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Trasmissione del suono attraverso materiali

porosi

Sommario

I mezzi porosi sono materiali o sostanze che presentano vuoti o spazi intercon-
nessi all’interno della loro struttura, consentendo in questo modo il passaggio di
fluidi. Questi vuoti o pori possono variare in dimensioni, forma e distribuzione
nello spazio e si possono trovare sia nei materiali naturali che in quelli artificiali.
Esempi di mezzi porosi includono alcuni tipi di rocce, le spugne, le schiume, la
carta e persino alcuni tessuti biologici. L’importanza dei mezzi porosi risiede nella
loro vasta gamma di applicazioni: in questa tesi ci concentreremo sui rivestimenti
acustici utilizzati nel settore aerospaziale per ridurre il rumore del motore. Per stu-
diare come un’onda acustica si propaga attraverso una matrice, abbiamo derivato
la sua equazione adimensionale utilizzando il metodo dell’omogeneizzazione, che
permette di ottenere un modello macroscopico partendo dallo studio di una cella
unitaria. Abbiamo quindi testato il modello risolvendo due tipi di strutture, una
isotropa e una non isotropa, in cui i parametri necessari per l’equazione del mod-
ello sono stati calcolati risolvendo il problema di chiusura per una cella unitaria.
Infine, la precisione del modello è stata verificata con COMSOL Multiphysics®,
testando anche come la porosità della struttura e la frequenza dell’onda acustica
influenzino il risultato finale.
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Transmission of sound through porous media

Abstract

Porous media are materials or substances that have voids, gaps, or interconnected
spaces within their structure, allowing the passage of fluids. These voids or pores
can vary in size, shape and distribution, and can be found in both natural and
artificial materials. Examples of porous media include soil, rocks, sponges, foams,
paper, and even some biological tissues. The importance of porous media lies
in their wide range of applications across various fields: in this thesis, we will
focus on acoustic liners used in aerospace to reduce engine noise. To study how
an acoustic wave propagates through an array, we derived its non-dimensional
equation using the homogenization method, which allows us to obtain a macro-
scopic model starting from the study of a unit cell of the matrix. Then we tested
the model by solving two structures, an isotropic and a non-isotropic one, where
the parameters needed for the model equation are calculated by solving the clo-
sure problem for a unit cell. Lastly, the precision of the model is verified with
COMSOL Multiphysics®, testing also how the porosity of the structure and the
frequency of the acoustic wave influence the final result.
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Nomenclature

δΩ boundary of the solid and of the unit cell

γs solid boundary

λ ratio length-width

Ω unit cell area

ω angular frequency

Ωf fluid region area

ϕ porosity

ρ density

τij viscous stress tensor

r general coordinates

x macroscopic coordinates

y microscopic coordinates

a rectangle length

b rectangle width

c number of rectangles in a row

c0 speed of sound

d number of rectangles in a column

e specific internal energy

f frequency

k wave number

IV



keff k of an isotropic effective medium

L matrix length

l unit cell length

n number of cylinder in a row

pi imaginary part of the pressure

pr real part of the pressure

Pij fluid stress tensor

q heat flux

R radius

u square length

v velocity

z rectangle sides unit
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Chapter 1

Introduction

1.1 Background

Porous materials can be commonly found in nature. One example is the sea
sponge, which has a substantial volume occupied by void spaces. This unique
character allows it to filter water through its pores and capture the particulate
matter as food. Similarly, certain types of rocks exhibit porous characteristics.
The pumice, for example, emerges as a consequence of entrapped gas bubbles
within rapidly cooled magma. Pumice serves practical purposes in construction
as concrete blocks and as an abrasive material in both industrial and consumer
applications. Wood is also a type of natural porous material as trees have pores
throughout the fibrous structural tissue that allow them to take in air and release
oxygen. Many other examples can be found in nature, like eggshells and bones.

Figure 1.1: Porous materials in a) a car and b) an airplane

Porous material has been widely used in various industrial fields for heat in-
sulation, filtration, and acoustic absorption. Acoustic absorption is achieved by
dissipating acoustic energy through the interactions between the particles of the
solid and fluid components [1]. Acoustic liners, made from porous materials, are
extensively utilized in vehicle design (Fig. 1.1), because they are cheap, light-
weighted, and, as a result of the progress in technology and the focus on sustain-
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ability, some of them are also recyclable [2]. In the car industry, the comfort of
drivers and passengers has become more and more relevant to offer a better driv-
ing experience. The acoustic liner is capable of mitigating noise pollution, thereby
contributing to the health, safety, and comfort of individuals exposed to sounds
from both external surroundings and within the vehicle. In the European Union
trains are the primary means of transportation for short and medium distances,
so it is crucial to guarantee acoustic comfort during the trip [3]. Because of their
lightweight properties, porous materials are also used in airplanes to reduce the
transmission of engine noise to the cabin [1].

The porous materials for acoustic absorption are also found in the construction
industry. In offices, schools, and houses, large open spaces are preferred to thigh
spaces, both for the function they are going to perform (like large rooms for
students) and for aesthetics [4]. Such spaces have high acoustic requirements, and
the materials are chosen to fulfill those conditions.
In particular, to reduce the problem of engine noise, porous structures called
acoustic liners, are used. [5] [6] [7].

1.2 Literature Review

A porous medium is a material that contains voids or pores. It is formed by
two phases, a solid matrix and a void space, filled by one or more fluids [8]. The
medium can be consolidated, meaning that the fluid passes through internal pores
of the solid body, or unconsolidated, where the grains are not connected to each
other and the fluid flows around them [9].

Figure 1.2: Schematic view of an unconsolidated and a consolidated media

The most significant propriety of this type of material is its porosity: in gen-
eral, the higher the porosity, the easier is for the medium to be permeated [9].
Porosity is defined as the fraction of volume occupied by the fluid within the
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porous material (the volume of pores) over the total volume and it is usually ex-
pressed as a percentage [10].

Figure 1.3: A layer-structured honeycomb acoustic liner

Acoustic liners are employed to reduce noise in different situations because
they absorb or reflect sound waves to decrease noise levels, so they can create a
quieter and more comfortable environment. The materials used could be foams,
fibrous materials, and perforated metal sheets and they do not add significant
weight.

Figure 1.4: Homogenization of a heterogeneous material

A porous material is characterized by two length scales: a macroscopic length
scale characterizing the global dimension, and a microscopic length scale charac-
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terizing the microstructure of the pores. A layer-structured acoustic liner contain-
ing a honeycomb-shaped microstructure is shown in Fig. 1.3. The homogenization
method is used to study the physical properties of such material [11]. Homoge-
nization is an upscaling technique that allows the use of a macroscopic model to
describe the global behavior of a given microstructured homogeneous or hetero-
geneous media (Fig. 1.4) [12] [13] [14].

1.3 Objectives

In this thesis, we aim to exploit the homogenization method to study the
behavior of acoustic waves propagating through a prototypical acoustic liner: ar-
rays of rigid cylindrical scatterers. The structure of the thesis is as follows: An
introduction of the application of acoustic liners and the state of the art are sum-
marized in chapter 1. In chapter 2, the acoustic wave equation is derived from the
mass, momentum, and energy conservation equations (Linearized Navier-Stokes
Equations); a non-dimensional mathematical model describing the macroscopic
behavior of the acoustic liner is developed using the homogenization method. In
chapter 3, two types of cylindrical microstructures are studied: the circular cylin-
der, and rectangular cylinders. The closure problem in the unit cell is solved to
calculate the effective coefficients. The effectiveness of the obtained model will be
validated with the full-geometry simulation of the material studied with COM-
SOL Multiphysics ® v.6.0. Finally, a summary of the work will be given in the
last chapter.
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Chapter 2

The Mathematical Model

2.1 The Acoustic Wave Equation

Sound is essentially a pressure wave. To describe how acoustic waves prop-
agate in a fluid phase, we start with the laws of mass, momentum, and energy
conservation. [15]. The mass source and external force are considered to be zero.
Mass conservation:

∂ρ

∂t
+

∂

∂xi

(ρvi) = 0, (2.1)

where ρ is the fluid density and vi is the flow velocity.
Momentum conservation:

∂

∂t
(ρvi) +

∂

∂xj

(Pij + ρvjvi) = 0, (2.2)

where Pij is the fluid stress vector.
Energy conservation:

∂

∂t
ρ(e+

1

2
v2) +

∂

∂xi

(ρvi(e+
1

2
v2)) = − ∂qi

∂xi

− ∂

∂xi

(pvi) +
∂

∂xi

(τijvj), (2.3)

where e is the specific internal energy (internal energy per unit of mass), qi is the
heat flux and τij is the viscous stress tensor.
Expanding Eq. (2.2)

vi

(
∂ρ

∂t
+ ρ

∂vj
∂xj

+
∂ρ

∂xj

vj

)
+ ρ

∂vi
∂t

+
∂Pij

∂xj

+ ρvj
∂vi
∂xj

= 0, (2.4)

and combing with Eq. (2.1), there is

ρ
∂vi
∂t

+
∂Pij

∂xj

+ ρvj
∂vi
∂xj

= 0. (2.5)
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The fluid stress tensor Pij can be written as

Pij = pδij − τij, (2.6)

where δij is the unit tensor. τij can be neglected here

Pij = pδij. (2.7)

From Eq. (2.4), the following equation is obtained:

ρ(
∂vi
∂t

+ vj
∂vi
∂xj

) +
∂p

∂xj

= 0 (2.8)

Now the focus is on equation (2.1). The product rule is applied

∂

∂xi

(fgi) = f
∂gi
∂xi

+
∂f

∂xi

gi (2.9)

resulting in
∂ρ

∂t
+ ρ

∂vi
∂xi

+
∂ρ

∂xi

vi = 0 (2.10)

Considering the fluid to be stagnant and uniform, and writing the density and
velocity as a mean value and a fluctuation part, ρ = ρ̄ + ρ′ and v = v̄ + v′ with
v̄ = 0 (the fluid is stagnant), Eq. (2.10) now becomes:

∂ρ̄

∂t
+

∂ρ′

∂t
+ (ρ̄+ ρ′)

∂v′i
∂xi

+
∂

∂xi

(ρ̄+ ρ′)v′i = 0. (2.11)

Since the fluid is considered to be uniform, the mean density ρ̄ = ρ0 is a constant.
Hence,

∂ρ′

∂t
+ ρ0

∂v′i
∂xi

+ ρ′
∂v′i
∂xi

+
∂ρ′

∂xi

v′i = 0. (2.12)

Neglecting the second-order terms, the linearized form of Eq. (2.10) is

∂ρ′

∂t
+ ρ0

∂v′i
∂xi

= 0 (2.13)

Applying linearization for Eq. (2.8), resulting in (considering p = p̄+ p′):

(ρ0 + ρ′)(
∂v′i
∂t

+ v′j
∂v′i
∂xj

) +
∂p′

∂xj

= 0

ρ0
∂v′

∂t
+

∂p′

∂xj

= 0

(2.14)

Applying time derivative for Eq. (2.13) and divergence for Eq. (2.14), there are

∂2ρ′

∂t2
+

∂

∂t
(ρ0

∂v′i
∂xi

) = 0 (2.15)
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∂

∂xi

(ρ0
∂v′i
∂t

) +
∂2p′

∂xi∂xj

= 0 (2.16)

Subtracting Eq. (2.15) from Eq. (2.16) leads to

∂2ρ′

∂t2
− ∂2p′

∂xi∂xj

= 0. (2.17)

Furthermore, we use the isentropic condition p′ = c20ρ
′ (c0 is the speed of sound)

to rewrite p′ and apply the Fourier transform with p̂e−iωt convention (ω is the
complex frequency), to get the wave equation in the frequency domain,

1

c20
(−iω)2p̂e−iωt − ∂2p̂e−iωt

∂xi∂xj

= 0. (2.18)

The division by −e−iωt brings to the acoustic wave equation, also known as the
Helmholtz equation

∂2p̂

∂xi∂xj

+ k2p̂ = 0, (2.19)

where k =
ω

c0
is the wave number.
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2.2 Homogenization Method

The problem of the interaction between a fluid and an array of rigid cylinders
is now approached using the up-scaling technique, meaning that a macroscopic
model is obtained starting from the study of the microscopic behavior. [11] [12]

Figure 2.1: β fluid phase (air) and σ solid phase

The length of the matrix is characterized by the parameter L, while the unit cell
studied is l long. Ω is the area of the unit cell and Ωf is the area of the fluid in the
unit cell; γs is the solid boundary while δΩ is both γs and the boundary of the cell.

Figure 2.2: visual representation of γs and δΩ

If r is used for general coordinates, x for the macroscopic ones and y for the
microscopic, the following relationship is true:

∂

∂r∗i
= ϵ

∂

∂x∗
i

+
∂

∂y∗i
. (2.20)
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therefore, the acoustic wave equation obtained in the previous paragraph becomes:

∂2p

∂r2i
+ k2p = 0 (2.21)

in β-phase (the fluid only goes through air). Also, the condition of perfectly rigid
solid interface leads to:

∂p

∂ri
ni = 0 (2.22)

at γs. ni is the normal vector on γs pointing outwards the fluid phase 2.1.
New variables are introduced to get a nondimensionalized of the Eq. (2.21)

and (2.22).

p∗ =
p

∆pref
, c∗ =

c

cref
, ω∗ =

ωL

cref
, k∗ =

ωL

c
, r∗i =

ri
l
, ϵ =

l

L

The superscripts ∗ represents dimensionless variables.

Noted that k =
ω

c0
, the variables just defined can be substituted inside the previous

equations, therefore:
∂2p∗

∂r∗2i
+ ϵ2k∗2p∗ = 0, in β-phase (2.23)

∂p∗

∂r∗i
ni = 0, at γs (2.24)

2.2.1 Different Orders of the Problem

Now, p∗ is manipulated through the power series expansion to get to different
orders of ϵn

p∗ = p∗0 + ϵp∗1 + ϵ2p∗2 +O(ϵ3) (2.25)

Orders higher than O(ϵ3) can be neglected. The focus is on orders O(ϵ0), O(ϵ1)
and O(ϵ2).

(ϵ
∂

∂x∗
i

+
∂

∂y∗i
)2(p∗0 + ϵp∗1 + ϵ2p∗2) + ϵ2k∗2(p∗0 + ϵp∗1 + ϵ2p∗2) = 0, in β-phase (2.26)

(ϵ
∂

∂x∗
i

+
∂

∂y∗i
)(p∗0 + ϵp∗1 + ϵ2p∗2)ni = 0, at γs (2.27)

- ϵ0 order:
In β-phase

∂2p∗0
∂y∗2i

= 0 (2.28)
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therefore
p∗0 = p∗0(x) (2.29)

At γs
∂p∗0
∂y∗i

ni = 0 (2.30)

- ϵ1 order:
In β-phase

(2ϵ
∂2

∂x∗
i y

∗
i

+
∂2

∂y∗2i
)(p∗0 + ϵp∗1) = 0

2
∂2p∗0
∂x∗

i y
∗
i

+
∂2p∗1
∂y∗2i

= 0

(2.31)

From the equations just obtained for ϵ0 order, it is evident the independence
of p0 from the microscopic coordinate y, meaning that p∗0 is only found in the
macroscopic model. The simplified equation is

∂2p∗1
∂y∗2i

= 0 (2.32)

At γs

(
∂p∗0
∂x∗

i

+
∂p∗1
∂y∗i

)ni = 0 (2.33)

Now only p∗1 has to be defined. A new vector, s∗, is introduced, so that

p∗1 = −s∗i
∂p∗0
∂x∗

i

(2.34)

The combination of Eq. (2.32) and the definition of s∗ brings to

∂2s∗j
∂y∗2i

= 0 in β-phase (2.35)

and using (2.33) the equation becomes:

ni(δij −
∂

∂y∗i
s∗j) = 0 at γs (2.36)

To compute s∗i , more conditions to close the problem are needed. The two condi-
tions come from the definition of the unit cell, that is li-periodic, where li is its
length, and si depends only on macroscopic coordinates (2.34), therefore:

s∗j(r + li) = s∗j(r) periodic condition (2.37)
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and

⟨s∗⟩ = 1

Ωf

∫∫
Ωf

s∗jdA = 0 average constraint (2.38)

where Ω is the area of the unit cell.
From equation
- ϵ2 order:
In β-phase

(ϵ2
∂2

∂x∗2
i

+ 2ϵ
∂2

∂x∗
i y

∗
i

+
∂2

∂y∗2i
)(p∗0 + ϵp∗1 + ϵ2p∗2) + ϵ2k∗2p∗0 = 0

∂2p∗0
∂x∗2

i

+ 2
∂2p∗1
∂x∗

i y
∗
i

+
∂2p∗2
∂y∗2i

+ k∗2p∗0 = 0

(2.39)

At γs

(
∂p∗1
∂x∗

i

+
∂p∗2
∂y∗i

)ni = 0 (2.40)

Now the averaging operator is introduced for the term
∂2p∗2
∂y∗2i

. This will lead to

obtain, after a few calculations, a macroscopic model.

I =
1

Ωf

∫∫
Ωf

(p∗0
∂2p∗2
∂y∗2i

)dA (2.41)

Green’s formula is used to get∫∫
Ωf

p∗0
∂2p∗2
∂y∗2i

dA =

∫
δΩ

p∗0ni
∂p∗2
∂y∗i

ds (2.42)

The union of equation (2.40) and (2.34) brings to

ni
∂p∗2
∂y∗i

= −ni
∂p∗1
∂x∗

i

= nis
∗
j

∂2p∗0
∂x∗

ix
∗
j

(2.43)

The term ∇2
yp

∗
2 can be rewritten using (2.39) and the index notation as:

∂2p∗2
∂y∗2i

= −(2
∂

∂xi

(
∂p∗1
∂y∗i

) +
∂2p∗0
∂x∗2

i

+ k∗2p∗0) (2.44)

Substituting the results of Eq. (2.43) and Eq. (2.44) and using Eq. (2.34),
knowing that s∗i is independent of x∗

i , the equation (2.42) becomes:∫∫
Ωf

p∗0(2
∂

∂x∗
i

(
∂s∗j
∂y∗i

∂p∗0
∂x∗

j

)− ∂2p∗0
∂x∗2

i

− k∗2p∗0)dA =

∫
δΩ

p∗0nis
∗
j

∂2p∗0
∂x∗

ix
∗
j

ds (2.45)
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Using the averaging operator for each term of equation (2.45), the effective medium
equation is found:

βij
∂2p∗0
∂x∗

ix
∗
j

+
1

Ωf

∫∫
Ωf

k∗2p∗0dA = 0 (2.46)

where

βij =
1

Ωf

(∫
γs

nis
∗
jds+

∫∫
Ωf

(δij − 2
∂s∗j
∂y∗i

)

)
dA (2.47)

and
1

Ωf

∫∫
Ωf

k∗2p∗0dA = k∗2p∗0 (2.48)

To rewrite the first term of equation (2.47) (2.35) is integrated in the fluid domain,
multiplied by s∗k∫∫

Ωf

s∗k
∂2s∗j
∂y∗2i

dA =

∫∫
Ωf

∂

∂y∗i
(s∗k

∂s∗j
∂y∗i

)dA−
∫∫

Ωf

∂s∗k
∂y∗i

∂s∗j
∂y∗i

dA = 0 (2.49)

using Green’s formula for

∫∫
Ωf

∂

∂y∗i
(s∗k

∂s∗j
∂y∗i

)dA:

∫
δΩ

s∗k
∂s∗j
∂y∗i

nids−
∫∫

Ωf

∂s∗k
∂y∗i

∂s∗j
∂y∗i

dA = (2.50)

The integral is null for the boundaries of the unit cell, so now∫
γs

s∗knjds =

∫∫
Ωf

∂s∗k
∂y∗i

∂s∗j
∂y∗i

dA (2.51)

knowing that nj =
∂s∗j
∂y∗i

ni. Changing indices the previous equation can be rewrit-

ten as: ∫
γs

s∗jnids =

∫∫
Ωf

∂s∗j
∂y∗k

∂s∗i
∂y∗k

dA (2.52)

Now βij is

βij =
1

Ωf

∫∫
Ωf

(
∂s∗j
∂y∗k

∂s∗i
∂y∗k

+ δij − 2
∂s∗j
∂y∗i

)dA (2.53)

Equation (2.46) can be written using only macroscopic coordinates as:

βij
∂2p∗0
∂x∗

ix
∗
j

+ k∗2p∗0 = 0 (2.54)

where βij, for the isotropic case, is βij = βδij.
In the next chapter, βij is calculated both for isotropic and non-isotropic case.
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Chapter 3

Results and Discussion

The first step in solving the effective medium equation (2.54) is to calculate
the components of the tensor βij. This involves using COMSOL Multiphysics ®

to solve the closure variable in a unit cell. We calculate for the isotropic case, a
circular cylinder, and the non-isotropic one, a rectangular cylinder. The results
reveal how the values of these components change to the porosity, plotting for
each case a graph and adding the corresponding polynomial fitting. Once the
equations are obtained, they are applied to the full geometry. The comparison
between the results given by the general equation (2.21) to describe a matrix
of rigid cylinders and the ones given by the equivalent effective medium equation
demonstrates whether the approximation is valid. The same procedure is followed
to test the effective medium equation for an array of rectangular prisms, using
the data obtained from the non-isotropic case.

3.1 Unit cell solutions

3.1.1 Isotropic case: cylinder scatterers

The first case is a cylinder with radius R inside a square whose side is 1. The

radius is related to the porosity ϕ by the formula R =

√
(1− ϕ)

π
, so when the

porosity grows, the cylinder gets smaller. The porosity goes from 0.3 to 0.9 with
a step of 0.1.
βij is a function of s∗i , so s

∗
1 and s∗2 are calculated, recalling the boundary conditions

imposed (2.37) (2.38).

13



The following figures show the values of s∗1 and s∗2, respectively:

(a) s∗1 (b) s∗2

Figure 3.1: visual representation of s∗i for a cylinder, ϕ = 0.7

Figure 3.1(a) is equal to figure 3.1(b) but with a rotation of 90◦. The flux lines go
from the areas with a lower concentration to the ones with a higher one. Figure
3.1(a) is symmetric to the y1 axis, figure 3.1(b) to y2.
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3.1.2 Non-isotropic case: rectangle scatterers

In the second case, a rectangle that is 3z long and 2z wide (ratio between the
width and the length λ here is λ1 = 3 : 2) is analyzed, where z is a function of ϕ

given by the formula z =

√
(1− ϕ)

6
. The porosity in this problem goes from 0.5

to 0.9, 0.1 step. The square side is again 1. s∗1 and s∗2 are defined in the same way
as the ones written for the first case. The corresponding visual representation is
obtained using COMSOL Multiphysics ®:

(a) s∗1 (b) s∗2

Figure 3.2: visual representation of s∗i for a rectangle, ϕ = 0.7

Once more, 3.2(a) is 3.2(b) rotated by 90◦ and the flux lines move from lower
to higher concentration, but now the intensity is different: the values for 3.2(b)
are lower in the area where the flux lines enter, and higher where they exit in
comparison to 3.2(a).
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Different Aspect Ratio

The shape of rectangle scatterers is characterized by the aspect ratio,λ, which
is defined as the length-to-width ratio. In this section, the closure problem of s∗i is
solved for different aspect ratios. Corresponding model coefficients β11 and β22 are
evaluated for different aspect ratios and different porosity. Fig. 3.3 and Fig. 3.4
show the field of s∗i for ϕ = 0.7, and the aspect ratios λ2 = 6 : 5 and λ3 = 1 : 0.2.

(a) s∗1 (b) s∗2

Figure 3.3: λ2 = 6 : 5

(a) s∗1 (b) s∗2

Figure 3.4: λ2 = 1 : 0.2

In figure both figures, as in figure 3.2, for s∗2 the colors are more intense, mean-
ing that the values are higher or lower than for s∗1. The most evident difference is
in figure 3.4, where s∗1 is almost constant throughout β-phase, while s∗2 has more
significant concentration, that is anyway still closer to zero than in 3.2 and 3.3.
This could be due to the fact that the rectangle is smaller for λ3, so there is less
interference between the fluid and the solid.
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3.2 Components of βij

3.2.1 Isotropic case

The data that the program has calculated for β11, β22, β12 and β21 are now
plotted:

Figure 3.5: correlation between ϕ and β11 (or β22) and its polynomial fitting
function

β11 and β22 have the same values only graph is sufficient; β12 and β21 are almost
zero and can be neglected. In the graph, a linear correlation between ϕ and β11

(or β22) is evident and it can be approximated by an increasing cubic function:
β11 = 2.3474ϕ3 − 4.5812ϕ2 + 3.5175ϕ− 0.2549.
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3.2.2 Non-isotropic case

Figure 3.6: blue) λ1, green) λ2, red) λ3

The off-diagonal components β12 and β21 are zeros for all the λ, and we show in
Fig. 3.6 the dependence of β11 and β22 on porosity for different aspect ratios.
For β11 the higher the ratio, the flatter the curve: for λ1 and λ2 it can be approxi-
mated to a parabola (the function for λ2 has a lower vortex and has a higher slope
than for λ1), while for λ3 it is a straight line, almost constant. β22, meanwhile, is
a straight line for all the cases, but now there is no direct correlation between λ
and the slope of the lines: the most slope is given by the function for λ1, the least
for λ3. The two functions for λ3 are very similar to each other.

These are the functions obtained using a polynomial fitting:
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Table 3.1: Polynomial fitting results of non-isotropic β11 and β22 for different
aspect ratios.

β11 β22

λ1 1.3023ϕ2 − 1.6501ϕ+ 1.3559 1.2299ϕ− 0.2587
λ2 0.9635ϕ2 − 0.9307ϕ+ 0.966 0.8734ϕ+ 0.0797
λ3 0.0117ϕ+ 0.9884 0.1802ϕ+ 0.8191

3.3 Numerical simulation

Now the approximation given by the effective medium equation (2.54) to the
general one (2.19) is tested, to see whether the model built can be used or not.
The general idea is to let the acoustic wave develop completely, so the changing
of pressure throughout the matrix and the model can be measured more precisely,
and compare the two different results. To achieve so, for both cases, two blocks
are added, one before the matrix and one after. The first block has the same
dimension u as the second one, the rectangle is 3u wide and u high. The general
scheme is the following:

Figure 3.7: Schematic view of the computational domain

On the left side, the one that the acoustic wave hits first, the Dirichlet bound-
ary condition is imposed, and the function is the incident plane wave equation
of the pressure p∗ −ikx

0 (incident because it hits the surface perpendicularly, plane
wave because it has only one frequency given), where i is the imaginary unit, k is
the wave number obtained using f = 100Hz in this first example, then f = 50Hz
and f = 200Hz, and x indicates the position in the model.
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On the right side, the wave goes out of the domain without reflection.
The assumption made is that there is no flux on the upper and lower sides.

3.3.1 Mesh

Matrix of rigid cylinders

The first problem computed is a matrix of rigid cylinders. The porosity is

calculated using the formula ϕ =
u2 − n2πR2

u2
= 0.6783, where u is the length of

the square and n is the number of cylinders for each row (here it is 20).

Figure 3.8: extremely fine mesh

Matrix of rectangular prisms

For this problem the same procedure as for a matrix of rigid cylinders is fol-

lowed. The porosity is ϕ =
u2 − (ab)(cd)

u2
= 0.5811, where a is the length of the

rectangle used to plot the matrix and b is its width, c is the number of rectangles
in x1 direction and d in x2.
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The ratio here is λ1.

Figure 3.9: extremely fine mesh

Effective media

For the numerical simulations of acoustic waves transmitted through effective
media, the derived macroscopic models with calculated coefficient βij for circular
scatterers (3.2.1) and rectangular scatterers (3.1) are used.

Figure 3.10: extremely fine mesh

The calculation of β11(ϕ) and β22(ϕ) are made substituting the ϕ given by the
previous calculations: those βij are used in (2.54), that, for the isotropic case, can
be rewritten as

∂2p∗0
∂x∗

ix
∗
j

+ k∗2
effp

∗
0 = 0 (3.1)
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where k∗
eff =

k∗√
(βij)

.

In the non-isotropic problem the tensor βij is diagonal, so two components need
to be defined.

3.3.2 Simulation results

The acoustic wave p∗ −ikx
0 can be divided into a real part pr and an imaginary

part pi.
pr for the different geometries for f = 50Hz is:

(a) full geometry

(b) effective medium

Figure 3.11: Matrix of rigid cylinders

As expected, the value of the pr decreases when passing through the matrix,
starting from a value of almost 1 Pa at the beginning of the scatterer region (the
fact that the pressure at the beginning is not exactly 1 is due to the interface
between the free field and the porous medium).
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(a) full geometry

(b) effective medium

Figure 3.12: Matrix of rectangular prisms

For this case as well the observations just made are valid, but here even lower
values in the final part of the model and higher at the beginning are reached, both
for the matrix and the block.
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The comparison between the imaginary parts of the wave is the following:

(a) full geometry

(b) effective medium

Figure 3.13: Matrix of rigid cylinders

For the imaginary part, the difference is even smaller than for the real part.
Here, the values at the beginning are higher for the full geometry, and lower at
the end for the effective medium.
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(a) full geometry

(b) effective medium

Figure 3.14: Matrix of rectangular prisms

Comparing figure 3.13 and 3.14, it is evident that the approximation is closer
for the isotropic problem.
For all the cases, pi becomes negative when the flux passes through the model and
keeps decreasing.
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Now f = 100Hz is tested.

-pr:

(a) full geometry

(b) effective medium

Figure 3.15: Matrix of rigid cylinders

For a higher frequency, i.e. a shorter wavelength, the sinusoidal behavior of
the acoustic wave becomes visible: pr grows until the beginning of the scatterer
region, reaching values higher than 1, then it decreases.
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(a) full geometry

(b) effective medium

Figure 3.16: Matrix of rectangular prisms

The trend just described is present also for 3.16, but the approximation is
less effective for the matrix of rectangular prisms (this is evident, for example,
comparing where the 0 is for the matrix and for the model in figures 3.15 and
3.16).
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-pi:

(a) full geometry

(b) effective medium

Figure 3.17: Matrix of rigid cylinders

The sinusoid for the imaginary part is even more noticeable: pi grows until
the scatterer region, then it decreases, and it increases again before reaching the
end of the geometry.
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(a) full geometry

(b) effective medium

Figure 3.18: Matrix of rectangular prisms

Again, the non-isotropic case model does not fit well the real problem, as shown
by the higher amplitude of the wave in fig. 3.18(b) rather than in fig. 3.18(a) (the
values reached are lower) and by the difference in the phase.
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For f = 200Hz:

-pr:

(a) full geometry

(b) effective medium

Figure 3.19: Matrix of rigid cylinders

For f = 200Hz the sinusoidal behavior of pr is even more evident: here two
peaks of the wave are visible, meaning that a full period period is shown. This is
the consequence of a shorter wave length.
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(a) full geometry

(b) effective medium

Figure 3.20: Matrix of rectangular prisms

In the figure above it is evident the failure of the model: in reality, when the
acoustic wave permeates through the matrix, its amplitude decreases drastically
as shown in fig. 3.20(a), where the colors suggest that the value of the second
peak is lower than the first one.
This phenomenon is not reflected in fig. 3.20(b), where the two peaks have almost
the same value.
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-pi:

(a) full geometry

(b) effective medium

Figure 3.21: Matrix of rigid cylinders

However, as already suggested, the model approximation is better for the
imaginary part of p∗ −ikx

0 . The most evident difference between 3.21(a) and 3.21(b)
is the gap between the phases, while the amplitude remains almost the same.

32



For the non-isotropic problem, again, the figures show a less effective approx-
imation given by the model:

(a) full geometry

(b) effective medium

Figure 3.22: Matrix of rectangular prisms

The following graphs show the plot of the real part of p∗ −ikx
0 for f = 50Hz,

f = 100Hz and f = 200Hz, studied in the previous paragraph, and a comparison
with two extreme cases, f = 20Hz and f = 1000Hz. The results show how the
wave number k, defined as

k =
2πf

c0
(3.2)

influences the approximation and, furthermore, whether or not a higher porosity
gives a better result. At the beginning, the porosity is the same used in the
previous models 3.11 3.12, then, ϕ is increased to a number closer to the unity.
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(a) Rigid cylinders, ϕ=0.6783

(b) Rectangular prisms, ϕ=0.5811

Figure 3.23: Low porosity. Full lines) real case, dashed lines) model
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(a) Rigid cylinders, ϕ=0.9196

(b) Rectangular prisms, ϕ=0.8953

Figure 3.24: High porosity. Full lines) real case, dashed lines) model
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From the observation of the previous graphs, the first thing to notice is that a
higher porosity influence positively the effectiveness of the model: the comparison
between fig. 3.23 and 3.24 shows an almost perfect match of the functions of
the effective medium over the full geometry. This is especially true if the case is
isotropic: in fig. 3.24(a) the model is valid for all the frequencies studied.

Later, the focus is on the importance of the wave number: from the analysis of
figure 3.23, in particular, it is clear that the approximation fails if the frequency
grows, especially after the wave has passed the model block and the matrix (for
f = 1000Hz, for example, the amplitude of the wave reduces drastically).
Moreover, for both higher and lower porosity, the discrepancy between the effective
media and the real cases is even more pronounced when the case is non-isotropic
(3.23(b) and 3.24(b)).

We can notice that for the full geometry in figures 3.23, the lines are not
exactly straight due to the presence of the cylinders and rectangles. Meanwhile,
for figures in 3.24, the behavior of the pressure is more linear. This could be
due to the fact that a higher porosity means a smaller solid region, therefore the
interference of the array is less pronounced.

Lastly, the difference between the models and the full geometry is also influ-
enced by the lack of the interface condition: for low-frequency cases, the approxi-
mation of the model is better so the discrepancy is due to the interface error, for
high-frequency cases, the error is due to both lack of interface and failure of the
effective medium.

In conclusion, the effectiveness of the model increases when the wave number
(or the frequency) decreases and when the porosity grows: however, when the
problem is non-isotropic, it is necessary to verify its validity and, if the problem
allows it, modify the parameters just mentioned.
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Conclusions

The importance of porous materials lies in their wide range of applications,
from the natural world to man-made devices. One of the most important ap-
plications is acoustic absorption. This thesis aimed to investigate a prototypical
two-dimensional acoustic liner material with periodic microstructure: arrays of
acoustic-rigid cylinders. We have developed a mathematical model with the ho-
mogenization method to describe the global behavior and macroscopic phenomena
when acoustic waves are transmitted through the micro-cylinders.

The frequency-domain acoustic wave equation has been derived from the mass,
momentum, and energy conservation equations. Zero external mass and forces
were added to the system, and the viscous effect was neglected. Then, the gov-
erning equation was normalized with chosen dimensionless groups, and the up-
scaling technique - the homogenization method, was applied. By introducing the
parameter ϵ = l/L ≪ 1, we separated the length scales and obtained governing
equations in different orders of scales. The averaging theorem was applied to the
microscale problem and the closure variables were solved in a unit cell. In the
end, we obtained a macroscopic model with a second-order tensor parameter, βij,
calculated for isotropic (circular cylinders) and non-isotropic (rectangular cylin-
ders) scatterer shapes at different porosity. For the isotropic case, βij = βδij.
Therefore, only scalar β is needed to be calculated. For the non-isotropic case,
the two diagonal components have different values. βij are also calculated for
different aspect ratios. It revealed that maintaining the same porosity, there was
no direct correlation between βij and the aspect ratio.

In the end, the model is validated by finite-element simulations of a case when
an incident plane wave is transmitted through the sample material located in the
middle of a duct. The numerical simulations were conducted with commercial
software COMSOL Multiphysics®. We compared the acoustic pressure field of
a fully resolved simulation and a case when the sample was replaced by effective
media where the acoustic waves are governed by the developed macroscopic model.
The simulations are conducted for different porosity and various frequencies (f =
20 Hz ∼ 1000 Hz) of the incident waves. It has been shown that good agreement
between the model and full-geometry simulation appears for low-frequency waves.
The small discrepancies are due to a lack of treatment at the interface between
the free field and the scatterer region. For high-frequency incident waves (f =
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1000 Hz), the large discrepancy of the pressure fields shown in comparison was
mainly due to the failure of the long-wave assumption.
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