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ABSTRACT
This research is aimed to develop a homogenized model for practical applications of the
fluid flow over and through the microstructured surfaces, which prescribed reliable es-
timates of the linear response of overall structures. The up-scaling method based on
asymptotic theories is used to treat the fluid flow problems where various spatial scales
(microscopic and macroscopic) are present. The goal of this work is to provide an in-
expensive high-order homogenized framework for the flows over complex textures such
as elastic and rigid rough surfaces, isotropic and orthotropic porous media, with peri-
odic internal distributions, independent of the material properties and the constituent’s
geometrical arrangement in a reliable way. The framework includes effective conditions
corrected up to the high-order as a replacement of the micro-textured surfaces, producing
sizeable effects on the overlaying flow as compared to the classical Navier’s conditions.
These effective conditions contain parameters that are non-empirical and stems from the
numerical solution of auxiliary Stokes-like problems. These conditions developed for dif-
ferent applications are tested on the classical problems such as Hiemenz stagnation point
flow over a rough plate, Hiemenz stagnation point flow over isotropic and orthotropic
porous bed, backward-facing step with porous step region, and flow over the permeable
channel, to test the accuracy and working capability of the framework for different flow
situations. For simulation purposes, commercial software COMSOL Multiphysics (2019)
academic version 5.4, open-source solver FreeFEM Hecht (2012), and commercial soft-
ware Star-CCM+ by Siemens (2021) are used. The outcomes of the model simulations
are compared with exact simulations of our own and with literature. The overall re-
sults suggested that the homogenized model is computationally inexpensive compared to
the feature-resolving simulations and can provide a quick design of drag-altering micro-
textured surfaces. Moreover, the present model is flexible for further amendments to
tackle complex engineered and industrial fluid flow problems.
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INTRODUCTION

1.1. Objectives

The main objectives of this thesis are:

• High-order accurate approach to model the regularly microstructured walls without
the need to numerically resolve fine-scale near-wall details to limit the computational
cost.

• To check the effect of microstructure engineered surfaces (rough, porous, and elastic)
through the use of high order effective conditions on the overlaying fluid flow in
various situations often used in practical applications.

• To provide the base of complex modeling of quasi-periodic and irregular rough walls
and anisotropic porous media which will not present fundamental nor numerical
difficulties in the future.

• To provide an optimal design of drag-altering micro-textured surfaces using an in-
expensive model.

1.2. Applications

In practical engineering applications, many biological systems (see some example in figure
1.1 ) contain surfaces exhibiting microstructure features and properties. Identification of
these special features such as surface corrugation, porosity, elasticity. are the goals of
biomimetics (Bhushan (2009); Jung and Bhushan (2009); Bixler and Bhushan (2012)))
together with understanding how these features are generated and providing base in-
formation for their mimicking in engineering devices (Bottaro (2019)). For example,
low drag surfaces can be seen in biological structures such as shark skin. The shark’s
skin is coated in tiny tooth-like denticles with longitudinal grooves that prevent vortices
formation on a smooth surface, Bechert and Reif (1985). The lotus plant leaves are an
example of superhydrophobic, self-cleaning, and low drag surfaces, Bottaro (2019). There-
fore, creation of a micro-scale drag-reducing surface becomes the key to breakthroughs
in drag-reduction technology. Fabrication methods used in the drag reduction are; (i)
direct micro-imprinting method, (ii) bio-replicated rolling method, (iii) 3D printing, (iv)
precision machining, and (v) coating technology. The special properties of the superhy-
drophobic surface are associated with wax ducts that create particular surface topography.
A butterfly wing demonstrates a mixture of effects from shark skin and lotus leaves (Bixler
and Bhushan (2012)). The exterior porous surface of the exoskeleton is an example of
porous structures.
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Micro-textured surfaces are ubiquitous, even though they do not always have a biological
basis. Due to the applicability in a broad range of industrial, engineering, and environ-
mental applications, flow phenomena over and through textured surfaces attracted con-
siderable interest for decades. Examples of engineering applications that include porous
media and fluid flow include oil extraction from ground wells, water bed basin control, and
pollutant filtration through aquifers. Besides, engineering applications that use porous
media include: (i) transpiration cooling in which a porous material is used to increases
the material’s heat exchange potential, (ii) filtration techniques to separate rigid particles
from fluids, (iii) wall transpiration for flow control, (iv) heat transfer delay in industrial
applications. They have also been utilized as transport methods for medical and biologi-
cal applications, including transport in human tissues, bio-convection in biological media,
blood flow in micro-vessels, and flow through polymer brushes and chains (Fu-quan et al.
(2007); Khanafer et al. (2008); Kuznetsov (2008); Li et al. (2015)).

1.3. Motivation

The above examples show the potential benefits of using correctly chosen surface struc-
tures, assuming a complete understanding of how these structures influence the overlaying
fluid flow. The several potential applications in various industries that require fluid flows
over and through these micro-textured, regular or irregular, impermeable or permeable
surfaces are the reasons and motivations for the present research work.

1.4. Related Literature Review and State of the Art

Since the current literature is extensive, the following review will be limited to a few
examples from a wide range of application fields, emphasizing fluid dynamic issues.

1.4.1. Flow over Rough Surfaces

Fluid flow over a rough surface texture is one of the most fundamental and vibrant prob-
lems in fluid dynamics, but few studies (details of which are given below) have addressed
(from theoretical point of view) their effect on the flow. The lack of closure is most likely
due to the wide range of potential responses, which depend on roughness topography in-
formation and flow conditions. The several studies are focused on determining the effects
of surface roughness. Before 1990, much of the literature concerned itself with the univer-
sal scaling of flows over rough walls; more recent studies have illustrated the discrepan-
cies between various roughness forms/types. Furthermore, different types of geometrical
shapes that are artificially constructed from simple roughness elements and arranged in
regular, staggered or random patterns (Figure 1.2) are common in recent studies (Naqvi
and Bottaro (2021); Valdés-Parada and Lasseux (2021)). Such surfaces typically possess
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Figure 1.1: (a): Microscopic image of shark skin (source:www.biomimicrybe.org); (b) Micro-
scopic image of a leaf of lotus plant (source: www.company7.com); (c): Microscopic image of
a moth wing (source: www.reddit.com); (d): Chitin cuticles, the exterior porous surface of an
insect’s exoskeleton, image courtesy by Toby Burgess (source: www. blogspot.com)

small characteristic length scales and can quickly evaluate their surface properties such
as roughness heights and spacing. They are also simple to construct for experimentation
or computational simulations. Most textbooks on turbulence include some description of
the effect induced by rough-textured surfaces, and the one by Schlichting (1937) and Bird
(2002) are still valuable references. For example; Bird (2002) stated that wall roughness
is assumed to be only relevant in turbulent flow conditions and equations that are used
are usually heuristic.

1.4.2. Effect of Surface Roughness on Laminar Flow

In the classical perspective, roughness does not impact the laminar flow in a channel
flow. The study of Choi et al. (1991) presented the viscous drag changes associated
with the presence of longitudinal grooves (with a triangular shape) in a fully developed
laminar channel flow. They concluded that the results are independent of the Reynolds
number. The Reynolds number independence implies that there will be no drag reduction
in fully developed laminar channel flow with grooved walls. However, significant deviations
from standard theory in micro-channels are predicted, and in recent years such flows
have attracted considerable interest. In contrast with typical laminar-sized macro-flux
for dynamically comparable conditions, those latter tests indicate an improvement in
the Darcy friction factor. This finding reveals that laminar drag is caused by surface
roughness. The experimental study of flows of micro-machined channels is carried out by



4

Figure 1.2: Top views of (a) uniform, (b) staggered, and (c) non-uniform distributions of rough-
ness element over a wall.

Papautsky et al. (1999).

1.4.3. Effect of Surface Roughness on Laminar-Turbulence Transition

The effect of roughness on the onset of transition from laminar to turbulent flow has been
extensively investigated. Reynolds (1883) was the first to study the effects of distributed
surface roughness on the laminar-turbulent transition and concluded that the hydrauli-
cally rough wall could promote transition. In contrast, a hydraulically smooth wall had no
impact on transition. Saric et al. (1998) demonstrated that roughness could stabilize the
flow and thus delay the transition process. Later on, Jiménez (2004) and Floryan (2007)
stated that surface texture affects the form of turbulence, and it may plays a significant
role in the laminar-turbulent transition. Some type of roughness may be able to either
promote or delay the transition from the laminar to the turbulent state (Batchelor and
Batchelor (2000); Aleyev (1977)).

When considering roughness-sensitive designs, researchers use different criteria to deter-
mine the size of the critical roughness. The most common standard is the roughness
Reynolds number Reh = Uhhν where h is the roughness height, Uh the undisturbed veloc-
ity at the height of h and ν the kinematic viscosity. It has widely accepted that roughness
does not play a role when Reh < 25 (Morkovin (1990)). This criterion cannot, however,
account for the shape and distribution of roughness. Another way to render roughness-
sensitive prototypes is to use experimental evidence ( Schlichting and Gersten (1979)).
This evidence is typically defined as the set of correlations between roughness height, flow
conditions, and the critical Reynolds number.

The effect of roughness in transitional flows depends on the degree of disturbance in the
flow. Both theoretical research and experimental findings suggest that two-dimensional
scattered roughness destabilizes traveling wave disturbances that play a critical role in
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the transition process (Asai and Floryan (2006); Floryan (2005)). Floryan (2002) an-
alyzed three dimensional Couette flow, and Floryan (2003) and Floryan and Floryan
(2009) investigated Poiseuille flows in a converging-diverging channel; they have shown
that surface corrugations produce streamwise vortices. The same roughness is reported
by Szumbarski and Floryan (2006) to stimulate optimal disturbances in streamwise ed-
dies and increase their transient development. The distributed roughness is mechanism
providing a wide variety of stability responses that have yet to be studied (Szumbarski
and Floryan (2006)). Experimental observations confirmed the theoretical projections for
sinusoidal surface corrugations by Asai and Floryan (2006).

1.4.4. Effect of Surface Roughness on Turbulence Drag

In recent decades, the development of complex surfaces to reduce turbulent drag has been
an area of scientific interest. The pioneering experiments of Hagen (1854) and Darcy
(1857) have reported that roughness often increases the resistance. Measurements of total
drag in terms of friction factor by Nikuradse (1933) and Moody and Princeton (1944) also
demonstrated that roughness has little impact on laminar drag, or at the very least, the
effect is too small to be measured using the techniques available. However, the suggested
correlations indicate that surface roughness has a significant impact on turbulent flow.
Jiménez (2004) discussed experimental evidence on turbulent flows over rough walls and
measures two important aspects: one is roughness Reynolds number which measures the
effect of the roughness on the buffer layer, and second is the ratio of the boundary layer
thickness to the roughness height, which determines whether a logarithmic layer survives
since most commonly used rough surfaces such as riblets and other drag-reducing cases
belong to logarithmic regime.

The need for a suitable method for reducing viscous drag in wall-bounded flows has piqued
interest in several fields, including shipping, piping and petroleum, medical equipment,
micro-fluidics, and nano-fluidics systems, to name a few (Goldstein (2006)). Lee et al.
(1996). The existing methods can divided into three categories: (i) delaying bound-
ary layer separation by suction or injection of fluid, or through promoting the laminar-
turbulent transition; (ii) changing the fluid viscosity; (iii) through proper wall geometry
design (Luchini (2013)). The first two methods have well-understood fundamentals and
are used extensively in a wide range of applications. The third method has limited use
due to the lack of understanding of a correlation between surface topography and surface
drag. Information on the types of drag and how they are affected by roughness shape
could lead to the identification of surface topographies that reduce drag.

The traditional belief that surface roughness increases flow resistance contradicted by
Walsh (1983) in turbulent flow regimes. It shown that there exists a particular class of
surface topography that is capable of reducing drag to below what is found for a smooth
wall. Based on these predictions, researchers have started to focus on the performance of
corrugated surfaces such as those used in complex (biological and engineered) systems.
For example, the analysis of shark skins, which represent biologically formed surfaces,
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Figure 1.3: (a): Triangular grooves; (b): Saw-tooth grooves; (c): Rectangular grooves; (d):
Sinusoidal grooves.

attracted much attention, and many simple physical models are suggested to replicate
their function (Bechert et al. (1997b); Bechert and Reif (1985); Bechert et al. (1986);
Bechert et al. (1997a)). Sharks have drawn the most interest as deep-sea predators due
to their powerful bursts and long cruise ranges, which have evolved through a long period
of natural selection.

A variety of adaptations have been honed and thoroughly investigated to minimize energy
consumption. As a result, sharks skin develops streamlined structures to minimize pres-
sure drag caused by a difference in pressure across the body. Sharks’ gills are thought to
be their primary respiratory organ, and they have been found to minimize drag caused by
lift. Sharkskin can also minimize skin friction drag caused by boundary layer formation.
The excellent drag reduction capacity of shark skin has been extensively studied among
the many ways to reduce drag (Walsh (1983); Bechert et al. (1997b); Goldstein et al.
(1995); Zhang et al. (2011)).

1.4.5. Effect of Biological vs. Engineered Surfaces on Drag

Shark skin denticles that stick out of the skin are tooth-like with enameled and dentine
outer layers, inner pulp cavity with nerves and blood vessels, and a unique structure
consisting of the outer crown, neck, and extended base imbedded into the dermis, as
opposed to prototypical riblets (Ankhelyi et al. (2018), Pu et al. (2016), Han et al. (2008)).
Sharks’ denticles, which protect their skin, have distinct functional morphotypes. These
denticles have been modeled as riblets. At an early stage, the hydrodynamic effects of
riblets at different scales were thoroughly investigated. Moreover, engineered riblets are
much more effective at reducing drag than natural shark skins, and this is due to the
shark’s versatile denticles, which can adapt to the flow passively.

To control flow separation, bristled shark denticles can be used as vortex generators. The
mechanism of flow separation controlled by a vortex generator is different from that con-
trolled by a traditional vortex generator. Domel et al. (2018a), and Tian et al. (2021)
explore the design of shark denticle bioinspired structures for aerodynamics. Shark denti-
cles are used as vortex generators in numerical simulations to control the flow separation
while energizing the boundary layer. The scale, shape, and orientation of the denticles all
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Figure 1.4: The effect of roughness on flow regime and wake formation is demonstrated by creat-
ing and separating boundary layers over a fish-like form. By comparing the non-smooth surface
to the smooth surface, it is discovered that roughness controls the boundary layer separation,
reducing the wake area and hence the pressure drag, Fletcher et al. (2014).

influence the boundary layer’s ability to minimize drag. Vortex generators have provided
the passive mechanism for regulating flow separation (Lang et al. (2011)).

Denticles, according to research, act similarly to special vortex generators in energizing
the boundary layer and controlling flow separation. Streamwise vortices are formed down-
stream when the fluid reaches vortex generators, and high momentum turbulent energy is
mixed in the boundary layer, thereby reducing the capacity exchange and shear stress to
the boundary layer, locking vortices generated in the viscous sublayer inside the groove
to achieve drag reduction. These characteristics of shark skin have been shown in many
studies to reduce drag through passive flow control mechanisms, Lang et al. (2008). Re-
search has shown that these particular features of shark skin can reduce drag through
passive flow control mechanisms (Fletcher et al. (2014), , see figure 1.4). Moreover, flow
separation can be controlled by the bristling capability of flexible denticles, thereby re-
ducing the pressure drag in the opposite direction of the body movement (Lang et al.
(2014)).

1.4.6. Riblets: Viscous Drag Reduction Technique

Regular grooves with triangular or rectangular cross-sections, known as riblets, are often
used used in hydrodynamic and aerodynamic tests to demonstrate the drag-reduction
mechanisms. Riblets are aligned in the same direction as the flow and are assumed to



8

Figure 1.5: Experimental drag reduction data (symbols) for triangular and blade riblets. The
straight dashed lines correspond to the linear regime for the two wall corrugations, Bechert et al.
(1997b).

promoting anisotropic flow and effectively controlling the naturally occurring turbulent
vortex, lowering shear stress to the boundary layer, and locking vortices created in the
viscous sublayer inside the groove to reduce drag (Walsh and Lindemann (1984)), thus,
improve the over all swimming performance of the shark in a turbulent flow. A maximum
drag reduction of the order of 7% − 10% was achieved by using such grooves ( Walsh
and Lindemann (1984), Walsh (1990), Bruse et al. (1993); Bechert et al. (1997b)). The
viscous regime of vanishing grooves (riblets) spacing is well understood (Bechert and
Bartenwerfer (1989), Luchini et al. (1991), Luchini (1992)) and confirmed by experiments
(Walsh and Lindemann (1984); Walsh (1990); Bruse et al. (1993); Bechert et al. (1997b)).
Choi et al. (1991), Chu and Karniadakis (1993), Goldstein et al. (1995), and Goldstein
and Tuan (1998) performed direct numerical simulations of laminar and turbulent flow
over ribbed-mounted surfaces and showed that in the laminar regime there is no drag
reduction (while a contrary argument on the laminar drag reduction and increase by
grooves was passed by Luchini (1995)), while in the transitional and turbulent regimes,
drag reduction up to 4% − 10% exists for the ribbed-mounted wall in comparison with
the smooth wall of the channel. The effectiveness of the grooved surface as a drag-
reducing tool depends on its geometrical shape. Bechert et al. (1997b) carried out detailed
theoretical measurements of grooves with adjustable geometry and performed parametric
optimization to determine the best possible drag reduction (see Figure 1.5). Bechert
et al. (1997b) performed experiments in the open channel with oil as the working fluid
and showed that the surface replicating shark skins had a drag decrease of about 5%. Itoh
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Figure 1.6: Interrelations between the protrusion heights and the positions of the virtual plane
walls seen by longitudinal and transverse flow, adapted from Luchini et al. (1991).

et al. (2006) have been measuring turbulent channel flow over seal fur and have achieved a
total 12% drag reduction when working with a glycerol water mixture. For larger grooves,
the minimum drag is related to the viscous regime’s breakdown, but this process relevance
has been recognized only recently by García-Mayoral and Jiménez (2011).

Since these authors found that skin friction drag was not increased with respect to the
flat-wall case, under the same working conditions, the importance of the flow viscous
response was highlighted. Subsequent research focussed on the viscous near-wall flow,
to extract salient features of microstructured surfaces. Today, the mechanism by which
riblets operate is believed to be related to the creation of an offset between the virtual
origin of the longitudinal mean flow and that of the transverse turbulent eddies. Provided
that the riblets are embedded in the viscous sublayer, their effect can be modeled by
the Stokes equation to yield two distinct protrusion heights, or Navier’s slip lengths,
longitudinal, λx, and transverse, λz, which are the distances from the rim of the riblets to
the position where, respectively, streamwise and cross-stream flows originate. Once the
two protrusion heights are defined, we arrive at the overall picture given in figure 1.6.
(Note that the riblet tips themselves do not hold any particular significance in relation to
the flow, and must be considered for all purposes an arbitrary origin of the y-axis which
has been set there just for geometrical convenience.)

The above concepts have been basically introduced by Bechert and Bartenwerfer (1989)
and Luchini (2013), and tested experimentally by Bechert et al. (1997b), among others.
The results show that riblets remain in the linear (Stokes) regime as long as their dimen-
sionless spanwise periodicity, s+, measured in viscous wall units, remains below a value
close to 10 (cf. figure 1.5). The optimal riblet spacing is about 15 for a variety of riblet
shapes, and skin friction drag can be reduced by at most 10% in the case of thin, blade-
like riblets (Bechert et al. (1997b)). Above s+ ≈ 15 drag starts increasing again and, for
s+ & 30, the skin friction coefficient exceeds the value of the corresponding smooth wall
because of the appearance of a Kelvin–Helmholtz-like instability of the mean flow which
increases the spanwise coherence of the turbulent structures, therefore disintegrating the
longitudinal streaks, via the creation of spanwise rollers (García-Mayoral and Jiménez
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(2011)). For drag to decrease, for any kind of wall indentation fully immersed in the
viscous sublayer, the origin of the secondary flow must be farther away from the base
of the indentation than the origin of the mean streamwise motion or, in other words,
∆λ = λx − λz must be positive. When this occurs, crossflow is impeded (more than the
longitudinal flow) and high velocity bursts from the surface are mitigated, resulting in
smaller drag. The amount by which drag reduction is achieved is given to leading order
in ∆λ by:

∆Cf
Cf0

= − ∆λ+

(2Cf0)−1/2 + (2κ)−1
(1.1)

as first shown by Luchini (1996). In Eq. 1.1, Cf is the skin friction coefficient, Cf0 its
value for the case of a smooth surface under the same outer flow conditions, and κ = 4.48
is von Kármán’s constant (Luchini (2018). Despite the fact that the equatio above holds
only in the initial part of the drag curve, the agreement of this theoretical estimate with
experiments is satisfactory and strongly endorses the idea of maximizing ∆λ when drag
reduction is sought for. Figure 1.5 demonstrates the advantage of using blade riblets (of
thickness t equal to 0.02s in the case of the figure) as compared, for example, to triangular
riblets with a top opening angle of 90◦. It is also interesting to observe that the theoretical
results embodied by Eq. 1.1 (and shown with dashed lines in the figure) are in excellent
agreement with the experimental data for blade riblets almost until the point of maximal
drag reduction (close to s+ = 15 ), whereas for the triangular wall corrugations the range
of validity of the theoretical result is smaller and extends to s+ ≈ 5.

A theory of Luchini (2013) has been further extended by Ibrahim et al. (2021) where the
virtual origin perceived by the streamwise velocity is proposed to set by the streamwise slip
length and they set this independently for the mean flow and the fluctuations, verifying
that the one affecting U+ is the origin for the mean flow. They found that the virtual
origin perceived by the streamwise velocity fluctuations, which are a proxy for the near-
wall streaks, appears to be essentially inactive in setting the origin for turbulence, and
hence has a negligible effect on the drag, at least in the regime where the origin perceived
by the streaks is deeper than the origin perceived by the turbulence, where, in the opposite
regime, the region occupied by the streaks eventually becomes too confined, and the near-
wall turbulence no longer remains smooth-wall-like. This analysis is valid for surfaces of
small texture size, which do not alter the canonical nature of the turbulence, and we show
that this result can also be predicted by introducing a virtual origin for turbulence into an
a priori, eddy-viscosity model for the Reynolds shear stress. The exploratory results that
suggest that the effect on the flow of opposition control, an active flow-control technique,
can be interpreted in terms of virtual origins is also one of their core finding.

1.4.7. Deformable Riblets and Drag Reduction

Another aspect of the near-wall indentations which deserves attention is the possibility
for the solid material at the fluid–solid interface to deform under the action of the fluid.
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Research on elastic and viscoelastic interfaces has enjoyed waves of renewed attention
in the past fifty years, coinciding with the growing or diminishing interest of funding
agencies. The initial stimulus to the idea of using compliant surfaces for drag reduction
came from Kramer (1957), Kramer (1961), who ascribed the extraordinary swimming
ability of dolphins to the pliability of their skin. Kramer’s argument was that shear layer
fluctuations were damped near the dolphin’s compliant dermis, thus leading to extended
regions of laminar flow on the body. This, is turn, was assumed to be the cause of drag
reduction. Much research ensued, particularly on the onset of transition to turbulence
for the flow over compliant walls, culminating with the modeling efforts of Peter W. Car-
penter and collaborators (Carpenter and Garrad (1985), Carpenter and Garrad (1986),
Dixon et al. (1994), Carpenter et al. (2000)). On the experimental side, Gad-El-Hak et al.
(1984) performed several experiments in a water channel with a flat plate coated with a
compliant material, under laminar, transitional and turbulent conditions, highlighting the
presence of hydroelastic instabilities capable to lead to early transition and rise in drag.
Turbulent drag increase was typically associated to the appearance of a large-amplitude
deformation of the compliant surface, resulting from a static-divergence instability. Con-
versely, when the surface deformation of the wall was maintained significantly within the
viscous sublayer (for the wall to remain hydrodynamically smooth), some success in re-
ducing skin friction drag by the use of compliant viscoelastic panels was reported (Lee
et al. (1993), Choi et al. (1997)). Drag reduction was accompanied by reduction of the
turbulent intensity across the boundary layer.

The idea of combining the presence of regular micro-grooves with the fact of rendering
them elastic stems from the realization that frictional drag in turbulent flows decreases
when the spanwise motion of the streaks is hampered (Choi (1989), Lee and Choi (2008)).
This effect is possibly achieved by combining the properties of a compliant material with
the design of appropriate micro-indentations. It is thus aimed for compliance to impair
the lateral movement of the streaks, reducing violent ejections and bursts, with a positive
effect on skin friction resistance. A further consideration applies: the optimal geometrical
characteristics of riblets depend on the outer flow conditions, and what is optimal for
one condition (say, level flight of an aircraft at cruise speed) may not be optimal any
more under different conditions. Suitably designed microstructures capable to deform
elastically and adapt to the outer flow conditions might provide an answer to this prac-
tical shortcoming. Recently, a patent has been submitted describing the manufacturing
of elastomeric riblets (Rawlings and Burg, 2016), with the claim that their optimized
structural design provides the capability for riblets to be “thinner, lower weight and more
aerodynamically efficient”.

1.4.8. Role of Pressure Gradient in Rough Surface Drag Reduction

In the drag reduction induced by the surface groove, the pressure gradient also plays a sig-
nificant part. Walsh (1983) found the effectiveness of groove surfaces under this situation
by measuring and analyzing the effects of an adverse pressure gradient. To account for the
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roughness properties, they used the concept of equivalent roughness. Nieuwstadt et al.
(1993) studied the turbulent boundary layer on a grooved surface to explore skin fric-
tion reduction and found that the drag reduction exists for all pressure gradients. Still,
for higher pressure gradients, it is slightly higher. Debisschop and Nieuwstadt (1996)
performed experiments in a wind tunnel on longitudinal grooves with adverse pressure
gradients and found improvement in the drag reduction from 7% to 13%.

Gamrat et al. (2008) used different methods to predict the effect of roughness on laminar
flow in micro-channels and found that the Poiseuille numbers Po (the product of a friction
factor and the Reynolds number) increase with an increase in the relative roughness
and are independent of the number Reynolds in the laminar flow regime (Re < 2000).
Mohammadi and Floryan (2013b) evaluated pressure losses for laminar flows to achieve
a laminar drag reduction using a properly-shaped groove surface. The drag minimizing
longitudinal grooves and using optimization strategies to classify types of those grooves
are investigated by Mohammadi and Floryan (2013a) to optimize potential pressure loss
reductions. Mohammadi and Floryan (2012) studied mechanisms responsible for drag
formation using a sinusoidal-shaped transversely grooved channel. The first mechanism
relied on the wall shear stress, the second on the interaction between the mean pressure
gradient and the surface geometry. The third is on the interaction of the periodic part of
the pressure field with the surface topology. The laminar flow produces more frictional
drag than turbulence flow, and it supports laminar flow in many applications.

1.4.9. Modelling of the Flow Over the Rough Surface: The Slip Boundary
Condition

The above discussion indicates that the applications of structured surfaces are broad
enough. These surfaces have complex geometries/shapes, and their modeling is one of the
biggest challenges in flow analysis. Since surface shape can lead to several instabilities, it
is recommended to model the flow over the rough corrugated wall with high accuracy to
allow bifurcation points to be captured reliably.

The need to develop accurate models of the flow (specifically turbulent) near patterned
walls is notably felt, as it occurs in multiple technical applications, for example; Bons
(2002) used scaled models of rough surfaces based on scans of damaged turbine surfaces in
the wind tunnel experiment. A systematic study showed the impact of irregular roughness
on turbulent channel flow using roughened steel plates by Van Rij et al. (2002). It is
understood that skin friction drag typically increases compared to a smooth-walled case
under the same conditions, except for cleverly engineered wall patterns. Examples of
the latter include riblets (in the form of grooves) (Walsh and Lindemann (1984) (as
mentioned above), Bechert and Bartenwerfer (1989), Luchini et al. (1991), Garcia-Mayoral
and Jiménez (2011)) and other nature-inspired wall indentations (Bechert and Reif (1985),
Sirovich and Karlsson (1997), Bechert et al. (2000), Domel et al. (2018b)). Provided the
roughness is embedded within the viscous sublayer, the effective rough-wall conditions
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Figure 1.7: Sketch of the solid plane wall with no-slip condition (left) and complex homogenized
surface with slip velocity (right) in two-dimensional configurations.

develop herein will permit to carry out, at a fraction of the time, parametric searches of
regular surface patterns apt, for example, at minimizing skin friction.

The classic approach to determining flow fields bounded by irregular rough surface requires
considerable manual labor since geometry has to be modeled by the use of numerically
generated grid points (Gamrat et al. (2008), Herwig et al. (2008)). These approaches
suffer from low-order spatial accuracy associated with their discretization schemes and
are usually based on finite-difference, finite-element, or finite-volume methods. Using
finer grids can improve their accuracy but with a substantial increase in computational
costs. Also, the use of these methods is impractical for systematic investigation of different
features of the roughness geometry.

Another approach/method for treating boundary irregularities relies on the up-scaling
method for example; homogenization (briefly described in the subsequent section). In
this method, the effective slip boundary conditions are derived/modeled and enforced to
apply at a fictitious wall above the roughness crest. These effective boundary conditions
fully characterize the flow at the natural micro-textured surface (on a scale larger than the
pattern characteristic length) and can be used to solve complex hydrodynamic problems
without tedious calculations.

The definition of boundary conditions at a solid, impermeable wall upon contact with
a viscous, incompressible liquid had preoccupied researchers even before Navier (1823)
derived the equations that now carry his name. Navier (1823) claimed in his seminal paper
that the viscous force exerted on a wall by the fluid is balanced by the flow resistance,
resisted by the wall, the latter being proportional to the slip velocity. If the wall-normal
direction is denoted by ŷ and the wall-tangent velocity by û, the slip velocity reads (for
example see Figure 1.7 for further detail) in dimensional form:

û = λ̂
∂û

∂ŷ
, (1.2)

where λ̂ is the dimensional Navier constant, an effective penetration depth (also called
slip length), equal to the distance into the wall where the linearly extrapolated velocity
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component vanishes.

Navier’s condition has been discussed and questioned for a hundred years before Taylor
(1923) resolved the issue with a series of experiments on the flow between concentric,
rotating cylinders near the onset of the first hydrodynamic instability. Taylor’s theoretical
treatment, which resulted in excellent agreement with the experiments, was based on the
assumption that the fluid could not slip while in contact with the solid surface. The no-
slip condition gained (almost) universal acceptance from that moment. Dussan V. (1976)
investigated the sensitivity of the overall flow field to the form of the slip boundary
condition and found that the characteristic of the slip boundary condition which affects
the overall flow field over a rough wall is the magnitude of the slip length. Hocking (1976)
examined a simple type of corrugated surface such as grooves (of finite and infinite depth),
and calculated the effective slip coefficient. In the study, it is suggested that, when a fluid
displaces another on a rough surface, the displaced fluid remains in the hollows on the
surface, thus providing a partly fluid boundary for the displacing fluid and leading to a
slip coefficient for the flow. The asymptotic structure of the solution for a random surface
with finite slope is discussed by Jansons (1988) and stated that very small amounts
of roughness can well approximate a no-slip boundary condition macroscopically. The
surface roughness is modelled by compact protrusions on an underlying smooth surface
by Sarkar and Prosperetti (1996) and overlaying stokes flow is analyzed for a sparse
distribution of arbitrarily shaped protrusions and explicit numerical results are given for
hemispheres. They found that, in an ensemble-average sense, the effect of the roughness
can be approximately represented by a partial slip boundary condition on the component
of the velocity tangent to smooth surface,

Miksis and Davis (1994) studied the effect of surface roughness and coatings on fluid flow
over a solid surface and able to derived asymptotically an effective slip boundary condition
to replace the no-slip condition over the surface but in the certain limit of small-amplitude
roughness and thin lubricating films. It is also observed that When the film is absent, the
result is a Navier slip condition in which the slip coefficient equals the average amplitude
of the roughness and limiting cases in which the film dynamics can be decoupled from
the outer flow has also been identified. The configurations for which the slip condition
remained in use included the triple-line flow (to illustrate the leading edge motion of a
liquid drop sliding down the incline), the flow of rarified gases (in micro-fluidic devices),
the flow over micro-corrugated surfaces, eventually impregnated with a lubricant, see
Bottaro (2019). Most of these exceptional cases share the peculiarity that either the
continuum description of the flow breaks down or becomes too difficult/expensive to
resolve, e.g., by a computational technique. It becomes better to provide a conjugate,
micro-macroscopic view. These are the cases in which a homogenization strategy proves
very effective.

Achdou et al. (1998) are credited for the most important early publication detailing the
application of a two-scale expansion to infer effective conditions at a rough wall. These
authors focused on the two-dimensional, incompressible case and derived conditions to
second order. For a later comparison, the (nonlinear) conditions in Achdou et al. (1998)
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read:.

û = λ̂
∂û

∂ŷ
−
[
ξ̂
∂p̂

∂x̂
+ χ̂û2

]
, (1.3)

v̂ = 0, (1.4)

with p̂ the pressure. The dimensional coefficients λ̂, ξ̂, and χ̂ arise from the solution
of Stokes-like problems in a periodic unit cell built around a single roughness element.
Achdou and colleagues obtained good results when comparing complete simulations for
the macroscopic laminar flow configurations tested in their studies, leading them to claim
that the first-order condition is already very accurate and conclude that it is not assured
that it is worth using the second-order condition. We are going to argue below that
condition (1.4) is not second-order accurate.

Subsequent developments of the rough wall’s effective conditions did not follow the path
established by Achdou and collaborators (Achdou et al. (1998)) and were mostly limited
to investigating different aspects of the Navier condition. Jäger and Mikelić (2001), for
instance, provided a rigorous justification of the Navier slip for the plane channel flow
case and carried out asymptotic estimates of the tangential drag force and the effective
flow rate of mass. Basson and Gérard-Varet (2008) used stochastic homogenization in
order to extend the previous study to the case of a channel flow with roughness modeled
by a spatially homogeneous random field. Kamrin et al. (2009) recovered a tensorial form
of Navier slip for the flow over periodic surfaces as a second-order approximation using
various scaling variables from those used here. They introduced the mobility tensor Λ
(or Navier slip tensor) and provided a formula for Λ after decomposing the wall in the
Fourier series, demonstrating its symmetry. The analysis was further extended by Luchini
(2013) who considered two configurations. The surface considered was Y = εH(X, Z) in
the shallow-roughness limit, i.e. the roughness becomes smoother as ε → 0. The second
limit, called small-roughness, concerned a family of surfaces described by Y = εH(X/ε,
Z/ε), i.e., a pattern which, with varying ε, remains geometrically similar to itself. The
influence of the roughness aspect ratio via protrusion coefficient and the interference be-
tween equal roughness elements placed in a periodic arrangement via proximity coefficient
were accounted for by Luchini’s first-order analysis.

The Navier slip condition of the first order is recovered in this case. Bolaños and Ver-
nescu (2017), Zampogna et al. (2019b) and Lācis et al. (2020) performed more recent
studies based on multiscale asymptotic approach. The latter study was the only one to
push development to the second-order, but only for the wall-normal velocity component,
resulting in a fictitious wall transpiration condition. In a turbulent channel flow bound by
a rough wall, the condition has been tested, demonstrating the importance of accounting
for wall-normal velocity fluctuations in a rough wall model. The present contribution
starts from these premises.

In contrast to above, Introïni et al. (2011) and Guo et al. (2016)] examined aspects
associated with heat transfer and concentration gradients across heterogeneous and rough
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boundaries through an upscale analysis based on the theory of volume averaging. Prat
et al. (2002) discussed averaged Reynolds equation for flows between rough surfaces in
sliding motion and shown that the effective transport coefficients, traditionally termed
“flow factors” in the lubrication literature, that appear in the average equations can be
obtained from the solution to two closure problems.

1.4.10. Flow Over and Through the Porous Media

Flow over and through porous media has a wide range of applications in many areas of real-
life problems and has been extensively investigated experimentally (Beavers and Joseph
(1967); Gupte and Advani (1997); Agelinchaab et al. (2006); Arthur et al. (2009); Morad
and Khalili (2009); Terzis et al. (2019); Holt and Smith (1989)), analytically (Richardson
(1971a); Saffman (1971); Jones (1973); Chandesris and Jamet (2006); Jamet and Chan-
desris (2009); Lācis and Bagheri (2017); Lasseux et al. (2016)), and numerically Larson
and Higdon (1986, 1987); Liu and Prosperetti (2011); Carraro et al. (2013); Kuwata and
Suga (2016, 2017), most often with a focus on understanding the nature of interface1

conditions.

1.4.11. Turbulence Transport Across a Permeable Interface

Experiments on the turbulence transport across a permeable interface that have already
been conducted provide details on the accessible areas. Different experimental stud-
ies with various configurations, such as turbulent open-channel flows over porous media
consisting of spheres, have confirmed the control of turbulence by using the permeable
surface. Kuwata and Suga (2017) used particle image velocimetry (PIV) measurements
to analyze spanwise turbulence structures over permeable walls. A channel’s permeable
bottom wall is made up of three different types of anisotropic porous media. The span-
wise turbulent structures are investigated using their wall permeability tensor, designed to
have a larger wall-normal diagonal dimension (wall-normal permeability) than the other
components. However, high-resolution measurements within porous media are difficult to
perform due to the difficulty of performing measurements within the narrow and tortuous
space (Kuwata and Suga (2016)). Efstathiou and Luhar (2018) conducted a boundary
layer experiment over high-porosity foams (θ = 0.97), with a friction Reynolds number
of Reτ ≈ 196 upstream of the porous portion.According to mean statistics, the porous
interface had a significant slip velocity (greater than 30% of mean velocity). While the
mean velocity deficit grew in size with average pore size, the slip velocity remained rela-
tively constant. Terzis et al. (2019) investigated the hydrodynamic interaction between a
uniform porous medium and an adjacent free-flow channel at low Reynolds numbers. The

1The word “interface” is used interchangeably with the words “dividing line” and “dividing surface” to
mean that line or surface which separates the free-fluid region, where the Navier-Stokes equation holds,
from the region which can be described by macroscopic equations, such as Darcy’s or Brinkman’s models.
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porous medium in their study is made up of uniformly spaced micro-structured rectan-
gular pillars organized in a uniform pattern, allowing for direct flow measurement within
the porous structure. Guo et al. (2020) investigated the velocity distribution above and
within porous media with a high Reynolds number. They discovered that the thickness
of the transition layer in the porous-medium region is unaffected by changes in Reynolds
number as porosity increases.

1.4.12. Effect of Porous Media on Drag

In general, it is assumed that a flow over a porous wall experiences higher drag and
turbulent intensities near the wall than the same flow over a flat impermeable surface.
Kleinstreuer and Koo (2004) measured pressure losses in laminar flow numerically by
considering grooves as a porous medium layers, which inspired investigators to search
for methods to design surface topographies to reduce the flow resistance. Tilton and
Cortelezzi (2006) and Tilton and Cortelezzi (2008) investigated the stability of channel
flows over porous walls, and they showed that wall permeability has a destabilizing effect,
which leads to lowering the critical Reynolds number. This result indicates the poten-
tial of porous materials in applications involving transition and turbulence (such as flow
control, drag reduction, and enhancement, transition triggering and delaying, moreover,
amplifying the mixing properties of turbulent flows).

Abderrahaman-Elena and García-Mayoral (2017) and Gómez-de Segura et al. (2018) have
suggested anisotropic permeable substrates for turbulent drag reduction and found that
the drag-reducing capacity of porous substrates is controlled by the mechanism developed
for riblets (Luchini et al. (1991), Luchini (1996),) and for complex surfaces (Jiménez
(1994)) in general. Complex surfaces, such as permeable substrates, can produce non-
zero velocities at the substrate-channel interface. The experimental work carried out
by Klausmann and Ruck (2017) found that due to their porous coating on their lee
side, a circular cylinder can experience drag reduction. Measurements of the drag force
showed that the lee’s cylinder cover minimized the drag for various cylinder and pore layer
configurations. They also noted that drag is minimized regardless of whether the porous
coating is added on the top of, or integrated into the body’s shape.

1.4.13. On the Effective Conditions at the Boundary between a Free Fluid
and a Porous Medium

Flow over and through porous media have been treated in a variety of ways. At first,
Darcy’s law Darcy (1857) is used to determine the flow through porous media. This es-
tablishment of the flow through the porous media was the pure empirical-based approach.
Using this law, the velocity at the interface between the porous medium and the free
fluid region changes sharply (causes discontinuity). Later on Brinkman added an effective
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Figure 1.8: Velocity profile for a rectilinear flow in a horizontal channel formed by a permeable
lower wall (ŷ = 0) and impermeable upper wall (ŷ = h), figure imported from Beavers and
Joseph (1967).

viscosity term to the Darcy model to combine the Darcy flow and viscous Stokes flow.
The Brinkman model makes it possible to retain continuity of the velocity profile at the
interfaces of porous media that may have permeability in the range e 0 << κ << ∞,
where κ is permeability of the porous medium. The primary difficulty in the coupling of
the Darcy or Brinkman equation with the Navier–Stokes equations is modelling the inter-
face between the porous medium and the free fluid, which remains a somewhat unresolved
problem.

To overcome the difficulties listed above, Beavers and Joseph (1967) have proposed an in-
terface condition ((1.5)). They performed several experiments of laminar flow in a channel
bounded by a porous layer. They found that the viscous shear from the free-fluid region
penetrates the porous medium, ultimately altering the fluid’s velocity distribution in an
intermediate layer across the dividing surface (Figure 1.8). Such a layer has a thickness of
the same order as the characteristic microscale of the porous matrix, typically the inter-
pore distance. Reducing such a layer to a two-dimensional surface (which, for simplicity,
can be taken to coincide with the dividing fluid-porous surface) permits expressing the
interface boundary condition as a slip velocity, that is:

û = 〈û−〉+ K̂
1/2

αBJ

∂û

∂ŷ
, (1.5)

and analogously for ŵ. The velocity components û and ŵ are parallel to the dividing sur-
face, of normal coordinate ŷ (cf. figure 1.8); αBJ is an empirical, order one dimensionless
constant introduced by Beavers and Joseph; K̂ is the permeability of the porous matrix
(a scalar quantity for the an isotropic arrangement of pores and solid inclusions). The
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term 〈û−〉 represents the Darcy velocity through the porous medium, the superscript −
indicating that the variable is evaluated sufficiently below the dividing line/surface, with
angle brackets denoting volume averaging (see later equation (2.121)). Darcy’s law stip-
ulates that the mean velocity in the porous medium, away from boundaries, is linearly
dependent on the pore pressure gradient, that is:

〈û−〉 = −K̂
µ

∂p̂−

∂x̂
, (1.6)

and similarly for the other two components, with µ the dynamic viscosity of the fluid and
p̂− the interstitial pressure.

Saffman (1971); Taylor (1971); Richardson (1971b) was the first to provide a theoretical
justification for Beavers and Joseph’s empirical condition; he considered the Stokes equa-
tions in a domain across the dividing surface and performed asymptotic matching at the
two edges of the interface layer. A few other studies along similar lines were conducted
after Saffman, leading to similar conclusions (Jäger and Mikelić (2001); Lācis and Bagheri
(2017)). The result by Saffman takes the form:

û = −B K̂
µ

∂p̂−

∂x̂
+ λ̂

∂û

∂ŷ
, (1.7)

with B an order one constant used to adapt the permeability of the porous medium to the
geometric interface conditions, and λ̂ (equal to K̂1/2/αBJ in Beavers and Joseph’s nota-
tions) a slip coefficient. In the equation above, the dimensional quantity K̂, homogeneous
to a surface area, is of order ε2 and the quantity λ̂, a length, is of order ε, and this reason
prompted Saffman to discard the term containing the pore pressure gradient and to write
the slip velocity at the porous/free-fluid interface in the form of simple Navier slip (for a
thorough discussion of Navier slip, the reader is referred to Bottaro (2019)).

Conditions such as those proposed by Beavers and Joseph are necessary when the so-called
two-domain approach is employed, i.e., when the free-fluid region is approached by solving
the Stokes or Navier-Stokes equations, and the porous domain is treated by the use of the
Darcy (or more elaborate) macroscopic model. Alternatives to the Beavers and Joseph
condition have been proposed, e.g., in refs. Ochoa-Tapia et al. (2017), Ochoa-Tapia and
Whitaker (1995), and Valdés-Parada et al. (2013).

Instead of the two-domain approach, one can also carry out the solution of the volume-
averaged Navier-Stokes equations across the whole domain (Whitaker (1986)). This latter
one-domain approach has been used successfully by several researchers to treat the inter-
face region (Luminari et al. (2019); Angot et al. (1999); Carbou (2008); Bruneau et al.
(2020)). Recntly, A novel one-domain approach for modeling flow in a fluid-porous system
including inertia and slip effects has proposed (Valdés-Parada and Lasseux (2021)). In
this novel approach an operational average description of one-phase flow in the classical
Beavers and Joseph configuration including a porous medium topped by a fluid channel
is discussed where it has the form of Darcy’s law with a position-dependent permeability
tensor.
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1.5. The Homogenization Approach

Accurate fluid flow simulation over and through the natural surfaces is challenging if
surface texture exhibits an irregular/rough/compliant/ porous nature. These media are
characterized by periodic/quasi-periodic/non-periodic patterns that possess small-scale
features (having dimensions smaller than the relevant flow scale). These features have a
significant role in the motion of fluid, whose effects cannot be measured/treated entirely
by direct numerical simulations due to the cost required for resolving very fine-grain
coupling detail between fluid and wall/material. Such small details might include the
effect of the surface texture, its porosity, compliance, and the interactions between the
flow of the outer fluid and a different fluid trapped within near-wall micro-cavities. It
is difficult to describe such microstructures geometrically, if not impractical. Thus, in
practice, the small-scale structures are either idealized or simplified, so a rational analysis
methodology can be developed to conduct characterization.
In the above connection, the theory of homogenization is employed as the fundamental
basis for characterization of composite materials. All such materials, regardless of whether
they have been artificially engineered or naturally formed, are composed of several phases
or constituents on a particular spatial scale. Based on this fact, it can be claimed that
the scale to which the material is referred is what decides whether material is treated as
homogeneous or heterogeneous. Within the framework of continuum mechanics, by using
numerical techniques based on physical and mathematical concepts developed within the
scope of computational mechanics, it is now possible to analyze almost any homogeneous
material subjected to some motion results sufficiently close to reality. When working
with composite materials or structures made of two or more materials, each material
that is part of the composite can be described by the physical and chemical properties
governing its behavior, such as elastic, porous, or rigid materials. The majority of the
homogenization techniques developed so far are only applicable for composites that have
a periodic distribution over the entire structure domain so that one element representative
of the composite volume (or unit cell) can be defined. However, in some cases, more than
one kind of periodic domain distribution may form the structure or composite, making
the existing homogenization techniques not suitable for evaluating this type of case in
which more than one recurring configuration occurs.

Concluding from above, one can say that “Homogenization” is an approach that studies
the macro behavior of a medium by its micro properties, see Babuska [1], where he
presents a concept of replication of high-resolution “heterogenous” properties with an
“equivalent homogenous” one. Mei and Vernescu (2010) presented homogenization theory
as an analytical scheme that allows up-scaling the differential equations in multiscale
inhomogeneous media literature.

Briefly, the theory attempts to replace the composite with an endowed microstructure
by an equivalent material without microstructure. It can be achieved by a sequence
of assumptions made in describing the microstructure and in developing the analysis
methodology. Roughly speaking, homogenization is a mathematical method that offers
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formulas for upscaling the differential equations and provides tools for producing rigorous
mathematical convergence proofs (Hornung (1996)).

Many studies evoking different multiscale methods to upscale equations of heterogeneous
medium (Battiato and Tartakovsky (2011); Boso and Battiato (2012); Battiato et al.
(2019)). Nowadays, the effort to achieve predictive understanding across scales is indeed
within reach even for highly heterogeneous systems like porous media, due to the devel-
opment of improved theoretical frameworks and the ever-increasing computational power
available.

1.5.1. Content of Homogenization

Attempts to derive or re-derive the macroscale equations have been applied to numerous
fields of applications in recent decades. A vital tool of the homogenization theory is the
multiscale singular perturbation method (Nayfeh (2008)). At this point, it is useful to
make an imprecise distinction between regular perturbation and singular perturbation
problems before going into further details. On one hand, a regular perturbation problem
is one for which the perturbed problem for small, nonzero values of small parameter ε
is qualitatively the same as the unperturbed problem for ε = 0. One typically obtains
a convergent expansion of the solution with respect to ε, consisting of the unperturbed
solution and higher order corrections. On the other hand, a singular perturbation problem
is one for which the perturbed problem is qualitatively different from the unperturbed
problem. One typically obtains an asymptotic, but possibly divergent, expansion of the
solution, which depends singularly on the parameter ε. Although singular perturbation
problems may appear atypical, they are the most interesting problems to study because
they allow one to understand qualitatively new phenomena.

The multiscale singular perturbation method proposed by Nayfeh (2008) is being used
extensively in a variety of problems in applied analysis, such as in many different fields
of physics, mathematics, engineering, mechanics. The method is also used for various
properties of interest range from the thermal conductivity of a heterogeneous medium to
the stiffness tensor of an elastic multi-layered material, from the permeability of a porous
matrix to the magnetic conductivity of some electrically conducting media. However,
there are many other fields where homogenization is relevant other than described above.
For example, the majority of applications of the theory have so far dealt with problems in
solid mechanics, and techniques to homogenize material properties, including approaches
to statistically characterize the microstructure when local properties have a random dis-
tribution, are described in a large number of monographs and books (see, e.g., Torquato
and Haslach Jr. (2002) and reference therein).
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1.5.2. The Evolution of Homogenization Techniques

The evolution of the different multiscale homogenization techniques starts with the ef-
fective medium approximation of Eshelby (1957) and follows on until what we know
nowadays as the multiscale homogenization. The asymptotic homogenization theory laid
the foundation for studying composite materials in media with periodic structures using
a multiscale approach. This theory has proven to be a powerful technique for analyzing
structural arrangements in which two or more length scales naturally exist. These two
scales are the microscopic scale of inter-second phase spacing and the macroscopic scale
characterizing the structure’s overall dimensions. Three main monographic books on the
subject laid the mathematical basis for the method and emphasized its application in the
solution of mechanical problems by Sánchez-Palencia (1980), Auriault et al. (2010), and
Bensoussan et al. (2011). Bensoussan et al. (2011) developed an asymptotic expansion
of the solution in terms of ε (a ratio between micro and macro-scales). If the structure
period is small compared to the macro-region size in which the system is to be studied,
the asymptotic analysis is used to expand the link between microscopic and macroscopic
descriptions. The asymptotic problem is formulated in mathematical terms as a family
of partial differential operators, depending on the small parameter ε. The partial differ-
ential operators may be time-independent or time-dependent, linear or nonlinear. These
operators have coefficients that are periodic functions in all or some variables with peri-
ods proportional to ε. Since ε is assumed to be small compared to 1, we have a family
of operators with rapidly oscillating coefficients. The two-scale process introduced in
the partial differential equations of the problem produces x (microscopic space variable)
and X (macroscopic space variable). Generally speaking, equations in x are ’solvable’
if the microscopic structure is periodic, leading to a ’rigorous’ deduction of the macro-
scopic equations (in X) for the global behavior. ’Rigorous’ is here understood in the
sense of ’straight-forward if the two-scale scheme is postulated’ and, in most problems, a
mathematical proof of the convergence of solutions to the “homogenized solutions” must
be done. The detailed procedure of two-scale expansion is illustrated in the subsequent
chapters.

Multiscale homogenization has emerged as one of the most promising methods to compute
composite structures’ response. In the last years, various direct micro-macro methods,
also known as global-local analysis, have been developed (Lene and Leguillon (1982); De-
vries et al. (1989); Guedes and Kikuchi (1990); Ghosh et al. (1995); Fish et al. (1997);
Lācis and Bagheri (2017); Lācis et al. (2020); Sudhakar et al. (2019); Bottaro (2019),
and references their in) as the evolving result of applying the asymptotic homogenization
theory. These approaches estimate the relevant stress-strain relationship at a macroscopic
point by performing calculations on a separate scale determined by a macroscopic point
using different methods to compute the different scales’ structural response. Suquet et al.
(1983) laid down the basic principles of homogenization to find the constitutive equa-
tions for the averaged effective or macroscopic properties of heterogeneous material. The
establishment of multiscale homogenization in this study can be summarized:

• Representation Volume Element (RVE): RVE statistically represents the whole
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Figure 1.9: (a) Full macroscopic domain, (b) microscopic domain as a representative volume
element.

microstructure under consideration. The size of the representative volume element
(RVE) should be large enough to contain a sufficient number of micro-heterogeneities
whose constitutive behavior is assumed to be known.

• Derivation of Auxiliary Systems of Equations: The auxiliary system needs to
be derived and solved either numerically or analytically, to obtain effective macro-
scopic properties such as permeability, elasticity, slip velocity, and transpiration.

• Effective Boundary Conditions: Write the effective boundary conditions with
the effective properties obtained by auxiliary problems. These effective conditions
close the macroscopic problem. Therefore, the macroscopic problem is then solved
together with the effective boundary conditions to analyze heterogeneous surfaces’
effect on the fluid flow.

1.5.3. Representative Volume Element (RVE)

The multiscale homogenization is based on the use of an RVE, as mentioned in the section
above. The RVE is a representative domain used to evaluate the corresponding effective
properties of the homogenized macroscopic model. In an average context, the RVE term
refers to a microstructural sub-region that represents the entire microstructure. The
efficient moduli of composites are presumed to be independent of assumed homogeneous
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tractions or displacements on the RVE boundary since they must have a sufficient number
of inclusions.
According to the literature review by Starzewski (1998), the RVE is well-identified for
two situations given below;

• When a periodic microstructure contains a unit inclusion (i.e., the volume portion
is selected to include a single inclusion in a matrix phase), as displayed in figure 1.9.

• When a volume contains a significant number of micro-scale components with sta-
tistically homogeneous and ergodic properties (cf. Chapter 2 for the non-uniform
arrangement of porous media.)

1.5.4. Features of Multiscale Homogenization

As reported by Kouznetsova et al. (2002), multi-scale computational homogenization tech-
niques have many features that make composite material analysis very convenient. Below
are some of the most notable features:

• The macroscopic constitutive behavior is obtained from the solution of the related
microscopic auxiliary problem, so no explicit assumptions on the form of the macro-
scopic local constitutive equations are needed.

• The techniques can be implemented for any material behavior, including mechani-
cally nonlinear and time-dependent behavior.

• Deformations and rotations to be incorporated at both the micro and macro levels.

• It is possible to introduce detailed microstructural information, including the mi-
crostructure’s physical and geometrical evolution, into the macroscopic analysis.

• Consent to use almost every simulation approach to compute the numerical solution
on a microscale.

1.6. Overview of the Present Work

The present study is devoted to describing an up-scaling method to derive the high-order
effective conditions for micro-textured walls such that these structures can be replaced
in a practical application by a smooth, fictitious surface over which the flow can slip and
through which transpiration is possible, resulting in the same result as the actual surface
texture. This method allows microscale effects to be captured, avoiding the prohibitively
expensive numerical resolution of microscopic flow structures. The considered structures
pattern is presumed to repeat itself periodically over a scale significantly shorter than a
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characteristic dimension of the macroscopic flow (as in most previous studies); this makes
the problem suitable for a multiple-scale description such as that employed by Mei and
Vernescu (2009). As opposed to the literature discussed above, the effective conditions
obtained here are correct to the higher than the first order in terms of a small parameter
ε (the ratio of microscopic to macroscopic length scales). Laminar and turbulence flow
configurations are considered for different problems such as: (i) Hiemenz stagnation point
flow over rough and prous walls, (ii) flow over backward facing step with porous block,
and (iii) pressure-driven flow in a periodic channel. Accuracy and functionality of the
developed conditions are checked by comparison of the model solutions with our own
fully resolved simulations and with the literature.

1.7. Outline of the Dissertation

In Chapter 2, effective boundary conditions capable of modeling a regularly microstruc-
tured wall, correct to third order in ε, are derived by homogenization technique for an
incompressible fluid flow over a rough wall with periodic micro-indentations. The strat-
egy opted here is similar to the one presented by Sudhakar et al. (2019). The coefficients
involved in the effective conditions are non-empirical and computed numerically from
the auxiliary problems. In the same chapter, the conditions for a porous-fluid interface
(whose location must be set), are also derived. All the coefficients of these conditions
are computed numerically (see numerical settings in “Appendix A.1."). and reported in
tabular and graphical form for possible future use. In the end of Chapter 2, mathematical
formulation of the of the flow over compliant riblets is developed to set the framework
in order to optimize their geometrical and structural properties, for drag reduction pur-
poses. In Chapter 3, applications of the effective conditions representing the effect of
rough wall and interfacial conditions containing the porous medium (specific shapes and
arrangements) effects on overlaying fluid are carried out to check their accuracy and to
test their functionality for different flow situations. The results are compared against fully
feature-resolving simulations and with literature to demonstrate the approach’s accuracy
even for situations beyond the formal domain of validity of the conditions. In chapter 4,
main conclusions are summarized and suggestions are provided for future work.



MICROSCOPIC PROBLEMS

2.1. Summary

This chapter describes the mathematical modeling of two problems; (i) the fluid flow over
a rough wall, and (ii) the flow over and through a porous medium where the following
task are performed:

1. Effective boundary conditions, correct to third order in a small parameter ε, are
derived by homogenization theory for the motion of an incompressible fluid over
a rough wall with periodic micro-indentations. A multiple scale expansion of the
variables allows recovering at leading order, the usual Navier slip condition. At next
order the slip velocity includes a term arising from the streamwise pressure gradient;
furthermore, a transpiration velocity O(ε2) appears at the fictitious wall where the
effective boundary conditions are enforced. Additional terms appear at third order
in both wall-tangent and wall-normal components of the velocity.

2. Interface conditions at the dividing surface (interface between a free-fluid and a
porous region) are of utmost importance when a two-domain approach is used to
treat the coupled problem. Using homogenization theory, intefacial conditions are
derived here; they are akin to the classical Beavers-Joseph-Saffman conditions, the
difference being that the coefficients which appear in the fluid-porous matching
relations stem from the solution of microscopic, Stokes-like problems in a cell around
the dividing surface with periodic conditions along the interface-parallel directions,
and do not need to be fixed ad-hoc. The case of isotropic porous media is considered,
and the effective coefficients are provided for both two- and three-dimensional grains,
for varying porosity. Parametric variation as a function of variable porosity is also
done in this section and compared with previous literature.

3. Generalized Navier slip boundary conditions for small-scale, deformable riblets, em-
bedded within the viscous sublayer of a turbulent boundary layer, capable of adapt-
ing to the overlying motion are developed in this example. The contribution is ded-
icated to studying the interface problems, in both the fluid and the solid domains,
for prototypical triangular and blade riblets made of a linearly elastic material. The
outcome of the work is to obtain the macroscopic equations ruling the fluid-solid
interactions, plus the effective coefficients (or convolution kernels, by virtue of the
time-dependent nature of the fluid-solid coupling).
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Figure 2.1: Sketch of a regularly microstructured surface with close-up of a unit cell.

2.2. Mathematical Formulation of Two-Dimensional Flow over
a Rough Wall

A regularly microstructured two-dimensional surfaces are considered with Cartesian coor-
dinates. The wall has a characteristic scale of microscopic length equal to l (say, pattern
periodicity); the scale of macroscopic length is L (say, half-thickness of the channel, or
flat plate length). In terms of the small parameter ε = l/L, the presence of two charac-
teristic dimensions makes the problem amenable to a two-scale expansion. The situation
is schematized in 2.1. It is possible to set up two domains, one macroscopic, outer one
(with variables denoted by capital letters) and one microscopic, one inner (small letters).

A matching in velocity and traction vectors between the two domains must be enforced
and, anticipating the scalings of inner and outer velocities, we formally have

lim
Y→0

U = lim
y→∞

εu, (2.1)

and similarly for traction. In actual numerical practice the outer, effective boundary
conditions will be enforced at some vertical position (as an alternative to the expensive
alternate of computing all details of the flow fields within the rough pattern) denoted Y ,
with the corresponding inner velocity evaluated at ȳ = Y/ε, for the condition to read

U|Y=Y = εu|y=ȳ. (2.2)

The goal of this section is to formulate the effective boundary conditions for the outer
flow, pushing the development beyond the leading order Navier slip term. Such conditions
will depend on the inner flow regime and geometry of the roughness elements.
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To set up the small-scale problem we need to normalize the equations properly. The flow
in the inner domain is driven by a dimensional force, per unit surface area, which we
will indicate for two dimensional case as Ŝ=(ŜT , ŜN), applied in ȳ (homogeneous and
steady state). The superscripts T and N indicate, respectively, the tangential and the
normal component of this force. Since the shear component of Ŝ drives the flow in the
roughness layer, the velocity scale there is U = O(ŜT l/µ), with µ the dynamic viscosity
of the fluid. Using l as inner length scale, l/U as time scale, and µU/l (i.e. as pressure
scale U l/µ << 1), the dimensionless equations in the inner region read:

∂ui
∂xi

= 0, R
(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ∂2ui
∂x2

j

. (2.3)

The quantity R is the microscopic Reynolds number, defined by R = ρU l/µ, ρ being the
fluid density, ui representing the dimensionless velocity vector and xi are the dimensionless
directional coordinates.

The velocity scale in the outer domain is Uout (equal, for example, to the bulk velocity

in a macroscopic channel), so that S12 = ŜTL

µUout
and S22 = ŜNL

µUout
are the dimensionless

traction components in Y = Y . By introducing also the outer time and pressure scales,
L/Uout and ρU2

out (assume ρU2
out), the dimensionless equations in the macroscopic domain

become:
∂Ui
∂Xi

= 0,
(
∂Ui
∂T

+ Uj
∂Ui
∂Xj

)
= − ∂P

∂Xi

+Re−1∂
2Ui
∂X2

j

. (2.4)

with Ui = (U, V ) , Xi = (X, Y )) and Re = ρUoutL/µ, Reynolds number of the outer flow.
The ratio between inner and outer length scales yields Xi = εxi (where xi = (x, y)) and
this suggests expressing the variables in the near-wall region as power series expansions
in terms of the small parameter ε, i.e.

φ = φ(0) + εφ(1) + ε2φ(2)..., (2.5)

with φ = ui, or p. Whereas the outer flow variables (Ui, P ) depend only on the macroscopic
independent variable Xi plus eventually time T , the inner flow variables, at all orders in
ε, are assumed to depend on both Xi and xi, plus time t.
Thus, in system 2.3 we need to pose:

∂

∂xi
= ∂

∂xi
+ ε

∂

∂Xi

. (2.6)

Which provide the equation at zero order in ε is:

O(ε0)

∂u
(0)
i

∂xi
= 0, −∂p

(0)

∂xi
+ ∂2u

(0)
i

∂x2
j

+ F = 0 (2.7)



29

where F = δ(y − Y)Si2 = 0 is added by following the approach of Lācis et al. (2020) in
order to have equation which should be valid above and below Y .

U is chosen as U = εUout so that R = ε2Re. With the present choice, inner and outer
time scales coincide, i.e. t = T . The (arbitrary) position ȳ = Y/ε where the traction
force impressed by the outer flow, modeled via a Dirac delta function, is assumed to
apply can be taken on the outer edge of the wall micro-structure, i.e. Y = ȳ = 0 (cf.
2.1). Any other position different from ȳ = 0 is equally acceptable1) and applying the
effective boundary condition in the macroscopic problem at a position Y 6= 0 leads to
a solution endowed with the same formal accuracy as the choice Y = 0. In two and
three-dimensional configurations, the components of the dimensionless traction vector S
are respectively defined as:

S12 = ∂U

∂Y
+ ∂V

∂X
, S22 = −ReP + 2∂V

∂Y
. (2.8)

The system of equations at first order in ε is:
O(ε1)

∂u
(1)
i

∂xi
= −∂u

(0)
i

∂Xi

, −∂p
(1)

∂xi
+ ∂2u

(1)
i

∂x2
j

= ∂p(0)

∂Xi

− 2 ∂
2u

(0)
i

∂Xjxj
. (2.9)

Microscopic domain must hold periodicity along x, therefore, both microscopic systems
must be solved subject to periodic conditions along tangential and crossflow direction,
with “no-slip” at y = ywall, and vanishing “stress” at y → ∞. For two-dimensional, the
latter reads;

∂u(0)

∂y
+ ∂v(0)

∂x
=− p(0) + 2∂v

(0)

∂y
= 0,

∂u(1)

∂y
+ ∂v(1)

∂x
=− ∂u(0)

∂Y
− ∂v(0)

∂X
,

−p(1) + 2∂v
(1)

∂y
=− 2∂v

(0)

∂Y
.

(2.10)

Once the solutions of zero and first order systems are found, the macroscopic, effective
conditions (see equations 2.1 and 2.2) for the outer flow at the fictitious wall in Y = 0
are:

Ui(X, 0, t) = ε

[∫ 1

0
(u(0)

i + εu
(1)
i )

∣∣∣∣
y=0

dxi

]
+O(ε3). (2.11)

1This is true provided we remain in the vicinity of the roughness and do not incur in numerical
instabilities in the solution of the macroscopic problem by some unwise choice of ȳ. A choice can be
unwise if, for example, the Navier slip coefficient becomes negative i.e. the two virtual origins, for the
longitudinal and the transverse motion, sit above the ȳ with reverse flow in the region underneath the
virtual origin. This causes numerical problems because of loss of ellipticity (Achdou et al. (1998)
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Figure 2.2: Isolines of u† (left), v† (center) and p†. The domain has been cut at y = 1.5 to focus
on the behavior close to the roughness, even if in the actual computation y∞ = 5. The small
irregularity visible in the isolines of p† is related to the presence of the delta function in y = 0.

The zero-order solution
System 2.7 is linear and this permits the search of a solution of leading order in the form:

φ(0) = φ†(x, y)S12 + φ‡(x, y)S22, (2.12)

for the generic dependent variable φ(0). The ansatz yields two decoupled systems for the
unknowns.

System 1: Forcing by S12

∂u†i
∂xi

= 0, ∂p†

∂xi
+ ∂2u†i
∂x2

j

+ δ(y)δ1i = 0. (2.13)

System 2: Forcing by S22

∂u‡i
∂xi

= 0, ∂p‡

∂xi
+ ∂2u‡i
∂x2

j

+ δ(y)δ2i = 0. (2.14)

These two systems are endowed with boundary conditions of “no-slip” and “zero stress”
at y = ywall and y →∞, respectively.

Considering, for example, a triangular microscopic roughness element, the numerical ap-
proach is readily available for the solutions of the systems 2.13 and 2.14. An example of
the system 1 solution is shown in figure 2.2 in the form of isolines for each unknown of the
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system 2.13. The flow is driven by a forcing of Dirac delta function (see appendix A.1.3.)
in x-direction at y = 0. Therefore the physical interpretation of these solutions is the flow
response to delta forcing (to match the inner and outer solutions) in the horizontal direc-
tion at y = 0. To obtain reliable results, the numerical domain extends from y = −0.5
(roughness troughs) to y = 5; for the solution to be independent of height y, the latter
value, denoted y∞ in the following, must be taken sufficiently far from the roughness crest
at y = 0. We have verified for the geometry under consideration that the solution near
the roughness does not change when y∞ is taken farther away from 3. and it is constant
farther away from the roughness crest. By averaging the streamwise velocity distribution
along x in y = 0 it is found that λx :=

∫ 1
0 u
†(x, 0) dx = 0.0780, whereas the x-averaged

values of v† and p† at y = 0 are equal to zero as also shown by symmetric contour plots
of v† and p† around the vertical centre axis. It goes without saying that, had we chosen
a value of ȳ different from 0, we would have found a different result for λx.

System 2 has a simple solution i.e. u‡ = v‡ = 0, and p‡x = 0 together with p‡y = δ(y).
From the definition of the Heaviside step function, dH/dy := δ(y), and the boundary
condition p‡ = 0 at y →∞, it is simple to find p‡ = H(y)− 1, i.e. p‡ is identically equal
to −1 when y < 0, and it vanishes for y > 0. Eventually, we have

∫ 1

0
u

(0)
i (x, 0, t) dx = λxSi2δi1,

∫ 1

0
p(0)(x, 0−, t) dx = ReP − 2∂V

∂Y
. (2.15a)

The first-order solution:
On account of 2.12, the linear system of equations 2.9 becomes

∂u
(1)
i

∂xi
= −u†j

∂S12

∂Xj

, −∂p
(1)

∂xi
+ ∂2u

(1)
i

∂x2
j

= p†
∂S12

∂Xi

+ p‡
∂S22

∂Xi

− 2∂u
†
i

∂x

∂S12

∂X
− 2∂u

†
i

∂y

∂S12

∂Y
,

(2.16)
subject to the condition at y →∞ :

∂u(1)

∂y
+ ∂v(1)

∂x
= −u†j

∂S12

∂Xj

, −p(1) + 2∂v
(1)

∂y
= −2v†∂S12

∂Y
. (2.17)

Thus, the solution has a generic form:

φ(1) = φ̂1(x, y)∂S12

∂X
+ φ̆1(x, y)∂S22

∂X
+ φ̂2(x, y)∂S12

∂Y
+ φ̆2(x, y)∂S22

∂Y
. (2.18)

Equipped with “no-slip” conditions at y = ywall and periodicity at x, four separate systems
can be set up, see below:

System 3: Forcing by gradient of S12

∂ûij
∂xi

= −u†j, −∂p̂j
∂xi

+ ∂2ûij
∂x2

k

= δijp
† − 2∂u

†
i

∂xj
,

subject to − p̂jδi2 + ∂û2j

∂xi
+ ∂ûij

∂y
= −v†δij − u†δ2j at y →∞.

(2.19)
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Figure 2.3: Isolines of û1 (left), v̂1 (center) and p̂1.

System 4: Forcing by gradient of S22

∂ŭij
∂xi

= 0, −∂p̆j
∂xi

+ ∂2ŭij
∂x2

k

= δij(H(y)− 1),

subject to − p̂δi2 + ∂û2j

∂xi
+ ∂ûij

∂y
= 0 at y →∞.

(2.20)

Systems 3 (for i = 1, 2; j = 1, 2) to 4 (i=1, 2; j=1) are determined by the same numerical
method used so far; figures 2.3 to2.5 display the fields. The only results of interest are
m21 :=

∫ 1
0 û21(x, 0) dx = −0.0058, and m12 :=

∫ 1
0 ŭ11(x, 0) dx = 0.0058. Systems 4 (for

i = 1 , 2; j = 2) admits the simple analytical solution ŭ12 = ŭ22 = 0 and p̆2 = y H(−y).
An approximation of the macroscopic slip and transpiration velocity components at Y = 0
is now available using the equations 2.11. To close this part, we observe that
• We could expand the solution easily to the next order, including inertial terms.
• In order to determine slip and transpiration conditions for the outer flow, the above

method is not the only one that can be built to mimic the effect of a rough wall.
An alternative approach is described in the next subsection, following the lines initiated
by Luchini et al. (1991) in the case of riblets. The concentrated volume force in equations
2.7 at ȳ is absent in this second approach and as such, there is no need to approximate
a delta or unit step distribution using an extremely dense mesh around ȳ. The results
obtained in this subsection will be reproduced next with this alternative approach, and
extended to the subsequent ε order.
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Figure 2.4: Isolines of ŭ1 (left), v̆1 (center) and p̆1.

Figure 2.5: Isolines of û2 (left), v̂2 (center) and p̂2.
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2.2.1. The Alternative Approach

Here, the same inner and outer scales used in the last section are employed here. The
main difference in this approach and what was done in the previous section is that the
equations do not have a source term now, and the flow is assumed to be driven by the
S12 horizontal shear traction in y →∞ defined in Luchini et al. (1991) and Kamrin et al.
(2009). Notice that the traction vector at y∞ differs from (S12, S22), the latter denoting
the force on y = ȳ (with ȳ in the previous section set to zero). The outer limit (boundary)
at y = y∞ is taken far enough from the rough wall to ensure that the results have lost
memory of the rough-wall shape at the outer edge of the microscopic domain, i.e. the
solution there becomes x-independent. In the present approach, this value of y∞ can then
be taken to coincide with the position ȳ where matching (2.2) is applied. At the outer
edge of the domain the conditions are thus

∂u

∂y
+ ∂v

∂x
= S12, −p+ 2∂v

∂y
= S22. (2.21)

System (2.3) is the inner system of equations, equipped with no-slip conditions at y = ywall
and periodicity at x. As before (see last section), we assume a series expansion in powers
of ε for the dependent variables and plug in the inner flow equations, obtaining the
homogeneous Stokes system for the leading order variables. The traction imposed by
the outer flow at y∞ is transferred to the order zero microscopic variables, i.e.

∂u(0)

∂y
+ ∂v(0)

∂x
= S12, −p(0) + 2∂v

(0)

∂y
= S22. (2.22)

At higher orders we have:

∂u(i)

∂y
+ ∂v(i)

∂x
= −∂u

(i−1)

∂Y
− ∂v(i−1)

∂X
, −p(i) + 2∂v

(i)

∂y
= −2∂v

(i−1)

∂Y
i = 1, 2, .... (2.23)

The zero-order solution
Using the result of the Bolaños and Vernescu (2017), the zero-order solution is:

u
(0)
i = u†i (x, y)S12, (2.24)

p(0) = p†(x, y)S12 − S22. (2.25)

The † variables used here are different from those introduced in the previous section. For
the sake of convenience, we maintain the same notation, and will do the same with the
variables denoted by •̂ and •̆. The system in terms of † variables is the homogeneous
Stokes system and the boundary conditions for y∞ are given below:

∂u†

∂y
+ ∂v†

∂x
= 1, −p† + 2∂v

†

∂y
= 0. (2.26)
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Figure 2.6: Isolines of u† (left), v† (center) and p†.

The solution for the triangular roughness geometry of this system (written in † variables)
is given in figure 2.6. In particular, it is found that y∞ = 5 is taken to be at the outer
edge of the unit cell, where γx := u†(x, 5) = 5.07778 and v†(x, 5) = p†(x, 5) = 0. It should
also be noted that the isolines of v† and p† are similar to those shown in figure 2.2 (central
and right Frames). The isolines of u† is different because of the different forcing in both
cases but lead to the same solution of

∫ 1
0 u
†dx at y = 0.

The first-order solution
The system at O(ε) is

∂u
(1)
i

∂xi
= −u†j

∂S12

∂Xj

, −∂p
(1)

∂xi
+ ∂2ui
∂x2

j

= p†
∂S12

∂Xi

− ∂S22

∂Xi

− 2∂u
†
i

∂x
S12X − 2∂u

†
i

∂y
S12Y , (2.27)

and at y∞ we have boundary conditions

∂u(1)

∂y
+ ∂v(1)

∂x
= −u†∂S12

∂Y
− v†∂S12

∂X
, −p(1) + 2∂v

(1)

∂y
= −2v†∂S12

∂Y
. (2.28)

The general solution similar to the equation (2.18) reads as:

φ(1) = φ̂1(x, y)S12X + φ̆1(x, y)S22X + φ̂2(x, y)S12Y + φ̆2(x, y)S22Y , (2.29)

and it is possible to set up four additional systems equipped with the same boundary
conditions along the x and on the wall as the previous ones. These new systems read
exactly as systems 3 to 6, with the exception that the H(y) Heaviside function now
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Figure 2.7: Isolines of û1 (left), v̂1 (center) and p̂1.

disappears from the right side of 2.20). The new system 4, for instance, becomes

∂ŭi 1
∂xi

, − ∂p̆1

∂xi
+ ∂2ŭi 1

∂x2
j

= −δij. (2.30)

subject to − p̆δi2 + ∂ŭ2j

∂xi
+ ∂ŭij

∂y
= 0 at y →∞. (2.31)

All the new systems are solved numerically as done previously, except for that relative to
(ŭ12, ŭ22, p̆2) which admits the simple analytical solution ŭ12 = ŭ22 = 0, and p̆2 = y− y∞.
The solution of the system for (û11, û21, p̂1) (equations 36) is displayed in figure 2.7 and,
as expected, the field of û1 is the same as that reported in figure 2.2 (left frame.) We find
that û11(x, 5) = 0 and n21 := û21(x, 5) = −12.89469.
The fields of (ŭ11, ŭ21, p̆1) are identical, to graphical accuracy, to those shown in figure
2.4; the coefficients of interest at ȳ = y∞ = 5 are n12 := ŭ11(x, 5) = 12.89469 and
ŭ21(x, 5) = p̆1(x, 5) = 0. The numerical solution for (û12, û22, p̂2) yields vanishing values
of the fields at y = y∞. The field of û12 does not go to zero monotonically for increasing
y, unlike û22 and p̂2. For y larger than about 1 we observe that û12 becomes uniform in x
and follows closely the quadratic behavior û12 = (y + γx − y∞)(y∞ − y) as also satisfied
analytically.

The coefficients we have found so far are different from those obtained previously and
this is due to the fact that the boundary conditions in the macroscopic problem at the
fictitious wall are now not implemented at Y = εȳ = 0 (as we did in section 2), but at



37

Figure 2.8: Isolines of ŭ1 (left), v̆1 (center) and p̆1.

Table 2.1: Variation of higher-order coefficients with the choice of y∞.

y∞ = ȳ 4 5 6 7 8 9
γx 4.07778 5.07778 6.07778 7.07778 8.07778 9.07778

n12 = −n21 8.31693 12.89469 18.47249 25.05028 32.62806 41.20585

Y = εȳ = εy∞. Thus, Equation (5) reads

U(X, εy∞, t) ≈ εγxS12 + ε2n12
∂S22

∂X
, (2.32)

V (X, εy∞, t) ≈ ε2n21
∂S12

∂X
. (2.33)

Nevertheless, it is easy to compare the results found here with those described in previous
section. Table 1 shows how the coefficients vary as y∞ is modified. All the data matches
very well with either a straight line or a parabola (analytic solution), so the results can
be easily extrapolated to any desired position of ȳ where we choose to match internal and
external solutions.
In particular, we have

n12 = −n21 = ȳ2

2 + λxȳ +m12, (2.34)

γx = dn12

dȳ
= ȳ + λx, (2.35)

with λx = 0.07778 and m12 = −m21 = 0.00581. By setting ȳ = 0 in (2.34) and (2.35), we
recover the coefficients given in last section, up to the error of O(10−4) which we relate
to the approximations made in the distributions of Dirac and Heaviside modeling.
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The results embodied by equations (2.34-2.35) allow us to state that it is necessary to
solve (2.30-2.31) twice and test n12 for two separate values for two-dimensional roughness
elements such as those considered here. For example, to recover the two coefficients λx
and m12 for two different values of ȳ = y∞, see result in figure 3.9.

However, an even better result is available. We observe that in fact,

n12 = −n21 =
∫ 1

0

∫ y∞

ywall

u† dy dx; (2.36)

this implies that the single resolution of the Stokes homogeneous system for the † variables
equipped with (2.26) is sufficient to recover the all coefficients required to write second-
order matching interface conditions, whether enforced at ȳ = y∞ (cf. equations 2.32-2.33)
or ȳ = 0.
This is verified by several other calculations, reported in subsection A.1.5., for various
roughness patterns. The advantage of the strategy described in this section is its simplic-
ity, accuracy and precision; all the numerical results here and in subsection A.1.5. are
assumed to be accurate up to the last decimal digit reported.

Eventually, at Y = 0 the effective conditions to second order read:

U(X, 0, t) = US ≈ ελxS12 + ε2m12
∂S22

∂X
, (2.37)

V (X, 0, t) = VT ≈ ε2m21
∂S12

∂X
. (2.38)

Going to higher order in ε
A higher-order correction can be obtained, and is relatively simple to obtain, in order
to assess the role of convective terms in effective conditions at a large scale. The O(ε2)
microscopic equations are

∂u
(2)
i

∂xi
= Fmass, −∂p

(2)

∂xi
+ ∂2u

(2)
i

∂x2
j

= F xi−mom, (2.39)

subject to the usual “no-slip” and x-periodic boundary conditions, plus

∂u(2)

∂y
+ ∂v(2)

∂x
= −∂u

(1)

∂Y
− ∂v(1)

∂X
, −p(2) + 2∂v

(2)

∂y
= −2∂v

(1)

∂Y
at y∞. (2.40)
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The source terms present in the system of O(ε2) are

Fmass = −û11
∂2S12

∂X2 − ŭ11
∂2S22

∂X2 − û12
∂2S12

∂X∂Y
− û21

∂2S12

∂X∂Y
− ŭ21

∂2S22

∂X∂Y
− û22

∂2S12

∂Y 2 ,

F x−mom =
[
p̂1 − 2∂û11

∂x
− u†

]
∂2S12

∂X2 +
[
p̆1 − 2∂ŭ11

∂x

]
∂2S22

∂X2 +
[
p̂2 − 2∂û12

∂x
− 2∂û11

∂y

]
∂2S12

∂X∂Y

+
[
p̆2 − 2∂ŭ11

∂y

]
∂2S22

∂X∂Y
−
[
2∂û12

∂y
+ u†

]
∂2S12

∂Y 2 +Re

[
u†
∂S12

∂t
+ (u†∂u

†

∂x
+ v†

∂u†

∂y
) (S12)2

]
,

F y−mom =
[
−2∂û21

∂x
− v†

]
∂2S12

∂X2 − 2∂ŭ21

∂x

∂2S22

∂X2 +
[
p̂1 − 2∂û22

∂x
− 2∂û22

∂y

]
∂2S12

∂X∂Y

+
[
p̆1 − 2∂ŭ21

∂y

]
∂2S22

∂X∂Y
+
[
p̂2 − 2∂û22

∂y
− v†

]
∂2S12

∂Y 2 + p̆2
∂2S22

∂Y 2

+Re
[
v†
S12

∂t
+ (u†∂v

†

∂y
+ v†

∂v†

∂y
)(S12)2

]
,

(2.41)
in such a way that the unknown vector g(2) = (u(2), v(2), p(2)) can be written as

g(2) = g1
∂2S12

∂X2 + g2
∂2S22

∂X2 + g3
∂2S12

∂X∂Y
+ g4

∂2S22

∂X∂Y

+g5 S12Y Y + g6
∂2S22

∂Y 2 + g7
∂S12

∂t
+ g8 (S12)2,

(2.42)

with gk where k = 1, ..., 8, leads to eight new auxiliary problems (all equipped with the
same boundary conditions along x at the wall) given below. As was previous case, we are
interested in the constant values at y∞, for k = 1...8, respectively.

System 5: Forcing by S12XX

∂ui1
∂xi

= −û11, −∂p1

∂xi
+ ∂2ui1

∂x2
j

= δi1p̂1 − 2∂ûi1
∂x
− u†i ,

subject to ∂u11

∂y
+ ∂u21

∂x
= −û21 and − p1 + 2∂u21

∂y
= 0 at y∞.

(2.43)

System 6: Forcing by S22XX

∂ui2
∂xi

= −ŭ11, −∂p2

∂xi
+ ∂2ui2

∂x2
j

= δi1p̆1 − 2∂ŭi1
∂x

,

subject to ∂u12

∂y
+ ∂u22

∂x
= −ŭ12 and − p2 + 2∂u22

∂y
= 0 at y∞.

(2.44)

System 7: Forcing by S12XY

∂ui3
∂xi

= −û12 − û21, −∂p3

∂xi
+ ∂2ui3

∂x2
j

= δi1p̂+ δi2p̂1 − 2∂û12

∂x
− 2∂û11

∂y
,

subject to ∂u13

∂y
+ ∂u23

∂x
= −û11 − û22 and − p3 + 2∂u23

∂y
= −2û21 at y∞.

(2.45)
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System 8: Forcing by S22XY

∂ui4
∂xi

= −ŭ21, −∂p4

∂xi
+ ∂2ui4

∂x2
j

= δi1p̆+ δi2p̆1 − 2∂ŭ11

∂y
,

subject to ∂u14

∂y
+ ∂u24

∂x
= −ŭ11 and − p4 + 2∂u24

∂y
= −2ŭ21 at y∞.

(2.46)

System 09: Forcing by S12Y Y

∂ui5
∂xi

= −û22, −∂p5

∂xi
+ ∂2ui5

∂x2
j

= δi2 p̂i − 2∂ûi2
∂y
− u†i ,

subject to ∂u15

∂y
+ ∂u25

∂x
= −û12 and − p5 + 2∂u25

∂y
= −2v̂2 at y∞.

(2.47)

System 10: Forcing by S22Y Y

∂ui6
∂xi

= 0, −∂p6

∂xi
+ ∂2ui6

∂x2
j

= δi2 p̆i,

subject to ∂u16

∂y
+ ∂u26

∂x
= 0 and − p6 + 2∂u26

∂y
= 0 at y∞.

(2.48)

Given that p̆2 = y − y∞ it is simple to find u16 = u26 = 0 and p6 = −(y − y∞)2

2 .

System 11: Forcing by S12t

∂ui7
∂xi

= 0, −∂p7

∂xi
+ ∂2ui7

∂x2
j

= Re(u†i ),

subject to ∂u17

∂y
+ ∂u27

∂x
= 0 and − p7 + 2∂u27

∂y
= 0 at y∞.

(2.49)

System 12: Forcing by (S12)2

∂ui8
∂xi

= 0, −∂p8

∂xi
+ ∂2ui8

∂x2
j

= Re(u†j
∂u†i
∂xj

),

subject to ∂u18

∂y
+ ∂u28

∂x
= 0 and − p8 + 2∂u28

∂y
= 0 at y∞.

(2.50)

The numerical solutions of the systems are computed above at O(ε2) and the non-trivial
results of interest obtained using y∞ = 5 are:

ρx := u11(x, 5) = 218.21,
p12 := 1

Re
u71(x, 5) = −43.64,

p21 := u22(x, 5) = −43.64.
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Table 2.2: Variation of higher-order coefficients with ȳ.

ȳ 4 5 6 7 8 9
ρx 113.01 218.21 374.18 590.94 878.47 1246.77

p12 = p21 -22.60 -43.64 -74.84 -118.19 -175.69 -249.36

With the coefficients in hands, the microscopic second order terms evaluated in y∞ = ȳ = 5
finally is

u(2) = ρx
∂2S12

∂X2 +Re p12
∂S12

∂t
, (2.51)

v(2) = p21
∂2S22

∂X2 . (2.52)

To infer trends for the effective conditions to be applied, for example at the roughness
rim, it is possible to calculate the coefficients at different values of ȳ = y∞. Table 2.2
summarizes the results we have computed and we have verified that they fit cubic curves
to very excellent accuracy.

ρx = 5
3(γx)3 = 5

3(ȳ + λx)3, (2.53)

p12 = p21 = −(γx)3

3 = −1
3(ȳ + λx)3; (2.54)

The coefficients to be used in the macroscopic conditions for U and V for Y = 0 by setting
ȳ = 0, are:

θx = 5
3(λx)3 = 0.00078, (2.55)

q12 = q21 = −(λx)3

3 = −0.00016. (2.56)

Again it is important to stress that the choice ȳ = 0 is just one of many other possibilities.
A different option is always possible for the fictitious wall for example, Lācis et al. (2020)
typically set ȳ slightly above the upper rim of the roughness elements.

2.2.2. The Effect of Two-Dimensional Wall Conditions

The matching interface conditions for two-dimensional micro-indentations are:

U(X, 0, t) = ελxS12 + ε2m12
∂S22

∂X
+ ε3

[
θx
∂2S12

∂X2 +Re q12
∂S22

∂t

]
+O(ε4), (2.57)

V (X, 0, t) = ε2m21
∂S12

∂X
+ ε3q21

∂2S22

∂X2 +O(ε4). (2.58)
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In other words, the X-velocity component at the fictitious Y = 0 wall is O(ε) and the
Y -velocity component is O(ε2). Note that m12 = −m21 > 0 and q12 = q21 < 0.

The shear stress at Y = 0 is observed as

S12 = ε−1

λx
U(X, 0, t) +O(ε), (2.59)

and using continuity, we can write the leading term of the transpiration velocity in Y = 0
as

V (X, 0, t) ≈ −ελy
∂U

∂X
, (2.60)

where
λy = m12/λx, (2.61)

a (positive) transpiration length, as Gómez-de Segura et al. (2018) postulated. It’s λy ≈
.0.0747 with the geometry considered here. By writing out the traction components, it is
possible to write the effective rough-wall conditions (up to second order) as:

U(X, 0, t) ≈ ελx
∂U

∂Y︸ ︷︷ ︸−ε2m12Re
∂P

∂X
+ ε2 (2m12 + λxλy)

∂2V

∂X∂Y
, (2.62)

V (X, 0, t) ≈ ελy
∂V

∂Y︸ ︷︷ ︸ . (2.63)

The underbraces terms in (2.62-2.63) refer to those previously used by Bottaro (2019) and
Lācis et al. (2020) for the purpose of assessing the effect of wall transpiration in the case
of turbulent flow in a regularly corrugated channel. However all of the terms O(ε2) in
equation (2.62) should be included to be formally correct. Equation (2.63) states that in
Y = 0, blowing and suction occur through the fictitious wall and that the location where
the vertical velocity vanishes is a penetration distance equal to about ελy below Y = 0.
Also note that if the rough surface is impermeable, the V integral must vanish over the
whole Y = 0 plane.

2.2.3. Three-Dimensional Wall Conditions: Flow over a Rough Wall

A regularly three-dimensional microstructured rough wall is considered in this section.
The micro and macroscopic dimensional coordinates xi = (x1, x2, x3) = (x, y, z) and
Xi = (X1, X2, X3) = (X, Y, Z) , y and Y being orthogonal to the mean surface plane.
These independent variables have been scaled similarly to what was proposed in the two-
dimensional case. A unit cell is defined in a box which extends from y = ywall(x, z) to
y →∞; along the wall parallel directions, it is assumed that the representative roughness
element (in this case cone and cylinder) is contained in a rectangular box, with periodic



43

Figure 2.9: (a) Sketch of the conical microstructured surface with a unit cell (three-dimensional
box on the right corner); (b) Two-dimensional view of the inline arrangement of cones; (c) Two-
dimensional view of staggered arrangement of cones with the framework of the unit cells of each
arrangement.

conditions which apply along x and z. All microscopic coordinates xi have been normal-
ized with microscopic length scale l and are thus dimensionless. The dependent variables
are expanded in power series of the small parameter ε = l/L, and following a similar
pattern defined in a two-dimensional case.

The whole physical domain is divided into two regions; the inner and outer one, where
the inner region goes from the wall to y →∞ whereas the outer region sits above, i.e., it
goes from Y = 0+ to Y = Ymax with Ymax a function of the problem considered. In the
inner and outer region, the dimensionless equations are the same as described previously.
The component of outer forcing term Si2 in this case are;

S12 = ∂U

∂Y
+ ∂V

∂X
, S22 = −ReP + 2∂V

∂Y
, S32 = ∂W

∂Y
+ ∂V

∂Z
, (2.64)

If we plug the series of ε in the inner flow equation, we obtain a homogeneous Stokes
system for the leading order variables (just like in the two-dimensional settings of the so
called alternative approach), subject to the boundary condition at y∞:

O(ε0)

∂u(0)

∂y
+ ∂v(0)

∂x
= S12,

∂w(0)

∂y
+ ∂v(0)

∂z
= S32, −po + 2∂v

(0)

∂y
= S22, (2.65)

assuming that the outer traction acts on the field at leading order. On account of linearity,
as a consequence, the following assumptions for unknowns can be set:

u
(0)
i = u†iS12 + u‡iS32, p(0) = p†S12 + p‡S32 − S22. (2.66)

After substituting this solution into the Stokes system of leading order and in associated
boundary conditions, the following systems are obtained:
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System 13: Forcing by S12

∂u†i
∂xi

= 0, −∂p
†

∂xi
+ ∂2u†i
∂x2

j

= 0,

subject to ∂u†

∂y
+ ∂v†

∂x
= 1, ∂w†

∂y
+ ∂v†

∂z
= 0 and − p† + 2∂v

†

∂y
= 0 at y∞,

(2.67)

together with u†i = 0 at y = ywall.

System 14: Forcing by S12

∂u‡i
∂xi

= 0, −∂p
‡

∂xi
+ ∂2u‡i
∂x2

j

= 0,

subject to ∂u‡

∂y
+ ∂v‡

∂x
= 0, ∂w‡

∂y
+ ∂v‡

∂z
= 1 and − p‡2 + 2∂v

‡
2

∂y
= 0 at y∞,

(2.68)

together with u†i = 0 at y = ywall. As far as normal stress force S22 is concerned, this has
already been accounted for by expressing p(0) as given in (2.66).
The system of order one is:
O(ε1)

∂u
(1)
i

∂xi
= −∂u

(0)
i

∂Xi

, −∂p
†(1)

∂xi
+ ∂2u†i

(1)

∂x2
j

= ∂p(0)

∂Xi

− 2 ∂2u
(0)
i

∂xj∂Xj

,

subject to − p(1)δi2 + ∂v(1)

∂xi
+ ∂u

(1)
i

∂y
= −∂v

(0)

∂Xi

− ∂u
(0)
i

∂Y
at y∞.

(2.69)

By using a solution of order zero system, the system of order one becomes:

∂u
(1)
i

∂xi
= −u†i

∂S12

∂Xi

− u‡i
∂S32

∂Xi

,

−∂p
(1)

∂xi
+ ∂2u

(1)
i

∂x2
j

= p†
∂S12

∂Xj

δij + p‡
∂S32

∂Xj

δij −
∂S22

∂Xj

δij − 2∂u
†
i

∂xj

∂S12

∂Xj

− 2∂u
‡
i

∂xj

∂S32

∂Xj

,

subject to − p(1)δi2 + ∂v(1)

∂xi
+ ∂u

(1)
i

∂y
= −v†∂S12

∂Xi

− v‡∂S12

∂Xi

− u†i
∂S12

∂Y
− ui

∂S32

∂Y
at y∞,
(2.70)

together with periodicity in x and z and no-slip at the wall.
The linear system (2.70) admits a solution in the form:

u
(1)
i = ûij

∂S12

∂Xj

+ ũij
∂S32

∂Xj

+ ŭij
∂S22

∂Xj

, p(1) = p̂j
∂S12

∂Xj

+ p̃j
∂S32

∂Xj

+ p̆j
∂S22

∂Xj
(2.71)

Three sets of problems arise if we substitute the above solution in the system of order one.
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System 15: Forcing by gradient of S12

∂ûij
∂xi

= −u†j,−
∂p̂j
∂xi

+ ∂2ûij
∂x2

k

= p†δij − 2
∂u†j
∂xj

,

subject to − p̂jδi2 + ∂û2j

∂xi
+ ∂ûij

∂y
= −v†δij − u†jδi2 at y∞.

(2.72)

System 16: Forcing by gradient of S32

∂ũij
∂xi

= −u‡j,−
∂p̃j
∂xi

+ ∂2ũij
∂x2

k

= p‡δij − 2
∂u‡j
∂xj

,

subject to − p̃jδi2 + ∂ũ2j

∂xi
+ ∂ũij

∂y
= −v‡δij − u‡jδi2 at y∞.

(2.73)

System 17: Forcing by gradient of S22

∂ŭij
∂xi

= 0,−∂p̆j
∂xi

+ ∂2ŭij
∂x2

k

= −δij,

subject to − p̆jδi2 + ∂ŭ2j

∂xi
+ ∂ŭij

∂y
= 0 at y∞.

(2.74)

The other boundary conditions for •̂, •̃ and •̆ variables stem simply from no-slip at ywall
and periodicity along spatial direction. After solving microscopic, Stokes-like problems,
the solution can easily be assembled to yield an effective condition for the macroscopic
problem at Y = εy∞ (like in the case of a two-dimensional problem). This condition can be
easily transferred into a plane positioned at Y = 0 (tangent to the rim of roughness). This
condition will turn out to be an extended Navier slip condition, including at higher-order
a blowing/suction term.

The case considered here is conical roughness (it is clear that cones are isotropic embedded
in the (x, z)−plane) where the cone’s rim is at y = 0. The reason of this conical shape
type roughness is; it is simple isotropic shape to test the functionality and the accuracy of
our high-order effective boundary conditions developed for three-dimensional rough walls.
All equations at order zero and one have been solved numerically by the use of COMSOL
Multiphysics (ww.comsol.com). The solutions of the system of variables •†, •̂, •̃ and •̆ in
tabular form are given in table 2.4. Where the parameters of interest n21 =

∫ 1
0
∫ 1
0 û12 dzdx,

n12 =
∫ 1

0
∫ 1

0 ŭ11 dzdx and u†(= λx + y∞) are listed as function of y∞ and H/D. All other
coefficients which are not reported in the table simply vanish or behave symmetric about
vertical mid plane located at (x, y) (or (z, y))-plane.

Table 2.3 shows the variation of parameters against y∞ and for each H/D. All the data
matches well with either a straight line or a parabola (like in the previous two-dimensional
case), so the results can easily be extrapolated to any desired location of ȳ where we want
to compare internal and external solutions.
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2.2.4. Fixing the Boundary Conditions at the Fictitious Wall

The dimensionless effective boundary conditions for the outer flow to be enforced on the
plane of the roughness element’s crest, which is assumed to be Y = 0 are:

U(X, 0, t) = ελxS12 + ε2m12S22X +O(ε3), (2.75)

V (X, 0, t) = ε2m21S12X +m23S32Z +O(ε3), (2.76)

W (X, 0, t) = ελzS32 + ε2m32S22Z +O(ε3). (2.77)
For the isotropic roughness indentations, the conditions further simplify by replacing
λx = λz = λ andm21 = m12 = m23 = m32. It should be noted that, since the transpiration
velocity V is of order two in the small parameter ε, equations (2.75)-(2.77) can be re-
written to the same formal order of accuracy, as follows:

U(X, 0, t) = ελ
∂U

∂Y
+ ε2m12Re

∂P

∂X
+O(ε3), (2.78)

V (X, 0, t) = ε2m12
∂2V

∂Y 2 +O(ε3), (2.79)

W (X, 0, t) = ελ
∂W

∂Y
+ ε2m12Re

∂P

∂Z
+O(ε3). (2.80)

From these it is easy to see that at the virtual wall it is;

∂U

∂X
+ ∂W

∂Z
= −∂V

∂Y
= ελ

[
∂2U

∂X∂Y
+ ∂2W

∂Z∂Y

]
+O(ε2), (2.81)

and thus
−∂V
∂Y

= −ελ∂
2V

∂Y 2 +O(ε2). (2.82)

After further simplifying it, we have

∂2V

∂Y 2 = 1
ελ

∂V

∂Y
+O(ε), (2.83)

and inserting into the condition for V on Y = 0 we end up with

V = ε2
m12

ελ

∂V

∂Y
+O(ε3). (2.84)

Note that the above replacement is valid only for isotropic roughness. Finally the three
dimensional boundary conditions at the fictitious wall in Y = 0 read:

U = ελ
∂U

∂Y
+ ε2m12Re

∂P

∂X
+O(ε3), (2.85)
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Table 2.3: Variation of coefficients with respect to the height of cone

inline
H/D 0.1 0.2 0.4
λ 0.05058 0.09694 0.17370
m12 0.00115 0.00426 0.01400

staggered
H/D 0.1 0.2 0.4
λ 0.03878 0.07359 0.12857
m12 0.00056 0.00184 0.00675

V = ελy
∂V

∂Y
+O(ε3), (2.86)

W = ελ
∂W

∂Y
+ ε2m12Re

∂P

∂Z
+O(ε3), (2.87)

with λy the penetration distance of the vertical velocity, defined as λy = m12

λ
: it is the

distance below the virtual wall where the vertical velocity, extrapolated to negative values
of Y , goes to zero. It is convenient to express the boundary conditions along Y in this
form since, numerically, the evaluation of the second derivative ∂

2V

∂Y 2 in Y = 0 can lead to
numerical stability errors. The coefficient m12 can be obtained in a same way as done in
two dimensional case and are given below.
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Table 2.4: Microscopic variables evaluated at y∞ for different heights of cone H/D (where D is
the diameter of the cone).

In-line
H/D y∞ u† = w‡ −û21 = ŭ11 = −ũ23 = ŭ33 û12 = ũ32
0.1 2 2.05058 2.10186 4.20469
0.1 3 3.05058 4.65207 9.30574
0.1 4 4.05058 8.20205 16.40689
0.2 2 2.09694 2.19807 4.39659
0.2 3 3.09694 4.79443 9.59012
0.2 4 4.09694 8.39093 16.78376
0.4 2 2.17370 2.36403 4.72372
0.4 3 3.17372 5.03585 10.07083
0.4 4 4.17369 8.70918 17.41604

Staggered
0.1 2 2.03879 2.07840 4.15634
0.1 3 3.03877 4.61713 9.23379
0.1 4 4.03882 8.15610 16.31124
0.2 2 2.07361 2.15023 4.29820
0.2 3 3.07356 4.72368 9.44536
0.2 4 4.07355 8.29722 16.59212
0.4 2 2.12890 2.26768 4.52829
0.4 3 3.12891 4.89659 9.23377
0.4 4 4.12880 8.52505 17.04304

2.3. Mathematical Formulation of the Interface Conditions:
Flow over Porous Media

In the case of isotropic solid grains, the study to be pursued relies on the separation of
scales; this means that the inter-grain distance must be much smaller than the character-
istic length scale of the macroscopic flow in the free-fluid region. Thus, the entire domain
is divided into three portions: the outer (free-fluid part denoted by the + superscript), the
intermediate (thin interfacial region), and the third part as porous region (− superscript,
where Darcy’s equation governs fluid motion). The asymptotic analysis is described in
the subsequent section, and the conditions which hold at a porous-fluid interface, whose
position must be set, are derived thoroughly. All the coefficients of these conditions are
computed and reported in tabular form for possible future use.

A regularly microstructured porous medium is taken to bound a free-fluid region; for
reasons of clarity we limit the present analysis to two-dimensional Cartesian coordinates.
The porous medium has a characteristic microscopic length scale equal to l (say, the
periodicity of the pattern); the macroscopic length scale is L (for example, the channel
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half-thickness). With reference to figure 2.10, the dividing surface where outer flow con-
ditions will be enforced is arbitrarily positioned in ŷ = 0, with hat variables denoting
dimensional quantities. Other choices are possible for the position, close to ŷ = 0, where
interface conditions can be enforced, but the results are very weakly dependent on the
choice made (for a discussion on this issue, see Lācis and Bagheri (2017); Lācis et al.
(2020)). The presence of two characteristic scales renders the problem amenable to a
multiple scale expansion, in terms of the small parameter ε = l/L, along the lines of Mei
and Vernescu Mei and Vernescu (2009).

2.3.1. Scalings and Equations in the Three Regions

Three regions can be identified, and will be normalized successively, starting from the
outer one (+, or free-fluid region) up to the inner one (−, or porous region).
In the free-fluid, we use L,L/U ,U , and ρU2 to scale, respectively, length, time, velocity
and pressure. The velocity U is a characteristic speed, for example, the free stream
velocity in a boundary layer, and ρ is the fluid density. The dimensionless system in the
+ region is simply

∂U+
i

∂Xi

= 0, ∂U+
i

∂t
+ U+

j

∂U+
i

∂Xj

= −∂P
+

∂Xi

+ 1
Re

∂2U+
i

∂X2
j

. (2.88)

We define X1 = X = x̂/L, X2 = Y = ŷ/L, U+
1 = U+ = û/U , and U+

2 = V + = v̂/U ; the
macroscopic Reynolds number is Re = ρU L/µ. Notice that all dependent variables in
this upper region depend only upon the macroscale spatial coordinates. The intermediate
region, across the dividing line/surface, is denoted by the superscript =; here we choose l =
ε L, L/U , εU , and µU/L to normalize, respectively, length, time, velocity and pressure.
These are the same scales used in countless papers to model the flow over a textured
wall wall (Bottaro and Naqvi (2020), Airiau and Bottaro (2020), and section 2.2.). The
dimensionless equations in the y-elongated microscopic cell which traverses y = 0 are

∂U=
i

∂xi
= 0, ε2Re

(
∂U=

i

∂t
+ U=

j

∂U=
i

∂xj

)
= −∂P

=

∂xi
+ ∂2U=

i

∂x2
j

, (2.89)

with x1 = x = x̂/l, x2 = y = ŷ/l, U=
1 = U= = ε−1û/U , and U=

2 = V = = ε−1v̂/U .
All dependent variables are assumed to be periodic along x (and along z when in three-
dimensions); around the dividing line/surface they are function of both microscale and
macroscale coordinates and the latter dependence is immediately apparent upon matching
velocity and traction vectors at the upper boundary of the = region, i.e.

lim
y→+∞

(U=, V =) = 1
ε

lim
Y→0+

(U+, V +) (2.90)

and

lim
y→+∞

(
∂U=

∂y
+ ∂V =

∂x
,−P= + 2∂V

=

∂y

)
= lim

Y→0+

(
∂U+

∂Y
+ ∂V +

∂X
,−ReP+ + 2∂V

+

∂Y

)
.

(2.91)
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Figure 2.10: Two-dimensional macroscopic domain together with microscopic cell (enclosed in
red circle). The latter is shown in its dimensional settings right below.

The flow in the lower (−) inter-pore space, sufficiently below the dividing line/surface,
is assumed steady and the equations are rendered dimensionless by the same scales as in
the interface region, except for replacing εU by ε2 U when normalizing the velocity. This
choice of scales stems from assuming that the macroscopic pressure gradient is balanced
by viscous dissipation within the pores (Mei and Vernescu, 2009). Eventually, in a square
unit cell within the porous medium and away from boundaries we should solve

ε
∂U−i
∂xi

= 0, ε4ReU−j
∂U−i
∂xj

= −∂P
−

∂xi
+ ε

∂2U−i
∂x2

j

, (2.92)

subject to periodicity along all spatial directions. This latter system leads to Darcy’s
equation, after the variables are expanded in power series of ε, and the leading order
terms are retained. The procedure is described in details by Mei and Vernescu (2009); we
will not carry it out here, but will develop a composite system valid across the dividing
line/surface and below.
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2.3.2. The Composite Description

Here we couple the three regions identified above. Assuming that ε2Re� 1, the leading
order system in the intermediate domain turns out to be simply Stokes’ system. This
stems from expanding the generic = variable as

F=(xi, Xi, t) = F=
0 + ε F=

1 + ε2 F=
2 + ... (2.93)

and substituting the expansion into system (2.89). Since each dependent variable is
function of both microscopic and macroscopic coordinates, it is important also to replace

∂

∂xj
→ ∂

∂xj
+ ε

∂

∂Xj

, (2.94)

to obtain

O(ε0) : ∂U0
=
i

∂xi
= 0, −∂P

=
0

∂xi
+ ∂2U0

=
i

∂x2
j

= 0, (2.95)

O(ε1) : ∂U1
=
i

∂xi
= −∂U0

=
i

∂Xi

, −∂P
=
1

∂xi
+ ∂2U1

=
i

∂x2
j

= ∂P=
0

∂Xi

− 2 ∂2U0
=
i

∂xj∂Xj

. (2.96)

In the − region each generic F− variable is expanded as

F−(xi, Xi) = F−0 + ε F−1 + ε2 F−2 + ... (2.97)

and the expansions are substitute into system (2.92), to obtain

O(ε0) : ∂P−0
∂xi

= 0, (2.98)

O(ε1) : ∂U0
−
i

∂xi
= 0, −∂P

−
1

∂xi
+ ∂2U0

−
i

∂x2
j

= ∂P−0
∂Xi

, (2.99)

O(ε2) : ∂U1
−
i

∂xi
= −∂U0

−
i

∂Xi

, −∂P
−
2

∂xi
+ ∂2U1

−
i

∂x2
j

= ∂P−1
∂Xi

− 2 ∂2U0
−
i

∂xj∂Xj

. (2.100)

It is a well-established fact that the pressure at leading order in the porous matrix, P−0 ,
does not fluctuate on the pore scale (cf. equation 2.98), Naqvi and Bottaro (2021).
We now define the composite velocity and pressure fields

ui = u
(0)
i + ε u

(1)
i +O(ε2), (2.101)

p = p(0) + ε p(1) +O(ε2), (2.102)

with
u

(0)
i =

{
U0

=
i y > 0,

ε U0
−
i y < 0, (2.103)
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p(0) =
{

P=
0 y > 0,

P−0 + ε P−1 y < 0, (2.104)

and

u
(1)
i =

{
U1

=
i y > 0,

ε U1
−
i y < 0, (2.105)

p(1) =
{

P=
1 y > 0,

ε P−2 y < 0. (2.106)

The Ansatz above implies that an abrupt transition is assumed between the = and − re-
gions; this corresponds to what is referred to in the literature as the two-domain approach,
leading to a jump in pressure across y = 0. The leading-order composite equations, valid
in a neighborhood of y = 0 as well as throughout the porous medium, are

∂u
(0)
i

∂xi
= 0, −∂p

(0)

∂xi
+ ∂2u

(0)
i

∂x2
j

= 0, (2.107)

and at next order we have

∂u
(1)
i

∂xi
= −∂u

(0)
i

∂Xi

− ∂p(1)

∂xi
+ ∂2u

(1)
i

∂x2
j

= ∂p(0)

∂Xi

− 2 ∂2u
(0)
i

∂xj∂Xj

. (2.108)

The situation is schematized in figure 2.11.
For y → −∞ (i.e. sufficiently deep inside the porous medium) the solution of system
(2.92) in a 1× 1 periodic unit cell, eventually leading to the medium permeability, should
be recovered. On the top boundary of the interface cell the matching outer-flow conditions
(2.90) and (2.91) are

lim
y→+∞

(u, v) = 1
ε

lim
Y→0+

(U, V ), (2.109)

lim
y→+∞

(
∂u

∂y
+ ∂v

∂x
,−p+ 2∂v

∂y

)
= lim

Y→0+

(
∂U

∂Y
+ ∂V

∂X
,−ReP + 2∂V

∂Y

)
. (2.110)

Note that from now on we omit the + superscript when referring to dependent variables
in the free-fluid region. Also, to simplify notations, we will indicate with S12 and S22 the
tangential and normal components of the dimensionless macroscopic stress for Y → 0+,
i.e.

S12 = ∂U

∂Y
+ ∂V

∂X

∣∣∣∣∣
Y→0+

, S22 = −ReP + 2 ∂V
∂Y

∣∣∣∣∣
Y→0+

. (2.111)

The boundary conditions for (2.107) at y →∞ become

∂u(0)

∂y

∣∣∣∣∣
y→+∞

= S12, −p(0)
∣∣∣
y→+∞

= S22, (2.112)
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Figure 2.11: Schematic of the mathematical description of the interface problem, together with
equations in the free-flow (+) region and composite, multiscale equations which apply in the
= and − regions. In the numerical application, the matching between the flow in the region
described by the composite equations and that in the free-fluid region is done at a finite value
of y, i.e. y = y∞.

on account of the fact that on the top boundary of the interface cell, by construction,
u(0) = u

(0)
1 , v(0) = u

(0)
2 , and p(0) loose memory of the porous matrix microstructure to

become independent of x. The corresponding conditions for the variables at order ε are:

∂u(1)

∂y

∣∣∣∣∣
y→+∞

= − ∂u(0)

∂Y

∣∣∣∣∣
y→+∞

− ∂v(0)

∂X

∣∣∣∣∣
y→+∞

, (2.113)

−p(1)
∣∣∣
y→+∞

+ 2 ∂v
(1)

∂y

∣∣∣∣∣
y→+∞

= −2 ∂v
(0)

∂Y

∣∣∣∣∣
y→+∞

. (2.114)

Sample solutions of the leading order composite system: Linearity of system (2.107)

permits to express the velocity components and the pressure using separation of variables,
i.e.

u
(0)
i = u†i S12 + u‡i S22, (2.115)

and
p(0) = p† S12 + p‡ S22 + C(Xj). (2.116)

The fields u†i , p†, u
‡
i , and p‡ depend only on xj; conversely, the integration constant

C is only a function of macroscopic coordinates. Plugging (2.115-2.116) into (2.107)
and (2.112) permits to find the two systems below, subject to periodicity along x (and
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eventually z, in three-dimensional settings) and to the no-slip condition on the solid grains
of the porous medium.

Forcing by S12:
∂u†i
∂xi

= 0, −∂p
†

∂xi
+ ∂2u†i
∂x2

j

= 0, (2.117)

lim
y→+∞

∂u†

∂y
= 1, lim

y→+∞
p† = 0. (2.118)

Forcing by S22:
∂u‡i
∂xi

= 0, −∂p
‡

∂xi
+ ∂2u‡i
∂x2

j

= 0, (2.119)

lim
y→+∞

∂u‡

∂y
= 0, lim

y→+∞
p‡ = −1. (2.120)

This latter system admits the trivial solution u‡i = 0 and p‡ = −1.
Solutions of the •† problem are pursued for both two- and three-dimensional porous
media, with either circular or spherical grains, for both in-line or regularly staggered solid
inclusions, and for varying porosities. The porosity is defined as θ = Vfluid/Vtotal, with
Vfluid the fluid’s volume in a square unit cell (in a two-dimensional case the volume is
meant per unit depth) within the porous domain and Vtotal the corresponding total (fluid
plus solid) volume. By defining the superficial (or phase) average,

〈a〉 := 1
Vtotal

∫
Vfluid

a dV, (2.121)

the porosity is also θ = 〈1〉. The intrinsic average can also be defined as

〈a〉f := 1
Vfluid

∫
Vfluid

a dV, (2.122)

to be used later on.
Since only the gradient of p† appears in equations (2.117), uniqueness of the solution is
guaranteed by imposing

〈p†〉∞ = 0, (2.123)

with the phase average now taken on the top 1× 1 square (or cubic) cell of the elongated
interfacial domain (this is indicated by the subscript ∞). This implies that

p(0)
∣∣∣
∞

= 〈p(0)〉∞ = −S22 + C, (2.124)

so that by the second equation in (2.112) it is finally found

C = 0. (2.125)
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Figure 2.12: Fields of u†, v† and p† for θ = 0.4973, regularly arranged two-dimensional solid
grains.

Solutions of the auxiliary problem (2.117-2.118) are carried out using the finite elements
method based COMSOL Multiphysics (2019) software, progressively refining the mesh
until grid-converged solutions are found. Sample results are first provided below, the
parametric variation is discussed later. Figures 2.12 and 2.13 display isolines of the
unknowns for two values of θ in the full domain considered in the two-dimensional in-
line case, domain which ranges in y from −y∞ = −5 to y∞ = +5. Such a vertical
extent has been verified against larger values of y∞ and it has been found to be sufficient
to yield domain-independent results for all porosities tested. In particular, y∞ must be
sufficiently large for all fields computed to become homogeneous in x when y = +y∞. The
larger value of the porosity considered in figure 2.13 (θ = 0.9999) is not representative
of a realistic porous medium, except perhaps for the case of sparse canopies and, as
a consequence, it will be shown that slip velocities (at the dividing line/surface) and
permeability coefficients are much larger than for lower porosities. It should also be
observed that v† and p† are antisymmetric around a vertical mid-line (through x = 0.5).
Thus, for isotropic grains it is

∫ 1
0 v†dx = 0 at any y, and likewise for p†.
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Figure 2.13: Same as figure 2.12 for θ = 0.9999. The solid inclusions are so small that they are
not visible on the scale of the plot.

Just like in the case of the flow over a rough wall (Bottaro and Naqvi, 2020) it is found
that

u†|y∞ = y∞ + λ, (2.126)

with λ a slip length which, for in-line solid inclusions of θ = 0.4973, is equal to 1.451
×10−1, while λ = 6.188× 10−1 when the porosity is 0.9999. It is reasonable to expect the
slip length (and, as a consequence, the slip velocity) to increase as the solid inclusions
become of smaller dimensions. The same values of λ are recovered also by

λ =
∫ 1

0
u†|y=0 dx. (2.127)

As in the case of the flow past a rough solid surface (Bottaro and Naqvi, 2020), the outer
flow matching

u|y=y∞ = (y∞ + λ)S12 +O(ε), v|y=0+ = O(ε). (2.128)

can be transferred to a dividing surface in y = 0+ and expressed in terms of macroscopic
variables (cf. equation 2.109), for the boundary conditions of the free-fluid variables to
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read:
U |Y=0+ = ελ S12 +O(ε2), V |Y=0+ = O(ε2). (2.129)

This is a simple Navier slip condition, aside from the fact that a ∂V/∂X term appears in
the condition (via S12).

The first correction to the leading order composite description: On account of the results
obtained for u(0)

i and p(0), system (2.113) equipped with boundary conditions (2.113) and
(2.114) becomes

∂u
(1)
i

∂xi
= −u†i

∂S12

∂Xi

, (2.130)

−∂p
(1)

∂xi
+ ∂2u

(1)
i

∂x2
j

= p†
∂S12

∂Xi

− ∂S22

∂Xi

− 2 ∂u
†
i

∂xj

∂S12

∂Xj

, (2.131)

together with
∂u(1)

∂y

∣∣∣∣∣
y→∞

= −u† ∂S12

∂Y
− v† ∂S12

∂X
, (2.132)

−p(1) + 2 ∂v
(1)

∂y

∣∣∣∣∣
y→∞

= −2 v† ∂S12

∂Y
. (2.133)

The Ansatz for the new variables is

u
(1)
i = ũij

∂S12

∂Xj

+ ŭij
∂S22

∂Xj

, (2.134)

p(1) = p̃j
∂S12

∂Xj

+ p̆j
∂S22

∂Xj

, (2.135)

with the microscopic coefficients arising from the solutions of the two sets of microscopic
problems given below.

Forcing by
∂S12

∂Xj

:

∂ũij
∂xi

= −u†i δij, −∂p̃j
∂xi

+ ∂2ũij
∂x2

k

= p† δij − 2 ∂u
†
i

∂xj
, (2.136)

lim
y→+∞

∂ũ1j

∂y
= −u† δj2 − v† δj1, lim

y→+∞
−p̃j + 2 ∂ũ2j

∂y
= −2 v† δj2. (2.137)

Forcing by
∂S22

∂Xj

:

∂ŭij
∂xi

= 0, −∂p̆j
∂xi

+ ∂2ŭij
∂x2

k

= −δij, (2.138)

lim
y→+∞

∂ŭ1j

∂y
= 0, lim

y→+∞
−p̆j + 2 ∂ŭ2j

∂y
= 0. (2.139)
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Figure 2.14: Fields of ũij and p̃j in the neighborhood of the dividing surface for regularly
arranged two-dimensional solid grains, porosity θ = 0.4973.

These two systems, like the ones solved earlier, require periodicity along the interface-
parallel direction(s); furthermore, the fields deep within the porous domain (y → −∞)
must repeat themselves with a dimensionless y-periodicity equal to 1. Numerical solutions
of these systems can be easily carried out by the same technique used before; the •̃ and
•̆ terms yield all of the O(ε2) terms in the expressions of the macroscopic fields at the
interface.

The solution of systems (2.136-2.137) and (2.138-2.139) is carried out for varying values
of y∞, and results are displayed in figures 2.14 and 2.15 in the vicinity of the interface,
when using y∞ = 5. For the system driven by the gradient of S12 the coefficient of concern
here is ũ21 whereas for that driven by the gradient of S22 we are interested in ŭ11 and ŭ11.
Other coefficients either vanish at y∞ or are antisymmetric about the vertical mid-line so
that their x-averaged value at any y vanishes. For y∞ sufficiently large (larger than about
4), it is found that

− ũ21|y∞ = ŭ11|y∞ = y2
∞
2 + λ y∞ +Kitf , (2.140)
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Figure 2.15: Same as figure 2.14 for ŭij and p̆j .

ŭ22|y∞ = K, (2.141)
with λ the slip length. The other two parameters introduced above are the porous system
permeability, K, and the interface permeability, Kitf . For the case reported in figures 2.14
and 2.15 it is found that

K = 1.830× 10−3 and Kitf = 1.173× 10−2.

A result similar to that expressed by (2.140) was obtained before for the case of the
flow past a regularly microstructured, impermeable surface. We also note that the same
values of the parameters λ, K and Kitf can be found by the alternative adjoint approach
proposed by Bottaro (2019).
If the matching condition (which normally is enforced at y∞) is conveniently transferred
to the dividing surface in y = 0+, only K and Kitf enter the interface conditions at second
order. The velocity of the macroscopic problem at Y = 0+, correct up to order ε2 (i.e.
including u(0)

i and u(1)
i ), has components:

U |Y=0+ = ε λ S12|Y=0+ + ε2Kitf ∂S22

∂X

∣∣∣∣∣
Y=0+

+O(ε3), (2.142)
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V |Y=0+ = −ε2 Kitf ∂S12

∂X

∣∣∣∣∣
Y=0+

+ ε2K ∂S22

∂Y

∣∣∣∣∣
Y=0+

+O(ε3). (2.143)

Equations (2.142) and (2.143) represent the most important result of the present con-
tribution: the outer flow is coupled to the motion in the porous medium through the
coefficients λ, K, and Kitf , available via the solutions of Stokes-like problems in a y-
elongated cell, periodic along the interface-parallel direction(s). In the expressions above
the terms of order ε2 arise from streamwise and normal variations of the components of
the outer traction vector. Equations (2.142) and (2.143) coincide with those given in the
previous section for the case of the flow over a rough, impermeable wall, provided the
permeability K is set to zero; the first term in equation (2.143) is related to transpiration
at the surface in Y = 0 because of shear variations.

The condition for U |Y=0+ does not seem to match that by Saffman (1971), given in
dimensional form in (1.7), since the streamwise velocity at the dividing surface appears
to be decoupled from the pore pressure gradient ∂P−0 /∂Y at Y = 0−. A further look at
the pressure condition is thus needed.

2.3.3. The Pressure Condition

Continuity of pressure has often been used at the dividing surface (e.g. (Lācis and Bagheri,
2017; Zampogna et al., 2019a; Ochoa-Tapia et al., 2017; Whitaker, 1986)); however, the
interstitial pressure is a pore-averaged value and, even if the microscopic pressure is indeed
continuous at y = 0, it is now accepted that a pressure jump exists between the fluid
pressure and the pore pressure, when crossing the interface (Carraro et al., 2013; Lācis
et al., 2020). To evaluate such a pressure jump, the starting point is the expression of p
in the interfacial domain, i.e.

p = p† S12 − S22 + ε p̃j
∂S12

∂Xj

+ ε p̆j
∂S22

∂Xj

+O(ε2). (2.144)

Within the porous region the coefficients p̃j and p̆j attain a y-periodic behavior when we
are sufficiently below the dividing surface. The intrinsic average value of the pressure in
a 1×1 unit cell for y → −∞ is indicated by 〈p〉f−∞. We have

〈p〉f−∞ = −S22 + ε 〈p̃1〉f−∞
∂S12

∂X
+ ε 〈p̆2〉f−∞

∂S22

∂Y
+O(ε2). (2.145)

Furthermore, from the definition of p in the porous domain we have

〈p〉f−∞ = P−0 |Y=0− + ε 〈P−1 〉
f
−∞ +O(ε2), (2.146)

so that it is simple to conclude that the normal stress exerted by the outer fluid is im-
pressed onto the pore pressure, i.e.

P−0 |Y=0− = −S22 +O(ε) (2.147)



61

This condition on the leading-order interstitial pressure is sufficient to close the problem
and there is no need to find the order one correction to the pressure, 〈P−1 〉f−∞, nor to
evaluate the pressure jump across the dividing surface. If the solution in the + domain
is known at iteration n, boundary condition (2.147) can be used at the interface for the
equation ∂2P−0 /∂X

2
j = 0 which describes the behavior of the pore pressure in the bulk of

the porous medium. The same condition permits also writing the macroscopic free-fluid
streamwise velocity at Y = 0+ (equation (2.142)) in terms of the pore pressure, i.e. in
Saffman’s form (cf. equation (1.7)):

U |Y=0+ = ε λ S12|Y=0+ − ε2Kitf
∂P−0
∂X

∣∣∣∣∣
Y=0−

+O(ε3). (2.148)

The vertical velocity at Y = 0+ can also be expressed in terms of P−0 by using Darcy’s
law, enforcing mass conservation across the interface and accounting for periodicity along
the interface-normal cell boundaries. It reads:

V |Y=0+ = −ε2K ∂P−0
∂Y

∣∣∣∣∣
Y=0−

+O(ε3). (2.149)

If (2.148) and (2.149) are used at the interface instead of (2.142) and (2.143) the motion
in the free-fluid region is coupled to that in the porous matrix, i.e. the problems in the two
domains must be solved together. Comparison of the two proposed (and equivalent) forms
of interface conditions permits to state that also the pressure gradient is discontinuous at
the interface; in particular it is easy to find that

Re
∂P

∂X

∣∣∣∣∣
Y=0+

− ∂P−0
∂X

∣∣∣∣∣
Y=0−

= 2 ∂2V

∂X∂Y

∣∣∣∣∣
Y=0+

+O(ε), (2.150)

Re
∂P

∂Y

∣∣∣∣∣
Y=0+

− ∂P−0
∂Y

∣∣∣∣∣
Y=0−

= −K
itf

K
∂

∂X

(
∂U

∂Y
+ ∂V

∂X

)∣∣∣∣∣
Y=0+

+2 ∂V

∂Y

∣∣∣∣∣
Y=0+

+O(ε). (2.151)

Before closing this subsection it is useful to write all the coupling conditions in terms of
dimensional variables. The slip and transpiration conditions to be used in the resolution
of the outer flow are:

û|0+ ≈ λ̂

(
∂û

∂ŷ
+ ∂v̂

∂x̂

) ∣∣∣∣∣
0+

+ K̂
itf

µ

∂

∂x̂

(
−p̂+ 2µ ∂v̂

∂ŷ

) ∣∣∣∣∣
0+
, (2.152)

v̂|0+ ≈ K̂
µ

∂

∂ŷ

(
−p̂+ 2µ ∂v̂

∂ŷ

) ∣∣∣∣∣
0+
− K̂itf ∂

∂x̂

(
∂û

∂ŷ
+ ∂v̂

∂x̂

) ∣∣∣∣∣
0+
. (2.153)

And one could easily recover the boundary condition for isotropic impermeable roughness
if we set meadium K = 0 in the above equations.

Alternatively, we can also write

û|0+ ≈ λ̂

(
∂û

∂ŷ
+ ∂v̂

∂x̂

) ∣∣∣∣∣
0+
− K̂

itf

µ

∂p̂

∂x̂

∣∣∣∣∣
0−
. (2.154)
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v̂|0+ ≈ −K̂
µ

∂p̂

∂ŷ

∣∣∣∣∣
0−
. (2.155)

The Dirichlet condition for the pore pressure at the interface is

p̂
∣∣∣
0−
≈ p̂− 2µ ∂v̂

∂ŷ

∣∣∣∣∣
0+
. (2.156)

The dimensional coefficients are λ̂ = λl, K̂itf = Kitf l2, and K̂ = Kl2. It is important
to stress once more that no empirical coefficients are present in the matching conditions
(2.152-2.156); the coefficients of interest, homogeneous to either a length or an area, are
all available through the solution of simple microscopic problems. Such coefficients are
discussed in the section 2.3.5., for both two- and three-dimensional isotropic porous media.

2.3.4. Randomly Arranged Grains

Two dimensional circular grains are arranged at random fashion (randomness is periodic
after 10 unites of microscopic length scale l), such as those shown in figure 2.17 are
also considered for completeness by perturbing the position of each grain (starting from
the staggered configuration) by its reference value. The extension of three dimensions is
trivial and not pursued here. The figure 2.17 shows the results obtained in the domain
10× 10 x−periodic; the left image shows u† (eventually leading to λ) and the right image
shows ŭ11 (eventually returning Kitf ). The values of the permeability of the anisotropic
medium is obtained from the method described by Mei and Vernescu (2009)), computing
all components of the permeability tensor by solving the following auxiliary Stokes system
forced by δij (Kronecker delta):

∂u∗i
∂xi

= 0, −
∂p∗j
∂xi

+
∂2u∗ij
∂x2

k

= −δij, (2.157)

in a unit cell of 10 × 10 fully periodic domain, and no-slip condition on the boundaries
of grains is imposed. The solution of first problem yields the horizontal component of
the seepage velocity 〈u∗1〉 = −Kxx ∂p

∂X1
−Kxy ∂p

∂X2
and the solution of second problem yields

the vertical component of seepage velocity 〈u∗2〉 = −Kyx ∂p
∂X1
− Kyy ∂p

∂X2
and Kij are the

entities of the permeability tensor K. Figure 2.16(bottom) displays the sample system
solutions of system 2.157 in the form of color contours. Once the system 2.157 is solved
twice in the unit cell, four components of of the tensor K are available Once this is done,
we need to compute the two eigenvalues Kmax and Kmin of the tensor K, and then their
geometric average, Kmean=

√
KmaxKmin (see (Airiau and Bottaro, 2020)). Note that Kmax

and Kmin are the eigen value of the tensor K and are slightly different form Kxx and Kyy.
For randomly arranged grains, this average value of K is reported in figure 2.17 (central
frame) with diamond symbols and compared to values for in-line and staggered solid
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Figure 2.16: Fields of u† (top left) v† (top right) and ŭ11(bottom left) and ŭ21(bottom right)
for θ = 0.4973, randomly arranged two-dimensional solid grains.

inclusions/grains. It is interesting to observe that the coefficients found, λ, Kmean and
Kitf , are typically included between the staggered and the in-line values, while remaining
closer to the former as the porosity varies.

2.3.5. Variation of Coupling Coefficients as a Function of Porosity

Results for two-dimensional circular and three-dimensional spherical grains are summa-
rized in figures 2.17 and 2.18, respectively, for both in-line (solid lines) and staggered
(dashed) arrangements of the solid inclusions, and for varying values of the porosity. The
two-dimensional case of randomly arranged grains is also included in the figure.
In both two-dimensional and three-dimensional configurations the coefficients have a
monotonic behavior with θ; both slip length and interface permeability are systemati-
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Figure 2.17: Comparison between regularly arranged grains (solid lines) and staggered grains
(dashed lines) for two-dimensional isotropic porous media of varying porosity θ (plotted in
abscissa in all frames). From left to right: λ, K and Kitf . In the central frame the medium
permeabilities for in-line and staggered cases are validated, respectively, against Zampogna and
Bottaro (2016) (red circles) and Bottaro (2019) (black circles). The case of randomly arranged
grains is also considered (diamond symbols).

Figure 2.18: Same as figure 2.17 (solid line for uniformly arranged and dashed line for stag-
gered) three-dimensional spherical grains. In the central frame the permeability for the in-line
arrangement of spheres is compared to results in Zampogna and Bottaro (2016) (red circles).
The permeability results for Wigner-Seitz grains (Lee et al. (1996)) are given with blue filled
symbols.
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cally one order of magnitude larger in the regularly arranged case than in the staggered
configuration (at the same value of θ), to be ascribed to the fact that the unit cell right
below the interface (0 ≤ x ≤ 1, −1 ≤ y ≤ 0) in the staggered case presents a sizeable
portion in y = 0 where the fluid cannot slip and through which it cannot penetrate (cf.
figure 2.10). Conversely, the deviation in K between the two arrangements of solid grains
examined is rather small. In the two-dimensional case (figure 2.17) for both grains ar-
rangements the present procedure yields results in excellent agreement with those reported
in the past (Zampogna and Bottaro, 2016; Bottaro, 2019), obtained from the conventional
approach described by Mei and Vernescu (2009).
For three-dimensional spherical grains, conditions (2.152-2.156) remain unchanged, and
must be supplemented by the following spanwise slip condition:

ŵ|0+ = λ̂

(
∂ŵ

∂ŷ
+ ∂v̂

∂ẑ

) ∣∣∣∣∣
0+
− K̂

itf

µ

∂p̂

∂ẑ

∣∣∣∣∣
0−
, (2.158)

with the same coefficients used in û. The results for K in figure 2.18 coincide with those
computed by Zampogna and Bottaro (2016), cf. solid line and red dots in the central
frame of the figure. It is also instructive to compare the permeability found to that
of the Wigner-Seitz grain Lee et al. (1996), a polyhedron with 14 sides in a cubically
packed array, with contact among grains on the six faces of the unit cell. The results
of the Wigner-Seitz grain are contained between those of in-line and staggered spherical
inclusions, and this denotes the low sensitivity of K to the arrangement (and to the exact
shape) of the solid grains.
As anticipated in the introduction, all the coefficients computed are tabulated in the
tables 2.5 (for two-dimensional) and 2.6 (for three-dimensional).

2.3.6. Two-Dimensional Interface Conditions

Let us now assume that all dimensional variables, throughout the whole domain, are
rendered dimensionless with the same scales used in the free-fluid region. In particular,
from now on we denote by P−0 the pore pressure non-dimensionalized with ρU2. If the
dividing surface is positioned in Y = 0 the conditions to be imposed there for a two-
dimensional macroscopic flow problem, correct up to order 2 in ε, are:

U |Y=0+ ≈ ε λ

(
∂U

∂Y
+ ∂V

∂X

) ∣∣∣∣∣
Y=0+

+ ε2Kitf ∂

∂X

(
−ReP + 2∂V

∂Y

)∣∣∣∣∣
Y=0+

, (2.159)

V |Y=0+ ≈ −ε2 Kitf
∂

∂X

(
∂U

∂Y
+ ∂V

∂X

)∣∣∣∣∣
Y=0+

+ ε2K ∂

∂Y

(
−ReP + 2∂V

∂Y

)∣∣∣∣∣
Y=0+

. (2.160)

With the conditions above there is no direct coupling between the Navier-Stokes and the
Darcy regions: once the outer flow problem is solved for, the pore pressure at leading
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Table 2.5: Values of effective coefficients for two-dimensional circular grains as a function of
porosity.

In-line Staggered
θ λ K Kitf λ K Kitf

0.2500 6.571×10−2 8.918× 10−6 2.896×10−3 6.400×10−3 3.920×10−6 1.223×10−4

0.3600 9.147×10−2 2.962×10−4 5.268×10−3 8.872×10−3 1.479×10−4 2.469×10−4

0.4973 1.451×10−1 1.830×10−3 1.173×10−2 1.315×10−2 9.100×10−4 6.600×10−4

0.5000 1.362×10−1 1.877×10−3 1.089×10−2 1.325×10−2 9.348×10−4 6.775×10−4

0.6200 1.899×10−1 5.378×10−3 2.032×10−2 1.871×10−2 2.665×10−3 1.516×10−3

0.7200 2.420×10−1 1.120×10−2 3.319×10−2 2.531×10−2 5.518×10−3 2.848×10−3

0.8000 3.013×10−1 1.945×10−2 4.691×10−2 3.294×10−2 9.530×10−3 4.694×10−3

0.8700 3.542×10−1 3.201×10−2 6.456×10−2 4.293×10−2 1.559×10−2 7.496×10−3

0.9300 4.144×10−1 5.798×10−2 8.957×10−2 5.729×10−2 2.547×10−2 1.224×10−2

0.9500 4.410×10−1 7.268×10−2 1.030×10−1 6.504×10−2 3.214×10−2 1.453×10−2

0.9700 4.752×10−1 9.879×10−2 1.233×10−1 7.675×10−2 4.027×10−2 4.027×10−2

0.9900 5.323×10−1 1.256×10−1 1.670×10−1 1.019×10−1 6.264×10−2 3.157×10−2

0.9999 6.188×10−1 2.166×10−1 2.585×10−1 1.545×10−1 1.039×10−1 5.989×10−2

Table 2.6: Values of effective coefficients for three-dimensional spherical grains as a function of
porosity.

In-line Staggered
θ λ K Kitf λ K Kitf

0.4900 1.093×10−1 2.769×10−3 9.280×10−3 2.333×10−2 1.421×10−3 1.507×10−3

0.6300 1.597×10−1 6.901×10−3 1.818×10−2 3.648×10−2 3.864×10−3 3.213×10−3

0.7300 2.196×10−1 1.302×10−2 3.019×10−2 5.112×10−2 7.747×10−3 5.735×10−3

0.8300 3.002×10−1 2.727×10−2 5.580×10−2 7.497×10−2 1.623×10−2 1.120×10−2

0.9300 4.098×10−1 7.172×10−2 5.580×10−2 1.267×10−1 4.209×10−2 2.876×10−2

0.9500 4.478×10−1 9.287×10−2 1.260×10−1 1.486×10−1 5.537×10−2 3.828×10−2

0.9700 5.061×10−1 1.330×10−1 1.686×10−1 1.842×10−1 7.963×10−2 5.639×10−2

0.9900 6.291×10−1 2.708×10−1 2.893×10−1 2.713×10−1 1.507×10−1 1.130×10−1

0.9999 1.361 1.691 1.658 8.687×10−1 1.020 8.966×10−1
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order within the isotropic porous medium is a harmonic function which satisfies

∂P−0
∂Xi

ni = 0, (2.161)

at solid surfaces of unit normal ni, and

P−0
∣∣∣
Y=0−

= P
∣∣∣
Y=0+

− 2
Re

∂V

∂Y

∣∣∣∣∣
Y=0+

(2.162)

at the dividing surface.
An alternative to conditions (2.159-2.160), formally correct up to the same order in ε, is
constituted by the following dimensionless conditions:

U |Y=0+ ≈ ε λ

(
∂U

∂Y
+ ∂V

∂X

) ∣∣∣∣∣
Y=0+

− ε2Kitf Re ∂P−0
∂X

∣∣∣∣∣
Y=0−

, (2.163)

V |Y=0+ ≈ −ε2KRe
∂P−0
∂Y

∣∣∣∣∣
Y=0−

. (2.164)

Conditions (2.163-2.164) are, respectively, a Beavers-Joseph-like condition for the velocity
along the direction tangent to the interface, and an expression of mass conservation across
the two domains; they must be coupled to the Laplace equation for the pore pressure in
the porous medium, using equation (2.162) which expresses the balance of normal forces
at the interface. This latter system is closer to what is often found in the literature
(cf. Eggenweiler and Rybak (2020) and references therein). We have employed both
sets of conditions to compute the macroscopic results presented below, finding negligible
differences.
It is important to notice that Saffman’s result, see equation (1.7), is equivalent to (2.163).
In dimensionless form, the result by Saffman, including Jones (1973) correction2, reads:

U |Y=0+ ≈ ε λ

(
∂U

∂Y
+ ∂V

∂X

) ∣∣∣∣∣
Y=0+

− ε2BKRe ∂P−0
∂X

∣∣∣∣∣
Y=0−

. (2.165)

Equations (2.163) and (2.165) coincide once the constant B is set equal to Kitf/K. The
important result of the present contribution is that microscopic problems have been de-
rived and solved for isotropic porous media which yield directly the required constants, λ,
K, and Kitf . The approach proposed here can be used to solve cases in which the fluid
flows parallel to the porous layer or infiltrates the porous medium. Whereas the first case
has been much examined in the literature, the latter has been scarcely focused upon. A
recent paper by Eggenweiler and Rybak (2020) shows that the Beavers and Joseph con-
dition is unsuited for filtration problems, and that the parameters of the Beavers-Joseph
condition cannot be fitted for arbitrary flow direction.

2Jones replaced the scalar product of the interface-normal unit vector times the free-fluid velocity
gradient with the scalar product of the same unit normal vector times the rate of strain tensor.
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2.3.7. Three-Dimensional Interface Conditions

The interface conditions for the porous medium consisting of evenly spaced micro-structured
cylinders aligned along the spanwise or the streamwise direction with inline and staggered
patterns, enabling direct measurement of the flow inside the porous structure, are given
below. Here, the interface between the free-fluid region and porous medium is located at
the crest of the cylinder.
As before, these conditions can be enforced at the dividing surface (interface) (Y = 0).
We will not explain the full development of these conditions again as it is straightforward
but directly write the conditions which are given below:

U |Y=0+ = ε λx S12|Y=0+ + ε2Kitf12
∂S22

∂X

∣∣∣∣∣
Y=0+

+O(ε3), (2.166)

V |Y=0+ = −ε2 Kitf12
∂S12

∂X

∣∣∣∣∣
Y=0+

− ε2 Kitf32
∂S32

∂Z

∣∣∣∣∣
Y=0+

+ ε2K22
∂S22

∂Y

∣∣∣∣∣
Y=0+

+O(ε3), (2.167)

W |Y=0+ = ε λz S32|Y=0+ + ε2Kitf32
∂S22

∂Z

∣∣∣∣∣
Y=0+

+O(ε3), (2.168)

where

S12 = ∂U

∂Y
+ ∂V

∂X

∣∣∣∣∣
Y=0+

, S32 = ∂W

∂Y
+ ∂V

∂Z

∣∣∣∣∣
Y=0+

, S22 = −ReP + 2 ∂V
∂Y

∣∣∣∣∣
Y=0+

.

and Kitfij denoting the components of interface permeability tensor, Kij are the component
of medium permeability tensor, and λi are the components of the slip length tensor as
defined in Bottaro (2019).
It is simple to transform the conditions above to the following ones, probably more man-
ageable numerically:

U |Y=0+ = ε λx
∂U

∂Y

∣∣∣∣∣
Y=0+

+ ε2Kitf12
∂S22

∂X

∣∣∣∣∣
Y=0+

+O(ε3), (2.169)

V |Y=0+ = −ε K
itf
12
λx

∂U

∂X

∣∣∣∣∣
Y=0+

− ε K
itf
32
λz

∂W

∂Z

∣∣∣∣∣
Y=0+

+ ε2K22
∂S22

∂Y

∣∣∣∣∣
Y=0+

+O(ε3), (2.170)

W |Y=0+ = ε λz
∂W

∂Y

∣∣∣∣∣
Y=0+

+ ε2Kitf32
∂S22

∂Z

∣∣∣∣∣
Y=0+

+O(ε3). (2.171)
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2.3.8. The Coupling Coefficients

The coupling coefficients involved in the interface conditions are computed and are given
in graphical form (figure 2.20, 2.19) as well as tabular form (table 2.7 and 2.8) for spanwise
cylinder case. In the figure 2.20, we are only representing the solutions of † variables mi-
croscopic problem as contours plots as it is the only microscopic problem that needs to be
solved if we employ Navier’s conditions at the dividing surface, providing the information
about slip length. From figure 2.19, it is shown that the coefficients increase as θ increases.
Alternatively, the constitutive coefficients of the case when cylinders are arranged in the
longitudinal direction (direction of the flow) can be easily found by simply switching the
streamwise and spanwise coordinates. This alignment of the porous structures along x
is expected to provide a better outcome in terms of skin friction drag reduction as also
reported by Gómez-de Segura et al. (2018).

The component of the permeability tensor Kij computed over the unitary cubic cell (fully
periodic) for the inline and staggered arrangement of cylinders, respectively by the classi-
cal procedure described by Mei and Vernescu (2009) using phase averaging of the veloci-
ties just like in a case of two-dimensional case, where we found that K11 = K22 (spanwise
aligned cylinders) and K22 = K33 (longitudinally aligned cylinders) when the cylinders are
either arranged with inline or staggered patterns. The rest of the components are either
anti-symmetric or zero about the vertical mid-plane in the respective cases.

Figure 2.19: Comparison between regularly arranged cylinders (solid lines) and staggered cylin-
ders (dashed lines) for three-dimensional porous media of varying porosity θ (plotted in abscissa
in all frames). From left to right: λx, K22 and Kitf12 (black color) and λz, K33 and Kitf32 (blue
color). The component K11 is not added in the figure because K11=K22. The values for K11 are
given in tabular form for future use.
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Figure 2.20: Fields of u†, v†, and p† are displayed on a cut plane xy located at z = 0 for
inline (top) and staggered (right) configurations of cylinders aligned in the spanwise direction
for θ = 0.5. From this solution, one can easily obtain the coefficients λx and Kitf12 used in the
effective conditions (2.169-2.171) by following the procedure used in the previous section.
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Figure 2.21: Sketch of a deformable, regularly micro-structured surface. Right frame: a periodic
unit cell is identified to apply the homogenization technique.

2.4. Compliant Riblets: Problem Formulation and Effective
Macrostructural Properties3

Based on the idea given in subsection 1.4.7. justify the interest in examining the interac-
tion between elastic, streamwise-elongated wall corrugations and the overlying fluid. We
call these indentations compliant riblets. The goal of this work is to develop the math-
ematical tools to describe compliant riblets, to set the framework in order to optimize
their geometrical and structural properties, for drag reduction purposes. The present
contribution is thus dedicated to the study of the interface problems, in both the fluid
and the solid domains, for prototypical triangular and blade riblets such as those shown in
figure 2.21, made of a linearly elastic material and can undergo small deformations; their
collective behavior is assumed to occur over a large, elastic wavelength. The presence
of two length scales allows for the use of a multiscale homogenization approach yield-
ing microscopic problems for convolution kernels and parameters, which must then be
employed in macroscopic boundary conditions to be enforced at a virtual wall through
the riblets. The main outcome of the work will be the macroscopic equations ruling the
fluid–solid interactions, plus the effective coefficients (or convolution kernels, by virtue of
the time dependent nature of the fluid–solid coupling) required to close the macroscopic
problem. The results found suggest that, in analogy to the case of rigid riblets, compli-
ant, blade-like wall corrugations are more effective than triangular riblets in reducing skin
friction drag, provided the spanwise periodicity of the indentations is sufficiently small
for the creeping flow approximation to be tenable. Clearly this work is but the first step
of a more comprehensive examination on the effect and design of compliant riblets; the
considerations made possible by the analysis reported herein represent a promising path
for future investigations.

3Zampogna et al. (2019d)
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2.4.1. Mathematical Formulation

An incompressible Newtonian fluid of density ρf and viscosity µ is assumed to flow over
a micro-patterned surface made of a linearly elastic material of density ρs, Poisson’s ratio
vP and Young’s modulus E. A sketch of the surface being considered is represented
in 2.21. The objective of this model is to simulate the fluid flow and solid structure
deformation without the need of large computational efforts to describe the details of the
solid surface and solve the small-scale fluid-solid interactions. The procedure shown in
the present section gives rise to equivalent boundary conditions for the macroscopic fields
associated with the solid displacement and fluid flow. These boundary conditions must
be imposed on an equivalent smooth surface (denoted with E in 2.21) which is located
at a certain (small) distance from the tip of the small-scale protrusions. To proceed with
the development of these conditions, we introduce the fluid domain, denoted by F in 2.21
, in which the incompressible Navier-Stokes equations are valid and write in dimensional
form

ρf

(
∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

)
= ∂Σ̂ij

∂x̂j

∂ûi
∂x̂i

= 0, (2.172)

where Σ̂ij is the canonical fluid stress tensor of a Newtonian fluid

Σ̂ij = −p̂δij + 2µε̂ij(û), (2.173)

and ε̂ij(û) is the strain-rate tensor, formally defined as

ε̂ij(û) = 1
2

(
∂ûi
∂x̂j

+ ∂ûj
∂x̂i

)
. (2.174)

In the domain S occupied by the linearly elastic solid, the governing equations read

ρs
∂2v̂i

∂t̂2
= ∂σ̂ij
∂x̂j

, (2.175)

where v̂i denote the components of the displacement vector, v̂, and σ̂ij is the generic
component of the stress tensor. Under the assumption that the structure is elastic, the
stress and strain tensors are linearly related through the relation

σ̂ij = Ĉijkε̂kl(v̂) = 1
2Ĉijkl

(
∂v̂k
∂x̂l

+ ∂v̂l
∂x̂k

)
, (2.176)

where Ĉijkl = λ̂δijδkl + Ĝ (δikδjl + δilδjk) are the components of the stiffness tensor, and λ̂
and Ĝ are the two Lamé coefficients. These coefficients are related to the Young modulus,
E, and Poisson’s ratio, vp, by λ̂ = vpE

(1 + vp) (1− 2vp)
and Ĝ = E

2 (1 + vp)
. The fluid and

solid equations are coupled through the matching of velocities and tractions across the
microscopic fluid-solid interface denoted with ∂|Es , viz.

ûi = ∂v̂i

∂t̂
, (2.177)
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and
Σ̂ijnj = σ̂ijnj, (2.178)

with n = {nj} the unit vector normal to the considered surface, always taken to point
into the fluid cell. We also need to specify the boundary conditions at the bottom B,
and top T of the unit cell sketched in 2.21. Continuity of fluid tractions and velocity is
imposed on T, i.e.

Σ̂ijnj = Σ̂out
ij nj and ûi = ûout

i , (2.179)
where the superscript out denotes the variables on the external side of the cell, cf. Zam-
pogna et al. (2019c). On B we impose that

v̂i = 0, (2.180)

which is equivalent to assuming that the elastic layer is anchored to a rigid, undeformable
substrate.

2.4.2. Scaling Relations

We start by assuming that the continuum layer made up by fluid and solid is characterized
by a frequency, f , sufficiently large for dynamic effects to be felt at leading order. Then,
it can be argued that in the fluid domain

ρfU f ∼ P

l
∼ µ

U

l2
, (2.181)

with U the velocity scale, P the pressure scale, and I the microscopic length scale. From
the above, we can choose the velocity scale to normalize the governing equations, i.e.

U = Pl

µ
. (2.182)

We further have a relation between the microscale l and the frequency f , which states
that, for viscous effects to balance inertia, l must be of the order of the Stokes layer
thickness, i.e.

I ∼
√
µ

ρf
. (2.183)

The small displacement of the elastic riblets is assumed to occur coherently over a macro-
scopic length L. This is the case for instance, of honami waves of canopy flows (Dupont
et al. (2010)). By equilibrating inertia and diffusion in Cauchy’s equation for the solid,
we have

ρsVf2 ∼ E
V
L2 , (2.184)

so that the macroscale L can be taken to coincide with the elastic wavelength, i.e.

L = 1
f

√
E

ρs
. (2.185)
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The interface condition (2.177) is useful since it permits to relate the displacement and
the velocity scales through

U = fV . (2.186)
We are now ready to introduce the relations between the dimensional and dimensionless
variables (the latter without hat), setting

t̂ = t

f
, x̂ = lx, p̂ = Pp, û = Pl

µ
u, v̂ = Pl

µf
v. (2.187)

Substituting these definitions in the continuity and momentum equations for the fluid
phase, we obtain

∂ui
∂xi

= 0; ∂ui
∂t

+ Reuj
∂ui
∂xj

= − ∂p

∂xi
+ 2∂εij(u)

∂xj
in F, (2.188)

where εij(u) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
and Re = ρfUl

µ
= εR, with R = ρfUL

µ
, assuming the

microscale Reynolds number Re to be of order ε (or possibly smaller). Applying the same
procedure to the Cauchy’s equation in the solid, we obtain

ε2
∂2vi
∂t2

= ∂σij
∂xj

in S, (2.189)

with σij = CijkAεkl(v) and Cijkl = Ĉijkl/E. The continuity of tractions on ∂|ES becomes

−pni + 2εij(u)nj = ε−2 ρs
ρr
CijklεkI(v)nj, (2.190)

and the kinematic condition reads
ui = ∂vi

∂t
. (2.191)

The periodicity condition along x1 and x2 in the unit cell (2.21, right frame) must also
be enforced, together with vi = 0 at B and Σijnj = Σout

ij nj at T.
Within the micro-patterned elastic layer, we can use the multiscale homogenization ap-
proach described by Mei and Vernescu (2010). We introduce the fast (microscopic) and
slow (macroscopic) variables, x = (x1, x2, x3) and x′ = ε (x1, x2) and the expansions

F =
∞∑
i=0

εiF (i), (2.192)

where F (i) =
(
u(i),v(i), p(i)

)
is a function of (x,x′, t) . The spatial derivatives become

∂

∂xi
→ ∂

∂xi
+ ε

∂

∂x′i
for i = 1, 2, (2.193)

so that
εij(u)→ εij(u) + εε′ij(u), (2.194)
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with ε′ij(u) = 1
2

(
∂ui
∂x′j

+ ∂uj
∂x′i

)
. The slow variable has a missing third entry because the

micro-structured layer does not extend macroscopically along the normal-to-the-surface
direction, x3 (cf. 2.21). For simplicity, we maintain the notation x′i, with the understand-
ing that i can only be equal to 1 or 2 . The fluid equations at order ε0 and ε1 in F then
read

∂u
(0)
i

∂xi
= 0, (2.195)

∂u
(1)
i

∂xi
+ ∂u

(0)
i

∂x′i
= 0, (2.196)

∂u
(0)
i

∂t
=
∂Σ(0)

ij

∂xj
= −∂p

(0)

∂xi
+ ∂2u

(0)
i

∂x2
k

, (2.197)

∂u
(1)
i

∂t
+Ru(0)

j

∂u
(0)
i

∂xj
=
∂Σ(0)

ij

∂x′j
+
∂Σ(1)

ij

∂xj
(2.198)

In (2.197) and (2.198) we have used the definition

Σ(n)
ij = −p(n)δij + 2

[
εij
(
u(n)

)
+ ε′ij

(
u(n−1)

)]
, (2.199)

for each n ≥ 0, with u(−1) = 0 for consistency. Similarly, the equations describing the
motion of the solid structure at

∂σ
(0)
ij

∂xj
= 0, (2.200)

0 =
∂σ

(1)
ij

∂xj
+
∂σ

(0)
ij

∂x′j
, (2.201)

∂2v
(0)
i

∂t2
=
∂σ

(2)
ij

∂xj
+
∂σ

(1)
ij

∂x′j
, (2.202)

In (2.201) and (2.202) the stress tensor at each order, σ(n)
ij , is defined as

σ
(n)
ij = Cijkl

[
εkl
(
v(n)

)
+ ε′kl

(
v(n−1)

)]
, (2.203)

for each n ≥ 0, with v(−1) = 0 for consistency. On ∂|ss the interface conditions read

u
(0)
i = ∂v

(0)
i

∂t
, (2.204)

u
(1)
i = ∂v

(1)
i

∂t
, (2.205)

σ
(0)
ij nj = 0, (2.206)
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σ
(1)
ij nj = 0, (2.207)

ρs
ρf
σ

(2)
ij nj = Σ(0)

ij nj = −p(0)ni + 2εij
(
u(0)

)
nj. (2.208)

To manage the stress boundary condition in Eq. (2.179) on the top side of the cell, T, we
follow the same procedure as in Zampogna et al. (2019c), by truncating the continuity of
tractions at order ε, which in the present case yields

Σ(0)
ij nj + εΣ(1)

ij nj = Σout
ij nj onT. (2.209)

The outer stress tensor depends on the outer quantities defined in Zampogna et al. (2019c)
(i.e. xout = (x′1, x′2, xout

3 ) with xout
2 = εX3 ) and is assumed not to be influenced by

small-scale effects (this assumption applies if T is sufficiently far from the elastic, micro-
structured wall). Collecting terms at each order in (2.209), we obtain

Σ(0)
ij nj = Σout

ij nj onT, (2.210)

and
Σ(1)
ij nj = 0 on T. (2.211)

Using arguments similar to those employed in Zampogna et al. (2019c), one also has
εu

(0)
i = uout

i on the upper boundary. Finally, the boundary condition (2.180) on B is
merely a homogeneous Dirichlet condition for the displacement at each order. Other
boundary conditions can be used on B, such as prescribed shear or normal stress to
impose a specific time-varying deformation of the elastic layer.

2.4.3. The Macroscopic Model

Eq. (2.200) and the homogeneous boundary condition (2.206) imply that v(0) does not
depend on the microscopic variable, i.e. v(0) = v(0) (x′, t), so that σ(0)

ij = 0. Eqs. (2.195)
and (2.197) can then be written in terms of the velocity of the fluid relative to that of the
solid, as

∂

∂xi

(
u

(0)
i − v̇

(0)
i

)
= 0, (2.212)

∂

∂t

(
u

(0)
i − v̇

(0)
i

)
= −v̈(0)

i −
∂p(0)

∂xi
+ ∂2

∂x2
k

(
u

(0)
i − v̇

(0)
i

)
. (2.213)

Because of linearity, the solution of (2.212) and (2.213) with boundary conditions (2.204)
and (2.210) can be expressed with four convolution kernels, Li,k(x, t), Hij(x, t), Bjk(x, t)
and Aj(x, t), as

u
(0)
i − v̇

(0)
i =

∫ t

0
Lijk (x, t− t′) ε′jk

(
uout ; t′

)
dt′ +

∫ t

0
Hij (x, t− t′) v̈(0)

j (x′, t′) dt′, (2.214)
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p(0) = p̄(0) (x′, t) +
∫ t

0
Bjk (x, t− t′) ε′jk

(
uout ; t′

)
dt′ +

∫ t

0
Aj (x, t− t′) v̈(0)

j (x′, t′) dt′,
(2.215)

where p̄(0) is the macroscopic reference pressure which can be set thanks to the third
component of (2.210). By substituting (2.214) and (2.215) into ((2.212), (2.213), (2.204)
and (2.210), the tensors Lijk, Hij, Bjk and Aj are found to satisfy the following microscopic
problems:

∂Lijk
∂t

= −∂Bjk

∂xi
+∇2Lijk in F,

∂Lijk
∂xi

= 0 in F,

Lijk = 0 on ∂|FS ,
U (t′)U (t− t′) εij (L·pq (t− t′))nj = δ (t′ − t) δipδjqnj on T,
Lijk, Bjk periodic along the tangential directions 1 and 2,

(2.216)



∂Hij

∂t
= −∂Aj

∂xi
+∇2Hij in F,

∂Hij

∂xi
= 0 in F,

Hij = 0 on ∂|FS ,
εij (H·p)nj = 0 on T,
Hij, Aj periodic along the tangential directions 1 and 2,

(2.217)

subject to the initial condition Lijk(x, 0) = 0 and Hij(x, 0) = −δij. In the boundary
condition at the top of the domain, T, for system (2.216), U(t) is the unit step function
and δ(t) is the Dirac delta function. The solutions of interest are transients. In particular,
since L solves the problem (2.216) for each t′ greater than 0 , it is univocally defined up
to a temporal translation in t′. To obtain a numerical solution we set t′ = 0.
At this point we introduce the spatial average over a unit cell to deduce macroscopic
equations valid over the homogenized domain. This average is defined using an integral
over either the fluid, F, or the solid, S, domain as:

〈f〉 := 1
|F ∪ S|

∫
F|S
fdV, (2.218)

where | · | denotes the volume of the corresponding domain. It could be alternatively
defined with an integral over the total volume of the unit cell, introducing a filter function
to discern whether the integrand refers to the fluid or the solid. After (2.218) is applied,
the microscopic three-dimensional cell reduces to a single macroscopic point lying on
a 2-manifold located at a constant distance, d, from a reference (x1, x2) plane through
the micro-patterned surface. Macroscopically speaking, since d is of order ε and spatial
variations smaller than ε cannot be measured by the slow variable x′, we are allowed
to take d = 0. As shown in Zampogna et al. (2019c), the present theory is not able
to estimate the value of d better than d = 0, since we are approximating the physical
phenomenon at leading order in ε. Directly linked to this fact is also the choice of ĥ, the
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normal-to-the-surface height of the unit cell over which the variables must be averaged.
Since ĥ must be of order l = εL in the present theory, we do not introduce any error
by taking h = 2 to include a balanced fraction of solid and fluid in the cell. Other
definitions of averages can be used in order to deduce effective properties starting from
the microscopic tensors.
The macroscopic equations for the fluid quantities are found by applying the spatial
average over the fluid domain F to (2.214) and (2.215), leading to

〈
u

(0)
i

〉
− θ∂v

(0)
i

∂t
=
∫ t

0
Lijkε′jk

(
uout; t′

)
+Hij v̈

(0)
j (x′, t′) dt′, (2.219)

〈
p(0)

〉
=
〈
p̄(0) (x′, t)

〉
+
∫ t

0
Bjkε′jk

(
uout; t′

)
+Aj v̈(0)

j (x′, t′) dt′, (2.220)

with θ = |F|
|F∪S| . The quantities Lijk,Hij,Bjk and Aj are defined as

Lijk = 〈Lijk〉 , Hij = 〈Hij〉 , Bjk = 〈Bjk〉 and Aj = 〈Aj〉 , (2.221)

where Lijk is the dynamic slip tensor. To ensure uniqueness of the solution of problems
(2.216) and (2.217), we also take 〈Bjk〉 = 0 and 〈Aj〉 = 0, so that Eq. (2.220) simplifies
to
〈
p(0)

〉
=
〈
p̄(0) (x′, t)

〉
.

We now consider the linearly elastic solid. Eq. (2.201) reduces to

∂

∂xj
Cijklεkl

(
v(1)

)
= 0, (2.222)

and the interface condition (2.207) valid on ∂|FS becomes

Cijklεkl
(
v(1)

)
nj = −Cijkε′kl

(
v(0)

)
nj. (2.223)

The solution of (2.222) and (2.223) can formally be written as

v
(1)
i (x,x′, t) = χpqi (x)ε′pq

(
v(0)

)
(x′, t) . (2.224)

Replacing (2.224) into (2.222) and (2.223), χpq is found to satisfy the microscopic problem:
∂
∂xj
{Cijkl [εkl (χpq)]} = 0 in S,

{Cijkl [εkl (χpq) + δkpδlq]}nj = 0 on ∂|RS ,
χpqi periodic along tangential directions 1 and 2,
χpqi = 0 on B.

(2.225)

Summing the dimensionless momentum equations of fluid and solid at the various orders,
and retaining terms up to order ε0 we have:

ε−1

[
Ξ
(
ρs

ρf

∂σ
(1)
ij

∂xj

)]
+ ε0

[
(1− Ξ)

(
−∂u

(0)
i

∂t
+
∂Σ(0)

ij

∂xj

)
+ Ξ

(
− ρs

ρf

∂2v
(0)
i

∂t2
+
∂σ

(2)
ij

∂xj
+
∂σ

(1)
ij

∂x′j

)]
= 0,

(2.226)
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with Ξ a filter function, equal to 1 (or 0 ) when at each instant in time there is solid
(or fluid) matter at any position x. We can now average over the total volume of the
unit cell and, making use of Gauss’ theorem and of the boundary conditions, obtain the
macroscopic momentum equation for the fluid-solid composite in the form:{[

ρs

ρf
+ θ

(
1− ρs

ρf

)]
δij +Hij

}
v̈

(0)
j + Lijkε

′
jk

(
uout ) = ρs

ρf

∂

∂x′j
cijklε

′
kl

(
v(0)

)
− 1
|F ∪ S|

∫
T

Σout
ij njdA,

(2.227)
with the components of the effective stiffness tensor C given by

Cijkl = Cijpq
〈
εpq

(
χkl
)〉

+ 〈Cijpqδpkδql〉 . (2.228)

Finally, we need a third equation to formally close the macroscopic problem. This is
linked to the mass balance of the composite medium and is found by taking the average
of (2.196) over F, yielding

∂
〈
u

(0)
i

〉
∂x′i

= Dpqε
′
pq

(
v̇(0)

)
, (2.229)

with the components of the compression/dilatation tensor D given by

Dpq = 1
|F ∪ S|

∫
∂|ES

χpqi (x)nidA. (2.230)

Eq. (2.219) represents a modified boundary condition for the velocity field in the outer
fluid and requires the knowledge of the solid displacement field at leading order. Thus, at
each time step, the solutions of (2.219),(2.227) and (2.229) must be pursued to yield the
unknowns

〈
u(0)

〉
,
〈
p(0)

〉
and v(0). Before being able to do this it is, however, necessary

to evaluate the effective tensors Lijk,Hij,Cijkl and Dpq for given shapes and properties of
the periodic surface micro-structure.

2.4.4. Solution of the Microscopic Problem and Effective Macroscopic Param-
eters

In order to apply the equivalent boundary condition (2.219), the microscopic problems
(2.216), (2.217) and (2.225) have to be solved. Once their solution is computed, the av-
eraged values over a unit cell (the so-called effective coefficients of the micro-structured
elastic surface) are available. The computational microscopic domain used to find the
solution of (2.216) (2.217) and (2.225) extends, along x3, from −1 up to 5 (normalizing
distances with l ), and the near-interface solution does not change when the upper bound-
ary is moved farther from the interface. For the purpose of volume averaging (definition
(2.218)) the unit cell goes from −1 to +1 along x3 (cf. figure A.4 where a typical grid is
also shown), so that the total dimensionless volume in the denominator of Eq. (2.218) is
1× 1× 2. The results discussed below correspond to both a triangular riblet-like surface
with an opening angle of 90◦ (see figure A.4 ) and to blade riblets. The surface over which
the riblets are positioned is a plane with tangent vectors ê1 and ê2 and normal vector ê3.
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Figure 2.22: Isosurfaces of L113 (top row) and L223 (bottom row) at two instants in time (t = 1
and t = 20), for triangular and blade riblets.

Figure 2.23: Variation in time of the nonzero components of the dynamic slip tensor L for
a Gaussian impulse centered at t′ = 0. The straight lines drawn for comparison purposes
represent the corresponding values of the components of the slip tensor for the case of rigid
riblets, normalized with the same volume used in the compliant case. Black solid lines represents
L113 and dashed lines represents L223 for blade type riblets, and similarly red color denoted
triangular riblets.
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Figure 2.24: Nonzero components ofH at two instants of time, t = 0.05 and t = 20, for triangular
and blade riblets.

The elastic solid forming the rough layer is assumed to be made of an isotropic material,
the Poisson’s ratio of which, vP , is taken, by way of illustration, equal to 0.330. Hence the
first and the second Iamé coefficients, λ̂ and σ̂1, are 0.730 F and 0.376 F, respectively. The
resulting dimensionless fourth-order isotropic stiffness tensor C of the material forming
the wall indentations has components Cijkl which read, in Voigt’s notation (Voigt, 1889):

C =


C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312
C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212

 =


1.482 0.730 0.730 0 0 0
0.730 1.482 0.730 0 0 0
0.730 0.730 1.482 0 0 0

0 0 0 0.376 0 0
0 0 0 0 0.376 0
0 0 0 0 0 0.376

.
(2.231)

The independent entries of this matrix are at the most 21 , instead of 36, for the most
general anisotropic linear elastic material, because of the symmetry properties Cijkl =
Cjikl = Cijlk = Cklij. In the present case of isotropic material the independent entries
reduce to two, C1111 = C2222 = C3333 and C1122 = C1133 = C2233, with C1212 = C1313 =
C2323 = (C1111 − C1122) /2. We will see, however, that the effective stiffness is anisotropic.

2.4.5. The Convolution Kernels in the Fluid Domain

In this section we analyze the solution of problems (2.216) and (2.217). These are time-
dependent linear Stokes problems valid over the F domain, with a inhomogeneous initial
condition (problem (2.217)) or inhomogeneous boundary conditions imposed on T (prob-
lem (2.216)). The boundary condition on T for problem (2.216) involves a Dirac distri-



83

Figure 2.25: Time evolution of the nonzero components of H with the same color scheme as
used in 2.23

bution which has been regularized numerically as a Gaussian impulse, Gδ = 1√
2πδ

e
−t2
2δ .

The convergence of the results by decreasing δ to zero has been checked. The fact that
the micro-patterned elastic layer is placed over a planar surface with tangent and normal
vectors that do not vary in space implies that only Li13 and Li23 differ from zero (this was
shown in Zampogna et al., 2019 in the case of rigid micro-structures). In figure 2.22, the
relevant components of L are shown for two successive instants of time. The volume aver-
age of L plays a central role in the macroscopic model developed in the previous section.
as its components represent the instantaneous slip lengths associated with the relative
fluid-solid tangential velocity. In contrast, B is identically zero within the microscopic
domain. After volume averaging L over F, the only nonzero components are 〈L113〉 and
〈L223〉; their behavior in time is shown in figure 2.23 , and displays an initial increase
followed by an exponential decrease at the same rate for the two components when t
exceeds 10 , for both riblets’ shapes considered. The two components L113 and L223 are,
respectively, the analogous of the longitudinal and transverse slip lengths, λx and λz, the
definition of which can be found in Luchini et al. (1991). Similar to the conclusions of
Luchini et al. (1991), they do not vary with the height of the computational cell (provided
the average is always taken over the same volume, i.e. over a cell of dimensions 1× 1× 2,
in l-units). The fact that L113 is consistently larger than L223 suggests that compliant
riblets reduce skin friction drag, furthermore, figure 2.23 suggests that compliant blade
riblets are more effective as drag reducing agents than their triangular counterpart. For
comparison purposes, also the time-invariant components of the slip tensor of the rigid
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case, λx = 0.3281 and λz = 0.2901 for triangular riblets, λx = 0.3642 and λz = 0.2907 for
blade riblets, are displayed in figure 2.23.

The calculations further show that the vector A is equal to zero within the computational
domain, while H (whose components are shown for two different instants of time in figure
2.24 ) behaves similarly to L with one difference: it asymptotically approaches zero from
the negative side. One should also note that H11 − H22 is larger for the case of blade
riblets than for triangular riblets, for any time, (cf. figure 2.25); the consequences of
this are as yet undetermined, even if the monotonic decay of |H| could suggest that the
acceleration of the structure holds a minor role.

2.4.6. The Tensors C and D in the Solid Domain

The tensor χ is the solution of the steady, second order partial differential equation (2.225)
defined over the S domain. It informs on the microscopic displacement of the structure
due to internal deformations, thus affecting the components of both the elasticity and the
compression/dilatation tensors.

The spatial distribution of some components of χmay be observed in figure 8 for triangular
and blade riblets; for both geometries it is found that χ13

1 = χ23
2 = χ33

3 , which is the reason
why only the latter component is shown in the figure. Other components not shown vanish
after volume averaging, owing to their antisymmetry with respect to a vertical mid-line.
All nonzero volume-averaged components are listed in 2.9 Once the tensor χ is available,
the components Cijkl of the effective stiffness tensor (cf. Eq. 2.228) can be computed,
and the result, in Voigt’s notation, is:

C =



0.693 0.432 0.547 0 0 0
0.432 0.779 0.547 0 0 0
0.547 0.547 1.111 0 0 0

0 0 0 0.282 0 0
0 0 0 0 0.282 0
0 0 0 0 0 0.162


, (2.232)

C =



0.470 0.279 0.373 0 0 0
0.279 0.475 0.373 0 0 0
0.373 0.373 0.756 0 0 0

0 0 0 0.192 0 0
0 0 0 0 0.192 0
0 0 0 0 0 0.098


, (2.233)

for, respectively, triangular and blade-like riblets. The volume of the solid portion for
the triangular wall corrugations is 0.75; that for the blade riblets is 0.51 (against a total
volume, fluid plus solid, used in Eq. (2.218) equal to 2). The values of the entries in (2.232)
and (2.233) would change by changing the microscopic volume over which Eq. (2.227) is
applied; however. the structure of the effective elasticity matrix would not change, and



85

Figure 2.26: Relevant components of χ on the domain S.
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Table 2.9: Nonzero volume-averaged entries of the microscopic solid tensor.

Riblets’ type 〈χ11
3 〉 〈χ22

3 〉 〈χ13
1 〉=〈χ23

2 〉=〈χ33
3 〉

Triangular 0.070 0.072 0.146
Blade 0.033 0.032 0.066

is the same in the two geometries considered. The effective stiffness tensor is orthotropic
(Cowin (2013)), with three mutually orthogonal planes of reflection symmetry; however,
only seven independent components are present (instead of nine) since C1133 = C2233 and
C2323 = C1313 and this stems from geometrical invariance in x1 and periodicity in x2.
Finally, the compression/dilatation tensor of use in the mass conservation equation of the
composite turns out to be diagonal, i.e.

D =

 0.188 0 0
0 0.218 0
0 0 0.265

 , (2.234)

D =

 0.125 0 0
0 0.123 0
0 0 0.255

 . (2.235)

for triangular and blade-like indentations, respectively. This tensor measures the com-
pressibility of the elastic substrate and is the main responsible of a non-zero normal
velocity,

〈
u

(0)
3

〉
, which, in the case of rigid protrusions, has previously been set to zero at

leading order (Zampogna et al., 2019).



MACROSCOPIC PROBLEMS

3.1. Summary

Effective and fully-feature simulations are conducted for following classical configurations:

• Hiemenz stagnation point flow over a rough wall: The high-order effective condi-
tions apply to a steady, laminar flow case. In the Hiemenz flow over a rough wall is
demonstrated. In this case, the differences between the exact results and those ob-
tained using conditions of different asymptotic orders are highlighted. In particular,
for the problem under consideration, a difference in the streamwise velocity is ob-
served between the effective macroscopic conditions at orders one and two, whereas
the terms of order three only slightly correct the order-two result by comparing with
the results of feature resolving simulations.

• Hiemenz stagnation point flow over a porous bed and flow over backward facing
step with the step region made of a porous material: This test case is to verify the
accuracy of the interface conditions in which macroscopic solutions are compared to
feature-resolving simulations. A good agreement is observed for a large value of the
porosity, which results in significant infiltration of the fluid into the porous medium.
In addition to this, excellent agreement is demonstrated even for the large values of
Reynolds number for which the theory is not formally applicable.

• Pressure-driven turbulent flow over a permeable walls in a rectangular periodic chan-
nel: The application of the interface conditions developed for the permeable inter-
face between the free-fluid region and porous media are also tested for a fully turbu-
lent flow in a periodic channel, where a constant pressure gradient drives the flow.
The findings suggest that the interface conditions influence near-wall turbulence
similarly to the full features and the case of riblets. Results also suggested that the
optimal design of the porous medium can be quickly obtained for the possible reduc-
tion of skin friction drag using the effective coefficients without full-feature resoling
simulations. It is also observed that the homogenized model characterizing the flow
over the microstructured porous media works well and is computationally cheap as
compared to the full-featured simulations, even in the turbulent flow problems using
the direct numerical simulations.

3.2. Hiemenz Stagnation Point Flow over a Rough Plate

To assess the accuracy of the effective wall conditions we have chosen to study a steady
boundary layer flow past a rough wall; the configuration considered is the stagnation
point flow, an exact solution of the Navier-Stokes equations when the wall is smooth. As
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Figure 3.1: Schematic of the stagnation point flow on a smooth wall (left) and over a rough
surface (right) where the grey color indicates the rough region.

it turns out, a similarity solution exists also when the wall is rough and this is addressed
first.

3.2.1. Two-Dimensional Hiemenz Flow Over a Rough Wall: A Similarity For-
mulation

The ansatz behind Hiemenz similarity solution for viscous incompressible flow Hiemenz
(1911) consists in writing the velocity components in (2.4) as

U = Xf ′(Y ), V = −f(Y ), (3.1)

so that the continuity equation is automatically satisfied. The pressure is further expressed
as (see Sin and Tong (2009) for further details on the pressure expression)

P = P0 −
1
2[X2 + g(Y )], (3.2)

with P0 the stagnation pressure. These assumptions are also applied to the case of a
regularly microstructured wall (see figure 3.1), with boundary conditions (2.57-2.58) on
Y = 0, so that the two momentum equations become

1
Re

f ′′′ + ff ′′ − f ′2 + 1 = 0, (3.3)

1
Re

f ′′ + ff ′′ − g′

2 = 0. (3.4)

The first nonlinear ordinary differential equation above can be solved for f(Y ) and, once
the solution is available, equation (3.4) can be solved for g(Y ), upon imposing that P = P0
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Figure 3.2: Stagnation point flow over a rough wall, visualized via velocity vectors (left.) In
the images on the right the flow in the vicinity and within the micro-indentations is visualized
by streamlines around X = 3.4, highlighting Moffatt eddies in the triangular cavities. Only for
comparison purposes, such eddies are shown at two Reynolds numbers, Re = 25 (top) and 250
(bottom) (in both cases it is ε = l/L = 0.2.)

at the stagnation point (which translates into g(0) = 0.) The boundary conditions up to
O(ε3) to be used with equation (3.3) are

ελxf ′′ − f ′ + ε2m12Re = 0, ε2m21f
′′ + f + ε3q21Re = 0 at Y = 0, (3.5)

f ′ = 1 at Y →∞; (3.6)

the second-order conditions are found by setting q21 to zero, while for those at first order
it is sufficient to also impose m12 = −m21 = 0.

3.2.2. The Numerical Solution

Rather than solving equations (3.3-3.6), numerical simulation of the full Navier-Stokes
equations is performed in this section, either resolving the flow field within the roughness
elements, or modelling it with the effective conditions. We consider a domain of length
equal to 10L along x̂, and focus on the results over the first four units of length past the
stagnation point. The outer edge of the domain is set at ŷ = 2L. Symmetry conditions are
enforced along the x̂ = 0 axis, and the flow is considered to develop only in the positive
x̂ direction. The external potential flow is û = ax̂, v̂ = −aŶ ; the constant a is the inverse
of a time scale; the characteristic velocity can thus be chosen as aL and the dimensionless
outer irrotational motion is thus of the form (U, V ) = (X,−Y ). For the viscous near-wall
flow we choose a Reynolds number Re = aL2/ν (ν the fluid’s kinematic viscosity) equal
to 25; to account for the presence of a constant-thickness boundary layer, in enforcing
the inflow condition the vertical coordinate must be shifted by a quantity equal to the
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Figure 3.3: Comparison between the wall-parallel velocity profiles along Y evaluated at X =
1, 2 and 3 in the case of smooth wall (solid lines) and rough wall (dots) with ε = 0.2, in
correspondence to the roughness peaks. The rough-wall results displayed are those computed
with a feature-resolving simulation; results for a microstructured wall simulated by employing
effective conditions at order one, two or three are superimposed to the feature-resolving results
and cannot be distinguished to graphical accuracy.

displacement thickness δ1, i.e. at Y = 2, outer edge of the domain, the inflow conditions
in dimensionless form must read:

U = X, V = −Y + δ1. (3.7)

Finally, at X = 10 boundary the usual “do-nothing” condition is employed, which corre-
sponds to zeroing the traction components.

In the no-roughness case the computed solution compares very well with the similarity
solution, and it is found δ1 = 0.64795Re−1/2. When roughness is present on the lower wall,
cf. figure 3.2, the solution changes slightly as shown in figure 3.3, and the displacement
thickness decreases to 0.5680Re−1/2.

The case lends itself to being treated with the effective conditions (2.57-2.58) even if,
on the one hand, the parameter ε is not so much smaller than one and, on the other,
the microscopic Reynolds number, R = ε2Re, is equal to one so that the terms on the
left-hand-side of the two momentum equations in 2.3 might appear to be leading order
terms. This is thus a strenuous test for the theory.
The wall-normal velocity at the fictitious wall at Y = 0 is zero, by definition, at first order,
but we find that it does not vanish when applying the effective conditions at higher orders.
In particular, V (X, 0, t) is approximately constant and equal to −0.0014 (−0.0017) when
second (respectively, third) order effective conditions are used. This means that a net
mass flux into the wall occurs and this might be due to two causes. On the one hand, ε is



91

Figure 3.4: Close-up of the streamwise velocity near Y = 0, for X = 1.1, 2.1 and 3.1, i.e. on the
troughs of the roughness elements. The solid lines represent the result of the feature-resolving
simulation, the white bullets are the results of the Navier condition, the black square symbols
correspond to the second-order condition, and the third-order results are shown with white
triangles.

not infinitesimal in the problem considered here (ε = 0.2) and thus the terms neglected in
the expansion of the conditions at Y = 0 are not vanishingly small. On the other, when
evaluating S12X and S22XX to be used in (2.58) discretization errors are inevitable. Note,
however, that the unphysical mass flux through the wall is less than 0.1% of the total
mass flux which enters the domain from the upper boundary. An even more difficult test
case for the condition on the vertical velocity at Y = 0 would be represented by a three-
dimensional turbulent wall flow, because of the presence of violent near-wall events, such
as ejections and sweeps. As shown by Bottaro (2019), the transpiration condition seems
adequate in a turbulent channel flow when ε = 0.2 and the friction Reynolds number is
180; however, a better approximation is necessary when ε = 0.4 (cf. figures 17 and 20 in
the cited reference.)

In figure 3.4 a close-up view of the U velocity component is shown near the surface where
the effective conditions are enforced, highlighting the fact that the approximations made
do a good job at representing the physics near the roughness (only in mean sense). Further
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Figure 3.5: Top: slip velocity U (dashed black line) at Y = 0 for the feature-resolving solution,
displaying typical oscillations; the results at different asymptotic orders are displayed using the
same symbols as in figure 3.4. The second/third order conditions are very close to the running
average of the “exact” slip velocity, displayed with a solid lines. The “exact” (dotted pink line)
and the one with the third order conditions (pink symbols) of wall-normal velocity V at Y = 0
is plotted in the same image, where the average transpiration velocity is almost zero. Bottom:
pressure at Y = 0, same symbols and line-styles as above. The parabolic behavior of the pressure
with X agrees with ansatz (3.2).
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Figure 3.6: Schematic of the stagnation flow over smooth and rough wall.

away from the wall the disagreement with the “exact” solution cannot be ascertained, to
graphical accuracy. The slip and transpiration velocity components at Y = 0 for the same
cases are displayed in figure 3.5, together with the pressure. Whereas the vertical velocity
at the fictitious wall oscillates around zero in the complete simulation, and is very close to
zero when equation (2.58) is used, the streamwise velocity displays amplifying oscillations
in the resolved case, and grows linearly in X when the effective conditions are employed,
consistent with (3.1). The conditions at second and third orders almost coincide and are
very close to the running average of the feature-resolving simulation (displayed with a
solid line): the growth of the “exact” solution is more rapid than that found with simple
Navier slip and the difference is appreciable.

3.3. Three-Dimensional Hiemenz Flow Over a Rough Wall

Like, in the two-dimensional case, in this subsection, stagnation point flow over a con-
ical type roughness is considered for testing the three-dimensional effective conditions
developed for rough walls with isotropic element in (x, z) plane. We are not presenting a
similarity solution here as it is now straightforward but aims to present numerical solu-
tions, where full Navier-Stokes equations are used in the computations, either resolving
the flow field over the rough wall or solving the model case with effective conditions, in a
similar manner as described previously.
Total domain dimensions in this case are 5L× 1L× 0.2L along the x̂× ŷ × ẑ directions.
We chose two Reynolds numbers Re = aL2/ν = 25 and 500. The inflow condition
are the same as those employed in the two-dimensional case with inclusion of spanwise
component which is set to be zero and periodicity along the spanwise direction. The
symmetric condition holds on the left wall and do-nothing condition holds at wall located
at x̂ = 5L. The displacement thickness in this case for Reynolds numbers 25 and 500 are
δ̂ = 0.55

√
ν/a and δ̂ = 0.2

√
ν/a respectively.

In figure 3.7 streamwise average velocity U is displayed versus X at the interface. The
solutions are compared with the full feature resolving case and to the one with the first-
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Figure 3.7: Streamwise average velocity plots verses varying height of cone, (a) H = 0.1, (b)
0.2, (c) 0.4 The solid lines are the running averages computed from the full feature resolving
simulations; dotted line is presenting solution with effective velocity of order-one. The symbols
denoted a solution of the model case with effective conditions of order-two.

order conditions for different Reynolds (low and moderate) numbers and for different
roughness heights. It is noticed that the solutions of the model case at order two is
comparatively closer to the running average as compared to the solutions with order
one condition. The streamwise velocity plots are enough to validate the accuracy of
high-order effective conditions developed for three-dimensional isotropic roughness, as we
already discussed detailed solutions in a two-dimensional case. The average transpiration
velocity at the bottom wall is zero.
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3.4. Hiemenz Stagnation Point Flow Over Porous Bed

3.4.1. Two Dimensional Hiemenz Flow Over a Porous Bed

Figure 3.8: Schematic of the Hiemenz stagnation point flow for two (top) and one (bottom)
approach.

The first configuration considered is that of the stagnation point flow, with the fluid
impacting onto a permeable surface; the porous domain (in ŷ < 0) is assumed isotropic
and the porosity is very large (θ = 0.9999) to allow for large infiltration of the fluid
within the porous domain. The small parameter ε is set to ε = 0.1, i.e. there are 102

two-dimensional circular grains in every macroscopic 1× 1 area.

In the inviscid, irrotational approximation the velocity components in the free fluid are:

û = ax̂, v̂ = −aŷ. (3.8)

The irrotational outer motion is used in the Hiemenz similarity solution far from the
(smooth or regularly micro-structured) wall. In the present configuration a general sim-
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ilarity solution does not exist, because of the Navier-Stokes/Darcy coupling across the
interface. In the expressions above, the constant a is the inverse of a time scale; the
characteristic velocity can thus be chosen as aL. The length scale L is here the depth of
the porous layer; the domain has length 15L along x̂, and the outer edge is set in ŷ = 5L.
Symmetry boundary conditions are employed on the x̂ = 0 axis so that the flow develops
only in the positive x̂ direction (cf. figure 3.9).

3.4.2. The Numerical Solutions

The full Navier-Stokes equations are used in the computations, either resolving the flow
field over and within the porous bed, or coupling the solution in Y > 0 to the har-
monic pressure field in the porous region, in the manner described before. The same
finite elements method is employed for these macroscopic simulations as that used for the
microscopic systems.
We choose a Reynolds number Re = aL2/ν = 25. To account for the presence of a
boundary layer, in enforcing the inflow condition the vertical coordinate must be shifted
by a quantity equal to the displacement thickness δ1, i.e. at Y = 5, outer edge of the
domain, the inflow conditions in dimensionless form reads:

U = X, V = −Y + δ1. (3.9)

The dimensionless displacement thickness δ1 is a priori unknown and it arises as part of
the solution. Just like in the case of the Hiemenz flow, also here we find that the boundary
layer has a constant thickness, i.e. δ1 is constant. On the X = 15 boundary the usual
do-nothing condition is employed when the full Navier-Stokes conditions are employed,
and this corresponds to zeroing the traction components. When using the two-domain
approach, the condition for P−0 in Y < 0 is ∂2P−0 /∂X

2 = 0 for X = 15. This amounts to
setting to zero the Y -component of the phase-averaged velocity in the porous medium at
the exit plane, an acceptable approximation if the exit boundary is sufficiently far away
from the stagnation point.
In the smooth wall case, it is δ̂1 = 0.648

√
ν/a, while when the isotropic porous structures

are present below the free-fluid region, the displacement thickness decreases to 0.425
√
ν/a.

The result in the feature-resolving simulation is displayed in fig. 3.9 in the vicinity of the
point of symmetry (X = Y = 0) by the use of streamlines. It is immediately apparent
that the fluid both slips at the fictitious wall and traverses it. This is thus a more difficult
test case compared to the often used one of the flow is a plane channel bounded by one
(or two) porous layers.
In fig. 3.11, the solution U is displayed as a function of Y , at three different positions,
X = 1, 2 and 3, for both direct simulations and for the case in which slip/transpiration
conditions are imposed. It is clear that the solution of the feature-resolving simulation,
which oscillates along Y when Y < 0 because of the presence of solid grains, matches well
the modeled case.
This result also shows that the velocity component U in the model problem has a discon-
tinuity close to the interface because of the presence of reasonably large slip speed. The
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Figure 3.9: Streamlines (top row) and pressure contours (bottom row) close to the axes origin,
both in the free-fluid and the porous region. The frames on the left correspond to solutions
obtained with the two-domain approach; results on the right are obtained by fully resolving the
flow, also through the solid inclusions. The pressure in the bottom right frame is the intrinsic
averaged pressure.
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Figure 3.10: Pointwise pressure field (left), together with two close up views of the first two rows
of grains (right)

Figure 3.11: Comparison between complete simulation with full feature resolution (solid lines)
and modeled with slip/transpiration velocity imposed at the dividing line/surface (empty cir-
cles). Longitudinal velocity component U (left) and normal velocity component V (right) as a
function of Y . The insets highlight the velocity distributions in the porous domain.
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right frame in the fig. 3.11 presents the normal velocity component V as a function of Y
at X = 3 only, since all solutions at different X positions coincide with one another.
The intrinsic averaged pressure contours in both cases are displayed in fig. 3.9 (bottom
row). The blue line in the left image corresponds to the dividing surface, across which a
pressure jump occurs (cf. equation 3.9). In the image on the right, the intrinsic average
pressure, computed over each unit cell Vf of the domain, is displayed for the feature-
resolving simulation. The pressure field and its gradient are discontinuous at Y = 0 also
in the right image; the computed pointwise pressure (cf. figure 3.10) is irregular around
the dividing line/surface when the fluid enters the porous region because large local values
of the pressure occur near the stagnation points of the uppermost solid grains. There is
thus a transition region of dimensional size of order l (cf. figure 3.9, inset), highlighted
with a black strip, across which a jump in intrinsic averaged pressure occurs.
We believe that the results presented in this section represents convincing evidence of
the accuracy and applicability of the proposed methodology to treat the dividing surface
between a free-fluid and a porous region, even when the fluid infiltrates significantly within
the porous domain. The results are all the more significant after considering that they
have been obtained for an extremely large value of the porosity (θ = 0.9999) and a rather
large value of the expansion parameter (ε = 0.1). In the next section, another case is
considered with two orthogonal intersecting Navier-Stokes/Darcy interfaces, and a value
of θ smaller than that considered so far. We will also test reasonably large values of the
Reynolds number, stretching the limits of applicability of the theory, to assess whether
the conditions proposed can be employed for Re beyond order one.

3.5. Backward Facing Step With Porous Step Region

We now focus on testing the interfacial conditions between the free fluid and the porous
domains for the case of the two-dimensional incompressible fluid flow past a backward-
facing step, with the step region made of an isotropic porous material as sketched in figure
3.12.
The porous block occupies the area 2 ≤ X ≤ 3 and 0 ≤ Y ≤ 1. The domain is 15 units
long in X, and the unit of length corresponds to either the inflow section or the step
height. The horizontal interface, itf 1, is located at Y = 1 and 2 ≤ X ≤ 3; the vertical
interface, itf 2, is at X = 3 and 0 ≤ Y ≤ 1. At the inflow of the domain (X = 0), the
laminar, fully developed channel flow velocity distribution is imposed, i.e.

U = 4(Y − 1)(2− Y ) and V = 0; (3.10)

thus, the centerline velocity at X = 0 and Y = 1.5 is the velocity scale, used in the
definition of the Reynolds number Re. At the outflow (X = 15) the traction vector is
set to zero. At the solid walls the usual no-slip conditions apply, except on the dividing
surfaces, itf 1 and itf 2, where we apply the interface conditions derived here.
The case ε = 0.1 and θ = 0.4973 is considered and the first comparisons, in terms of
isobars and streamlines, are made for both a Stokes flow (figure 3.13) and a case with
significant inertial effects (figure 3.14).
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Figure 3.12: Computational domain of backward facing step case, with porous block at the step.

Figure 3.13: Comparison between the solutions for Re = 0.0001 of the two-domain approach
(left frames, with blue lines denoting the dividing surfaces) and the exact feature-resolving
numerical solution of the equations, also through the pores (right frames), focussing around the
neighborhood of the step. The top row of images displays the pressure contours; streamlines are
plotted in the second row.

At this latter value ofRe (Re = 500) the flow is still two-dimensional and steady, according
to Biswas et al. (2004), when the step is impermeable. The steady solutions we have
computed for the permeable step, based on both fully feature-resolving simulations and
the two-domain macroscopic approach, attest to the accuracy of the proposed interface
conditions: both pressure and streamfunction show the same trends, also for the larger
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Figure 3.14: Pressure contours (first row: feature resolving, second row: model) and streamlines
(third row: feature resolving, forth row: model) for Re = 500.

Re flow. In this latter case the primary recirculation region after the step extends almost
up to the domain’s exit, and a secondary bubble appears on the upper wall. On the
contrary, in the Stokes’ flow case the primary recirculating vortex is very small, with both
approaches. Although these comparisons seem already to be sufficiently satisfactory, a
closer look in the immediate vicinity of itf 1 and itf 2 is in order
The slip and transpiration velocity components along the two interfaces are plotted in
figure 3.15, together with the pressure P , for the two Reynolds numbers already shown.
The exact feature-resolving results and those obtained by using the interfacial conditions
agree well with one another, with the former solutions displaying oscillations on the pore
scale, of increasing amplitude with Re. Such oscillations clearly cannot be captured
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Figure 3.15: Comparison of velocity components U , V and pressure P for Re = 0.0001 (six
frames on the left) and Re = 500 (six frames on the right), for the two interfaces. The feature-
resolving solutions are shown with solid lines and results of the two-domain approach are dis-
played with symbols.

by the homogenization approach. Notable differences occur, not unexpectedly, at the
corner point in (X, Y ) = (3, 1), where the approximations made break down. The level
of accuracy of the model derived here is, however, surprising, particularly for the larger
value of the Reynolds number.
A last comparison is made on the primary recirculating vortex after the step, comparing
the two approaches in terms of reattachment point and abscissa of the vortex center.
Both quantities are measured with respect to the base of the step, in X = 3. Such
comparisons are displayed in figure 3.16. Also on this macroscopic measure the model
performs very well, with the results being practically superposed (to graphical accuracy)
to those available by carrying out fully resolved numerical simulations. In the figure a
further comparison is made for the case θ = 0, i.e. when the porous block is impermeable.
The results we have obtained match very well those reported by Biswas et al. (2004),
obtained for a slightly lower expansion ratio, confirming the validity of our numerical
approach.
When the step is porous the recirculation length is slightly shorter (and so is the abscissa
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Figure 3.16: Recirculation length and distance of the primary vortex center from the backward-
facing step as a function of Reynolds numbers, for the exact solutions (dash-dotted lines) and
those obtained by using the homogenization approach (circles). Results of simulations without
the porous block are shown with solid lines and are compared to reference values by Biswas
et al. (2004) (square symbols).

of the vortex center) at each Reynolds number. Although the reduction is very small
since no attempt has been made to optimize porosity, permeability, or length-scale ratio,
this observation provides support on the use of porous panels to mitigate vortex shedding
behind bodies.

3.6. Application of Turbulent Flow Across a Permeable Inter-
face: Direct Numerical Simulation in a Channel Bounded
by a Porous Wall

The flow mechanism around and inside a permeable porous layer are often encountered in
industrial devices and environmental fields such as catalytic converters, metal foam heat
exchangers, natural and urban canopies (Kuwata and Suga (2016), Kuruneru et al. (2020),
Meroney (2007)). For enhancing the heat and mass transfer performance of industrial
devices and alleviating urban heat island effects, understanding flow physics over porous
media is a primarily important issue (see chapter 1 for references). Since flows over porous
media are very different from impermeable-wall flows, many studies have been historically
performed to understand the reason why such difference occurs especially the mechanism
of turbulence transportation across the interface, and the role of turbulent flow motions
of different scales in the transport process is rarely inspected (Abderrahaman-Elena and
García-Mayoral (2017), Gómez-de Segura et al. (2018), Chavarin et al. (2021)).
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It is clear that the accurate simulations of turbulent flows are difficult with respect to
computational power. They require resolving a wide range of lengths and time scales
as well as predicting chaotic behavior. There is a variety of approaches to dealing with
turbulence transport through porous media and across permeable interfaces. For example,
Reynolds Averaged Navier-Stokes (RANS) solve the average turbulent flow evolution. At
the same time, Large Eddy Simulations (LES) compute only the turbulent flow at large
scales (see references in the introductory chapter). On the one hand, these methods suffer
from a lack of closure because the evolution equations contain terms that require modeling;
on the other hand, RANS and LES simulate complex turbulent flows geometries. However,
it is possible to simulate accurately turbulent flows in simple geometries using a direct
numerical simulation (DNS). DNS has the advantage of permitting to observe and analyze
turbulent physics in a confined small space, such as turbulent flow within a representative
elementary volume (REV) of a porous medium (Chu et al. (2018),Chu et al. (2019) and
He et al. (2018)). Jiménez et al. (2001) was a pioneering work describing results of DNS
with a particular boundary condition. However, sufficient resolution of the flow’s smallest
length scales in the interface region requires massive computational resources. Thus,
we simulated the model problems with the effective conditions employed at a smooth
bottom wall (dividing surface) to reduce the massive computational issues. The porous
media part has been discarded in all effective simulations as effective conditions replace
the influence of porous media through effective coefficients (computed from microscopic
closure problems). In the following subsection, a detailed summary of the effective DNS
is described

The current study is intended to explore the process of turbulence transport over the
permeable surface through the use of the homogenization approach. The ultimate pur-
pose is to find the physical links between the geometrical feature of the porous medium
through the use of effective conditions and the characteristics of the turbulence trans-
fer process above the dividing surface without resolving the interface region. A specific
porous structure could be designed to generate flow characteristics for possible industrial
use without extensive computations. The turbulent statistics acquired here can also be
used to support different levels of modeling in the future as well.

3.6.1. Simulations Details

DNS of incompressible channel flow with the permeable lower walls (porosity θ = 0.5)
has been performed here. The top surface of the channel is a solid wall with no-slip/no-
penetration boundary conditions, whereas the lower wall (bottom surface at Y = 0) of the
channel is acting as an interface between the free-fluid region and a porous medium, over
which interface conditions (2.169-2.171) are employed. The effective coefficients involved
in the interface conditions are obtained from the solution of auxiliary Stokes-like problems
(see section) 2.3.7.. Periodic boundary conditions are applied in the streamwise (X) and
spanwise (Z) directions. In the discussion to follow, the dimensionless streamwise, wall-
normal, and spanwise velocities will be denoted U , V , andW , respectively, with the mean
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Figure 3.17: Schematic and cinematic view of full DNS turbulent channel flow featuring a pattern
of cylinders aligned in a (a) spanwise and (b) longitudinal directions. A macroscopic domain
without porous region is used for all simulations is given in (c), where the interface conditions
(highlighted in a red box) are used at the bottom surface located at Y = 0. The effective
coefficients λx, λz, Kitfxy, Kitfzy, and Kyy appearing in the interface conditions are obtained
from the closure problems (associated with spanwise and longitudinally aligned cases).

values, indicated with over bar sign, and fluctuations by a prime.
A sketch of the computational domain used in the model simulations is illustrated in the
figure 3.17 (c), where the domain size in non-dimensional form for streamwise (Lx) and
spanwise (Lz) direction is given in table A.4. The non-dimensional height of the domain
is set to be 2. The domain size is made dimensionless with half channel height “H”. An
arbitrary instantaneous flow variable “ψ” is decomposed as follows:

ψ(X, Y, Z, t) = ψ(X, Y, Z) + ψ
′(X, Y, Z, t). (3.11)

Equation 3.11 denotes Reynolds decomposition and is comparable to the triple decompo-
sition introduced by Hussain and Reynolds (1970), where the over bar denotes temporal
average i.e. 1

T

∫ T

0
ψdt and the prime denotes the instantaneous turbulent fluctuation.
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From the time-averaged momentum equation, the total shear stress at the porous inter-
face can be written as:

τwall = µ
∂U

∂Y
− ρ(u′v′), (3.12)

where U is the mean (spatial and temporal) streamwise velocity. The first term in
the above expression “µ∂U

∂Y
” is the viscous stress whereas the second term “ρ(u′v′)” is

the Reynolds stress. For the top wall, the shear stress can be simply computed as

τwall(y) = µ
∂U

∂Y
which is identical with wall bounded turbulence channel flow, and the

friction velocity can be obtained by using the expression
√
τwall/ρ. The other characteris-

tic parameters of the boundary layer for the simulation are ubotτ , utopτ , Rebotτ = ubotτ H/ν, and
Retopτ = utopτ H/ν, where ubotτ and utopτ are the friction velocities depending on the friction
force τwall. Note that the superscripts “bot” and “top” indicate the quantities computed
at the bottom and top surfaces respectively. Since the mass flux in the channel is kept
constant, the bulk Reynolds number , Re = UbH/ν can be specified directly for a simula-
tion, where ρ is density of the fluid, and H is half channel thickness, ν is viscosity, and Ub
is bulk velocity. The friction Reynolds number for the top and bottom are computed and
listed in the table A.5 together with other parameters from the simulations conducted.

The flow is driven by a uniform pressure gradient varying in time to ensure that the mass
flux through the channel remains constant. This condition leads to a friction Reynolds
number Retopτ = 193. A commercial software StarCCM+ v. 2021.1.1 is used for numerical
solutions in which an implicit unsteady solver (with second order temporal discretization)
is used. The uniform grid distribution is used in the tangential directions, whereas, in the
normal direction, grid is not uniform but symmetric to the centerline. To fully resolve
turbulence in near-wall regions, the first grid level near the bottom wall is located at
y+ = 0.143 (which corresponds to ∆y+

min = 2×0.143), and more than 21 grids are used in
y+ < 10, where y+ is the normalized grid distance from the wall. Note that the superscript
“+” indicates viscous unit. Maximum grid resolution details are given in the table A.4. In
terms of computational procedures, after reaching statistical equilibrium, flow statistics
are accumulated over an average time T = 20 normalized by H/uτ . The time step is set at
t = 1.5×10−3 (for smooth wall case) corresponding to an average CFL number ≈ 1.1 and
t = 1 × 10−3 (for model cases) corresponding to an average CFL number ≈ 1.06 . Once
the flow becomes fully turbulent, we replaced no-slip and non-penetration conditions at
the bottom wall with our effective conditions and simulated the same non-dimensional
time to collect the required turbulent statistics.

3.6.2. Instantaneous and Mean Flow Fields

This section has started with a qualitative picture of the flow over a permeable and
impermeable walls by analyzing mean and instantaneous fields. Figure 3.18 portraits
vertical profiles of the streamwise mean velocity u+ (top frame) and u (bottom frame).
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Figure 3.18: Top: Mean streamwise velocity profiles above permeable and impermeable walls i.e.
u+, (noted that + notation indicating viscous units) normalized by ubotτ and utopτ respectively.
Profile of u+ from Chu et al. (2021) (symbols) above permeable wall for Reτ ≈ 193 is used for
comparison. Bottom: Mean streamwise velocity in global units (i.e. 〈Ū〉) above permeable wall
normalized by utopτ . Profile of 〈Ū〉 from Wang et al. (2021) (symbols) above permeable wall for
Reτ ≈ 180 is superimposed in form of symbols for comparison.
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It is noticed that the result of a mean profile u+ over the permeable wall does not follow
the linear and log law as compared to the profile obtained from smooth wall channel case.
In the profile of u+ verses y+ above permeable wall, a shift of the logarithmic part of the
velocity distribution is noted (Millikan (1939); Luchini (2013)) and can be calculated by
the following relation:

u+ = 1
κ

log(y+) + b−∆u+ (3.13)

where κ = 0.392, b = 4.48, u+ is a streamwise mean velocity (mean in both temporal
and spatial sense) in a viscous units normalized by uiτ (where i corresponds to the shear
velocity of bottom wall in each case). In addition, ∆u+ is the function that measures the
change in the mean velocity profile.

The effective simulations with slip and transpiration predict the higher shear velocity at
the interface is observed as compare to the top shear velocity (see A.5) as also reported
by Orlandi and Leonardi (2006). To check the accuracy of the model (using effective
conditions) of the channel flow bounded by a permeable wall with spanwise arranged
cylinder where ε = 0.2, the solution of (u+) is compared with DNS resolved simulation
for Retopτ = 193 and ε = 0.4 by Chu et al. (2021). Since ε = 0.4 is very large, this leads to
high permeability; thus, we cannot have a converged solution for this case using effective
conditions. However, a good agreement of the u+ profile trend is found even for a very
coarse mesh (around 2 million cells only). Recently, Chavarin et al. (2021) addressed that
the anisotropic permeable substrate can hamper the near-wall turbulence cycle, leading
to the drag reduction, like that of riblets, producing an offset between the virtual origin
felt by the mean flow and that by the turbulent fluctuations. Therefore, channel flow
bounded by a porous bed of longitudinally aligned cylinders for two different values of
ε = 0.1, 0.2 is also simulated under the same conditions. The obtained results of u+ are
plotted in the same figure. It is observed that the solution of u+ for ε = 0.2 sits below
the solution of smooth wall case in the log law region, while for ε = 0.2, it sits above.
This behavior is also noticed in the second frame showing Ū/Ūavg profile versus y/H,
concluding that:

• In a spanwise case (ε = 0.2), the maximum velocity is displaced towards the imper-
meable wall; thus, losses on the upper wall, obtained with no additional power, may
increase the global drag for the whole channel containing the porous wall.

• In contrast, an opposite behavior is observed in a case of longitudinally aligned
cylinders, especially for ε = 0.1.

• A mean vertical profile of Ū/Ūavg of the spanwise arranged cylindrical bed for ε = 0.2
is compared with full DNS resolved case by Wang et al. (2021) for ε = 0.4 and found
that solution trend matches well and close to the reference case. Note that we are
keeping the same porosity value (i.e., = 0.5) in all cases.

The role of the porous medium on the overlying turbulent flow modifying the near-wall
turbulence significantly can be seen more clearly in the root mean square velocity plots
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(top frame) drawn at the vertical center line of the channel, see figures 3.19, 3.20, and 3.21.
The effect of the porous medium using interface conditions (porosity θ = 0.5, ε = 0.1, 0.2)
is appreciated for all cases as it increases overall turbulence at the wall. It is seen that the
value of streamwise root mean square velocity for longitudinal case with ε = 0.1 next to
the wall is higher than the other cases where the values of spanwise and wall-normal room
mean square velocities for the same case are found lower. The normal τRxy component of
the Reynolds stress tensor normalized by u2

τ in each case is illustrated in the figure 3.22.
A significant changes in τRxy/u2

τ obtained from the simulations of model cases as compared
to the smooth wall channel case are noticed.

Despite sharing similar mean profiles above, the high and low periodicity cases as a flow
rate above the interface show clear differences, see figure 3.23, depicting that the flow rate
increases for ε = 0.1 (giving l+max ≈ 20) of a longitudinally arranged case, whereas for
ε = 0.2 it is nearly equal to zero, same as in a smooth channel case. Alternatively, the
flow rate obtained from a spanwise arranged cylindrical case is much lower as compared
to longitudinal cases.

A further look at the instantaneous streamwise (top) and wall-normal (bottom) velocity
components are shown in figure 3.24, amplifies the above differences written above. These
results concluded that when cylinders are longitudinally aligned, they behave like riblets
since relatively minor fluctuations in XZ−plane are noticed compared to the longitudi-
nally aligned case (for ε = 0.1). In this longitudinally aligned case, the flow becomes
almost laminar (a possible case of drag reduction), which is much more reasonable and
organized than the spanwise arranged cylinder for ε = 0.2. In addition, positive fluctua-
tions of v (i.e., related to pockets of fluid being ejected outwards towards the bulk flow)
are more vigorous than negative ones in the bottom frame.

The results obtained from the simulations demonstrated following conclusions:

• The model with effective condition works well even if the effective coefficients arising
in the interface conditions computed from the Stokes like auxiliary problems.

• The porous media, which has been used for many years to analyze its effect on drag,
specifically drag reduction, thus can be used as a drag reducing surface if design
cleverly, and this can be achieved very quickly using the effective conditions under
the same pattern as reported in the cases of the rough surfaced (such as riblets).
In this way, an optimal anisotropic porous layer design can be available without
having fully resolved simulations to check what is happening within the pores near
the interface.

• The limitation of this homogenized model with interface condition is that it is
effective only when l+ = O(10) and it does not work well it the value of l+ is
higher then this limit.

• Using effective conditions, the model simulations of the flow over microstructured
surfaces are computationally less expensive than full DNS resolving cases.
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Figure 3.19: Streamwise RMS velocity profiles above permeable and impermeable walls.

Figure 3.20: Wall-normal RMS velocity profiles above permeable and impermeable walls.
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Figure 3.21: Spanwise RMS velocity profiles above permeable and impermeable walls.

Figure 3.22: Mean Reynolds stress component profiles above permeable and impermeable walls.
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Figure 3.23: Flow rate of different channel flow cases using interface conditions as a function of
ε. Blue symbol corresponds to the result of smooth wall case, red symbol denotes the solution
of the flow above the longitudinally aligned cylindrical bed and green represents a solution of
the flow above the spanwise arranged cylindrical bed.

Figure 3.24: Comparison between instantaneous velocities obtained using model cases for ε = 0.2
(spanwise) and ε = 0.1 (streamwise), Reτ = 193.



Conclusions and Outlook

Homogenization theory is a powerful tool to be employed when small-scale features coexist
with macroscopic ones. By using the homogenization approach, three flow problems have
been formulated in this thesis. Therefore, the following conclusions are drawn from each
case.

1. In the first example, two separate approaches to deriving effective boundary condi-
tions beyond the usual Navier—slip paradigm have been presented to model regu-
larly microstructured walls without the need to resolve fine-scale near-wall details
numerically. The techniques used here differ in the details of the small-scale for-
mulation but yield the same results as described in previous studies (Luchini et al.
(1991); Sudhakar et al. (2019)). They are based on matching the outer flow solu-
tion, which is only affected by macroscopic spatial variables and time, to the inner
flow state, which is assumed to be affected by small and large-scale variables. The
effect of roughness shape and periodicity is thus captured by the inner equations
and transferred to the outer flow through a set of coefficients at the matching po-
sition (set at Y = Y = εȳ). The solution to the inner, microscopic equations
is found at orders zero, one, and two using an asymptotic expansion of the vari-
ables. For the wall-tangent velocity, Navier-slip is recovered at leading order, along
with a no-transpiration condition. Note that the tangential gradient of the normal
stress appears in the wall-parallel velocity component(s) at the next order, while
the tangential gradient of the tangential stress appears in the wall-normal velocity
component(s). This could result in suction and blowing through the inner-outer
interface.

The choice of the interface position can be changed at any time, but we fixed it at
Y = 0 (the rim of the roughness components) in the macroscopic case. Any other
value for Y = εȳ would have been suitable and yielded results of the same order
of precision. A single solution of the homogeneous Stokes system of equations in
a x-periodic unit cell, equipped with no-slip at the wall and forced at the outer
edge by conditions (2.26), is sufficient to recover the coefficients γx and n12 in a
two-dimensional configuration, and this is all we need in the effective conditions at
order ε2, (cf. equations (2.32) and (2.33)). The analysis that follows equation (2.33)
discusses how these coefficients must be modified to enforce inner-outer matching
elsewhere. (equations (2.37) and (2.38)). Finally, it is shown how the macroscopic
matching equations ((2.57)-(2.57)), correct to O(ε3), develop at the next higher-
order in ε, accounting for convective terms at the microscale.

2. In the second example, it is considered how an idealized porous medium, formed by
isotropic (circular or spherical, inlined or staggered) solid grains of small dimensions,
affects the free-fluid flow in its proximity. To achieve this goal, the whole domain
was divided into three regions: an outer or upper region, where only macroscopic
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variables are present; an intermediate region, across a dividing line/surface, whose
dependent variables are function of both micro- and macro-scale variables; a inner
or lower region, deep within the porous medium. The microscopic cell of the in-
termediate region spans, along the interface-normal direction, from the inner to the
outer domain, where the behaviors are either known or can be computed. Such be-
haviors provide the boundary conditions to be enforced on the dependent variables
of the intermediate reference cell, which has unit length along the interface-parallel,
periodic directions. Expanding the unknowns in powers of the small parameter ε,
ratio of microscopic to macroscopic length scales, Stokes-like systems arise at lead-
ing order and at next higher order in the intermediate reference cell. These linear
systems can be expressed in terms of the forcing terms, related to the traction ex-
erted by the outer flow and its gradient. The auxiliary problems thus arising in
the intermediate cell permit to identify three important parameters: a slip length
tensor, an interface permeability tensor, and a medium permeability tensor. These
parameters represent the effect of the porous domain on the outer, large-scale flow
and enter the interface conditions (2.142) and (2.142). Of note is the fact that
the interface permeability, Kitf , has a different behavior from the porous medium
permeability, K, particularly at low values of the porosity; this is because a tight
packing of the grains affects the flow through the inner region more than it does
near the dividing surface. Interface boundary conditions for three-dimensional flow
over a porous medium consisting of cylindrical structures aligned in cross-flow direc-
tion. Effective parameters λi and Kitfij of interface conditions are computed over a
microscopic domain of height y−∞ = −5 to y∞ = 5, where the medium permeability
is computed over a fully periodic unit cell using the phase averaging of the velocity
components using the conventional approach of Mei and Vernescu (2009).

Two cases have been reported for this example related to the location of interface.
One is two- and three- dimensional flow over circular and spherical porous grains
where the interface is located slightly above the crest of the grains, and second is
three dimensional flow over cylindrical grains arranged spanwise and longitudinally
with respect to the direction of the flow. In the second case, the interface is located
at the crest of the cylinder. Different types of arrangement have been taken in each
case for example; (i) inline and (ii) staggered, and (iii) random in the first case, where
only (i) inline, and (ii) staggered arrangement is considered in the second case. All
parameters are examined as functions of porosity and it is observed that, in the
cross-flow alignment of the cylinders, effective parameters has a dramatic increase
versus porosity increases specifically for a non-operational value of a porosity. The
coupling coefficients for the interface conditions of longitudinally aligned cylinders
case are obtained by just switching the coefficients linked with streamwise direction
with the spanwise direction.

3. In the third example, a general framework aimed at analyzing micro-structured,
elastic coatings anchored onto a rigid, solid substrate has been developed. The
lack of geometrical limitations for both the macroscopic surface and the microscopic
structure makes this model suitable to explore, at a reasonable computational cost,
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a large number of situations involving interactions between a viscous fluid and a
linearly elastic, micro-patterned surface. Eq.2.219 represents a generalization of the
Navier slip boundary condition for the case of deformable surfaces, expressed here
through a time convolution between the slip and strain tensors. In this equation,
the components of the tensor L are the slip lengths allowing for the non-zero relative
fluid–solid velocity at the equivalent surface E to be expressed in terms of the shear
exerted by the outer flow. Such components of the slip tensor have been examined
here for a specific texture of the wall, together with other components of relevant
tensors, H, C and D, which hold a role when the wall is elastic.Clearly, we need
to examine other surface micro-patterns and other properties of the solid material,
before a thorough understanding of the fluid–solid interaction can be gained. The
results shown here, in particular figure 2.23, constitute already sufficient evidence to
argue on the effectiveness of flexible micro-grooves in reducing skin friction drag. In
future work macroscopic simulations of turbulence with conditions at the fictitious
wall which employ the derived effective parameters will be carried out.

After solving the microscopic problems obtained via asymptotic development, the effective
conditions have been derived in each case, and thus applied in the macroscopic problem
except the third problem. The purpose of the developments are listed below:

1. In the first problem, the primary purpose of the formulations is to highlight the fact
that the nominally higher-order terms can produce sizable effects in the flow over
rigid rough surfaces and thus should not be negligible.

2. In the second case, interface conditions like classical Beavers-Joseph-Saffman con-
ditions are developed. The difference is that the coefficients which appear in the in-
terface relationship stem from the solution of auxiliary Stokes-like problems valid in
a cell around the dividing surface with periodic conditions along with the interface-
parallel directions and do not need to be fixed ad-hoc. The idealized patterns of
porous media have been considered. The model coefficients are provided as a func-
tion of varying porosity for both two- and three-dimensional porous media and are
given in section 2.3.. The primary purpose of these conditions is to cut the com-
putational cost needed to analyze the flow behavior close to the microstructured
surfaces and its impact on the far fields. The secondary purpose of the development
is to provide a model which should be less expensive computations for industrial
use to design the functional (drag reducing) engineered surfaces for aerodynamics
and marine dynamics applications.

The important results drawn from the macroscopic tests are :

1. The effective conditions obtained from the first problem are then applied to the
steady laminar test case to check the accuracy and viability of these conditions
compared to the full feature resolving case and the classical Navier conditions. The
problem examined highlights a difference between the macroscopic effective condi-
tions at order one and two, whereas the terms of order three correct the order-two
result by very little. The O(ε3) terms may become important in more complex flow
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configurations, possibly three dimensional and unsteady. In this latter case, after
naming the two tangential stress components STx = UY + VX and STz = WY + VZ ,
the effective slip/transpiration conditions read:

[
U
W

]
= εΛ

[
STx

STz

]
+ ε2M

[
SNX
SNZ

]
+ ε3Θx

S
Tx
XX

STxXZ
STxZZ



+ε3Θz

S
Tz
XX

STzXZ
STzZZ

+ ε3ReQ
[
STxt
STzt

]
+O(ε4),

(4.1)

V = ε2m1

[
STxX
STxZ

]
+ ε2m2

[
STzX
STzZ

]
+ ε3p

S
N
XX

SNXZ
SNZZ

+O(ε4). (4.2)

Λ, M and Q are 2 × 2 matrices; Θx and Θz are 2 × 3 matrices; m1 and m2 are
1× 2 while p is 1× 3. In principle, obtaining all coefficients of the matrices above
would require a large number of numerical resolutions of differently forced three-
dimensional Stokes systems. It is expected, however, that the effective number
of auxiliary problems to be solved is significantly lower, in analogy to the two-
dimensional case. It is indeed a nice and unexpected surprise to observe (Bottaro
(2019); Sudhakar et al. (2019)) that a model of the rough surface based on only the
leading order, non-trivial terms for the velocity components (i.e. those including
only the factors Λ, m1 and m2 produces good results for both mean flows and
second order statistics, in a large-Re turbulent channel flow. The issue appears
to be related to the effect of the wall normal velocity fluctuations (Orlandi and
Leonardi (2006)).

2. The tests of interface conditions and coefficients have been carried out in simple two-
and three-dimensional setting, under rather straining conditions: significant fluid in-
filtration through the pores, values of ε not so small, Reynolds number beyond the
Stokes regime. Despite these difficulties, the conditions given have performed very
well, even beyond expectations, when model computations are compared against
simulations that resolve microscopic details also within the porous medium. The
cases considered are i) the incompressible Hiemenz boundary layer flow over the
porous bed and ii) the backward-facing step, with a porous step region. The ex-
tension of the theory to the case of anisotropic porous media does not present fun-
damental nor numerical difficulties. Another important observation concerns the
pressure: the pressure (the outer pointwise value and the inner interstitial value) is
not continuous nor differentiable at the interface.

3. Direct numerical simulation of turbulent flow over permeable-walled channel flows
are performed to examine the influence of porous media on the overlaying fluid by
using the commercial software StarCCM+ based on finite-volume method. The
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bottom surface of the channel is suppose to be a dividing surface where the inter-
face conditions (2.169-2.171) are enforced. Effective simulations (the model) are
compared with full simulations of turbulent flow over permeable and impermeable
walls for different periodicity. It is found that turbulence is affected by transpira-
tion velocity, and it can be seen from the solution of root mean square velocities
and Reynolds stress component (u′v′) near the wall. Moreover, root-mean velocity
fluctuations demonstrated that the near-wall turbulence is modified overall by the
interface conditions, including the streamwise and spanwise slippage effect together
with the large vertical transpiration effect. By comparing the friction Reynolds num-
ber, it is clear that the wall-shear stress over the porous wall increases by almost
16% in the spanwise case and increases by almost ...% in the longitudinally case
compared to the smooth wall case, thus cause an increase and decrease respectively
in the skin friction drag.

The multiscale homogenization approach is adapted to provide a homogenized framework
that is capable of analyzing the fluid flow over and through the microstructured media.
The present study found how various structures affect the free-fluid flow in its proxim-
ity. The solutions of different scales, such as inner and outer, are matched via matching
conditions developed using the multiscale asymptotic approach. The results show that
homogenization theory is a powerful tool to use when small-scale features coexist with
macroscopic ones. Results provide insights for designing novel isotropic and anisotropic
microscopic structural such as solid indentations, elastic rough inclusions, porous me-
dia with low porosity, and small permeability for industrial and engineering applications
without performing expensive computations. Further, it is essential to highlight that the
current homogenized framework is independent of empirical parameters/coefficients and
provides accurate measurements of the effective coefficients from the microscopic simu-
lations. The substantial freedom for choosing the appropriate parameters is left for the
audience. It allows selecting the composition and structure that better fit the potential
applications and mechanical requirements. For this purpose, all effective parameters are
provided in tabular form in each case.

Complex cases will be considered in the future to take advantage of the current high-order
homogenized framework to test further applications, such as turbulent flow over elasti-
cally deforming microstructures (third example of the work) and over the rigid roughness
elements impregnated by a lubricant fluid. It is important to note that the coefficients ob-
tained stem from the solution of microscopic Stokes-line problems; as such the parameters
found apply to the reasonably low Reynolds number flows and to situations for which the
expansion parameter ε is indeed small. The case of surface indentation of large amplitude
or of strong advective near-wall effects is not corrected by the present theory; however,
extension of the theory are currently being envisaged to try and account for dispersive
stresses within the roughness elements, possibly by using a Oseen-like linearization. Such
efforts will be reported in the future.



A.1. Numerical Approximations

In this chapter, numerical details used in the thesis are described.

A.1.1. Finite Element Method (FEM) and its Typical Procedure

The origin of the finite element method can be traced back to the 1950s, when engi-
neers started solving structural mechanics problems in aeronautics using numerical tools.
The technique has been very successful for the solution of partial differential equations
(PDEs). The interpolation capability of the finite element is the approximation of scalar-
and vector-valued functions, as well as the ability to approximate a mathematical model
given in terms of PDEs within a proper mathematical framework (Ern (2004)). Many
problems in physics and mechanics are described as a set of partial differentials and ini-
tial/boundary conditions. This set is called the strong form of the problem. However, a
finite element analogous follows two main approaches, namely weighted residual and weak
formulation (the detail given in the subsequent sections and subsection). After this, the
local element equations for all finite elements are assembled and resolved simultaneously,
with appropriate loadings, boundaries, and initial conditions applied for elements/nodes
so that their values can be continuously solved at the nodes. The equations are solved in
each finite element by assuming basis functions that interpolate the unknown variables
over the element to approximate the problem’s solution.

The idea behind FEM is to discretize the domain of interest in first, where the PDE is
defined so that a linear combination of basis functions defined within each subdomain
can approximate the PDE’s solution. The assembly of subdomains, which is based on
repositioning the finite elements, produces a discrete set of equations similar to the orig-
inal mathematical problem. An assembly of discrete elements to approximate the whole
domain is called finite elements, interconnected at points common to two or more ele-
ments, called nodes. The unknown variable values at the nodes are used to describe the
basis function within the finite element. An approximated solution to the problem within
the element is a linear combination between the nodal values of the variables and the
element’s base functions. The finite element equations connect the nodal values of the
variables to other parameters.
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A.1.2. The Weak Formulation of FEM

The approach to solving the problems with the Finite Element Method is based upon
writing it in a different form, which is sometimes called weak or variational form. Green’s
theorem is the most important element in this process of reformatting of the problems.
The formula used is also called the first Green’s formula from Green sometimes. It is
stated that: ∫

Ω
(∇2u)v +

∫
Ω

(∇u) · (∇v) =
∫

Γ
(∂nu)v. (A.1)

Note that this formula contains two kinds of integrals. On the left-hand side, both are
domain integrals, whereas, on the right-hand, the integral part is a part of the boundary.
Moreover, in three dimensions, the result is also applicable, and in that case, domain
components are integrals of volume, and boundary components are surface components.
The dot between the gradients denotes the Euclidean product of two vectors. Green’s
Theorem is a simple result of the following divergence theorem:∫

Ω
(divp)v +

∫
Ω
p · (∇v) =

∫
Γ
(p · n)v. (A.2)

where divp is the divergence of vector field p with p = (p1, p2, p3). The Green’s theorem
can be recovered if p is replaced by ∇u. Green’s theorem is the starting point for the
weak or variational formulation. The v in the context of Green’s theorem is nothing but
a test function. It tests the equation that is satisfied by u. The central idea is to have
an averaged version of the equation instead of looking at the equations point–by–point
in the domain. Then v acts as a weight function, which is used to average the equation.
In several places (books on mechanics, engineering, or physics), v is referred to as a
virtual displacement (or virtual work, or virtual whatever), stressing the fact that v is not
the system’s unknown, but rather something that exists only in the mind’s eye to write
down the issue. In that sense, the weak formulation is a theory of virtual displacements
(principle of virtual work).

Details on the weak formulation of each microscopic solutions are given in the following
subsections.

A.1.3. Numerical Settings UsingWeak Formulation: Two- and Three-Dimensional
Flows Over Rough Walls

To construct the solution of the microscopic problems of the flow over rough wall, two
different software based on finite element method are used. In the two dimensional case,
finite element based toolbox FreeFEM (an open source code, Hecht (2012)), in which
the incompressible two-dimensional slow flow equations for the generic unknown (u, p)
are solved. The approach used in this context is based on a weak formulation of the
governing equations as discussed above, which means two regular test functions v and q
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are introduced, and integrateD over the domain∫ 1

0

∫ y∞

ywall

−v · ∇p−∇v · ∇u + q∇ · u dy dx = r.h.s, (A.3)

with the variables approximated by triangular P1−P2 Taylor-Hood elements. Taylor-Hood
finite element consists of approximating the velocity by P2-Lagrange finite element and
the pressure by P1-Lagrange finite element. Depending on the system being addressed,
the term denoted as r.h.s. can contain contributions from volume source terms, boundary
conditions, or from both (as discussed above). For solving the Navier-Stokes equations, a
similar approach, also based on the FreeFEM code, is used here. Special care is required
when the Dirac delta is located in y = 0 or the Heaviside step functions appear in the
equations. The grid needs to be refined locally in these cases (cf. fig. A.1). As a normal
distribution of variance Σ2 = 5× 10−7 have chosen to model the delta function:

δ(y) ≈ 1√
2πσ2

e−y
2/2σ2

, (A.4)

and the step function as

H(−y) ≈ 0.5[tanh(αy)− 1], (A.5)

with α = 103. All results reported here have been checked for grid-convergence; validation
tests have also been carried out using the software COMSOL Multiphysics (2019). The
results described in 2.2. obtained using the approximations (A.4) and (A.5), converge
towards those presented in section 2.2.1. as the grid is refined and the parameters α and
σ2 are increased. Example of one Stokes like problem (2.13) written in freeFEM using
weak formulation is given below:

1 // Geometry and Mesh
2 include " ffmatlib .idp"
3 real elle = 5;
4 real m0 = 3;
5 real m1 = 0.1;
6 real t0 = 0.3;
7 real a = (m1 -m0 -2* t0 *( elle +0.5 - m0))/( -2* t0 +3* t0$ ^2$);
8 real b = elle +0.5 -m0 -a;
9 real c = m0;

10 border g1(t=0, 1){x= -0.4* t$ ^2$+0.9* t; y= -0.4* t$ ^2$ +0.9*t -0.5;}
11 border g2(t=0, 1){x =0.4* t$^2$ +0.1* t+0.5; y= -0.4* t$^2$ -0.1* t;}
12 border g3(t=0, 1){x=1; y=a*t$ ^3$+b*t$ ^2$+c*t -0.5;}
13 border g4(t=0, 1){x=1-t; y=elle ;}
14 border g5(t=0, 1){x=0; y=a*t$ ^3$+b*t$ ^2$+c*t -0.5;}
15 mesh Th= buildmesh (g1 (100) + g2 (100) + g3 (250) + g4 (24) + g5 ( -250)

);
16 plot(Th , ps="grid.eps", wait=true);
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17 // Fespace
18 fespace Uh(Th , [P2 ,P2 ,P1], periodic =[[3 , y], [5, y]]);
19 Uh [u, v, p], [uu , vv , pp];
20 fespace Xh(Th ,P2);
21 Xh uloc;
22 Xh vloc;
23 Xh ploc;
24 // Define the Dirac delta function
25 real sigma2 = 0.000001;
26 func dir = exp(-y*y/ sigma2 )/sqrt(pi* sigma2 );
27 // Problem in weak form
28 solve stokes ([u, v, p], [uu , vv , pp])
29 = int2d (Th)
30 (
31 dx(u)*dx(uu)
32 + dy(u)*dy(uu)
33 + dx(v)*dx(vv)
34 + dy(v)*dy(vv)
35 + dx(p)*uu
36 + dy(p)*vv
37 + pp *( dx(u) + dy(v))
38 - 1e -10*p*pp
39 )
40 - int2d (Th)(dir*uu)
41 + int1d (Th ,g4)(uu*dx(v))
42 - int1d (Th ,g4)(vv*p/2)
43 + on(g1 , u=0, v=0)
44 + on(g2 , u=0, v=0);
45 // output
46 plot(u, ps="$u_{plot}$.eps", value = true , wait =1, fill=true);
47 plot(v, ps="$v_{plot}$.eps", value = true , wait =1, fill=true);
48 plot(p, ps="$p_{plot}$.eps", value = true , wait =1, fill=true);
49 real intu= int2d (Th)(u);
50 real intv= int2d (Th)(v);
51 real intp= int2d (Th)(p);
52 uloc = u;
53 vloc = v;
54 ploc = p;
55 cout $<<$ "Max U = " $<<$ setw (12) $<<$ uloc []. max $<<$ " \t Max

V = " $<<$ setw (12) $<<$ vloc []. max $<<$ " \t max P = " $<<$
setw (12) $<<$ ploc []. max $<<$ endl;

56 cout $<<$ "Min U = " $<<$ setw (12) $<<$ uloc []. min $<<$ " \t Min
V = " $<<$ setw (12) $<<$ vloc []. min $<<$ " \t min P = " $<<$
setw (12) $<<$ ploc []. min $<<$ endl;

A better way to treat the delta and step functions would be to split the domain into two
parts and enforce jump conditions across, as proposed by Sudhakar et al. (2019). How-
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ever, it is not necessary to proceed this way, since a simpler and very accurate alternative
is available (cf. section 2.2.1.). All closure Stokes like problems in the three-dimensional
case presented in the section 2.2.3. are obtained via academic version of COMSOL Mul-
tiphysics (2019) using the weak formulation.

A.1.4. Grid Resolution and Grid Convergence Test

The mesh of the first (for both micro and macroscopic) problem is generated by both
freeFEM and COMSOL for two and three-dimensional flow cases. It is observed that the
model problem with the effective conditions (2.57-2.58) is computationally less expensive
as compared to the full feature resolving case. Mesh independence test is taken place
concerning the slip length for four different meshes using COMSOL and are presented in
the tabular form given below:

Table A.1: Mesh convergence test for two-dimensional flow over a rough wall.

Mesh elements λ
7728 7.7695×10−2

13560 7.7760×10−2

125720 7.7780×10−2

508205 7.7780×10−2

All two-dimensional microscopic problems with easier alternative approach (section 2.2.1.)
are solved using mesh size 125720 (elements) in this case. Similarly, mesh convergence
test for three dimensional case (conical rough wall) is also performed and obtained results
are independent of the mesh.

A.1.5. Sample Solutions of Two-Dimensional Roughness Geometries

For a variety of wall shapes, the coefficient of effective slip conditions (2.37-2.38) to the
second order is easily accessible by either of the approaches mentioned in this research.
We have taken into account the indentations shown in Fig. A.2. In Table A.3, the relevant
coefficients are listed. The pattern B, with the largest wetted surface at y = 0, shows the
lowest coefficients of slip and transpiration. Since no-slip prevails at the roughness edge
over half of the total streamwise distance, and this is expected. The converse argument is
that the blade-like indentation A has greater coefficients (which can be further increased
by decreasing the blade thickness). The shapes D and E have coefficient values very
similar to each other and the slip is highest in the case of D, where a quasi-cusped tip is
present. This also provides an indication of the geometries to be preferentially tested in
cases where the microcavities are filled with an immiscible lubricant fluid such as air or
vapor, when superhydrophobic coatings are taken into account; first order results (Alinovi
and Bottaro (2018)) confirm this indication as well as feature-resolving direct numerical
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Figure A.1: Sample grids used in the absence (left) or presence of force singularities in the
equations at y = 0. When a delta or a step function is present the grid is refined around the
tip of the roughness in y = 0; conversely, when the fields are smooth the points are chosen
to be uniformly distributed along each side of the domain. The grids displayed are composed
by 1132 (left) and 1913 (right) triangles, whereas those used in the actual computations have,
respectively, 125720 and 88419 triangles (left). Sample grids used in the three-dimensional cone
configurations for inline (left frame) and staggered (middle) arrangement. On the right side,
base of both arrangement is displayed. The grids displayed are composed by 12183 (left) and
25846 (right) tetrahedral, whereas those used in the actual computations have, respectively,
96808 and 117369 tetrahedral elements (right frame).

turbulence simulations in a channel bound to the lubricant-impregnated walls (Arenas
et al. (2018)) further highlight the significance of wall-normal velocity fluctuations and
their strong correlation to the total drag. In the case of lubricant-filled micro-cavities, the
high-order approach mentioned here can easily be applied to better capture phenomena
which to date, have only been modelled using the first-order Navier condition.

Table A.2: Variation of slip and transpiration parameters for different roughness geometries.

A B C D E
λx 0.06293 0.01781 0.04087 0.08119 0.07991

m12 = −m21 0.00325 0.00043 0.00182 0.00544 0.00551

The macroscopic problems, Hiemenz stagnation point flow over a rough wall in two-
and three-dimensional configurations are numerically solved by COMSOL Multiphysics
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Figure A.2: Microscopic domains with some two-dimensional roughness shapes tested. Shape A
is a blade of dimensionless thickness equal to 0.2. The thickness of the square roughness element
B in 0.5. Roughness C is a semicircle. Roughness D is defined by a parabolic-linear contour,
and roughness E is a 90 degrees triangle (right)

(2019). The steady state solutions are obtained for low and moderate Reynolds numbers.
The PARDISO (parallel sparse direct solver) is used to solve the Navier Stokes equations.
This solver is fast, robust, and multi-core capable (scales better than MUMPS on a single
node with many cores).

A.1.6. Numerical Settings Using Weak Formulation: Flow over Porous Media

Following a similar approach opted in A.1.3., all auxiliary Stokes like problems reported in
the section 2.3. are numerically solved using both freeFEM and COMSOL. The example
of one solver written in freeFEM code for a Stokes problem (2.136) is given below:

1 // Geometry and Mesh
2 // include " ffmatlib .idp"
3 real elle = 5;
4 real[int] xx (21) , yy (21);
5 border g1(t=0, 1){x=1; y=( elle +5)*t -5; label =1;}
6 border g2(t=0, 1){x=1-t; y=elle; label =2;}
7 border g3(t=0, 1){x=1-t; y=-5; label =3;}
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8 border g4(t=0, 1){x=0; y=( elle +5)*t -5; label =4;}
9 border g5(t=0, 2* pi){x =0.5+0.4* cos(t); y= -0.5+0.4* sin(t); label

=5;}
10 border g6(t=0, 2* pi){x =0.5+0.4* cos(t); y= -1.5+0.4* sin(t); label

=6;}
11 border g7(t=0, 2* pi){x =0.5+0.4* cos(t); y= -2.5+0.4* sin(t); label

=7;}
12 border g8(t=0, 2* pi){x =0.5+0.4* cos(t); y= -3.5+0.4* sin(t); label

=8;}
13 border g9(t=0, 2* pi){x =0.5+0.4* cos(t); y= -4.5+0.4* sin(t); label

=9;}
14 mesh Th = buildmesh (g1 (300) + g2 (100) + g3 ( -100) + g4 ( -300)+g5

( -100)+g6 ( -100)+g7 ( -100)+g8 ( -100)+g9 ( -100));
15 plot(Th , ps=" Thwithhole .eps", wait=true);
16

17 // Fespace
18 fespace Uh(Th , [P2 ,P2 ,P1], periodic =[[1 , y], [4, y]]);
19 Uh [u, v, p], [uu , vv , pp];
20 fespace Xh(Th ,P2);
21 Xh uloc;
22 Xh vloc;
23 Xh ploc;
24

25 // Problem in a weak form
26 solve stokes ([u, v, p], [uu , vv , pp])
27 = int2d (Th)
28 (
29 dx(u)*dx(uu)
30 + dy(u)*dy(uu)
31 + dx(v)*dx(vv)
32 + dy(v)*dy(vv)
33 + dx(p)*uu
34 + dy(p)*vv
35 + pp *( dx(u) + dy(v))
36 - 1e -10*p*pp
37 )
38 + int1d (Th ,g2)(uu*dx(v))
39 - int1d (Th ,g2)(uu)
40 - int1d (Th ,g2)(vv*p/2)
41 - int1d (Th ,g3)(uu*dx(v))
42 + int1d (Th ,g3)(vv*p/2)
43 + on(g5 , u=0, v=0)
44 + on(g6 , u=0, v=0)
45 + on(g7 , u=0, v=0)
46 + on(g8 , u=0, v=0)
47 + on(g9 , u=0, v=0);
48
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49 // Output
50 plot(u, ps="$u_{plot}$.eps", value = true , wait =1, fill=true);
51 plot(v, ps="$v_{plot}$.eps", value = true , wait =1, fill=true);
52 plot(p, ps="$p_{plot}$.eps", value = true , wait =1, fill=true);
53 real intu= int2d (Th)(u);
54 real intv= int2d (Th)(v);
55 real intp= int2d (Th)(p);
56 uloc = u;
57 vloc = v;
58 ploc = p;
59 cout $<<$ "Max U = " $<<$ setw (12) $<<$ uloc []. max $<<$ " \t Max

V = " $<<$ setw (12) $<<$ vloc []. max $<<$ " \t max P = " $<<$
setw (12) $<<$ ploc []. max $<<$ endl;

60 cout $<<$ "Min U = " $<<$ setw (12) $<<$ uloc []. min $<<$ " \t Min
V = " $<<$ setw (12) $<<$ vloc []. min $<<$ " \t min P = " $<<$
setw (12) $<<$ ploc []. min $<<$ endl;

61

62 // Fespace of first order problem
63 fespace Vh1(Th , [P2 ,P2 ,P1], periodic =[[1 , y], [4, y]]);
64 Vh1 [uh1 , vh1 , ph1], [uuh1 , vvh1 , pph1 ];
65

66 // Problem using weak form
67 solve stokesh1 ([uh1 , vh1 , ph1], [uuh1 , vvh1 , pph1 ])
68 = int2d (Th)
69 (
70 dx(uh1)*dx(uuh1)
71 + dy(uh1)*dy(uuh1)
72 + dx(vh1)*dx(vvh1)
73 + dy(vh1)*dy(vvh1)
74 + dx(ph1)*uuh1
75 + dy(ph1)*vvh1
76 + pph1 *(dx(uh1) + dy(vh1))
77 - 1e -10* ph1*pph1
78 )
79 int2d (Th)(pph1 *(u))
80 + int2d (Th)(uuh1 *(p -2* dx(u)))
81 + int2d (Th)(vvh1 *( -2* dx(v)))
82 - int1d (Th ,g2)(vvh1*ph1 /2)
83 - int1d (Th ,g3)(uuh1*dx(vh1))
84 + int1d (Th ,g3)(vvh1*ph1 /2)
85 + on(g6 , uh1 =0, vh1 =0)
86 + on(g7 , uh1 =0, vh1 =0)
87 + on(g8 , uh1 =0, vh1 =0)
88 + on(g9 , uh1 =0, vh1 =0);
89 // Call once more so that mesh and fields are synchronised
90 // stokesh1 ;
91
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92 // Output
93 plot(uh1 , ps="$uh1_{plot}$.eps", value = true , wait =1, fill=true ,

grey = false );
94 plot(vh1 , ps="$vh1_{plot}$.eps", value = true , wait =1, fill=true)

;
95 plot(ph1 , ps="$ph1_{plot}$.eps", value = true , wait =1, fill=true)

;
96 real intuh1 =int2d (Th)(uh1);
97 real intvh1 =int2d (Th)(vh1);
98 real intph1 =int2d (Th)(ph1);
99 uloc = uh1;

100 vloc = vh1;
101 ploc = ph1;
102 cout $<<$ "Max Uh1 = " $<<$ setw (12) $<<$ uloc []. max $<<$ " \t

Max Vh1 = " $<<$ setw (12) $<<$ vloc []. max $<<$ " \t max Ph1 = "
$<<$ setw (12) $<<$ ploc []. max $<<$ endl;

103 cout $<<$ "Min Uh1 = " $<<$ setw (12) $<<$ uloc []. min $<<$ " \t
Min Vh1 = " $<<$ setw (12) $<<$ vloc []. min $<<$ " \t min Ph1 = "

$<<$ setw (12) $<<$ ploc []. min $<<$ endl;

All microscopic solutions obtained from FreeFEM are compared with solutions of COM-
SOL and excellent agreement is found.

A.1.7. Grid Resolution and Grid Independence Test

The effective parameters involved in the interface conditions played a key role in the
macroscopic solutions and needs to be accurately measure on high resolutions and it should
be independent of the further grid refinement. In this problem, a grid independence study
is conducted over three grid resolutions before performing the CFD simulations for micro-
scopic problems. The information of the grid resolution and grid independence is provided
in the graphical (figure A.3) and tabular (table A.3) form respectively. Particular effort
is made to ensure that the effective parameters λ and Kift which appear in the interface
conditions for free-fluid and porous media obtained are sufficiently grid-independent. A
similar effort is made for the rest of two-dimensional and three-dimensional cases.

Table A.3: Mesh independence test for two-dimensional porous media with θ = 0.4973.

Mesh type Finer Fine Normal
No. of elements 13101 4650 2596

λ 1.451× 10−1 1.451× 10−1 1.450× 10−1

Kitf 1.173× 10−2 1.173× 10−2 1.172× 10−2
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Figure A.3: Sample grid used in the microscopic domain of height y−∞ to y∞, however in this
figure only one unit-cell with circular inclusion is displayed for the clear vision of the mesh
around the structures. The highlighted red box (right) is the close-up of the mesh around the
crest of circular inclusion. The image is obtained for θ = 0.4973. The total mesh used in the
simulation for two-dimensional porous media case consists 13101 triangular elements. Where
the number of triangular elements used in the FreeFEM are 19446.

A.2. Numerical Settings: Problem Formulation of the Flow
Over Compliant Riblets

We have used the academic version of the software COMSOL Multiphysics (2019) (source:
www.comsol.com) to obtain the numerical solution of the various closure problems. Con-
vergence has been checked with respect to the computational grid and also with respect
to the basis functions used in the finite elements discretization implemented in COM-
SOL (employing up to cubic polynomials for the Stokes problems in F and up to quintic
polynomials for the solid problem in S ). The tetrahedral grid is used to discretize the
whole domain and grid resolutions is shown in the figure A.4 for both fluid-solid domains
separately. Same grid type is used in the blade type riblets but not displayed here.
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Figure A.4: Typical computational grid within the F (left) and S (right) domains for triangular
riblets. In the present set-up, θ = 0.625. When blade riblets are considered it is θ = 0.745.

A.3. Finite Volume Method (FVM)

Finite volume method (FVM) is another widely used numerical technique (Chakraverty
et al. (2019), Versteeg and Malalasekera (2007)). The fundamental conservation property
of the FVM makes it the preferred method compared to various existing methods. In
this approach, the volumes are evaluated at discrete places over a meshed geometry.
This section explains a brief background of the FVM, and discretization techniques. The
FVM depends on approximate solution of the integral form with respect to conservation
equations. In the FVM, the given domain of differential equation is divided into a set
of nonoverlapping finite volumes and then the respective integrals of the conservation
equations are evaluated by using nodal (function) values at computational nodes.

A.3.1. Formal Procedure

Following The starting point is the discretization of the conservation equations such as
conservation of mass, momentum and energy (energy equation is not included in our work
but it is here just to clarify the starting point of FVM): the fluid domain is subdivided
in a finite number of small, non overlapping, control volumes by a grid which defines the
control volume boundaries. The computational nodes, where the unknown variables such
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as velocity (v) and pressure (p) are need to be computed, can be arranged mainly in two
different ways: (i) staggered, (ii) collocated. The staggered arrangement, allocates the
velocities at the control volume boundaries and the pressure in the cell center, while, in
the collocated arrangement, all the unknowns are computed in the control volume center
(in our case we are using collocated grid). The collocated arrangement is preferred thanks
to its simplicity in Cartesian grid generation. The basic idea of the finite volume method
is to require the satisfaction of the conservation equations at each control volume; thus,
if the mass and momentum balance are satisfied at each control volume, they will be
satisfied on the whole domain. The Navier-Stokes equations and continuity equation are
integrated over each control volume assuming the following integral form:∫

Ω

∂ui
∂t
dΩ +

∫
Ω
ui
∂uj
∂xj

dΩ = −
∫

Ω

∂p

∂xj
dΩ +

∫
Ω

1
Re

∂

∂xj

∂ui
∂xj

dΩ +
∫

Ω
fidΩ (A.6)

∫
Ω

∂ui
∂xi

dΩ = 0 (A.7)

The volume integrals involving the convective and the diffusion terms can be conveniently
transformed into surface integrals over the control volume boundaries using Gauss diver-
gence theorem and the incompressibility condition as follows:∫

Ω
ui
∂uj
∂xj

dΩ =
∫
S
uiu · ndS (A.8)

and ∫
Ω

1
Re

∂

∂xj

∂ui
∂xj

dΩ =
∫
S

1
Re
∇ui · ndS (A.9)

In figure A.5 a three-dimensional Cartesian control volume is presented together with the
notations used. The control volume consist of six plane faces, denoted with lower case
letters (e, w, n, s, t, b), corresponding to their orientation with respect to the central node
(P ).
An arbitrary flux F through the control volume boundaries can be calculated as the sum
of all fluxes through the surface composing the control volume as:∫

S
FdS =

N∑
k=1

∫
Sk

FdS (A.10)

where N is the number of control volume faces and F can be either the convective or the
diffusive flux. For collocated grids, the value of F at the face center is not known and an
interpolation is needed in order to express Fk as a function of neighboring computational
nodes. Referring to figure A.5, the value of F at the control volume face centers is obtained
by linear interpolation between the two nearest nodes, as follows (e.g. for the “e” face):

Fe = WFP + (1−W )FE (A.11)

where W is a weight defined as:

W = xe − xE
xE − xP

(A.12)
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Figure A.5: A three-dimensional Cartesian control volume.

This scheme is called central difference scheme and it is of second order accuracy. For
clarity, the discretization of the convective fluxes will be shown only for the e-face of
the cartesian control volume shown in figure A.5 and only for the velocity component u
along the x direction. The fluxes at the other surfaces can be treated in the same fashion
applying the appropriate subscripts permutation. Applying the above approximation, the
discrete convective and diffusive fluxes read∫

Sε
uiu · nedSe ≈ meue = me [WuP + (1−W )uE] (A.13)

∫
Sε
uiu · nedSe ≈ meue = me [WuP + (1−W )uE] (A.14)

and ∫
Se

1
Re
∇ui · nedSe ≈

Se
Re

uE − uP
xE − xP

(A.15)

where me = ueSe is the mass flow rate through the surface e. The spatial discretization is
completed by the approximation of the pressure gradient and the body forces, also called
source terms. For an arbitrary source term f the following approximation is applied:∫

ΩP
fdΩ ≈ fP∆ΩP (A.16)
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The integral is estimated by the product berween the central value of f in the control vol-
ume center and the cell volume ∆Ω. Adopting this rule, the finite volume approximation
for the pressure term becomes (e.g along the x direction):

∫
Ω

∂p

∂xj
dΩ ≈ (pe − pw)

∆xp
∆Ω (A.17)

pe and pw are the interpolared values of p at the control volume faces e and w using the
already defined central difference scheme. Analogously, the forcing term f is:

∫
ΩP
fdΩ ≈ fP∆ΩP (A.18)

In the following subsections, we are presenting numerical setting of DNS turbulent flow
in permeable channels.

A.3.2. Numerical Settings of Turbulent Channel Flow

FVM employed in our macroscopic calculations of DNS of turbulent channel flow over
permeable walls using the STAR-CCM+ code by Siemens (2021) which is a finite volume-
based commercial solver of CFD. When discretizing the domain, choosing the points at
which the unknown variable will be computed is necessary. As the majority of commercial
CFD code STAR-CCM+ stores all the variables at the same set of grid points and uses
the same control volume for all variables. This kind of arrangement takes the name of
collocated. This approach ensures simplicity to the program, especially for complicated
domains, but it has some problems with pressure-velocity coupling at pressure oscilla-
tions. In the 1980s some special methods were developed (as Rhie-Chow interpolation)
that permit overcoming this difficulty, and collocated arrangements grids began popular
(Ferziger et al. (2002)).

A.3.3. Discretization Method

Since numerical approaches have the particularities to transform continuous differential
equations into algebraic equations, much more handleable for a implementation and solv-
ing. With this aim, the equations that govern the motion are transformed into discrete
equations. Regarding the two flow vectorial equations, the commercial code STAR-CCM+
solves them uncoupled, although they are clearly bonded to each other. The momentum
and continuity equations are linked by a predictor-corrector method (SIMPLE). To solve
the pressure-velocity incompatibility for collocated variable arrangement, the Rhie-Chow
interpolation is used. For more information about discretization methods, (Versteeg and
Malalasekera, 2007).
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A.3.4. Transient Term

DNS of turbulent channel flow is a strongly unsteady problem and time derivative terms
have to be discretized. STAR-CCM+ offers two different implicit temporal schemes: first
order and second order. The former uses two different time levels, the current time level
(n + 1) and the previous one (n), while in the second-order scheme, one more time level
appears (n1). In this work second-order scheme has been chosen because of the numerical
accuracy.

A.3.5. Convective Term

The convective term is discretized using a second order upwind scheme. The convection
face value is calculated by summing at the upstream value, a term found by linear interpo-
lation of the gradients. The Venkatakrishnan limiter is implemented in (Venkatakrishnan,
1995). The scheme is an improvement of the first-order upwind, but some numerical dif-
fusion could still exist, especially for high gradients.

A.3.6. Diffusive Term

The diffusive term is discretized using a second-order scheme. Therefore, it is necessary
to introduce a term that considers the non-orthogonality of the vector that connects
two adjacent cell centers with the control-volume boundary. This is the so-called the
cross-diffusion term and it is treated as a source term when the discretized equations are
assembled.

A.3.7. Pressure-Velocity Coupling

As already referred, the continuity and the momentum equations are solved in an un-
coupled manner. In order to ensure the correct linkage between pressure and velocity,
SIMPLE is used. This algorithm, introduced in 1972 by (Patankar and Spalding, 1983),
and is a predictor-corrector method for the calculation of pressure. In few words, the
pressure field is guessed, and it permits the calculation of the velocity field to solve the
momentum equations (predictor). However, these velocities do not respect the continuity
equation. By solving the pressure correction equation (derived starting from the conti-
nuity equation), the velocities will be upgraded (corrector). These steps are solved until
convergence is achieved.
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Figure A.6: Computational grid of the DNS of turbulent channel flow with a close-up near wall
(blue box).

A.3.8. Solving the System of Equation

The discretized equations relative to the single control volume are coupled with the adja-
cent control volumes. So, in order to obtain the solution, a linear system of the equation
has to be solved. Due to the large size of the involved matrices, the solution can not be
found directly, and iterative methods are used. STAR-CCM+ uses the algebraic multi-
grid method that consists of the iteration on linear systems of different sizes (as we had
different meshes): this improves a lot the convergence because low-wavelength errors (re-
sponsible for a low convergence rate) decrease rapidly on the small matrices, whereas
short-wavelength errors reduce themselves in the full ones. To solve the systems of equa-
tion (one for each velocity component and one for pressure), the Gauss-Seidel Method
relaxation scheme has been used. In addition, for the pressure system of the equation,
the Conjugate-Gradient method as a preconditioner is used to improve the convergence
rate. In contrast, no preconditioner is necessary for the velocities because, for its nature,
it is usually characterized by a fast convergence rate.

The simulations were started using initial fields obtained by perturbing the solution,
ensuring quick development of the turbulent flow. A hexahedral mesh (A.6) is used
in all simulations, and some information of the grid resolution, geometric parameters
of permeable and impermeable channel case from the current, and other resources are
included in the following table.



135

Ta
bl
e
A
.4
:
C
om

pa
ris

on
an

d
ov
er
vi
ew

of
cu

rr
en
t
an

d
pu

bl
ic
ly

av
ai
la
bl
e
da

ta
ba

se
of

D
N
S
of

w
al
lb

ou
nd

ed
ch
an

ne
lfl

ow
.
T
he

do
m
ai
n

le
ng

th
sa

re
no

rm
al
iz
ed

w
ith

ch
an

ne
lh

al
f-h

ei
gh

tH
.
T
he

m
ax

im
um

gr
id

siz
es

ar
e
lis
te
d
in

w
al
lu

ni
ts
.
T
he

av
er
ag

in
g
tim

e
T

is
no

rm
al
iz
ed

w
ith

H
/u

to
p

τ
.
.
FC

re
pr
es
en
ts

a
Fo

ur
ie
r-
C
he

by
sh
ev

m
et
ho

d
an

d
FD

a
st
ag

ge
re
d
fin

ite
di
ffe

re
nc

e
m
et
ho

d
(f
ou

rt
h-
or
de

rin
st
re
am

w
ise

an
d

sp
an

w
ise

,s
ec
on

d-
or
de

r
in

no
rm

al
di
re
ct
io
n)
,S

(/
hp

)
is

sp
ec
tr
al

(/
H
-t
yp

e
fin

ite
el
em

en
ts

ba
se
d
di
sc
re
tiz

at
io
n)

m
et
ho

dF
V

re
pr
es
en
ts

a
fin

ite
vo
lu
m
e
m
et
ho

d.
T
he

su
pe

rs
ci
pt
∗
sh
ow

sp
re
se
nt

sim
ul
at
io
n
fo
rs

m
oo

th
w
al
lc
ha

nn
el
,∗
∗
sh
ow

sa
ca
se

of
sp
an

w
ise

ar
ra
ng

ed
cy
lin

de
rs

w
ith

ε
=

0.
2,
∗∗
∗
sh
ow

s
a
ca
se

of
lo
ng

itu
di
na

lly
ar
ra
ng

ed
cy
lin

de
rs

w
ith

ε
=

0.
2,
∗∗
∗∗

sh
ow

s
a
ca
se

of
lo
ng

itu
di
na

lly
ar
ra
ng

ed
cy
lin

de
rs

w
ith

ε
=

0.
1.

D
om

ai
n

G
rid

(m
ax

)
C
en
te
rli
ne

va
lu
es

D
at
ab

as
e

R
e τ

L
x

L
z

∆
x

+ m
a
x

∆
y

+ m
a
x

∆
z+ m

a
x

T
M
et
ho

d
u

+
ur
m
s

vr
m
s

w
rm

s
K
im

et
al
.(
19
87
)

18
0

4π
2π

12
4.
4

7
10

FC
18
.2
09

0.
79
03

0.
60
44

0.
61
70

M
os
er

et
al
.(
19
99
)

17
8.
1

4π
4 3π

17
.7

4.
4

5.
9

-
FC

18
.3
0

0.
81
40

0.
61
18

0.
58
93

A
be

et
al
.(
20
01
)

18
0

12
.8

6.
4

9.
0

5.
9

4.
5

40
FD

18
.6
4

0.
80
54

0.
63
68

0.
60
41

K
oz
uk

a
et

al
.(

20
09
)

18
0

6.
5

3.
2

0.
56

0.
97

1.
1

3.
1

FD
18
.5
5

0.
80
84

0.
64
10

0.
62
80

C
hu

et
al
.(

20
21
)

19
3

10
0

8π
6.
3

0.
43

4.
9

15
S/

hp
18
.1
9

1.
00
04

0.
52
31

0.
52
00

Sm
oo

th
ch
an

ne
l∗

19
3

2π
π

9.
47
4

8.
25

6.
31
6

20
FV

18
.7
5

0.
80
12

0.
59
11

0.
56
60

Po
ro
us

be
d
ch
an

ne
l∗∗

19
3

2π
π

9.
47
4

8.
25

6.
31
6

20
FV

16
.1
46

0.
94
2

0.
64
2

0.
68
0

Po
ro
us

be
d
ch
an

ne
l∗∗
∗

19
3

2π
π

9.
47
4

8.
25

6.
31
6

20
FV

18
.5
61

0.
85
9

0.
59
6

0.
59
35

Po
ro
us

be
d
ch
an

ne
l∗∗
∗∗

19
3

2π
π

9.
47
4

8.
25

6.
31
6

20
FV

19
.7
75

0.
88
8

0.
59
2

0.
35
7

Ta
bl
e
A
.5
:
Fl
ow

ch
ar
ac
te
ris

tic
s
of

tu
rb
ul
en
t
ch
an

ne
lfl

ow
w
ith

lo
w
er

im
pe

rm
ea
bl
e
an

d
pe

rm
ea
bl
e
w
al
ls.

θ
ν

≈
R
e
≈
R
et
o
p

τ
≈
R
eb
o
t

τ
u
to
p

τ
u
bo
t

τ

0.
5

5.
18

1
×

10
−

3
31
00

19
3

19
3

1
1

0.
5

5.
18

1
×

10
−

3
27
18

17
0.
43
0

19
4.
94
3

0.
88
3

1.
10
1

0.
5

5.
18

1
×

10
−

3
33
54

19
2.
24
1

19
3.
39
9

0.
99
6

1.
00
2

0.
5

5.
18

1
×

10
−

3
31
22

18
6.
10
0

19
9.
22
8

0.
96
4

1.
03
2



Bibliography

Abderrahaman-Elena, N. and García-Mayoral, R. (2017). Analysis of anisotropically
permeable surfaces for turbulent drag reduction. Physical Review Fluids, 2(11):114609.

Abe, H., Kawamura, H., and Matsuo, Y. (2001). Direct numerical simulation of a fully
developed turbulent channel flow with respect to the reynolds number dependence.
Journal of Fluids Engineering, 123(2):382–393.

Achdou, Y., Pironneau, O., and Valentin, F. (1998). Effective boundary conditions
for laminar flows over periodic rough boundaries. Journal of Computational Physics,
147(1):187–218.

Agelinchaab, M., Tachie, M. F., and Ruth, D. W. (2006). Velocity measurement of flow
through a model three-dimensional porous medium. Physics of Fluids, 18(1):017105.

Airiau, C. and Bottaro, A. (2020). Flow of shear-thinning fluids through porous media.
Advances in Water Resources, 143:103658.

Aleyev, Y. G. (1977). Nekton and the body of water. In Nekton, pages 367–370. Springer.

Alinovi, E. and Bottaro, A. (2018). Apparent slip and drag reduction for the flow
over superhydrophobic and lubricant-impregnated surfaces. Physical Review Fluids,
3(12):124002.

Angot, P., Bruneau, C.-H., and Fabrie, P. (1999). A penalization method to take into
account obstacles in incompressible viscous flows. Numerische Mathematik, 81(4):497–
520.

Ankhelyi, M. V., Wainwright, D. K., and Lauder, G. V. (2018). Diversity of dermal
denticle structure in sharks: Skin surface roughness and three-dimensional morphology.
Journal of Morphology, 279(8):1132–1154.

Arenas, I., García, E., Fu, M. K., Orlandi, P., Hultmark, M., and Leonardi, S. (2018).
Comparison between super-hydrophobic, liquid infused and rough surfaces: a dns study.
arXiv preprint arXiv:1812.05674.

Arthur, J. K., Ruth, D. W., and Tachie, M. F. (2009). Piv measurements of flow through a
model porous medium with varying boundary conditions. Journal of Fluid Mechanics,
629:343.

Asai, M. and Floryan, J. M. (2006). Experiments on the linear instability of flow in a
wavy channel. European Journal of Mechanics-B/Fluids, 25(6):971–986.

Auriault, J.-L., Boutin, C., and Geindreau, C. (2010). Homogenization of coupled phe-
nomena in heterogenous media, volume 149. John Wiley & Sons.



137

Basson, A. and Gérard-Varet, D. (2008). Wall laws for fluid flows at a boundary with
random roughness. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 61(7):941–987.

Batchelor, C. K. and Batchelor, G. K. (2000). An introduction to fluid dynamics. Cam-
bridge University Press.

Battiato, I., Ferrero V, P. T., O’Malley, D., Miller, C. T., Takhar, P. S., Valdés-Parada,
F. J., and Wood, B. D. (2019). Theory and applications of macroscale models in porous
media. Transport in Porous Media, 130(1):5–76.

Battiato, I. and Tartakovsky, D. M. (2011). Applicability regimes for macroscopic models
of reactive transport in porous media. Journal of Contaminant Hydrology, 120-121:18–
26.

Beavers, G. S. and Joseph, D. D. (1967). Boundary conditions at a naturally permeable
wall. Journal of Fluid Mechanics, 30(1):197–207.

Bechert, D., Bruse, M., Hage, W., Meyer, R., Bechert, D., Bruse, M., Hage, W., and
Meyer, R. (1997a). Biological surfaces and their technological application-laboratory
and flight experiments on drag reduction and separation control. In 28th Fluid Dynam-
ics Conference, USA, page 1960.

Bechert, D. and Reif, W. (1985). On the drag reduction of the shark skin. In 23rd
Aerospace Sciences Meeting, page 546.

Bechert, D. W. and Bartenwerfer, M. (1989). The viscous flow on surfaces with longitu-
dinal ribs. Journal of Fluid Mechanics, 206:105–129.

Bechert, D. W., Bartenwerfer, M., Hoppe, G., and Reif, W.-E. (1986). Drag reduction
mechanisms derived from shark skin. IN: ICAS, 2:1044–1068.

Bechert, D. W., Bruse, M., Hage, W., Hoeven, J. G. T. V. D., and Hoppe, G. (1997b).
Experiments on drag-reducing surfaces and their optimization with an adjustable ge-
ometry. Journal of Fluid Mechanics, 338:59–87.

Bechert, D. W., Bruse, M., Hage, W., and Meyer, R. (2000). Fluid mechanics of biological
surfaces and their technological application. Naturwissenschaften, 87(4):157–171.

Bensoussan, A., Lions, J.-L., and Papanicolaou, G. (2011). Asymptotic analysis for peri-
odic structures, volume 374. AMS Chelsea Publishing, American Mathematical Society,
Providence, Rhode Island.

Bhushan, B. (2009). Biomimetics: lessons from nature–an overview. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1893):1445–1486.

Bird, R. B. (2002). Transport phenomena. Applied Mechanics Reviews, 55(1):R1–R4.



138

Biswas, G., Breuer, M., and Durst, F. (2004). Backward-facing step flows for various
expansion ratios at low and moderate reynolds numbers. Journal of Fluids Engineering,
126(3):362–374.

Bixler, G. D. and Bhushan, B. (2012). Bioinspired rice leaf and butterfly wing surface
structures combining shark skin and lotus effects. Soft Matter, 8(44):11271–11284.

Bolaños, S. J. and Vernescu, B. (2017). Derivation of the navier slip and slip length for
viscous flows over a rough boundary. Physics of Fluids, 29(5):057103.

Bons, J. P. (2002). St and cf augmentation for real turbine roughness with elevated
freestream turbulence. Journal of Turbomachinery, 124(4):632–644.

Boso, F. and Battiato, I. (2012). Homogenizability conditions in multicomponent reactive
transport processes. In AGU Fall Meeting Abstracts, volume 2012, pages H42E–04.

Bottaro, A. (2019). Flow over natural or engineered surfaces: an adjoint homogenization
perspective. Journal of Fluid Mechanics, 877.

Bottaro, A. and Naqvi, S. B. (2020). Effective boundary conditions at a rough wall: a
high-order homogenization approach. Meccanica, 55(9):1781–1800.

Bruneau, C.-H., Lasseux, D., and Valdés-Parada, F. J. (2020). Comparison between direct
numerical simulations and effective models for fluid-porous flows using penalization.
Meccanica, pages 1–17.

Bruse, M., Bechert, D. W., Hoeven, J. G. T. V. D., Hage, W., and Hoppe, G. (1993).
Experiments with conventional and with novel adjustable drag-reducing surfaces.

Carbou, G. (2008). Brinkmann model and double penalization method for the flow around
a porous thin layer. Journal of Mathematical Fluid Mechanics, 10(1):126–158.

Carpenter, P. W., Davies, C., and Lucey, A. D. (2000). Hydrodynamics and compliant
walls: Does the dolphin have a secret? Current Science, pages 758–765.

Carpenter, P. W. and Garrad, A. D. (1985). The hydrodynamic stability of flow over
kramer-type compliant surfaces. part 1. tollmien-schlichting instabilities. Journal of
Fluid Mechanics, 155:465–510.

Carpenter, P. W. and Garrad, A. D. (1986). The hydrodynamic stability of flow over
kramer-type compliant surfaces. part 2. flow-induced surface instabilities. Journal of
Fluid Mechanics, 170:199–232.

Carraro, T., Goll, C., Marciniak-Czochra, A., and Mikelić, A. (2013). Pressure jump in-
terface law for the stokes–darcy coupling: confirmation by direct numerical simulations.
Journal of Fluid Mechanics, 732:510–536.

Chakraverty, S., Mahato, N., Karunakar, P., and Rao, T. D. (2019). Advanced numerical
and semi-analytical methods for differential equations. John Wiley & Sons.



139

Chandesris, M. and Jamet, D. (2006). Boundary conditions at a planar fluid–porous
interface for a poiseuille flow. International Journal of Heat and Mass Transfer, 49(13-
14):2137–2150.

Chavarin, A., Gómez-de Segura, G., García-Mayoral, R., and Luhar, M. (2021). Resolvent-
based predictions for turbulent flow over anisotropic permeable substrates. Journal of
Fluid Mechanics, 913.

Choi, H., Moin, P., and Kim, J. (1991). On the effect of riblets in fully developed laminar
channel flows. Physics of Fluids A: Fluid Dynamics, 3(8):1892–1896.

Choi, K.-S. (1989). Near-wall structure of a turbulent boundary layer with riblets. Journal
of Fluid Mechanics, 208:417–458.

Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N., and Kulik,
V. M. (1997). Turbulent drag reduction using compliant surfaces. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
453(1965):2229–2240.

Chu, D. C. and Karniadakis, G. E. (1993). A direct numerical simulation of laminar and
turbulent flow over riblet-mounted surfaces. Journal of Fluid Mechanics, 250:1–42.

Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., and Weigand, B. (2021). Transport
of turbulence across permeable interface in a turbulent channel flow: interface-resolved
direct numerical simulation. Transport in Porous Media, 136(1):165–189.

Chu, X., Weigand, B., and Vaikuntanathan, V. (2018). Flow turbulence topology in
regular porous media: from macroscopic to microscopic scale with direct numerical
simulation. Physics of Fluids, 30(6):065102.

Chu, X., Yang, G., Pandey, S., and Weigand, B. (2019). Direct numerical simulation
of convective heat transfer in porous media. International Journal of Heat and Mass
Transfer, 133:11–20.

Cowin, S. C. (2013). Continuum mechanics of anisotropic materials. Springer Science &
Business Media.

Darcy, H. (1857). Recherches expérimentales relatives au mouvement de l’eau dans les
tuyaux, volume 1. Mallet-Bachelier.

Debisschop, J. R. and Nieuwstadt, F. T. M. (1996). Turbulent boundary layer in an
adverse pressure gradient-effectiveness of riblets. AIAA Journal, 34(5):932–937.

Devries, F., Dumontet, H., Duvaut, G., and Léné, F. (1989). Homogenization and damage
for composite structures. International Journal for Numerical Methods in Engineering,
27(2):285–298.

Dixon, A. E., Lucey, A. D., and Carpenter, P. W. (1994). Optimization of viscoelastic
compliant walls for transition delay. AIAA journal, 32(2):256–267.



140

Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., and Lauder, G. V.
(2018a). Shark skin-inspired designs that improve aerodynamic performance. Journal
of the Royal Society Interface, 15(139):20170828.

Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., and Lauder, G. V.
(2018b). Shark skin-inspired designs that improve aerodynamic performance. Journal
of the Royal Society Interface, 15(139):20170828.

Dupont, S., Gosselin, F., Py, C., Langre, E. D., Hemon, P., and Brunet, Y. (2010).
Modelling waving crops using large-eddy simulation: comparison with experiments and
a linear stability analysis. Journal of Fluid Mechanics, 652:5.

Dussan V., E. B. (1976). The moving contact line: The slip boundary condition.

Eggenweiler, E. and Rybak, I. (2020). Unsuitability of the beavers–joseph interface con-
dition for filtration problems. Journal of Fluid Mechanics, 892.

Ern, A., G. J.-L. (2004). Theory and practice of finite elements.

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and
related problems. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 241(1226):376–396.

Ferziger, J. H., Perić, M., and Street, R. L. (2002). Computational methods for fluid
dynamics, volume 3. Springer.

Fish, J., Shek, K., Pandheeradi, M., and Shephard, M. S. (1997). Computational plasticity
for composite structures based on mathematical homogenization: Theory and practice.
Computer Methods in Applied Mechanics and Engineering, 148(1-2):53–73.

Fletcher, T., Altringham, J., Peakall, J., Wignall, P., and Dorrell, R. (2014). Hydro-
dynamics of fossil fishes. Proceedings of the Royal Society B: Biological Sciences,
281(1788):20140703.

Floryan, J. M. (2002). Centrifugal instability of couette flow over a wavy wall. Physics
of Fluids, 14(1):312–322.

Floryan, J. M. (2003). Vortex instability in a diverging-converging channel. Journal of
Fluid Mechanics, 482:17–50.

Floryan, J. M. (2005). Two-dimensional instability of flow in a rough channel. Physics of
Fluids, 17(4):044101.

Floryan, J. M. (2007). Three-dimensional instabilities of laminar flow in a rough channel
and the concept of hydraulically smooth wall. European Journal of Mechanics-B/Fluids,
26(3):305–329.

Floryan, J. M. and Floryan, C. (2009). Traveling wave instability in a diverging–converging
channel. Fluid Dynamics Research, 42(2):025509.



141

Fu-quan, S., You-sheng, X., and Hua-mei, L. (2007). Blood flow in capillaries by using
porous media model. Journal of Central South University of Technology, 14(1):46–49.

Gad-El-Hak, M., Blackwelder, R. F., and Riley, J. J. (1984). On the interaction of
compliant coatings with boundary-layer flows. Journal of Fluid Mechanics, 140:257–
280.

Gamrat, G., Favre-Marinet, M., Person, S. L., Baviere, R., and Ayela, F. (2008). An
experimental study and modelling of roughness effects on laminar flow in microchannels.
Journal of Fluid Mechanics, 594:399–423.

García-Mayoral, R. and Jiménez, J. (2011). Drag reduction by riblets. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
369(1940):1412–1427.

Garcia-Mayoral, R. and Jiménez, J. (2011). Drag reduction by riblets. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
369(1940):1412–1427.

Ghosh, S., Lee, K., and Moorthy, S. (1995). Multiple scale analysis of heterogeneous
elastic structures using homogenization theory and voronoi cell finite element method.
International Journal of Solids and Structures, 32(1):27–62.

Goldstein, D., Handler, R., and Sirovich, L. (1995). Direct numerical simulation of turbu-
lent flow over a modeled riblet covered surface. Journal of Fluid Mechanics, 302:333–
376.

Goldstein, D. B. (2006). Methods for reducing the viscous drag on a surface and drag
reducing device. US Patent 7,044,073.

Goldstein, D. B. and Tuan, T.-C. (1998). Secondary flow induced by riblets. Journal of
Fluid Mechanics, 363:115–151.

Gómez-de Segura, G., Fairhall, C. T., MacDonald, M., Chung, D., and García-Mayoral,
R. (2018). Manipulation of near-wall turbulence by surface slip and permeability. In
Journal of Physics: Conference Series, volume 1001, page 012011. IOP Publishing.

Guedes, J. M. and Kikuchi, N. (1990). Preprocessing and postprocessing for materials
based on the homogenization method with adaptive finite element methods. Computer
Methods in Applied Mechanics and Engineering, 83(2):143–198.

Guo, C., Li, Y., Nian, X., Xu, M., Liu, H., and Wang, Y. (2020). Experimental study
on the slip velocity of turbulent flow over and within porous media. Physics of Fluids,
32(1):015111.

Guo, J., Veran-Tissoires, S., and Quintard, M. (2016). Effective surface and boundary
conditions for heterogeneous surfaces with mixed boundary conditions. Journal of
Computational Physics, 305:942–963.



142

Gupte, S. K. and Advani, S. G. (1997). Flow near the permeable boundary of a porous
medium: An experimental investigation using lda. Experiments in Fluids, 22(5):408–
422.

Hagen, G. H. L. (1854). Über den einfluss der temperatur auf die bewegung des wassers
in röhren–. Königliche Akademie der Wissenschaften.

Han, X., Zhang, D., Li, X., and Li, Y. (2008). Bio-replicated forming of the biomimetic
drag-reducing surfaces in large area based on shark skin. Chinese Science Bulletin,
53(10):1587–1592.

He, X., Apte, S., Schneider, K., and Kadoch, B. (2018). Angular multiscale statistics of
turbulence in a porous bed. Physical Review Fluids, 3(8):084501.

Hecht, F. (2012). New development in freefem++. Journal of Numerical Mathematics,
20(3-4):251–266.

Herwig, H., Gloss, D., and Wenterodt, T. (2008). A new approach to understanding and
modelling the influence of wall roughness on friction factors for pipe and channel flows.
Journal of Fluid Mechanics, 613:35.

Hiemenz, K. (1911). Die grenzschicht an einem in den gleichformigen flussigkeitsstrom
eingetauchten geraden kreiszylinder. Dingler’s Polytechnical Journal, 326:321–324.

Hocking, L. M. (1976). A moving fluid interface on a rough surface. Journal of Fluid
Mechanics, 76(4):801–817.

Holt, T. E. and Smith, D. M. (1989). Surface roughness effects on knudsen diffusion.
Chemical Engineering Science, 44(3):779–781.

Hornung, U. (1996). Homogenization and porous media, volume 6. Springer Science &
Business Media.

Hussain, A. K. M. F. and Reynolds, W. C. (1970). The mechanics of an organized wave
in turbulent shear flow. Journal of Fluid Mechanics, 41(2):241–258.

Ibrahim, J. I., Gómez-de Segura, G., Chung, D., and García-Mayoral, R. (2021). The
smooth-wall-like behaviour of turbulence over drag-altering surfaces: a unifying virtual-
origin framework. Journal of Fluid Mechanics, 915.

Introïni, C., Quintard, M., and Duval, F. (2011). Effective surface modeling for momentum
and heat transfer over rough surfaces: Application to a natural convection problem.
International Journal of Heat and Mass Transfer, 54(15-16):3622–3641.

Itoh, M., Tamano, S., Iguchi, R., Yokota, K., Akino, N., Hino, R., and Kubo, S. (2006).
Turbulent drag reduction by the seal fur surface. Physics of Fluids, 18(6):065102.

Jäger, W. and Mikelić, A. (2001). On the roughness-induced effective boundary conditions
for an incompressible viscous flow. Journal of Differential Equations, 170(1):96–122.



143

Jamet, D. and Chandesris, M. (2009). On the intrinsic nature of jump coefficients at the
interface between a porous medium and a free fluid region. International Journal of
Heat and Mass Transfer, 52(1-2):289–300.

Jansons, K. M. (1988). Determination of the macroscopic (partial) slip boundary condi-
tion for a viscous flow over a randomly rough surface with a perfect slip microscopic
boundary condition. The Physics of Fluids, 31(1):15–17.

Jiménez, J. (1994). On the structure and control of near wall turbulence. Physics of
Fluids, 6(2):944–953.

Jiménez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics,
36:173–196.

Jiménez, J., Uhlmann, M., Pinelli, A., and Kawahara, G. (2001). Turbulent shear flow
over active and passive porous surfaces. Journal of Fluid Mechanics, 442:89.

Jones, I. P. (1973). Low reynolds number flow past a porous spherical shell. In Mathe-
matical Proceedings of the Cambridge Philosophical Society, volume 73, pages 231–238.

Jung, Y. C. and Bhushan, B. (2009). Biomimetic structures for fluid drag reduction in
laminar and turbulent flows. Journal of Physics: Condensed Matter, 22(3):035104.

Kamrin, K., Bazant, M. Z., and Stone, H. A. (2009). Effective slip boundary conditions for
arbitrary periodic surfaces: the surface mobility tensor. arXiv preprint arXiv:0911.1328.

Khanafer, K., AlAmiri, A., Pop, I., and Bull, J. L. (2008). Flow and Heat Transfer in
Biological Tissues: Application of Porous Media Theory. In: Vadász P. (eds) Emerg-
ing Topics in Heat and Mass Transfer in Porous Media. Theory and Applications of
Transport in Porous Media. Springer.

Kim, J., Moin, P., and Moser, R. (1987). Turbulence statistics in fully developed channel
flow at low reynolds number. Journal of Fluid Mechanics, 177:133–166.

Klausmann, K. and Ruck, B. (2017). Drag reduction of circular cylinders by porous
coating on the leeward side. Journal of Fluid Mechanics, 813:382.

Kleinstreuer, C. and Koo, J. (2004). Computational analysis of wall roughness effects for
liquid flow in micro-conduits. Journal of Fluids Engineering, 126(1):1–9.

Kouznetsova, V., Geers, M. G. D., and Brekelmans, W. A. M. (2002). Multi-scale consti-
tutive modelling of heterogeneous materials with a gradient-enhanced computational
homogenization scheme. International Journal for Numerical Methods in Engineering,
54(8):1235–1260.

Kozuka, M., Seki, Y., and Kawamura, H. (2009). Dns of turbulent heat transfer in a
channel flow with a high spatial resolution. International Journal of Heat and Fluid
Flow, 30(3):514–524.



144

Kramer, M. O. (1957). Boundary layer stabilization by distributed damping. Journal of
Aeronautical Sciences, 24:459.

Kramer, M. O. (1961). The dolphins’secret. Journal of the American Society for Naval
Engineers, 73(1):103–108.

Kuruneru, S. T. W., Vafai, K., Sauret, E., and Gu, Y. T. (2020). Application of porous
metal foam heat exchangers and the implications of particulate fouling for energy-
intensive industries. Chemical Engineering Science, page 115968.

Kuwata, Y. and Suga, K. (2016). Lattice boltzmann direct numerical simulation of inter-
face turbulence over porous and rough walls. International Journal of Heat and Fluid
Flow, 61:145–157.

Kuwata, Y. and Suga, K. (2017). Direct numerical simulation of turbulence over
anisotropic porous media. Journal of Fluid Mechanics, 831:41–71.

Kuznetsov, A. V. (2008). New developments in bioconvection in porous media: bioconvec-
tion plumes, bio-thermal convection, and effects of vertical vibration. Emerging Topics
in Heat and Mass Transfer in Porous Media, pages 181–217.
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