ω2A2Ā

}
+ δ2

{
− ι

8ω
µ2A+ [

3

4
ιµαω − 2

3
ιβ2ω]A2Ā− 27

16
ια2ω3A3Ā2

}
(4.28)

Using the polar transformation A(t) =
1

2
a(t) exp(ιγ(t)) in equation (4.27), the following

expression is obtained for CL(t):

CL(t) = Lmean + a(t) cos[ωt+ γ(t)] + [
δβ

2
a2(t) +

{
− δµ

4ω
a(t) +

3

16
δαωa3(t)

}
sin[ωt+ γ(t)]

+
δβ

6
a2(t) cos(2[ωt+ γ(t)]) +

δα

32
ωa3(t) sin(3[ωt+ γ(t)])

(4.29)

This can further be simplified to:

CL(t) = Lmean +
δβ

2
a2(t) + a(t)

√
1 + [

3

16
δαωa2(t)− δµ

4ω
]2 sin[ωt+ γ(t) + η]

+
δβ

6
a2(t) cos(2[ωt+ γ(t)]) +

δα

32
ωa3(t) sin(3[ωt+ γ(t)])

(4.30)

69



where η(t) = tan−1
{

16ω

δ(3αω2a2(t)− 4µ)

}
. Using the polar transformation in equation (4.28)

results in the following modulation equations:

ȧ(t) =
δ

2
{µ

2
a(t)− 3

8
αω2a3(t)} (4.31)

γ̇(t) = −δ2{µ
2

8ω
+

3

16
µαωa2(t)− β2

6
ωa2(t)− 27

256
α2ω3a4(t)} (4.32)

Under the initial assumption that the amplitude of CL(t) does not change with time, equation

(4.31) can be solved under steady-state conditions (i.e, ȧ(t) = 0). This results in two possible

values of a, namely 0 and
2

ω

√
µ

3α
. Ruling out the possibility of a = 0, the non-zero value of

a forces the phase angle η to be
π

2
, and also forces the value of γ̇(t) to be −δ2{ µ

2

16ω
− 2β2µ

9αω
}.

Further, equation (4.30) now simplifies to:

CL(t) = a0 + a1 cos(ωst) + a2 cos(2ωst) + a3 sin(3ωst) (4.33)

where:

a0 = Lmean +
2(δβ)(δµ)

3(δα)ω2
= Lmean +

2δβµ

3αω2
(4.34)

a1 =

√
4(δµ)

3(δα)ω2
=

√
4µ

3αω2
(4.35)

a2 =
2(δβ)(δµ)

9(δα)ω2
=

2δβµ

9αω2
(4.36)

a3 =

√
(δµ)3

432(δα)ω4
= δ

√
µ3

432αω4
(4.37)

ωs = ω − (δµ)2

16ω
− 2(δβ)2(δµ)

9(δα)ω
= ω − (δµ)2

16ω
− 2(δβ)2µ

9αω
(4.38)

It must be noted that equations (4.34) and (4.38) yield a0 ∼ Lmean and ωs ∼ ω, respectively.

Further a2 and a3 are both of O(δ), while a1 is of O(1). These observations mean that

the time evolution of the lift coefficient has a sufficiently large primary component with an

average approximately equal to Lmean and frequency ωs approximately equal to the frequency

ω of the restoring force in the dynamical system.
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4.4.2 Model parameters from simulation results

In the previous subsection, given the model parameters ω, µ, α and β, the form of the limit

cycle of the non-linear system (4.15) was derived. Conversely, when the computational results

are known - i.e, the characteristics of the limit cycle are known in terms of the quantities

a0, a1, a2, a3 and ωs are known, the model parameters can be calculated using equations

(4.34)-(4.38) to arrive at the best possible fit for the numerical data. These parameters are

given as:

ω =
a21a3ωs

a21a3 − 36a33 − 6a22a3
(4.39)

δµ =
24a1a

2
3ωs

a21a3 − 36a33 − 6a22a3
(4.40)

δα =
32(a21a3 − 36a33 − 6a22a3)

a51ωs
(4.41)

δβ =
6a2
a21

(4.42)

It should be noted that all the linear and nonlinear damping parameters are of O(δ), as was

the original assumption (mentioned before equation (4.16)) for solving this problem. Further,

the sign of β is always positive, since it involves only products and quotients of amplitudes.

This implies that in our system, there is always negative quadratic damping. Further, the

signs of µ and α are identical, and dependent on the sign of the term a21a3 − 36a33 − 6a22a3,

since the terms 24a1a
2
3ωs and a51ωs are always positive. If a21a3 − 36a33 − 6a22a3 is positive,

then, according to equation (4.15), there will be negative linear damping and positive cubic

damping, a configuration which leads to the existence of a limit cycle, provided cubic damping

is dominant over quadratic damping. This is an instance where energy pumped in the form

of small disturbances from equilibrium are allowed to grow due to the characteristics of

linear damping, while large disturbances are pushed back to equilibrium because of non-

linear damping. However, if a21a3−36a33−6a22a3 is negative, then there will be positive linear

damping and negative non-linear damping (both cubic as well as quadratic), a case in which

a limit cycle can not exist. In other words, a system with a limit cycle that exhibits exactly
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one fundamental frequency and its super-harmonics, and for which a21a3 − 36a33 − 6a22a3 is

negative, would not be well represented by the reduced-order model presented above.

4.4.3 Requirement of cubic or higher odd-order non-linearities

As remarked in §4.2, if a generic equation with all three quadratic non-linearities, and no

higher order non-linearities (such as cubic and higher), is solved by the method of multiple

scales (as presented in §4.4.1), the amplitude of the fundamental frequency in the solution is

seen to be dependent on the initial condition. Thus, it is not possible for such an equation to

have a limit cycle. This observation indicates that some cubic or higher order non-linearity

is required in the model for a limit cycle to exist.

4.5 Comparison with simulation results

From Figure 4.1(b) which shows the Fourier spectrum of the lift coefficient, one gets the fol-

lowing values for the fundamental frequency ωs, amplitudes corresponding to the fundamen-

tal frequency a1, to twice the fundamental frequency a2, and to three times the fundamental

frequency a3:

ωs = 2π× 0.9222 = 5.7944 ; a1 = 0.02119 ; a2 = 3.46× 10−4 ; a3 = 1.9× 10−5. (4.43)

Substituting these values in equations (4.39) to (4.42), we get the following values of the

model parameters for equation (4.15):

ω = 5.8039 ; δµ = 0.1249 ; δα = 11.0102 ; δβ = 4.6234. (4.44)

Again substituting these parameters in the model equation (4.15) and by numerically solving

it, we can compare this solution with the simulation results, as done in Figure (4.4).

It can be seen that the simulation results and results from the model agree very well with

each other, both in time as well as frequency domains.
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Figure 4.4: Comparison of model and simulation results of lift coefficient - the blue curve
shows the simulation results while the red curve shows results from the model. The top and
bottom sub-figures show comparisons in time and frequency domains respectively.
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Further, figures 4.5 and 4.6 show two typical cases of initial conditions, outside and inside

the (unique) limit cycle respectively.
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Figure 4.5: Convergence of numerical integration of the model equation from an initial
condition outside the limit cycle. The top and bottom sub-figures show the time trace and
the phase portrait, respectively.

It can be seen that in figure 4.5, beginning from a large initial condition far away from the

limit cycle, the trajectory ultimately narrows and converges to the limit cycle.

In the case of figure 4.6, a small initial condition gradually expands and reaches the limit

cycle as a steady state. Hence the steady-state solution is indeed independent of the initial
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Figure 4.6: Convergence of numerical integration of the model equation from an initial
condition inside the limit cycle. The top and bottom sub-figures show the time trace and
the phase portrait, respectively.

conditions.

All of these results indicate the effectiveness of the reduced-order model for vortex-shedding

behind a (smooth) aerofoil.
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4.6 Parameter regimes for existence of limit cycles

From the closed-form solution derived for the limit cycle of the dynamical system (4.15), as

given by equations (4.33) to (4.38), it is also possible to segregate values of model parameters

for which limit cycles exist or for which their characteristics possibly change. In this thesis,

the space which is analysed for regimes of limit cycle existence is three dimensional and

parametrized by the three damping parameters - µ (linear), α (cubic) and β (quadratic). It

must be noted that the analytical expression (4.33) for the limit cycle is meaningful only

when its amplitude a1, and will change if frequency ωs changes its sign.

As outlined in the beginning of §4.4.1, since µ and α are positive, the expression for the

amplitude a1, given by (4.35) (which shows that a1 is dependent only on µ and α, for a

fixed ω), yields that it is always positive. Figure 4.7 shows contour isolines of the amplitude

a1 when µ and α are varied. As predicted by formula (4.35), the sizes of limit cycles scale

proportionately to
µ

α
. Further, for an increase in a1 (which is the size of the limit cycle),

it can be seen that, eventually, the effect of increase in µ dominates that of increase in α.

Hence the size of the limit cycle increases at the rate of
√
µ.
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Figure 4.7: Dependence of the amplitude of limit cycle a1 on the linear and cubic damping
parameters, µ and α respectively, as given by equation (4.34), when the coefficient of restoring
force ω is fixed to the value 5.8039 (as given by equation (4.43)). The star shows the
parameters at which the reduced-order model yields the solution that matches with the
computational results, as shown in figure 4.4.
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As opposed to the case of the size of the limit cycle, wherein a1 is always positive, it is

possible to have positive values of µ, α and β for which the frequency ωs is negative. An

illustration of this feature is given in figure 4.8, where the three dimensional parameter space

of µ, α and β is segregated into spaces where limit cycles can change their characteristics

(shown by dotted lines dividing the parameter space into two parts, with the arrow pointing

in the direction of the part where ωs is positive). As illustrated before in figure 4.7, the stars

in each of these panels show the parameters with which the reduced-order model yields the

solution that matches with the computational results (shown in figure 4.4).

From the top panel of figure 4.8, it can be seen that for µ above a certain threshold value,

lying between 0.1 and 1 but closer to 1, α must also proportionately be above some threshold

for the frequency ωs to be a positive number, hence guaranteeing the existence of a limit

cycle. Further, the frequency scales proportionately to
µ

α
, as predicted by formula (4.37).

In the case of the joint dependence of ωs on µ and β, it can be seen from the middle panel

that for µ above a certain threshold value slightly higher than 10, α must be proportionately

below some threshold, to guarantee a limit cycle. Finally, in the case of the joint dependence

of ωs on α and β, as depicted in the bottom panel of figure (4.8), limit cycles can not exist if

α is very small and β is very large. The quadratic damping should proportionately be below

a certain threshold so that the two nonlinear damping terms interact optimally and force

the trajectory escaping from an initial condition back into a limit cycle.

77



  

-(Linear damping coefficient), -µ

C
ub

ic
 d

am
pi

ng
 c

oe
ffi

ci
en

t, 
α

 

 

10
-1

10
010

-1

10
0

10
1

-2

-1

0

1

2

3

4

5

Computational 
result

Computational 
result

Cubic damping coefficient, α

-(Q
ua

dr
at

ic
 d

am
pi

ng
 c

oe
ffi

ci
en

t),
 - β

 

 

10-2 10-1 100 101

1

2

3

4

5

6

7

8

9

10

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Computational 
result

Figure 4.8: Dependence of the frequency of limit cycle ωs on the damping parameters when
the coefficient of restoring force ω is fixed to the value given by equation (4.43). The top,
middle and bottom panels show the dependence of ωs on the linear and cubic damping
coefficients µ and α, linear and quadratic damping coefficients µ and β, and, cubic and
quadratic damping coefficients α and β, respectively, when β, α and µ are fixed to the values
given by equation (4.43), in each of the cases.
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4.7 Conclusions

A reduced-order model for vortex-shedding behind an aerofoil at an angle of incidence to the

free-stream, such as the cases studied in Chapter 3, has been developed. To achieve this,

the characteristics of a globally integrated quantity such as the lift coefficient of the aerofoil

(that contains the signature of the characteristics of vortex-shedding at various streamwise

locations behind the aerofoil,) are analysed.

When the Fourier spectrum of the lift coefficient for this configuration is analysed, amplitude

peaks are noted at a fundamental frequency (which is also the frequency of vortex-shedding)

and its higher harmonics, particularly its second and third superharmonic in decreasing

order of amplitudes. To account for these features in the dynamics, a non-linear model with

exactly one quadratic and one cubic non-linearity each is developed. This is achieved by

analysing various possibilities of non-linear models with quadratic and cubic non-linearities,

and whether they have trajectories converging to (unique) limit cycles. Once the model

is developed, it is noted that it exhibits a Hopf bifurcation as one of its parameters (in

particular, the coefficient of linear damping) changes its sign. It is further demonstrated

that this model (with fixed model parameters) yields a unique limit cycle (irrespective of the

initial condition from which the trajectory is integrated).

For the non-linear model developed for the lift coefficient, a closed-form expression for its

limit cycle is derived in terms of generic (unknown) model parameters, using the method of

multiple scales. By comparing the various characteristics of this analytical expression for the

limit cycle (such as its amplitude at various frequencies and its fundamental frequency) with

the characteristics of the periodic solution obtained from simulations, the model parameters

are determined in terms of the computational features. The trajectory obtained from this

non-linear model with these model parameters is seen to match the trajectory obtained from

computations very well, not only in the time domain but also in the frequency domain.

Finally, regimes of model parameters which will yield unique limit cycles for this non-linear

model are illustrated.

All of the above observations indicate the effectiveness of the reduced-order model.
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Chapter 5

Coupled reduced order model for
aerofoil with poro-elastic coating

Introduction

The objective of this chapter is to characterise the structural parameters of the poro-

elastic layer of feathers, which is used to coat the suction side of the aerofoil as in Chapters

2 and 3, to obtain desired modifications in the aerofoil’s aerodynamic performance, carrying

forward the work presented in Chapter 4. To achieve this, the reduced-order model for the

same aerofoil, this time coated with a poro-elastic layer of compliant feathers, is obtained.

This model is realised by coupling the low-order model for a smooth aerofoil with a certain

number of linear damped oscillators, a non-linear analog of which was described in §2.7.2.

Structure parameters, which should, as well as, should not be used for this passive flow

control technique, are rigorously derived.

This chapter begins with a derivation of the closed-form expression for the solution of such

a coupled system in §5.1. This is followed by derivations for the model parameters in terms

of simulation results in §5.2, along the lines of how this was done in Chapter 4. §5.3 presents

an overview of simulations performed, to arrive at the reduced-order model. In order to

better understand the physics, the first part of this section presents results from prototype
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simulations, obtained by considering the flow over a flat plate, both aligned with the free-

stream as well as oriented at an incidence angle to it. The second part of this section presents

results for the case of the symmetric aerofoil (considered throughout in this thesis) at an

angle of attack to the free stream, and correlates the results for the flat plate with those of

the aerofoil, thus presenting reasons for developing the specific reduced-order model for the

coupled system. §5.4 compares the simulation results for the aerofoil with those obtained

from the model (as outlined in §5.1 and §5.2), hence proving its effectiveness.

5.1 Linear reduced-order model with linear coupling:

derivation of solution

To follow the simplest approach, we consider the reduced-order model for the feathery coating

as a linear spring, denoted by the equation of a linear damped oscillator:

θ̈ + cθ̇ + ω2
1θ = 0 (5.1)

where θ denotes the angular displacement of a reference feather (as explained in §2) about

its angular mean/equilibrium position θeq, c is the dissipation constant and ω1 is the spring

constant. When this is coupled with the reduced-order model for vortex-shedding behind a

smooth aerofoil (as captured by the reduced-order model for the aerofoil’s lift by equation

(4.15) in Chapter 4), the coupled system is given by:

C̈L + ω2CL − ω2Lmean − µĊL + α(ĊL)3 − β(ĊL)2 = ρ1θ (5.2)

θ̈ + cθ̇ + ω2
1θ = ρ2(CL − Lmean) (5.3)

where ρ1 and ρ2 are constants for linear coupling between the independent fluid and struc-

ture systems.

As done in §4.4.1, this coupled system can also be solved by the method of multiple scales

[35,39], to find the general form of the solution, CL and θ, in terms of the model parameters

(similar to equations (4.32)-(4.37)). Conversely, given the form of the solution (for instance
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from the computational data, as in the present case), it is possible to find the model pa-

rameters in terms of the numerical/physical characteristics of the computations (similar to

equations (4.38)-(4.41)). In addition, if the fluid model parameters ω2, µ, α and β are fixed

(for flow under certain fixed conditions), as in the present case, it is also possible to com-

pute “optimal” structure model parameters to yield desired behaviour for the solution of the

coupled system.

Following the method outlined in §4.4.1, we consider the coupled problem when the damping

and nonlinearities for the fluid problem, the damping/dissipation for the structure problem

as well as the coupling between the fluid and structure parts are weak; i.e, we take µ, α, β, c,

ρ1 and ρ2 all to be of O(δ), where δ << 1 is a bookkeeping parameter. To determine a second-

order approximate solution in δ for the lift coefficient and the angular displacement of the

reference feather, equations (5.2) and (5.3) are transformed into complex-valued first-order

equations by using CL(t) = ζ1(t) + ζ̄1(t) subject to the constraint ĊL(t) = ιω[ζ1(t) − ζ̄1(t)],
and θ(t) = ζ2(t) + ζ̄2(t) subject to the constraint θ̇(t) = ιω[ζ2(t) − ζ̄2(t)]. These equations

now respectively take the form:

ζ̇1 = ιωζ1 −
ι

2
ωLmean +

δ

2
µ(ζ1 − ζ̄1) +

δ

2
αω2(ζ31 − 3ζ21 ζ̄1 + 3ζ1ζ̄1

2 − ζ̄1
3
)

+
δ

2
βιω(ζ21 − 2ζ1ζ̄1 + ζ̄1

2
)− δ

2ω
ιρ1(ζ2 + ζ̄2)

(5.4)

ζ̇2 = ιω1ζ2 −
δ

2
c(ζ2 − ζ̄2)−

δ

2ω
ιρ2(ζ1 + ζ̄1) +

δ

2ω1

ιρ2Lmean (5.5)

Introducing the fast, slow and slower time scales given by T0 = t, T1 = δt, and T2 = δ2t,

respectively, using the expansions:

ζ1 = Σ2
j=0δ

jζ1,j(T0, T1, T2) +O(δ3); and (5.6)

ζ2 = Σ2
j=0δ

jζ2,j(T0, T1, T2) +O(δ3), (5.7)

transforming equations (5.4) and (5.5) in these terms, and separating coefficients of powers

of δ0(= 1), δ1, and δ2 yields the following three ordinary differential equations for ζ1:

D0ζ1,0 − ιωζ1,0 = − ι
2
ωLmean (5.8)

83



D0ζ1,1 − ιωζ1,1 = −D1ζ1,0 +
µ

2
(ζ1,0 − ζ̄1,0) +

α

2
ω2(ζ31,0 − 3ζ21,0ζ̄1,0 + 3ζ1,0ζ̄

2
1,0 − ζ̄31,0)

+
β

2
ιω(ζ21,0 − 2ζ1,0ζ̄1,0 + ζ̄21,0)−

ιρ1
2ω

(ζ2,0 + ¯ζ2,0)

(5.9)

D0ζ1,2 − ιωζ1,2 =−D2ζ1,0 −D1ζ1,1 +
µ

2
(ζ1,1 − ζ̄1,1) +

3α

2
ω2(ζ21,0ζ1,1 − ζ21,0ζ̄1,1 + ζ̄21,0ζ1,1 − ζ̄21,0ζ̄1,1

− 2ζ1,0ζ̄1,0ζ1,1 + 2ζ1,0ζ̄1,0ζ̄1,1) + βιω(ζ1,0ζ1,1 − ζ1,0ζ̄1,1 − ζ̄1,0ζ1,1 + ζ̄1,0ζ̄1,1)

− ιρ1
2ω

(ζ2,1 + ¯ζ2,1)

(5.10)

and the following three ordinary differential equations for ζ2:

D0ζ2,0 − ιω1ζ2,0 = 0 (5.11)

D0ζ2,1 − ιω1ζ2,1 = −D1ζ2,0 −
c

2
(ζ2,0 − ζ̄2,0)−

ιρ2
2ω1

(ζ1,0 + ¯ζ1,0 − Lmean) (5.12)

D0ζ2,2 − ιω1ζ2,2 = −D2ζ2,0 −D1ζ2,1 −
c

2
(ζ2,1 − ζ̄2,1)−

ιρ2
2ω1

(ζ1,1 + ¯ζ1,1) (5.13)

Solving the system of equations (5.8)-(5.10) for ζ1 (by combining the solutions for ζ1,0, ζ1,1,

ζ1,2) and the system (5.11)-(5.13) for ζ2 (by combining the solutions for ζ1,0, ζ1,1, ζ1,2), as

done in §4.4.1, yields:

ζ1(T0, T1, T2) =
Lmean

2
+ A1e

ιωT0 + δ[βA1Ā1 +
β

2
A2

1e
2ιωT0 − ι

4
αωA3

1e
3ιωT0

+

{
−ι
4ω
µĀ1 +

3ι

4
αωĀ1

2
A1

}
e−ιωT0 − β

6
Ā1

2
e−2ιωT0 − ι

8
αωĀ1

3
e−3ιωT0

+
ρ1
2ω

(
A2

ω − ω1

eιω1T0 +
Ā2

ω + ω1

e−ιω1T0)] +O(δ2)

(5.14)

ζ2(T0, T1, T2) = A2e
ιω1T0+δ[

ιc

4ω1

Ā2e
−ιω1T0− ρ2

2ω1

(
A1

ω − ω1

eιωT0− Ā1

ω + ω1

e−ιωT0)]+O(δ2) (5.15)

Equations (5.14) and (5.15) can be recast to obtain the analytical expressions for CL(t) and

θ(t) (as done to obtain equation (4.27) from equation (4.26) in section §4.4.1). In addition,

the following solvability conditions are obtained by eliminating the secular terms (that occur

in the course of solving for the bounded solutions ζ1 and ζ2):

∂A1

∂T1
=
µ

2
A1 −

3α

2
ω2A2

1Ā1 (5.16)
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∂A2

∂T1
= − c

2
A2 (5.17)

∂A1

∂T2
= − ι

8ω
µ2A1+

{
3

4
ιµαω − 2

3
ιβ2ω

}
A2

1Ā1−
27

16
ια2ω3A3

1Ā1
2
+

ιρ1ρ2A1

2ω(ω − ω1)(ω + ω1)
(5.18)

∂A2

∂T2
= − ι

8ω1

c2A2 −
ιρ1ρ2A2

2ω1(ω − ω1)(ω + ω1)
(5.19)

Using the polar transformations A1(t) =
1

2
a1(t)e

ιγ1(t) and A2(t) =
1

2
a2(t)e

ιγ2(t) in the expres-

sions for CL(t) and θ(t) respectively, one obtains the following closed-form solutions:

CL(t) = Lmean +
δβ

2
a21(t) + a1(t)

√
1 + [

3

16
δαωa21(t)−

δµ

4ω
]2sin[ωt+ γ1(t) + η1]

+
δβ

6
a21(t)cos(2[ωt+ γ1(t)]) +

δα

32
ωa31(t)sin(3[ωt+ γ1(t)])

+
δρ1

(ω − ω1)(ω + ω1)
a2(t)cos[ω1t+ γ2(t)]

(5.20)

θ(t) = a2(t)

√
1 +

δ2c2

16ω2
1

sin[ω1t+ γ2(t) + η2]−
δρ2

(ω − ω1)(ω + ω1)
a1(t)cos[ωt+ γ1(t)] (5.21)

where η1(t) = tan−1
{

16ω

δ(3αω2a21(t)− 4µ)

}
and η2(t) = tan−1

{
4ω1

c

}
.

Combining the solvability conditions (5.16) and (5.18) and using the polar transformation

A1(t) =
1

2
a1(t)e

ιγ1(t), we obtain the following modulation equations:

ȧ1(t) =
δ

2

{
µ

2
a1(t)−

3

8
αω2a31(t)

}
(5.22)

γ̇1(t) = −δ2
{
µ2

8ω
+

3

16
µαωa21(t)−

β2

6
ωa21(t)−

27

256
α2ω3a41(t)−

ρ1ρ2
2ω(ω − ω1)(ω + ω1)

}
(5.23)

Similarly, combining the solvability conditions (5.17) and (5.19) and using the polar trans-

formation A2(t) =
1

2
a2(t)e

ιγ2(t), we obtain the following modulation equations:

ȧ2(t) = −δ
2
ca2(t) (5.24)

γ̇2(t) = −δ2
{
ιc2

8ω1

+
ρ1ρ2

2ω1(ω − ω1)(ω + ω1)

}
(5.25)
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Again under the initial assumption that CL(t) and θ(t) both have reached their steady states

and hence, do not vary with time, equations (5.22) and (5.24) can be solved under steady-

state conditions (i.e, ȧ1(t) and ȧ2(t) are both zero.) This results in two possible values of a1,

namely 0 and
2

ω

√
µ

3α
(exactly as in the calculations in §4.4.1). Further, the only possibilities

for steady-state condition for a2(t) are c = 0 or a2(t) = 0. The possibility of both a1(t) = 0

and a2(t) = 0 can be ruled out, because if it were true, then it means that the whole coupled

system has no dynamics in the steady state. The other three cases are:

Case 1: a1(t) =
2

ω

√
µ

3α
and a2(t) ≡ 0. The possibility of a2(t) being identically

zero physically means that the dissipation constant c of the reference feather is allowed to be

arbitrarily large, and hence, the oscillations of the independent structure part die out almost

instantly after they begin. As a result, for this case, in the two-way coupled fluid-structure

system, the dynamics of the structure part happens exactly at the same frequency as that

of the fluid part, this frequency being given by ωs,1 = ω + γ1 (as calculated below).

Also, the non-zero value of a1 forces the phase angle η1 to be
π

2
, and

γ̇1(t) = −δ2
{
µ2

16ω
− 2β2µ

9αω
− ρ1ρ2

2ω(ω − ω1)(ω + ω1)

}
(5.26)

Further, as c→∞, η2 → 0 and γ̇2(t)→∞. Thus, equation (5.20) degenerates to an equation

similar in form to (4.33) (but with a different ωs, as given below), while (5.21) simplifies to:

θ(t) = − 2δρ2
ω(ω − ω1)(ω + ω1)

√
µ

3α
cos(ωs,1t) (5.27)

where ωs,1 = ω − (δµ)2

16ω
− 2(δβ)2µ

9αω
− (δρ1)(δρ2)

2ω(ω − ω1)(ω + ω1)
.

It must be noted that with such a coating, the lift of the aerofoil CL(t), under steady-state

conditions, displays exactly the same characteristics in its dynamics (such as the presence of

second and third super-harmonics of the fundamental frequency ωs,1) as in the case when the

aerofoil was not coated with any feathers. However, the angular displacement of the feather

θ(t) exhibits just one frequency, equal to the fundamental frequency ωs,1, in its dynamics.
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Case 2: a1(t) ≡ 0 and c = 0. In this case, owing to the fact that the dissipation

constant c is zero, a2(t), in its steady state, is allowed to be an arbitrary constant C0, either

small or large. This case turns out to be similar to case 1, where the dynamics of the fluid

and structure parts happen at the same frequency, now given by ωs,2 = ω1+γ2 (as calculated

below).

Also, since a1(t) ≡ 0, η1 = tan−1(
−4ω

δµ
) whose limit is

π

2
as δ → 0. Further, γ̇1(t) =

−δ2
{
µ2

8ω
− ρ1ρ2

2ω(ω − ω1)(ω + ω1)

}
. Besides, since c = 0, η2 =

π

2
and

γ̇2(t) = −δ2
{

ρ1ρ2
2ω1(ω − ω1)(ω + ω1)

}
(5.28)

Thus, equation (5.20) simplifies to:

CL(t) = Lmean +
δρ1C0

(ω − ω1)(ω + ω1)
cos(ωs,2t) (5.29)

while equation (5.21) simplifies to:

θ(t) = C0cos(ωs,2t) (5.30)

where ωs,2 is given by ω1 −
(δρ1)(δρ2)

2ω1(ω − ω1)(ω + ω1)
.

In this case, it must be noted that both the dynamics of the lift CL(t) as well as angular

displacement of the feather θ(t) exhibit dynamics at the same frequency ωs,2, and no super-

harmonics are observed in either of these dynamics.

Case 3: a1(t) =
2

ω

√
µ

3α
and c = 0. In this case, equation (5.20) simplifies to:

CL(t) = Lmean +
2δβµ

3αω2
+

√
4µ

3αω2
cos(ωs,1t) +

2δβµ

9αω2
cos(2ωs,1t) + δ

√
µ3

432αω4
sin(3ωs,1t)

+
δρ1C0

(ω − ω1)(ω + ω1)
cos(ωs,2t)

(5.31)

while equation (5.21) simplifies to:

θ(t) = C0cos(ωs,2t)−
2δρ2

ω(ω − ω1)(ω + ω1)

√
µ

3α
cos(ωs,1t) (5.32)

87



where ωs,1 and ωs,2 are given as before from cases 1 and 2 respectively.

Here, it can be seen that, in general, ωs,1 and ωs,2 are two distinct frequencies. Hence, in

this case, the two-way coupled fluid-structure interaction displays very rich dynamics, where

for one frequency, super-harmonics can be observed, while for the other, no such super-

harmonics can be seen.

In all of the above three cases, we can have the possibilities of at least one of ωs,1 or ωs,2

being zero. It is very important to note that if ωs,1 is zero, then so is ωs,2 and vice-versa.

This is because if ωs,1 is zero (in which case, ωs =
(δρ1)(δρ2)

2ω(ω − ω1)(ω + ω1)
, where it must be

recalled that ωs is the vortex-shedding frequency for the smooth aerofoil), the right-hand

side of the above condition must be of O(1), since the left-hand side ωs is of O(1). This is

possible only if ω ∼ ω1, which is nothing but the resonant condition for the coupled fluid-

structure system. Under this condition, it can be easily seen that ωs,2 is also zero, since

ω1 =
(δρ1)(δρ2)

2ω1(ω − ω1)(ω + ω1)
by similar order of magnitude analysis, as presented above. The

other possibility is the non-resonant condition, where both ωs,1 or ωs,2 are non-zero.

Case of resonant frequencies, ω ∼ ω1: In these circumstances, for all of cases 1, 2

and 3, mean lift can be increased by a small amount. In fact, only for cases 2 and 3, this can

be achieved by increasing the structure-fluid coupling parameter ρ1 or, the steady state oscil-

lations of the feather C0. The optimal selection of such an ω1 will be presented in future work.

Case of non-resonant frequencies: Under these conditions, for case 1, the oscillations

can be neither increased nor decreased. For case 2, the oscillations can be decreased if the

structure and coupling parameters are selected to satisfy
δρ1C0

(ω − ω1)(ω + ω1)
<

√
4µ

3αω2
. For

case 3, however, if such a condition is true, then the lift fluctuations about the mean lift

is dominated by

√
4µ

3αω2
, and therefore, the use of such feathers cannot decrease the lift

fluctuations. However, the use of feathers which should never be used, in order to avoid

increase of lift fluctuations, is governed by the condition
δρ1C0

(ω − ω1)(ω + ω1)
>

√
4µ

3αω2
.
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5.2 Structure and coupling parameters from simula-

tion results

The calculations in this section are analogous to the calculations done in §4.4.2 (where the

model parameters for a smooth aerofoil were derived in terms of the characteristics of the

simulation results for the smooth aerofoil). Thus, the aim in this section is to derive the

fluid parameters ω, µ, α, β; the structure parameters ω1 and c; and the fluid-structure cou-

pling parameters ρ1 and ρ2; in terms of the characteristics of the simulation results for the

poro-elastically coated aerofoil, so that a best possible fit for the numerical data is obtained.

If one considers the most generic analytical form of the solution for the lift coefficient CL(t)

and the angular displacement of the reference feather θ, given by equations (5.20) and (5.21),

it can be seen that under steady state assumptions for the amplitudes of CL(t) and θ, these

equations reduce to equations (5.31) and (5.32). Equations (5.31) and (5.32) are now re-

phrased as:

CL(t) = l0 + l1cos(ωs,1t) + l2cos(2ωs,1t) + l3sin(3ωs,1t) + l
′

1cos(ωs,2t) (5.33)

θ(t) = θ1cos(ωs,2t) + θ
′

1cos(ωs,1t) (5.34)

where l0 ∼ Lmean and l1, l2, l3, l
′
1, ωs,1, θ1, θ

′
1 and ωs,2 are eight quantities which can be

recovered from computational data; and depend on the eight unknown model parameters

ω, δµ, δα, δβ, δρ1, ω1, δc (or equivalently C0) and δρ2. Hence, solving for these unknowns

yields the following two coupled quadratic equations for ω and ω1:

(l21l3 − 36l33 − 6l22l3)ω
2 − l21l3ωs,1ω − l21l3ω2

1 + l21l3ωs2ω1 = 0 (5.35)

(2θ1l1 − l
′

1θ
′

1)ω
2
1 − 2ωs,2θ1l1ω1 + l

′

1θ
′

1ω
2 = 0 ; (5.36)

and the following six equations for the remaining parameters:

δµ =
24l3ω

l1
(5.37)
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δα =
32l3
l31ω

(5.38)

δβ =
6l2
l21

(5.39)

C0 = θ1 (5.40)

δρ1 =
(ω − ω1)(ω + ω1)l

′
1

C0

(5.41)

δρ2 =
−ω(ω − ω1)(ω + ω1)θ

′
1

2

√
3α

µ
(5.42)

It must be noted here that equations (5.37) and (5.38) involve ω while equations (5.41) and

(5.42) involve both ω as well as ω1, which can be solved from the coupled system of quadratic

equations (5.35) and (5.36).

5.3 Overview of simulations

5.3.1 Prototype simulations: Case of flat plate

Case A: Flat plate aligned with the free-stream

In order to relate the theoretical results obtained in §5.1 and §5.2 to the simulation results for

the symmetric aerofoil (presented in the second part of this section), the flow configuration

is simplified from the case of flow over an aerofoil, at an angle of incidence to the free-stream,

to the case of flow over a flat plate aligned with the free-stream. The flat plate considered

for these prototype simulations is shown in figure 5.1. The flat plate simulations developed

here provide a good prototype flow for us to understand the mechanisms of lift enhancement

or drag reduction. Such a detailed study is being carried out now and will be presented in

future work.

A flat plate at zero angle of attack, without any poro-elastic coating has no mean lift (which

is also confirmed from simulations), owing to the fact that for such a symmetric configura-

tion, the flow, and hence also the pressure distribution, above and below the flat plate are
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identical. To see what changes are introduced in the flow by using the poro-elastic coating,

the flat plate is coated with such flow-compliant feathers towards the end of its top side, as

shown by the schematic diagram in figure 5.1. As explained before in §2.7, since the rigid-

ity moment is taken to dominate the angular dynamics of the feathers, the dimensionless

linear structure frequency is taken to be the dimensionless linear rigidity frequency (non-

dimensionalised by the time scale given by the ratio between the free-stream speed and the

length of the flat plate, which in this case is 1.65), and is given by
1

2π × 1.65

√
Kr

Ml2c
, where

the non-dimensional values for Kr, M and lc are 8.33, 5.5 and 8.5× 10−2 respectively. The

normalisation procedure followed here is exactly the same as that followed in §3.2 and tables

3.1 and 3.2. In the present case, this dimensionless linear structure frequency fs is taken to

be 0.4594.

  

2.2 2.22 2.24 2.26 2.28 2.3 2.32
1.48
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1.5

1.51

1.52

Cilia 1 to 4 (from
left to right) are
here.

Figure 5.1: Placement of the poro-elastic layer on the horizontal flat plate, depicted by the
reference feathers (shown here by the horizontal, black lines towards the end of the top side
of the flat plate).

Figures 5.2 and 5.3, respectively, compare the time evolutions of the streamwise velocity at

four streamwise locations over this flat plate and in its near wake, in the cases when it does

and does not have a poro-elastic coating, and the time evolution of the streamlines over the

coated flat plate, at four time instants spread evenly over one cycle of the time evolution of

the lift coefficient (shown in figure 5.5).
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Figure 5.2: Comparison of the time evolutions of the streamwise velocity for the horizontal
flat plate without (black, dotted lines) and with (blue, solid lines) a poro-elastic coating on
its top side (as shown in figure 5.1), at four streamwise locations over the flat plate and in
its near wake, going from left to right.
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Figure 5.3: Snapshots showing the time evolution of streamlines close to the coated flat plate,
as shown by the schematic in figure 5.1. These four time instants are selected uniformly over
one cycle of the time signal of lift coefficient.
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Figure 5.4 shows a snapshot of the vortex-shedding from the flat plate, introduced by the

poro-elastic coating.

  

Figure 5.4: Colour plot of instantaneous vortex-shedding from the poro-elastically coated
horizontal flat plate, shown in figure 5.1.

Figure 5.5 shows the dynamics of the lift coefficient for this poro-elastically coated flat plate,

while figure 5.6 shows the dynamics of the four reference feathers that approximate the dy-

namics of the coating. Both these figures are shown in the time as well as frequency domains.

From the top sub-figure of figure 5.5, it can be clearly seen that the poro-elastic coating

introduces some periodicity in the flow and makes the flow unsteady, by triggering vortex-

shedding (as also shown in figures 5.3 and 5.4). From the bottom sub-figure of figure 5.5, it

can be seen that the Fourier spectrum has a unique fundamental frequency (coinciding with

the frequency of vortex-shedding) equal to 0.4947 along with all its super-harmonics.

From the top sub-figure of figure 5.6, it can be seen that the first reference feather (which

is closest to the leading edge) has some oscillatory dynamics, while the other three reference

feathers are always aligned with the free-stream (which is also set as the initial condition

for the angular dynamics of the reference feathers, while running the simulations). Further,

from the bottom sub-figure of figure 5.6, it can be seen that the frequency distribution ex-

actly concurs with that shown in figure 5.5. Thus the fluid and the structure parts oscillate

with exactly the same frequency equal to 0.4947, which is slightly modified from the inherent

structural frequency equal to 0.4594, as calculated before figure 5.1. Hence, the dynamics

of the structure part dictates the dynamics this coupled fluid-structure system, for the flow
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Figure 5.5: (Top) Time evolution of the lift coefficient for the horizontal flat plate with a
poro-elastic coating on its top side (as shown in figure 5.1); (bottom) Fourier spectrum of
the lift coefficient shown in the top sub-figure.
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Figure 5.6: (Top) Time evolution of the angular displacement of the reference feathers,
corresponding to the case shown in figure 5.5. The blue curve shows the dynamics of cilium
1 while the black curve shows the dynamics of cilia 2, 3, and 4 (as shown in figure 5.1), all
of which are seen to be identical; (bottom) Fourier spectrum of the angular displacement of
cilium 1.
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over a flat plate aligned with the free-stream.

Case B: Flat plate oriented at an angle to the free-stream

Progressing from the simple case of considering the flow over a flat plate (without a coating),

a more complex configuration is considered by analysing the flow over a flat plate oriented

at an angle to the free-stream. In the present case, the angle of incidence is taken to be 10◦.

The four sub-figures of figure 5.7 show a comparison of the dynamics of the streamwise ve-

locity at four streamwise locations over this flat plate and in its near wake, without and with

coating. The top and bottom sub-figures of figure 5.8 show a comparison of the dynamics

of the lift coefficient for this flat plate without and with coating, both in the time as well as

frequency domains.

From the black curve in the bottom sub-figure of figure 5.8, it can be seen that the

Fourier spectrum has a unique fundamental frequency (coinciding with the frequency of

vortex-shedding) equal to 0.7831, along with all its super-harmonics. This frequency is un-

ambiguously associated inherently with the characteristics of the flow over the flat plate.

Now when this flat plate is coated with a poro-elastic layer (with exactly the same physical

and structural parameters as for the case of the horizontal flat plate), it can be seen from

the top sub-figure of figure 5.8 as well as figure 5.9, by comparing the blue curve with the

black curve, that the lift oscillations have substantially decreased. This can also be seen

from the amplitude of the fundamental frequency, as shown by comparing the blue and

black curves in the bottom sub-figure of figure 5.8. Further, by analysing the blue curve

here, one sees that there is a unique fundamental frequency, now equal to 0.7767, along with

all its super-harmonics. This frequency is a modification of the frequency equal to 0.7831,

obtained from the case of the tilted flat plate without coating. This frequency modification

is probably the result of some energy dissipation arising from damping introduced by the

coating, analogous to the frequency modification arising due to the linear damping term in
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Figure 5.7: Comparison of the time evolutions of the streamwise velocity for the flat plate
at an incidence of 10◦ without (black, dotted lines) and with (blue, solid lines) a poro-elastic
coating over the end of its top side, at four streamwise locations over the flat plate and in
its near wake, going from left to right.
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Figure 5.8: (Top) Comparison of the time evolutions of the lift coefficient for the flat plate
at an incidence of 10◦ without (black curve), and with (blue curve), a poro-elastic coating
over the end of its top side; (bottom) comparison of the Fourier spectra of the lift coefficients
shown in the top sub-figure - the colour codes are same as for the top sub-figure.

99



  

0.35 0.4 0.45 0.5

-0.2

-0.1

0

0.1

0.2

C
L

d
C
L
/d
t

Figure 5.9: Comparison of the limit cycles for the lift coefficient for the flat plate at an
incidence of 10◦ without (black curve), and with (blue curve), a poro-elastic coating over the
end of its top side.

a single degree-of-freedom linear harmonic oscillator.

Figure 5.10 shows the dynamics of the four reference feathers approximating the coating,

both in the time and frequency domains. From the top sub-figure of figure 5.10, it can be

seen that the dynamics of the reference feathers become progressively more violent (that

is, more oscillatory in nature) as they approach the end of the top side of the flat plate.

This can also be seen from the bottom sub-figure of figure 5.10, which shows the frequency

distribution of these angular dynamics. Further, in each of the cases of the four reference

feathers, sharp amplitude peaks can be seen at values of 0.7767, followed by smaller peaks at

its super-harmonics. This is exactly the same frequency obtained from the Fourier spectrum

of the lift coefficient, shown in figure 5.8. Hence, the coating is possibly not strong enough

in this case, to influence the dynamics of the coupled fluid-structure interactive system. In

other words, the dynamics of this coupled system is governed by that of the fluid part.

That the fluid component governs the dynamics of the coupled system need not always

be the case. The magnitude of the effect can vary, essentially with the characteristics of
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Figure 5.10: (Top) Time evolution of the angular displacement of the reference feathers,
corresponding to the case shown in figure 5.8. The black, blue, red and pink curves show
the dynamics of cilium 1, 2, 3 and 4, respectively; (bottom) Fourier spectra of the angular
displacement of the reference feathers, shown in the top sub-figure - the colour codes are
same as for the top sub-figure.
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the coating. However, the case considered in the present section gives useful insight into

how structure parameters can be selected to modify the dynamics of the coupled system in

the ways it is desired. As will be outlined in the next sub-section, which presents results

for a poro-elastically coated aerofoil, the influence of the coating can be strong enough to

show its presence in both the frequency spectra of the lift coefficient as well as the angular

dynamics of the reference feathers (i.e, the dynamics of the fluid part and the structure

part), an instance of this being the presence of damped peaks corresponding to the structure

frequency.

5.3.2 Case of symmetric aerofoil

Various simulations were performed for a poro-elastically coated aerofoil at 10◦ angle of inci-

dence to the free-stream, with different structural as well as physical parameters (such as the

rigidity frequency, the length of reference cilia, the placement of the coating on the aerofoil

etc, as explained in chapter 2). An illustration of the effectiveness of the poro-elastic coating

is shown in figure 5.11, where a noteworthy reduction in lift fluctuations can be seen.

  

0.36 0.38 0.4 0.42

-0.2

-0.1

0

0.1

0.2

C
L

d
C
L
/d
t

Figure 5.11: Comparison of the limit cycles for the lift coefficient for the aerofoil at an
incidence of 10◦ without (black curve), and with (blue curve), a poro-elastic coating on its
top side.
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It was observed that in none of these cases, the dynamics of either the fluid or the structure

systems (as captured by the quantities CL(t) and θ(t)) exhibited the characteristics shown in

case 2 (as explained in the §5.1). In other words, in none of these cases, the Fourier decom-

position of the dynamics showed exactly one frequency ωs,2 without any super-harmonics.

Further, all these simulations could be classified into cases 1 and 3 of §5.1. That is, either

the case was where the dynamics of the fluid system showed a fundamental frequency ωs,1

and its super-harmonics and the structure system showed the same fundamental frequency

(such as the coated flat plate case presented in the previous sub-section), or the dynamics

of both the fluid and structure systems showed two unrelated frequencies ωs,1 and ωs,2 along

with super-harmonics of the frequency ωs,1.
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Figure 5.12: Time evolution of the lift coefficient for aerofoil at 10◦ angle of attack, with
poro-elastic coating where the rigidity frequency ωr is set equal to half the frequency of
vortex-shedding, as shown in figure 4.2 (b). This figure shows three cases of placements of
the poro-elastic layer on the suction side of the aerofoil: (a) last 30% of the suction side
(green); (b) first 70% of the suction side (blue); and (c) first 50% of the suction side.

Figure 5.12 shows the steady-state time evolution of the lift coefficient of the aerofoil CL(t)

for three cases of coatings, for each of which the rigidity frequency ωr (which is also taken
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to be the dominant structure frequency, as explained in Chapter 2) is set equal to half of

the fundamental frequency in the fluid system ωf (which is in fact the frequency of vortex-

shedding), as shown in figure 4.2 (b). Three cases of placements of the coating have been

illustrated here, where the suction side is covered on the first 50%, the first 70%, and the

end 30%.
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Figure 5.13: Fourier decomposition corresponding to the time signals shown in figure 5.12.
This figure plots the amplitudes of the fundamental frequency and its super-harmonics for
the coupled fluid-structure system.

Figure 5.13 shows the Fourier decomposition for these three cases. In each of these cases,

a sharp peak at certain unique frequencies are seen, followed by peaks with amplitude of

smaller magnitudes at twice and three times of these frequencies. In addition, for the case

in which the end 30% of the aerofoil’s suction side is poro-elastically coated (i.e, the green

curve), a small damped frequency peak can also be seen at another frequency of value equal

to 0.3087. Thus, in this case the coating is strong enough to show its presence in the coupled

dynamics. Also, this case corresponds to case 3 (i.e, when the dissipation constant of the

reference feather c is zero, and the lift has a non-zero steady-state amplitude), while the

other two cases correspond to case 1 (i.e, when the reference feather has zero steady-state
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amplitude for its angular displacement, and the lift has a non-zero steady-state amplitude),

both of these explained in detail in §5.1.
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Figure 5.14: Time evolution of the angular displacement of a reference feather near to the
middle of the suction side for the cases shown in figure 5.12.

Figures 5.14 and 5.16 show the steady-state time evolution of the angular displacement of

a certain reference feather for the three cases of coating shown in figure 5.12. From figures

5.15 and 5.17, which show the Fourier decompositions of figures 5.14 and 5.16 respectively,

it can be clearly seen (from the red curve) that, for this rigidity frequency, when the extent

of the coating is only over the first half of the suction side (i.e, an area over which there

is possibly not much interaction of the poro-elastic layer with the vortex-shedding from the

trailing edge), the fluid and the structure systems oscillate at the same unique frequency

ωs,1. However, when the extent of the coating either crosses or shifts to the later half of the

suction side, then the dynamics of both the fluid and structure systems become progressively

richer, with the appearance of new frequencies, such as the damped frequency peak ωs,2 of

value equal to 0.3087, appearing due to the dynamics of the structure part and its coupling

with the fluid part of the coupled system.
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Figure 5.15: Fourier decomposition corresponding to the time signals shown in figure 5.14.
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Figure 5.16: Time evolution of the angular displacement of a reference feather nearest to the
trailing edge for the cases shown in figure 5.12.
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Figure 5.17: Fourier decomposition corresponding to the time signals shown in figure 5.16.

5.4 Comparison with simulation results

From all the simulations performed for the symmetric NACA0012 aerofoil with different

characteristics of coating, super-harmonics of some fundamental frequency were seen at least

in the time evolution of the lift coefficient. However, only in case 2 presented in section 5.1,

it can be clearly seen that the closed-form solution for the lift coefficient does not exhibit

any super-harmonics. Hence, for the derivation of the model parameters in terms of the

characteristics of simulation results (just as it was done in §4.4.2 and §4.5), an illustrative

case that corresponds with case 1 of section 5.1 is selected. In this case, the first half of the

suction side of the aerofoil is poro-elastically coated, and various aspects of the simulation

results are shown by the red curves in each of the figures 5.12 to 5.17. The position of the

reference feathers on the aerofoil is shown in figure 5.18.

A snapshot of the instantaneous vortex-shedding, after it has reached its steady-state, is

shown in figure 5.19.

It can be clearly seen from the red curve in figure 5.13 that, for the lift coefficient, after a

peak at the fundamental frequency ωs,1 (which is also the unique frequency present in the
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Figure 5.18: Placement of the poro-elastic layer on the aerofoil, depicted by the position
of the reference feathers (shown here by the thick, black lines near the leading edge of the
aerofoil).

  

Figure 5.19: Colour plot of instantaneous vortex-shedding from a poro-elastically coated
aerofoil at an incidence of 10◦.
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coupled system), there is a peak with substantial (but smaller) amplitude at 2ωs,1 (followed

by a further smaller peak at 3ωs,1). Hence, as mentioned before, this figure shows a clear

correspondence with case 1 explained in §5.1.

From figures 5.13 and 5.17, one gets the following values for the fundamental frequency

ωs,1, amplitudes of the lift coefficient corresponding to the fundamental frequency and its

second and third super-harmonics l1, l2 and l3 respectively; and amplitude of the angular

displacement of the reference feather (closest to the trailing edge) θ
′
1 corresponding to the

fundamental frequency:

ωs,1 = 2π×0.9039 = 5.6794 ; l1 = 0.0245 ; l2 = 4.459×10−4 ; l3 = 8.123×10−6 ; θ
′

1 = 0.01003

(5.43)

Further, ωs,2, l
′
1 and θ1 are all 0. Substituting these values in equations (3)-(10), we get the

following values of the parameters for equations (5.2) and (5.3):

ω = 5.6907 ; δµ = 0.0453 ; δα = 3.106 ; δβ = 4.4571 ; ω1 = 0 ; δρ1 = 0 ; δρ2 = −13.255

(5.44)

It must be recalled that for this case (which is in accordance with case 1 explained in §5.1),

the dissipation constant c of the reference feather was allowed to be arbitrary, and hence

can be taken to be arbitrarily large, in line with the physical consideration that the steady-

state amplitude a2 of the reference feather is zero. Thus, substituting the values obtained

in equation (5.44) and by numerically solving it, we can compare this solution with the

simulation results, as done in figure 5.20.

It can be seen that the simulation results and results from the model agree well with each

other.
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Figure 5.20: Comparison of model and simulation results of lift coefficient - the blue curve
shows the simulation results while the red curve shows results from the model.

Further, figures 5.21 and 5.22 show two typical cases of initial conditions, outside and inside

the (unique) limit cycle respectively.

It can be seen that in figure 5.21, beginning from a large initial condition far away from

the limit cycle, the trajectory ultimately narrows and converges to the limit cycle.

In the case of figure 5.22, a small initial condition gradually expands and reaches the limit

cycle as a steady state. Hence the steady-state solution is indeed independent of the initial

conditions.

All of these results indicate the effectiveness of the reduced-order model for vortex-shedding

behind a poro-elastically coated aerofoil.

110



  

0 10 20 30 40 50
0.32

0.36

0.4

0.44

Dimensionless time

Li
ft 

co
ef

fic
ie

nt
, C

L

0.30 0.35 0.40 0.45 0.50
-0.5

-0.25

0

0.25

0.5

CL

dC
L/d

t

Figure 5.21: Convergence of numerical integration of the model equation from an initial
condition outside the limit cycle. The top and bottom sub-figures show the time trace and
the phase portrait, respectively.
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Figure 5.22: Convergence of numerical integration of the model equation from an initial
condition inside the limit cycle. The top and bottom sub-figures show the time trace and
the phase portrait, respectively.
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5.5 Conclusions

A reduced-order model for vortex-shedding (investigated as before in terms of the unsteady

lift coefficient) behind the aerofoil considered in Chapter 4, but now with a poro-elastic coat-

ing on a part of its suction side (such as the cases studied in Chapter 3), has been developed.

To achieve this, the reduced-order model for the vortex-shedding behind a smooth aerofoil

(obtained from Chapter 4) has been linearly coupled (with non-zero coupling coefficients for

fluid-structure as well as structure-fluid interactions) with a linear damped oscillator for the

dynamics of the reference feather.

For this coupled non-linear model for the lift coefficient, a closed-form expression for its limit

cycle is derived in terms of generic (unknown) structure and coupling parameters (similar to

such analysis done in Chapter 4). In the course of this analysis, three physical cases could

be segregated based on the possibilities of whether the steady-state amplitudes of the lift

coefficient and the angular displacement of the reference feather was non-zero or not, and

various permutations of these possibilities. For each of these three cases, the expressions for

model parameters in terms of the computational features were derived. These closed-form

expressions also give insight into possible selection of structure and coupling parameters that

are capable of yielding, for instance, reduced lift fluctuations, as compared to the case of the

smooth aerofoil.

Many simulation results for coated aerofoils, with different extents and placements of coating

over the suction side, has been presented. All of these simulations are seen to fall in one

of the two cases of possible values for steady-state amplitudes. Based on this observation,

the various characteristics of the periodic solution obtained from simulations are compared

with the corresponding characteristics of the closed-form solution for the limit cycle obtained

from the reduced-order model. From this, the structure and coupling parameters, that yield

matching of trajectories obtained from the model and simulations, are determined.

All of the above observations indicate the effectiveness of the reduced-order model.
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Chapter 6

Summary and Conclusions

This thesis has investigated the effects of a poro-elastic coating on the flow around a

configuration, in particular, that of a symmetric aerofoil at an angle of attack. Specifically,

extensive computational studies have been performed to see what structural characteristics

of such a flow-compliant coating affect the flow topology, vis-a-vis, the process of vortex-

shedding and the modification of the pressure field on the side on which coating is present.

Next, based on the analysis of the simulation results for the vortex-shedding process for

aerofoils, both without as well as with poro-elastic coatings, reduced-order models have been

developed that:

(a) capture the key characteristics of results obtained from simulations;

(b) indicate optimal structure as well as fluid-structure interaction parameters that can

yield desired modifications in the aerodynamic performance; and

(c) illustrate what parameters should never be selected while practically designing such

a coating.

The following sections summarise the specific contributions of this thesis and provide several

directions for future work.
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6.1 Conclusions

Chapters 2 and 3, respectively, describe the computational method for studying the fluid-

structure interaction problem in this thesis, by means of the immersed boundary method,

followed by a presentation of the results of the computational parametric studies. Chapters

4 and 5 present the reduced-order models for the vortex-shedding behind aerofoils, both

without as well as with the poroelastic coating, respectively. Specific conclusions and rec-

ommendations are listed below.

6.1.1 Numerical modeling of flow control via a porous, compliant
coating

Flow control using passive actuators, such as in the present case of using a porous flow-

compliant coating, or more traditionally of isolated self-actuated movable flaps at optimal

streamwise locations, has been a viable alternative to active flow control techniques. This is

especially true for MAV-based applications, where due to severe size and payload constraints,

as well as the characteristics of low Reynolds number flow regimes, passive flow control is a

very promising idea. This has been proved in Chapter 3 by means of extensive computational

parametric studies, where it is shown that such a coating, by means of synchronisation of

oscillations of the structures onto a frequency comparable to the natural frequency of the

fluid system, is able to:

(a) affect the topology of the flow in the proximity of the rear of the aerofoil, by adapting

spontaneously to the separated flow;

(b) modify the vortex-shedding process and also positively influence the pressure

distribution, hence changing the drag and lift forces as well as their fluctuations

(applications of which include, for instance, delaying stall).

Specific instances of how much the mean drag and lift, along with their fluctuations, can be

changed, and what selection of structural and physical parameters of the coating is capable

of causing these changes, have been detailed.
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6.1.2 Reduced-order modeling for laminar flow control via a porous
coating of compliant actuators

Since the vortex-shedding phenomenon behind an aerofoil (smooth or coated) is non-linear in

general, non-linear reduced-order models have been developed to capture the physics of this

phenomenon. An important dynamics characteristic that has been captured by the models

includes the occurence of super-harmonics of a fundamental frequency in the standalone fluid

system or the coupled fluid-structure system. These models are capable of:

(a) reproducing the dynamics obtained by heavy computational procedures (for instance,

such as the one explained in Chapters 2 and 3);

(b) predict “optimal” structure and coupling parameters that can modify the

aerodynamic performance in desired ways.

However, since the structure part of the reduced-order model for the coupled system con-

sidered till now is linear, this model can be further improved by progressively introducing

non-linear terms that can both capture as well as possibly predict richer dynamics, along

with better approximations of optimal structure parameters.

6.2 Thesis Contributions

The problem of passive flow control is a field for which a rich body of literature exists, es-

pecially over the last decade or so (as surveyed in Chapters 1 and 2). However, a majority

of these studies have been experimental in nature, and hence, due to limitations of experi-

mental set-ups, restricted to Reynolds numbers of order 10,000 or more. Chapters 2 and 3

of this thesis have:

(a) computationally investigated the regime of low Reynolds number flows, suitable for

MAV-based applications;
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(b) employed the immersed boundary method for the complex configuration of an

aerofoil, both smooth as well as with a porous compliant coating. The use of this method

has been particularly found to be useful since a time-invariant Cartesian mesh, that

is non-conformal with the shape of the aerofoil, has been employed for moving immersed

boundaries (such as those of the reference feathers).

(c) established the fact that the vortex-shedding process and the pressure distribution

over the aerofoil can be desirably modified by a synchronisation of the oscillations of the

structures onto a frequency which is comparable to the natural frequency of the fluid

system.

In chapters 4 and 5, non-linear reduced-order models have been developed for vortex-

shedding behind complex configurations such as:

(a) smooth aerofoil making an angle with the free-stream; and

(b) two-way coupled fluid-structure interaction problem for the case of a poro-elastically

coated aerofoil,

respectively - i.e, corresponding to the computational studies performed in Chapters 2 and

3. In both these chapters, model parameters have been determined so that the solutions of

the reduced-order models match the simulation results. Further, attempts have been made

to characterise optimal structure parameters for the porous layer as well as two-way fluid

and structure coupling parameters, that for instance, yield decreased lift fluctuations.

6.3 Some Directions for Future Work

During the course of this research, the following problem areas were identified as potential

topics for future work:

Computational model for poro-elastic layer

The computational parametric study in Chapter 3 for a porous, compliant coating of

feathers is limited to approximating such a layer homogeneously by a certain number
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of rigid beams that can oscillate about their mean positions. An issue with using rigid

beams is that, the poro-elastic layer can not be very thick, so that short non-bending

beams can realistically approximate such a layer. Thus, moving in a direction towards

more realistically modeling such a coating, the use of longer “bending” feathers can be

explored.

The research in this thesis has been restricted to understanding the physics for static

symmetric aerofoils in laminar flow conditions. Hence, possible extensions can be to:

(a) perform the study on more complex configurations such as asymmetric and/or heaving-

pitching aerofoils.

(b) examine the effectiveness of such passive flow control actuators under turbulent

conditions, in the context of controlling transition to turbulence - an area which has

significant implications in the design of conventional aircrafts.

(c) add a third spatial component, in the context of point (b) above, to the existing

two-dimensional computational model, since the Reynolds number will be much higher

in turbulent regimes, as compared to what has been studied in this thesis.

Reduced-order model for vortex-shedding behind smooth and coated

aerofoils

The reduced-order model for the poro-elastic layer is purely linear, and thus considers

the case in which there is either no interaction between neighbouring reference feathers or

all reference feathers have identical and synchronous dynamics. Further, the structure-

fluid and fluid-structure coupling terms considered here are also linear. Hence, possible

extensions can be to formulate progressively non-linear models for the structure and

coupling parts, to more realistically approximate such a layer, and the computational

model investigated in this thesis in particular.

The mathematical models developed in this research can provide practical insight for the

design of passive flow control actuators for optimising aerodynamic performance. The details
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of the flow profile in the simplified geometry can be used to evaluate both lift enhancement

and drag reduction and tailor optimal control. The technical as well as economic feasibility

of such passive actuator technologies shows that these, within certain limitations, enable

progress in technologies of particularly light-weight aerial applications (such as micro-aerial

vehicles), that have serious payload restrictions.
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