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Abstract

In this thesis we proposed to carry out large-esldwlations, to study the effects of local
roughness in turbulent open channel flows.

At first, we summarized the theory of turbulent mhel flows, which is at the base of this
work. Then, the current knowledge about roughnesgrésented and discussed widely,
comparing laboratory and atmospheric rough-wallisti within a single framework.

After that, we discuss our sand-grain roughnessaiadth the no-slip boundary condition
modeled by an immersed boundary method. The pliepeathd accuracies of the scheme
are studied, the roughness model is validated tldpatial-resolution requirements are
determined. The model is applied to open chanrwl,flwith simulations carried out
underlining the effects of two parameters: the hm&gs height and the geometry of the
rough and smooth patches.

Finally, results are presented: the roughness tsffae limited to the roughness sublayer;
its blockage effect extends only yo= d in the mean flow; the roughness significantly
affects the inner-layer quantities like the frictieelocityu, and the friction coefficien€;,
while the local Reynolds number, the outer-layeameelocity, as well as the Reynolds
stresses beyond the roughness sublayer, are rsatigeito the roughness. The comparison
betweenz, from momentum balance ang, from the log law assumption matches
everywhere, except in the smooth-rough and rougbetimtransition regions wherg,
from the log law can’t capture the local variatioinflow quantities close to the wall, and
thus the log law is not valid. Studying mean velpqgrofiles for the patch cases at
different x locations, we observed the influence of the numifepatches: while low
roughness height cases are not influenced by #rsnpeter, when the roughness is higher
the 8 patch case mean velocity profile, above smaegions, is lower than the the
corresponding 2 and 4 patch cases within the bigfar, thus the influence of rough patch
frequency more significantly affects the abilitytbke flow to adapt from rough to smooth
than from smooth to rough and, under this condstidhe critical number of patches is
between 4 and 8.



Prefazione

Per realizzare questa tesi mi sono recato alla ®Qsidéniversity, Kingston, Ontario,
Canada, in particolare presso McLaughlin Hall, Depant of Mechanical and Materials
Engineering, dove ho lavorato come ricercatoreostdt supervisione del Prof. Ugo
Piomelli, per una durata complessiva di 6 mesi.

Lo scopo che ci siamo proposti e stato quello tBtefare uno studio numerico, tramite
I'utilizzo di Large-Eddy Simulations, su rugositichlizzata all'interno di un canale aperto
attraversato da un flusso in regime turbolento. rugosita e, infatti, un importante
parametro che influenza numerosi applicazioni imdfhdinamica; in generale, quando un
flusso lambisce una parete rugosa, il flusso st@ssterato in maniera difficile da
prevedere. A causa delle sue caratteristiche ini@rger esempio, una pallina da golf puo
viaggiare molto piu lontano di una versione lisdalla stessa pallina: le impronte
inducono turbolenza e ritardano la separazioneo dgHato limite, riducendo in questo
modo la resistenza di forma che si genera.

Un esempio piu ingegneristico sullimportanza dellgosita € quello delle palette di una
turbina, dove la rugosita superficiale aumenta tansbio termico e favorisce il
raffredamento delle palette, allungando loro la.vitrati limite caratterizzati da rugosita
sono tipici anche nei flussi geofisici: la supddisottostante e quasi sempre rugosa, come
nel caso di foreste, citta o fondali marini, e qagsuo influenzare numerosi studi, come le
previsioni meteorologiche.

Nella prima parte della tesi € riassunta la tedgaflussi turbolenti in canale; il channel
flow e un flusso di parete tipico di applicaziongegneristiche, ed € alla base di questa
tesi. Dopo una breve descrizione del flusso, soportate e descritte le equazioni di
bilancio di massa e di quantita di moto, che partanlefinire la tensione di taglio di parete
w, Il coefficiente di attritdC; e altri importanti parametri. Sono poi definitarealizzate le
varie regioni di parete, con particolare attenziatt®uter layer dove la log-law e valida.
In seqguito, & analizzata l'influenza del numeroRdiynolds sul flusso, in particolare sui
profili di velocita media e sulle tensioni di Reyi® Infine, vengono riportate
considerazioni di natura energetica, definendalainigio dell’energia cinetica turbolenta e
analizzando il comportamento dei termini di produn®, dissipazione, trasporto, diffusione
e convezione nelle varie regioni di parete, alarardel numero di Reynolds.

Nel capitolo successivo la rugosita superficiai@teodotta e sono riportati le piu recenti
considerazioni e studi a riguardo: flussi turbalentsuperfici rugose sono stati studiati gia
a partire dai lavori di Hagen (1854) and Darcy (@)3%®he erano interessati alle perdite di
pressione all'interno di condotti d’acqua. Tuttawdarante I'ultimo secolo di ricerca, flussi
su pareti rugose hanno ricevuto molta meno atteezdaei corrispondendi flussi su pareti
lisce, il che é giustificabile col fatto che si @lwto prima studiare le condizioni di parete
piu semplici possibili, e solo in seguito introdeiicomplessita come rugosita, gradienti di
pressione, curvature... Tuttavia, questa negligenaé pver oscurato il potenziale
contributo della rugosita alla ricerca su flussipdirete, in generale. In questa sezione,
infatti, € riportato un dettagliato studio di flussrbolenti su pareti rugose, con particolare
attenzione alle interazioni tra inner e outer layein modo di porre il problema e questo:
pareti lisce e pareti rugose inducono essenziakneia stessa struttura turbolenta
nell'outer layer, ovvero ad una regione con delsitezo di taglio, pochi meccanismi di
instabilita e debole produzione di energia cinetigebolenta. Al contrario, vicino alla
parete, dove lo sforzo di taglio e la generazion&udbolenza sono elevate, i due flussi



sono nettamente diversi e controllati da lunghedizecala diverse. Come possono due
diversi processi nell’energetico inner layer patassenzialmente agli stessi risultati nel
piu passivo outer layer? In questa stessa seziobiarao anche descritto diversi tipi di
superfici rugose che sono state usate in lettexratal passato per modellizzare la rugosita
cercando di introdurre il minor numero di parampussibile.

Nel capitolo successive viene presentata la forenute numerica del problema: abbiamo
implementato Large-Eddy Simulation (LES) con unaiwic sub-grid scale model, in cui
un fractional time-step method (Chorin, 1968; KimMbin, 1985) e second-order central
differencing sono usati per risolvere le equazidnibilancio. Per quanto riguarda le
condizioni al contorno, periodic boundary condisosono usate nelle spanwise e
streamwise directions, free-slip conditions nel iimsuperiore del canale e no-slip
conditions alla parete, con [lutilizzo di un Immeds Boundary Method (IBM)
nell'interfaccia tra fluido e rugosita superficiale

Il modello é stato poi validato, concentrandogpanticolar modo sull’accuratezza spaziale
e temporale dell'IBM; in primo luogo é stato studiain canale 2D inclinato rispetto alla
parete, per analizzare il comportamento dellIBMando il flusso al contorno non &
allineato con le celle. Dopodiché abbiamo studiatccuratezza del modello in un flusso
instazionario attorno ad un cilindro. Infine, abh@ analizzato il flusso nel nostro open-
channel con superficie rugosa, validando il modelldeterminando i requisiti richiesti
dalla griglia per avere una adeguata risoluzioria degosita.

Infine, i risultati delle nostre simulazioni sonorepentati nell'ultimo capitolo:
dallandamento in direzione streawise della tersidntaglio di parete, e del coefficiente

di attrito C; abbiamo osservato elevate fluttuazione in corngpoza delle superfici
rugose, dovute ad un problema di sampling: bendihéllgsoidi generati col metodo di
Scotti siano orientati in maniera casuale, esistdele strutture favorevoli e ricorrenti;
guesto fenomeno pud essere limitato incrementandonninio in direzione spanwise 0
filtrando il segnale tramite trasformate wavelean@€ontandoz, ottenuta dal bilancio di
quantita di moto con, ottenuta dall’assunzione a priori della log laiwnata come le due
funzioni siano in ottimo accordo ovunque eccettbenegioni di transizioni tra superficie
rugosa e lisca (e viceversa), dove avvengono fenploeali complessi vicino alla parete,
e la log law non e, quindi, piu valida.

Studiando i profili di velocita media abbiamo ossgo I'influenza del numero di patch:
per bassa rugositdh’( = 20) le simulazioni non sono influenzate da qugsicametro,
mentre per elevata rugosith’ (= 40) il profilo di velocita per il caso con 8 phatsi
differenzia dai corrispondenti casi con 4 e 2 pafdrmettendoci di concludere che la
frequenza delle patch influenza maggiormente |laciédp del flusso di adattarsi da rugoso
a liscio che viceversa, e che, sotto queste camtizl numero critico di patch sia tra 4 e 8.
In generale, gli effetti della rugosita sono linital sublayer rugoso; il suo effetto di
ostruzione si estende solo fino ya = d nel flusso medio; la rugosita influenza
significativamente le quantita dell’ inner-layemee la velocita di attrital, e il coefficiente

di attrito C¢, mentre il numero di Reynolds locale, la velocitadia nell'outer-layer e le
tensioni di Reynolds al di sopra del sublayer rogosn sono sensibile alla rugosita.
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1. Introduction

Hydrodynamically rough boundary layers are foundnany applications: dimples on golf
balls, cholesterol in blood vessels, skyscrapedetd grids of a large city... In general
when there's fluid flow over a rough surface, thewfis affected in ways that are
challenging to predict. Because they are dimpledgkample, golf balls fly much farther
than would a smooth version of the same ball. Tihgkbs induce turbulence and delay the
separation of the boundary layer that forms nearbill's surface thus reducing the drag
(Fig. 1.1).

A more telling example of why roughness matteremgineering applications is turbine
blades, where surface roughness improves heaffdragnsd decreases temperature of the
turbine, extending the life of the blades. In tbase, roughness has the same effect of ribs
or pins, which have been largely studied in the paars (Fig. 1.2). On the other hand,
roughness and accumulated debris could affectenfenmance of turbine blades and lead
to a faster deterioration. To replace one blade péwer-generating turbine can cost up to
a million dollars when considering lost flight time

Separation

Laminar
boundary layer

Turbulent
boundary layer

Separation
o

Transition

boundary layer

Fig. 1.1 - Effect of dimples in a sphere.



Fig. 1.2 - Effect of different rib configurations turbine blades.

Rough boundary layers are usually the norm in ggsiphl flows, too: the underlying
surface is almost always rough, like woods an@<ifFig. 1.3), and that can affect weather
forecast, prediction of air pollution, dispersidnvolatile materials...

Fig. 1.3 - Flow visualization in an urban area.



In addition to the engineering and meteorologicatiwations for research on the rough-
wall boundary layers, there are basic consideratiéor a smooth-wall boundary layer,
many investigations have been carried out to sthdyelative importance of the inner and
outer regions of the boundary layer. Rough-wall rmtary layers may help the
understanding of this interaction, since both th@ath-wall and rough-wall boundary
layers have essentially the same structure in ther dayer while, close to the wall, they
are very different, and are controlled by differlartgth scales: the roughness introduces a
layer where the turbulent structure is significantifluenced by the viscous length scale
and roughness length scales. So, if, more genertlly turbulence structure over a
significant part of the layer is essentially unaleah in spite of significant alterations of the
wall, this perspective would imply even less comioation between the wall region and
the outer region of a boundary layer than may brenally assumed.

To study the inner/outer layer interaction, a systec study is required with both isolated
and combined alterations of the inner and outeerldlpw conditions, which leads to the
idea of studying boundary layers with alternategfoand smooth patches developed along
the streamwise direction.

Till present day, it is known that surface rouglseds addition to increasing the skin
friction characteristics, has significant effects mass and heat transport in the flow.
Neverthless, the effects of roughness on momenteaat, and mass transfer characteristics
are not well understood. The problem of surfaceyhmess is complicated by the fact that
the geometry and length scales of roughness elsmany widely, from regularly spaced
two-dimensional ribs to random three-dimensionalgtoness, such as manufacturing
roughness and riverbeds. In the past, two-dimeas§ioins were employed a lot, because,
thanks to their geometrical simplicity, it was pbssto apply direct numerical simulation
(DNS) or large eddy simulation (LES) to thoroughktydy the flow fields.

However, during the last years, more elaborate sodk roughness has been used in
simulations, thanks to development of the immerbedndary method: this gave an
advantage in the knowledge of the physics invomsbause it allows to know what’s
happening very near the wall, where in experimést difficult to insert a probe to
measure the flow effects.

To look closely into the physical effect of surfacighness, we carry out large-eddy
simulations with varying the roughness height amel length of the rough and smooth
patches, to cover a wide range of values, enabfiimgct interaction of roughness
disturbance and typical smooth-wall boundary layer.

Complete data of the flow field are provided frommrerical simulations, and thus the
mean and instantaneous properties of the flow eastuxied in action.



2. Turbulent Channel Flow

In this chapter we summarize the theory of turbutdrannel flow over smooth surface,
which is at the very base of this thesis. Chanlol fs a wall flow and it is often found in
engineering applications, like flow through dutesoundary layers.

2.1 A description of the flow

As sketched in Fig. 2.1, we consider the flow tlgtoa rectangular duct of height= 25.
The duct is longl{/o > 1) and has a large aspect ratiy (= 10 in Fig. 2.1). The mean
flow is predominantly in the axial directiow)( with the mean velocity varying mainly in
the cross-stream directiory)( The bottom and the top walls areyat 0 andy = 29,
respectively, with the mid-plane beigg- 6. The extent of the channel in the spanwBe (
direction is large compared with so that (remote from the end walls) the flow is
statistically independent af The centerline is defined lyy= 6, z= 0. The velocities in the
three coordinate direction ar&,i/,W with fluctuations ¢,v,w). The mean cross-stream
velocity W is zero.

Near the entry of the duck (= 0) there is a flow-development region. We, however,
confine our attention to the fully developed reg(targex), in which velocity statistics no
longer vary withx. Hence the fully developed channel flow being cde®d is statistically
stationary and statistically one-dimensional, withlocities statistics depending on
Experiments confirm the natural expectation thatftow is statistically symmetric about
the mid-plang/ = J; the statistics of{,V,W) aty are the same as those 0f{V,\) at 2 —

flow

(a)

Fig. 2.1 - Sketch of channel flow.

The Reynolds numbers used to characterize thedlew



Re= (20)U /v (2.1)
Re, =U,J/V 2.2)

whereUg is the centerline velocit}U is the bulk velocity
— 1 9
u==1|{U) 2.3
5 j (U)dy (2.3)

The flow is laminar for Re < 1350 and fully turbatdor Re > 1800, although transitional
effects are evident up to Re = 3000.

2.2 The balance of mean forces

The mean continuity equation reduces to

dv) =0 (2.4)
dy

since > is zero, Y> is indipendent ok. With the boundary condition\&y-, , this
dictates that ¥> is zero for ally, so that the boundary condition at the top watk<,s = 0
Is satisfied.

The lateral mean-momentum equation reduces to

0=- - = (2.5)

which, with the boundary condition/?¢y:25= 0, integrates to

~~

2, (P) _ pu(¥)
(o)== 26)

wherepy = < p(x,0,0) > is the mean pressure on the bottom wallimMportant deduction
from this equation is that the mean axial presguadient is uniform across the flow:

dx dx '

The axial mean-momentum equation,

O=v - - =0 (2.8)
P



can be written

dy dx '

where the total shear stregy) is

d{U
r= pv% - p{uv) (2.10)

For this flow there is no mean acceleration, so itiean momentum equation (2.9)
amounts to a balance of forces: the stress is tatbby the pressure gradient.

Sincer is a functions only of. andp,, is a function only ok, it is evident from equation
(2.9) that both the first member and the secondasaeonstant. The solutions fdy) and

d pw/dx can be written explicitly in terms of the wall sinestress

r,, =1(0) (2.11)

Becauser(y) is antisymmetric about the mid-plane, it follotst (o) is zero; and at the
top wall the sress i§26) = -r,. Hence, the solution to equation (2.9) is

dp, _ 7w
o

. 2.12
o (2.12)

and

r(y)= rw(l—%j ()1

The wall shear stress normalized by a referencecitgl is called a skin-friction
coefficient. On the basis of the centerline velpeibd the bulk velocity we define

c, =rw/ [;pu(?j (2.14)

C, :rw/(;pljzj (2.15)

To summarize: the flow is driven by the drop ingz@re between the entrance and the exit
of the channel. In the fully developed region thisra constant (negative) mean pressure
gradientd<p>/ox = dpw/dx, which is balanced by the shear-stress gradigay = -z,/0.

For a given pressure gradienp£tix and channel half-widtld, the linear shear-stress
profile is given by equations (2.12) and (2.13)dpéndent of the fluid properties (for
instance turbulent). Note that, if the flow is daefil byp, 4, v and ¢, /dx, thenUy and

U are not known a priori. Alternatively, in an expeentU can be imposed and then the



pressure gradient is unknown. In both cases the-faktion coefficient is not known a
priori. Of course all these quantities are readdyermined for laminar flow.

2.3 The near-wall shear stress

Figure 2.2 shows the mean velocity profiles obtaiby Kim et al. (1987) from direct
numerical simulations of fully developed turbulefiannel flow at Re = 5600 and Re =

13750 (Reynolds bulk number, as defined in equgtoh)). The objective if this and the
next subsection is to explain and quantify thesdilps.
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Fig. 2.2 - Mean velocity profiles in fully develogpéurbulent channel flow from the DNS
of Kim et al. (1987); dashed line Re = 5600, sthd Re = 13750.
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The total shear stresgy) is the sum of the viscous stress and the Reyrsti@ss, as
written in equation (2.10). At the wall, the boungaonditionU(x,t) = O dictates that all
the Reynolds stresses are zero. Consequently theshear stress is due entirely to the
viscous contribution,

r, = pv(d<u >j (2.16)

dx

Profiles of the viscous and Reynolds shear stremseshown in Figure 2.3.



The important observation that the viscous stressilates at the wall is in contrast to the
situation in free shear flows. There, at high Régsmumber, the viscous stresses are
everywhere negligibly small compared with the Rdgacstresses. Also, near the wall,
since the viscosity is an influential parametee trelocity profiles depends upon the
Reynolds number (as may be observed in Figuregh@)this is again in contrast to free
shear flows.

1.0F 1.0
08r 08
06r T, 06r T,
04 viscous 0.4 Reynolds
stress stress
02+ 02

0. 1 1 1 1 1 0. 1 1 1 ] ¥
%.D 0.2 04 0.6 08 10 %.O 02 04 06 08 1.0
/0 1/

Fig. 2.3 - Profiles of viscous shear stress andhBlelg shear stress in turbulent channel
flow. DNS data of Kim et al. (1987); dashed line RB600, solid line Re = 13750.

It is evident that, close to the wall, the viscgsitand the wall shear streggare important
parameters. From these quantities (ahdve define viscous scales that are appropriate
velocity scales and lengthscales in the near-vegilon. These are the friction velocity

(2.17)
and the viscous lengthscale

3, :V\/Z -v (2.18)
Z-W uT

The Reynolds number based on the viscous stedgs is identically unity, while the
friction Reynolds number is defined by

(83

S| o

(2.19)

The distance from the wall measured in viscoustlenpr wall units) is denoted by

y_uy
o, V

(2.20)



Notice thaty” is similar to a local Reynolds number, so its niagle can be expected to
determine the relative importance of viscous antulent processes. In support of this
supposition, Fig. 2.4 shows the fractional contiiims to the total stress from the viscous
and Reynolds stresses in the near-wall region ahwél flow. When they are plotted
againsty’, the profiles for the two Reynolds number almostlapse. The viscous
contribution drops from 100% at the wajf (= 0) to 50% ay” = 12 and is less than 10%
byy" = 50.

Different regions, or layers, in the near-wall flane defined on the basisyf In the wall
regiony/o < 0.1, there is a direct effect of molecular vistoen the shear stress; whereas,
conversely, in the outer laygfto > 0.1 the direct effect of viscosity is negligibithin
the viscous wall region, in the viscous sublayér< 5, the Reynolds shear stress is
negligible compared with the viscous stress. As BReynolds number of the flow
increases, the fraction of the channel occupiedhigywall region decreases, singé’
varies as R& (from equation 2.19).
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Fig. 2.4 - Profiles of the fractional contributioofthe viscous and Reynolds stresses to the
total stress. DNS data of Kim et al. (1987); dadireglRe = 5600, solid line Re = 13750.
2.4 Mean velocity profiles

Fully developed channel flow is completely spedfiby p, 6, v and @/dx; or,
equivalently, by, J, v andu,, since we have



V2
u, ={—é Bd&J (2.21)

p dx

There are just two independent non-dimensionalggdbat can be formed from d, v, u;
andy and consequently the mean velocity profile cawbten

(U)=u, EFO(% ,Rerj (2.22)

whereFg is a universal non-dimensional function to be deieed.

While this approach to determining the mean vejogitofile appears natural, it is,
however, preferable to proceed somewhat differentigtead of<U>, we consider the
velocity gradient dU>/dy, which is the dynamically important quantity, Thiescous
stress and the turbulence production, for exangoéepoth determined bytd> /dy. Again

on dimensional grounds<d>/dy depends on just two non-dimensional parameters, so
that (without any assumption) we can write

dU) _u vy (2.23)
dy y \J,'d '

where® is a universal non-dimensional function. The itbehind the choice of the two

parameters is thad, is the appropriate lengthscale in the wall regiamile ¢ is the
appropriate scale in the outer layer. The relation

2z

shows, as is inevitable, that these two parametamtain the same information @& and
Re (equation 2.22).

2.4.1 The law of the wall

Prandtl (1925) postulated that, at high Reynoldsilmer, close to the wall « 1) there

is an inner layer in which the mean velocity pmfis determined by the viscous scale,
independent ob and U,. Mathematically, this implies that the functidn(y/s,, y/o) in
equation 2.23 tends asymptotically to a functiory/éf only, asy/s tends to zero, so that
equation 2.23 becomes

u
—Q— = 7 [, (—] for yIs « 1 (2.25)

where

10



(D'[l} lim q:(l,ij (2.26)
o,) ve-0 |9, O
With y*=y/6, andu’ (y") defined by

u =-—- L2)

du” =1 o, (y*) (2.28)

ut = f,(y") 2.79)
where
f(y")= f% [, (y)dy (2.30)

The important point is not equation (2.30), but tiaet that(according to Prandtl’s
hypothesis)i* depends solely oyt for y/d « 1.

For Reynolds numbers not too close to transitidrierd is abundant experimental
verification that the functiofy,(y") can be determined for small and large valugg of

2.4.2 The viscous sublayer

The no-slip conditiorkU> - corresponds t,(0) = O, while the viscous stress law at the
wall, equation (2.16), yields for the derivative

f',(0)=1 (2.31)

Note that this is simply a result of the normali@atby the viscous scales. Hence, the
Taylor-series expansion fég(y") for smally” is

f.(y")=y" +oly?) (2.32)

In fact, closer examination reveals that, afterlthear term, the next non-zero term is of
ordery**.

Figure 2.5 shows the profiles of in the near-wall region obtained from direct nuicer
simulations. The departures from the linear refatib = y* are negligible in the viscous
sublayer y* < 5), but are significant (greater than 25%)yor12.

11
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Fig. 2.5 - Near-wall profiles of mean velocity frahme DNS data of Kim et al. (1987);
dashed line Re = 5600, solid line Re = 13750, dshdd linas" = y".
2.4.3 The log law
The inner layer is usually defined @8 < 0.1. At high Reynolds number, the outer part of
the inner layer corresponds to lagge As has already been discussed, for lgfgié can be

supposed that viscosity has little effect. Heneeequation (2.25), the dependence of
®,(y/d,) onv (throughd,) vanishes, so tha adopts a constant value denoteckby

P, (y*):% for yl6 « 1 andy” >» 1 (2.33)

Thus, in this region, the mean velocity gradient is

du 1 (2.34)
dy- kLy
which integrates to
+ l +
u :E[ﬂny +B (2.35)

WhereB is a constant. This is the logarithmic law of thall due to von Karman (1930),
or simply the low lag, ané is the von Karman constant. In the literatureyehie some

12



variation in the values ascribed to the log-lawstants, but generally they are within 5%
of k=0.41 andB =5.2.

The log law is revealed in a semi-log plot; Figs 8hows measured profiles wf(y") for
turbulent channel flow at Reynolds numbers betwReyr 3000 and Rgx 40000. It may
be seen that the data collapse to a single curnvegnfirmation of the law of the wall, and
that fory” > 30 the data conform to the log law, except rtearchannel’s mid-plane (the
last few data points for each Reynolds number).

The region between the viscous sublayér<{5) and the log law regioy’(> 30) is called
buffer layer. It is the transition region betweép viscosity-dominated and the turbulence-
dominated parts of the flow. The various regiond Eyers that are used to describe near-
wall flows are summarized in Fig. 2.7.
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Fig. 2.6 - Mean velocity profiles in fully develaghéurbulent channel flow measured by
Wei and Willmarth (1989); line the log law, symbdisferent Reynolds numbers.
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Fig. 2.7 - A sketch showing the various wall regi@md layers defined in termsydfand
ylo, for turbulent channel flow ah high Reynolds number.

2.4.4 The velocity-defect law

In the outer layery{ > 50), the assumption tha@(y/d, , y/9) is independent of implies
that, for largey/o, , ® tends asymptotically to a function b only:

lim q{l,i]:qa{lJ (2.36)
Voo 3,0 >

Substituting®d, for ® in equation (2.23) and integrating betwgeando then yields the
velocity-defect law due to von Karman (1930):

Uy, _<U> _ y
n = FD(S) 2.37)
where
y)_ 1 .
FD(EJ— J 5 oly)ay (2.38)

By definition, the velocity defect is the differenbetween the mean velocitiJsx and the
centerline velocityJy. The velocity-defect law states that this veloagfect normalized
by u, depends ory/s only. Unlike the law-of-the-wall functiof,(y*), here there is no
suggestion thap(y/d) is universal: it is different in different flows.

14



At sufficiently high Reynolds number (approximatdde > 20000) there is an overlap
region between the inner laysf/d > 0.1) and the outer layey/§, > 50) (see Fig. 2.7). In
this region, both equation (2.25) and (2.36) ataygielding (from equation (2.23))

d(U
lgﬂ:qpl Y :cpo(ij for §, Ky« s (2.39)
u  dy J, o

This equation can be satisfied in the overlap megwaly by ®, and ®, being constant,
which leads to

y dU)_1
— == for §,Ky«Ko (2.40)
u dy Kk

This argument, due to Millikan (1938), providesaiernative derivation of the log law. It
also established the form of the velocity-defewat tar smally/o:

Uo—<U> yj 1 (yj
— > L=F |Z|=-=0On|Z|+B forylo « 1 2.41
: D(J ctn L]+, fory (2.41)

T

whereB; is a flow-dependent constant.

Figure 2.8 shows the velocity defect in the DNSusbulent channel flow. It may be seen
that the log law is followed quite closely betwegh = 0.08 ¢ ~ 30) andy/s = 0.3. Even

in the central part of the channel (0.3/¢ < 1.0) the deviations from the log law are quite
small; but it should be appreciated that the argumdeading to the log law are not
applicable in this region.

Let Upjog denote the value ofly> on the centerline obtained by extrapolation @& lihg
law. Fory/é = 1, equation (2.41) then yields

U, -U
0 —en ooy = g (2.42)

T

which provides a convenient way to determinBglt may be seen from Fig. 2.8 that the
differenceUg - Ugjoq is Very small (about 1% dfig) which makesB; difficult to measure.
The DNS data yields tB; ~ 0.2, but from a survey of many measurements, [&an8)
suggested; = 0.7. The uncertainty iB; is of little consequence: the point is that it is
small.

However, we must take in account that in the olatggr of boundary layers, the deviations
from the log law are more substantial.
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Fig. 2.8 - Mean velocity defect in turbulent charifey. Solid lines, DNS of Kim et al.
(1987) Re = 13750 and dashed line log law from gong2.35).

2.5 The friction law and the Reynolds number

Having characterized the mean velocity profile, ave now in position to determine the
Reynolds-number dependence of the skin-frictionffaoent and other quantities. The

primary task is to established relationships antbegvelocitiedJy, U andu,.

A good estimate of the bulk velocity is obtained using the log law (equation 2.50) to
approximate &> over the whole channel (for consistency ato), this requires taking

= 0). As we have seen, in the center of the chartheldepartures from the log law are
quite small (Fig. 2.8): near the wayl' (< 30) the approximation is poor (Fig. 2.6), busthi

region makes a negligible contribution to the in&@f <U>, except at very low Reynolds

number. The result obtained with this approximatson

1¢ 1_(y 1
=2 ldy==[-=0On| L |dy=== 24 2.43
y 5! > (jy > (2.43)

This estimate agrees well with the experimentah aetich are scattered between 2 and 3
(Dean 1978), and the DNS values of 2.6, at Re 5037
The log law in the inner layer (equation 2.35) banwritten

16



J,

14

U
CH Eﬂn(l] +B, @4
u kK
whereas in the outer layer is it (equation 2.41)

Y-U)_ 1 mn(ﬁ) +B, (2.45)
u Kk o

T

When these two equations are added together de@endence vanishes to yield

ﬁziﬂlni B+81:1D]n
u k 0, Kk

v

-1
Re{%} ]+ B+B, (2.46)

For given Rethis equation can be solved 1dg/u,, hence determining the skin-coefficient
G = d(0.5Ud) = 2(u/Uo)? With the aid of the approximation equation (2,4RE,
defined in equation (2.1) ari@, as defined in equation (2.15), can also be deheun

Figure 2.9 shows the skin friction coefficieat obtained from equation (2.46) as a
function of Re (solid line). Also shown is the larar relation and the experimental data
compiled by Dean (1978) (symbols). The dashed imenstead, the laminar friction
coefficientc; = 16/(3Re). For Re > 3000, equation (2.46) presid good representation of
the skin-friction coefficient. It is interesting twte that Patel and Head (1969) found that
Re = 3000 is the lowest Reynolds number at whitbgaaw with universal constants is
observed.

17
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Fig. 2.9 - The skin-friction coefficiert = 7,/(0.5U¢") against the Reynolds number
Re= (29)U /v for channel flow.

The ratios of the mean flow to viscous scales &@wva in Fig. 2.10 and 2.11. The
lengthscales ratié/o, = Re increases almost linearly with Re, a good approtionabeing
Re ~ 0.09R&%. Consequently, at high Reynolds number the vistéengthscale can be
very small. As an example, for a channel with 2 cm, at Re = fhe viscosity scale i,

~ 10° m, so the locatioly" = 100 is just 1 mm from the wall. Needless to shgre are
considerable difficulties in making measurementstha viscous wall region of high-
Reynolds-number laboratory flows.

In contrast, the velocity ratios increase very $jowith Re (Fig. 2.11). As a consequence,
a significant fraction of the increase in the meastocity between the wall and the
centerline occurs in the viscous wall region. Ia #xample introduced abové £ 2 cm,
Re = 10) it follows that, at ) it follows that, at” = 10, the mean velocity is over 30% of
the centerline valudJg.

Figure 2.12 shows the Reynolds-number dependenteegflocations that delineate the
various regions and layers. According to this pdolipg-law region (38, <y < 0.3) exists
for Re > 3000, in agreement with the experimenkteleovations of Patel and Head (1969).
On the other hand, a Reynolds number in exces9@d®is required for there to be an

18



overlap region, according to the criterions58 y < 0.10. As has already been observed,
the log law persists beyond the region suggestdatdéwpverlap argument.
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Fig. 2.10 - The outer-to-inner lengthscale rafiy = Re for turbulent channel flow as a
function of the Reynolds number.
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Fig. 2.11 - Outer-to-inner velocity-scale ratio farbulent channel flow as functions of the
Reynolds number.
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Fig. 2.12 - Regions and layers in turbulent chaflo@l as a function of the Reynolds
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2.6 Reynolds stresses

Figure 2.13, 2.14 and 2.15 show the Reynolds sisessd some related statistics obtained
from the DNS of channel flow at Re = 13750. In ortte discuss these statistics, it is
useful to divide the flow into three regions: thecous wall regiony( < 50); the log-law
region (50, <y < 0.3, or 50 <y"< 120 at this Reynolds number); and the cgre 0.3).

In the log-law region there is approximate selfinty. The normalized Reynolds
stresses gu>/k are essentially uniform, as are the producticdissipation ratioP/e,
and the normalized mean shear r&ke (whereS = 0<U>/dy). It is possible to observe
that the values from experimental data that thaesbf <iu;>/k are within a few percent
of those measured by Tavoularis and Corrsin (1981)homogeneous shear flow.
ProductionP and dissipatiore are almost in balance, the viscous and turbutansport of

k being very small in comparison.

On the centerline, both the mean velocity gradied e shear stress vanish, so that the
productionP is zero. Fig. 2.15 shows the gradual changeR/afSkKe and p, from their
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log-law values to zero on the centerline. Fig. dridicates that the Reynolds stresses are
anisotropic on the centerline, but considerablg Esthan in the log-law region.
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Fig. 2.13 - Reynolds stresses and kinetic energyalized by the friction velocity against
y" from DNS of channel flow at Re = 13750 (Kim et 87).
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Fig. 2.14 - Profiles of Reynolds stresses normdlizgthe turbulent kinetic energy against
y" from DNS of channel flow at Re = 13750 (Kim et 87).
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Fig. 2.15 - Profiles of the ratio production teslpation P/e), normalized mean shear rate
(SKe), and shear stress correlatigr)(from DNS of channel flow at Re = 13750 (Kim et
al. 1987).

The wall region contains the most vigorous turbubsstivity. The production, dissipation,
turbulent kinetic energy and anisotropy all achithair peak values af less than 20. We
shall examine the behavior in this region in moztad.

The boundary conditiot = 0 at the wall determines the way in which theyriRdds
stresses depart from zero to smalFor fixedx, z andt, and for small, the fluctuating
velocity components can be written as Taylor sesfdbe forms

u=a +hy+cy’+.. (2.47)
v=a, +by+c,y’ +.. (2.48)
w=a, +by+cy’ +.. (2.49)

The coefficients are zero-mean random variableg, o fully developed channel flow,
they are statistically independentxpz andt. Fory = 0, the no-slip condition yields= a;
= 0 andw = agz = 0; and similarly the impermeability conditiorelidsv = a, = 0. At the
wall, sinceu andw are zero for alk andz, the derivativesau/ox)y=o and w/0z)y-o are also
zero. Hence the continuity equation yields

(a_ny:O = b2 =0 (2.50)

The significance of the coefficielt being zero is that, very close to the wall, there i
two-component flow. That is, to ordgr v is zero whereas andw are non-zero. The
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resulting motion corresponds to flow in planes pardo the wall. This is called two-
component flow, rather than two-dimensional flowcauseal andw vary iny direction.

The Reynolds stresses can be obtained from thensiqres of equations (2.47), (2.48) and
(2.49) simply by taking the means of the produdtshe series. Taking account of the
coefficients that are zero, to leading ordey the Reynolds stresses are

(u?) = (bf)y* +.. (2.51)
(V) =(c3)y" + (2.52)
(w?) = (b3 )y” +... (2.53)
(uv) =(bc,)y* + (2.54)

Thus, while ©*>, <w?> andk increase from zero ag, -<uv> and <*> increase more
slowly, asy® andy*, respectively. These behaviors can be clearly sedésg-log plots of
<uiu> againsty; they are also evident in figure 2.16, which shdhes profiles of ju>
andk in the viscous wall region.
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Fig. 2.16- Profiles of Reynolds stresses and kinetic eneoggnalized by the friction
velocity in the viscous wall region of a turbulemannel flow: DNS data of Kim et al.
(1987). Re = 13750.

For fully developed channel flow, the balance emunefor turbulent kinetic energy is

2
0=p-F+v3 f—i<1vum>—1 Eld—<vp'> (2.55)
dy” dy\2 L dy
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Fig. 2.17 shows the terms in this equation foruiseous wall region. In order, the terms
are production, pseudo-dissipation, viscous diffasiturbulent convection and pressure
transport.

Viscous
[ diffusion
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Gain - . Production
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; Pressure transport
0.00 = = s o e e s S e o
010 F Dissipation
Loss
020 b Turbulent convection

Fig. 2.17- The turbulent-kinetic-energy budget in the viscauadl region of channel flow;
terms in equation (2.64) normalized by viscousesdatom the DNS data of Kim et al.
(1987). Re = 13750.

Like -<uv>, the productiorP increases from zero ag. It reaches its peak value well
within the buffer layer, ay* =~ 12. In fact, it can be shown that the peak prddnabccurs
precisely where the viscous stress and the Reyrsfidar stress are equal. Around this
peak, production exceeds dissipatide(~ 1.8), and the excess energy produced is
transported away. Pressure transport is smallevtbrbulent convection transports energy
both toward the wall and into the log-law regionisdous transport transports kinetic
energy all the way to the wall.

We can notice that the peak dissipation occurseaiMall, where the kinetic energy is zero.
Although the fluctuating velocity vanishesyat 0, the fluctuating strain ragp and hence
the dissipation do not. The dissipation at the vgalalanced by viscous transport

fory=0 (2.56)

the other terms in equation (2.56) being zero.

For fully turbulent flow, the statistics considerkdre (normalized by the viscous scale)
have only a weak dependence on Reynolds numbdreimner layery/d < 0.1). Figure
2.18 shows profiles of the r.m.s. ofandv measured at various Reynolds numbers. The
peak value ofr'/u, appears independent of Re; but/at= 50 (which is within the inner
layer for all but the lowest Reynolds number) tladue ofu’/u,increases by 20% between
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Rey = 14914 and Re=39582. These and other Reynolds number effeetsliacussed by
Wei and Willmarth (1989) and Antonia et al. (1992).
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Fig. 2.18- Profiles of r.m.s. velocity measured in channehflat various Reynolds
numbers by Wei and Willmart (1989). Open symholg,, solid symbols/’/u, at different
Reynolds number.

2.7 Lenghtscales and the mixing length

Three fundamental properties of the log-law regawa the form of the mean velocity
gradient:

d(U *
gV _u v _ 1 (2.57)
dy ky dy” ky
the fact that production and dissipation are almobgalance:
Ple=1 (2.58)

and the near constancy of the normalized Reyndidarsstress:
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—(uv)/k = 03 (2)59

A fourth property, that follows from these thregthe near constancy of the turbulence-to-
mean-shear timescale ratio:

Sk

Sk_| k_
£

(u)

From these relations, it is a matter of algebrddduce that the turbulence lengthsdate

= kK¥%e varies as
ol ) E\M
u, £ k

At high Reynolds number, in the overlap region50y < 0.19), the Reynolds stress is
essentially constant, so that tHemaries linearly withy:

=3 (2.60)
£

-32
(2.61)

L=C,y (2.62)

with

~ 25 (2.63)

C. =k [@j <”kv>

Notice thatS P, ande vary inversely withy, wheread. andr = k/e vary linearly with y.
However, at the moderate Reynolds number accessild\S, there is no overlap region,
and the shear stress changes appreciably overothlaw region. This, together with
imperfections in the approximations equations (R.82.58) and (2.59), results in equation
(2.62) providing a poor approximationltabtained from DNS.

The turbulent viscosityt(y) is defined so that the Reynolds shear stresséndy

du)
—(uv) =v .q2
(W) =v = q2)
It can be expressed as the product of a velociiesc and a lengthscalg;
v, =u O, (2.65)

One of these scales can be specified at will, bad the other determines A propitious
(implicit) specification is

u = ()’ (2.66)
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By substituting equation (2.65) and (2.66) into6@). and taking the absolute value we
obtain the explicit relation

du)

0 (2.67)

u =1

m

Note that in the upper half of the channgl<(y < 29) the velocity gradient<U>/dy is
negative and the Reynolds stresss<is positive. The absolute value in equation (.66
and (2.67) ensure that is non-negative for ajl.

In the overlap region (20 <y < 0.1) that occurs at high Reynolds number, the shear
stress -av> differs little fromu,?, and the mean velocity gradientuigky). Consequently,

u equalsl,, and then equation (2.89) determihgso be

| =ky (2.68)

Like L = =k*?e, the lengthscalk,varies linearly withy.
The above relations constitute Prandtl’s mixinggln hypothesis (Prandtl 1925). In
summary, the turbulent viscosity is given by

du)

& (2.69)

v, =u a_=12

wherely, is the mixing length. In the overlap regidg, varies linear witly, the constant pf
proportionality being the Karman constdnt,

In order to use the mixing-length hypothesis asaaleh of turbulence, it is necessary to
specifyl,outside the overlap region, like in the viscouslwedion and in the core.
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3. Effect of Roughness

Turbulent flows over rough walls have been studiede the early works of Hagen (1854)
and Darcy (1857), who were concerned with presksses in water conduits. They have
been important in the history of turbulence. Hadsth conduits not been fully rough,
turbulence theory would probably have developedenstowly. The pressure loss in pipes
only becomes independent of viscosity in the fatlygh limit, and this independence was
the original indication that something was amisthviaminar theory. Flows over smooth
walls never become fully turbulent, and their thyeigsrcorrespondingly harder.

However, during the last century of basic turbuéeresearch, boundary layer over a rough
wall has received far less attention than turbulagér over a smooth wall with zero
pressure gradient (see, for example, the reviewWdyasznay (1970), Willmarth (1975),
Cantwell (1981), Kline (1978), Sreenivasan (1989 Kline and Robinson (1990)).

That situation at first sight appears justifialole the grounds that one should try to
understand wall-bounded flow with the simplest gaesboundary condition before
introducing complexities such as roughness, presgwadients, curvature, and so on.
However, this comparative neglect may obscure titerpial contribution of rough-wall
boundary layer studies to some continuing problefiisoundary-layer research in general.
Over either a smooth or a rough wall, the turbubeindary layer consists (in the simplest
view) of an outer region where the length scaléhés boundary-layer thicknegs and a
wall or inner region where the length scale/is in the case of a smooth wall, as explained
profusely in chapter 2. Kline (1978) has suggested neither the dominant-inner-layer
view (in which the outer layer is regarded as dectibn of "tired turbulence diffused
outward from events" near the smooth wall) nordbeninant-outer-layer view (in which
the inner region is driven by the outer layer)isable. It is much more likely that the inner
and outer regions interact, a notion which canvaduated (Kline and Robinson 1990) not
only with data from the canonical smooth-wall boarndlayer, but also from boundary
layers subjected to perturbations such as roughnassitions, pressure gradient changes,
or wall suction.

Much of the literature before 1990 regarding rowggmconcerns itself with the universal
aspects of flows over rough walls; more recentaede has emphasized the differences
between different types of roughness. It has baggested that the details of the wall may
influence the flow across the whole boundary laged part of this review is dedicated to
sorting those claims and their significance in ustéding wall turbulence. Because of
space limitations we restrict ourselves to thedfldynamics of fully turbulent flows over
rough walls, neglecting other important topics. Qrighem is transition, which can be
promoted (Schlichting 1968, pp. 509-15) or deladygdoughness (Wassermann & Kloker
2002). Another one is the role of roughness in eoimg heat transfer, recently reviewed
by Kalinin & Dreitser (1998), which is a field biself.

In this chapter, a study of turbulence in roughimdundary layers is carried out for
understanding degree and nature of the interabigtween the inner and outer layers. One
way of posing the problem is this: smooth-wall andgh-wall boundary layers have (as
will be shown) essentially the same turbulencecsting in the outer layer, a region of
weak shear and therefore not the site of the damhimastability mechanisms which
generate the turbulence, nor of the strongest ptamu of turbulent kinetic energy. Yet
close to the wall, where the shear is large andutance generation is strong, the two
kinds of boundary layer have quite different stmues and are controlled by quite different
length scales. How do such different processeshe @nergetic inner layer lead to
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essentially identical results in the more passiugeolayer? In addition to these basic
considerations, there are a host of practical @eging and meteorological motivations for
research on rough-wall boundary layers. In the aphere the underlying surface is almost
always rough, leading micrometeorologists to sttidyflow above and within vegetation
canopies (certainly rough walls in the fluid medbahsense), both in field experiments
and in wind tunnel models. By contrast, mainstreanengineering fluid mechanics has
almost always relegated the roughness to a prompdrtite wall which is not of direct
concern other than through its influence on thendany layer well above the surface. The
usual laboratory realizations of roughness, suclsamsl-roughened walls, do not admit
measurements within the roughness envelope or gahophis respect, studies of real or
model vegetation canopies make a unique contribu@ne reason for slower progress in
rough-wall than in smooth-wall boundary layer sasdis that there are two intrinsic
difficulties for both measurements and theory ia ticinity of the roughness. The high
turbulence intensities encountered near the rowgghnause many standard measurement
techniques (X-wire anemometry in particular) tofeufrom substantial errors that have
often proved difficult to diagnose and correct. @&t because the flow near the roughness
is spatially heterogeneous at the length scalesmd¥idual roughness elements, spatial
averaging is required in both theory and experinb@iiminate the resulting "noise."

In this chapter, our aim is to place laboratory atrdospheric rough-wall studies within a
single framework and summarize the existing studibsut the effect of roughness.
Sections 3.1 and 3.2 consider, respectively, thanmeelocity profile and turbulence
statistics in a rough-wall boundary layer well ababhe roughness, while section 3.3
discusses the mean and turbulent velocity fieldseclto and within the roughness layer.
Section 3.4 considers organized motion.

3.1 Mean Velocity above the roughness sublayer

3.1.1 Dimensional considerations and the logarithriprofile

The bulk properties of the mean velocity distribatiJ(y) in both smooth-wall and rough-
wall boundary layers are derivable by a classisghgptotic matching process (Millikan
1938, Wooding et al 1973, Yaglom 1979). Suppose tima flow is in the state called
"moving equilibrium™ by Yaglom (1979), in whichandu, vary sufficiently slowly with x
that their variation with x can be disregardedntbeths andu, can be considered as local
scales at any particular x. The asymptotic matclainglysis postulates that the boundary
layer consists of two overlapping regions: an olager scaling withu, ands, and an inner
layer scaling withu, and a set S of length scales characterizing thfaca For a smooth
surface, as we saw in chapter 2, S consists onllgeo¥/iscous length scaléu,, whereas,
for a rough surface, S consists @i, together with the roughness heightand all
additional lengths |. needed to completely characterize the roughnéggically, L
includes at least the roughness element dimensgiaihe x and y directions, and the mean
element separation distance. Other lengths mayba&selevant in some circumstances. Of
courseU(y) also depends on vy itself. However, care is necgsa defining the origin of y
for a rough surface, since the roughness itselplates the entire flow upwards. To
account for this, we define the displaced height Y - d, whered is the fluid-dynamic
height origin or zero-plane displacement, dependerioth the flow and the roughness, as
Jiménez (2004) did. Thorn (1971) proposed, andstackl981) verified theoretically, that
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d is the mean height of momentum absorption by tintase; in the absence of an external
horizontal pressure gradient, the mean stress iexped by the base of the wall layer must
equal the average horizontal foce per unit plaa,ageacting on the surfac#.the average
moment per unit plan area exerted by these fochk then the level of action af is a
distanceM/z, above any arbitrary origin for the vertical axis.this context, we can define
d = M/z,. It follows thatd automatically satisfies the constraints @ < h andd = 0 for a
smooth surface. Also, the definition yields a methior the measurement af, by
calculating the geometrical centre of the drag igah the roughness (Thorn 1971).
Digressing briefly, it is noteworthy that sever#ther techniques for defining or measuring
d have been proposed. Monin and Yaglom (1971, p @éBited out howd can be defined
in principle by requiring that first-order depasarfrom the logarithmic velocity profile
over a rough surface should vanish; however, toissdnot lead to a practical way of
measuringd. Furuya et al (1976) and Bandyopadhyay (1987) rdest a method for
determiningd in laboratory rough-wall boundary layers, by figimeasured profiles to an
assumed form fod(y) across the entire boundary layer. In micrometiegy, the standard
method (choosingd so that measurements bf(y) above the canopy conform to a
logarithmic law) is well known to be inaccurate ¢hin 1975, Raupach et al 1980). Molion
and Moore (1983) and de Bruin and Moore (1985) sstggl that can be calculated for
tall vegetation from the assumption of mass coraem imposed on a logarithmic wind
profile, but there is no theoretical basis for tiiee asymptotic matching analysis t{Y)
now proceeds thus: in the outer layglY) depends only o, 6, and the (displaced)
height Y, leading to the velocity-defect law:

uf-u. =G(n) (3.1)

T

WhereU,, is the free-stream velocity amd= Y/5. In the inner layer, on the other hand,
U(Y) depends only on Yy, and the set S of surface length scales, leaditigetlaw of the
wall

@zm,hﬂm 2.

T

where + subscripts denote lengths normalized with The viscous length scale is chosen
from the setS as the normalizing length scale in (3.2) to presegenerality over both
smooth and rough walls. In the overlap region betwihe inner and outer layers, (3.1) and
(3.2) must be valid simultaneously. Because thesdsionless laws (3.1) and (3.2) have no
independent variables in common, matching is ptssibly if

u. dy dy, dng k

T

whereK is the von Kannan constafitere taken as 0.40 (though experimental values vary
between 0.35 and 0.42). Integrating (3.3) giveddhaliar logarithmic law
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u(y) _

+C(h,,L,) (3.4)
u

T

whereC is a function of the roughness. For a smooth sarfa takes a constant val,
here taken as 5 (though experimental values bet&esmsrd 5.5 are common). The overlap
layer, in which (3.3) and (3.4) are valid, can bded the inertial sublaygilennekes and
Lumley 1972). In this layer the flow is independehtll lengths except Y, whereas in the
roughness sublayer immediately below, the flow depeexplicitly on the surface scales
and L,, . A crucial condition for the existence of an im@rsublayer i) » (v/u,, h, L, ), to

ensure that the outer-layer length scals confined to (3.1) and the inner-layer length
scales to (3.2). The logarithmic law is usuallyorefulated from (3.4) in one of two
equivalent ways. The engineering approach (egyReml 1969) emphasizes the departure
of a rough-wall flow from that over a smooth wély;, writing (3.4) as

u(y) _Iny, rC, - [AU
u k

T

:|(h+1 Li.) (3.5)

T

where AU/u,, is the roughness function, equal to zero for aath wall and increasing
with wall roughness; it is the increment betweeargfiel) smooth-wall and rough-wall
velocity profiles on a Clauser plot. The relatiopsbetweenAU/u, , andh, has been
obtained experimentally for a wide variety of rougjrfaces; see Fig. 3.1, which shows
both laboratory data and atmospheric data from rakveegetation surfaces. The
atmospheric data extend the range by about 2 orders of magnitude. Whenis
sufficiently large (more than about 70 for sandgtmess)AU/u,, varies logarithmically
with h,; the reason becomes clear from the following. Theeorelogical approach to
(3.4) (eg, Wooding et al 1973) is to note thatightReynolds numbers, flow over a rough
wall approaches Reynolds number similarity and o8y becomes irrelevant. In these
circumstances, usual in the atmosphere, it is @asible to nondimensionalize (3.2) with
the length scale/u,; a better choice is leading to the law of the wall in the form

20 - tch,.a) (3.6)

T

whereo; = Li/h are the aspect ratios necessary to characteezetighness, ang= Y/h.
Combining the form (3.6) for the law of the wallttvithe outer-layer law (3.1) in the
inertial sublayer, we can obtain the logarithmiw la the form

U _ ¢4 th, o) (3.7)
u k

T

It is convenient to reexpress the constaimt terms of a roughness lengif writing

U _1nY 1, (y-d) (3.8)
u, Ky, K Yo |
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whereyy is related to the other integration constants id)(33.5), and (3.7) by

%ﬁ} = -k e(h,,0,) = -k[C(h,,L,,) - In(h,) =k EEC0 —[ﬁ}(m, LH)J ~In(h,)
h u, (3.9)

so thatC, AU/u,, ¢ andyy/h are all equivalent measures of the capacity ofstiiéace to
absorb momentum. The functional form of the lodpemitc law becomes simpler in the

high and low Reynolds number limits. Whien-> «, the flow is dynamically fully rough
and Reynolds number similarity ensures that
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Fig. 3.1 - The relationship betwedtl/u, and the roughness Reynolds numiner
Laboratory data from survey by Bandyopadhyay (1987)

Yo/h - exf-klc,(0,)]

1 (3.10)
AU/u. - —c_(o0,)+C, +EEI]nh+

Wherec,(ai) is the limit ofc ash, — oo. In this limit c(h, ,o; )andy, become independent

of h,, depending only on roughness geometry thratigandAU/u, varies logarithmically
with h, (see Fig. 3.1). Whem, - 0 (but withu, remaining nonzero), the flow is
dynamically smooth and approaches that over a dmwatl, so thalC - Cy, 4U/u, - 0
and

y, - —exg-kC,]= 0148~ (3.11)
u u

T T
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Therefore,yp remains defined for dynamically smooth flow buflsv-dependent, unlike
the fully rough limit wherey, depends on roughness geometry alone. For the emmeogs
sand roughness studied by Nikuradse (1933), dyradijmemooth flow is observed for 0 <
h, <5 and dynamically fully rough flow fdr, > 70. At intermediate values bf, the low
is called transitionalln the fully rough state, the data for sand rougsnghow that,, =
8.5, givingyo ~ h/30 from (3.10). It is also useful to define a Reynatdsnber based oy
by writing (consistent with previous notatiog). = you,/v. (This is sometimes called the
roughness Reynolds number, but we reserve thatftarm.) From (3.11), the minimum
value ofyp: is 0.14, on a smooth wall. The relation betweenrtdughness functiotU/u,
and the roughness lengthis most easily expressed in termgy/@f

AU 1
——=C,+=0n 3.12
u o+ N Yo (3.12)

T

which permits simple conversion between the engingeand meteorological measures of
roughness.

From the previous equations we can say that the mortant effect of roughness is the
change of the mean velocity profile near the waith the consequent modification of the
friction coefficient.

Before leaving the dimensional analysis, it is ®segy to consider the zero-plane
displacemend, which is required to fix the origin of Y in (3.43-8). From the definition
of d as the mean level of momentum absorption by thegfrpsurface, it follows that is

a fluid-dynamic property of the surface which ob&ysensional constraints similar to
those ony,. Hence, whew » (V/u,, h, L;), the normalized displacemedth is a function
only of the surface propertiés andg; , independent oh, ash, - «, like yo/h from (3.9)
and (3.10).

Virtually all surfaces of geophysical or meteorotay interest are rough. The
characteristic height of the roughness elementsatural terrains ranges from a few
microns in the case of snow and fresh mud, to séeentimeters in open rural terrain, and
to tens of meters over forests and cities (MonidQ9The thickness of the atmospheric
boundary layer i ~ 500 m (Counihan 1975), so that the ralib is large in open rural
areas, but not necessarily so over cities or fer@en & Castro 2002).

Besides the obvious effects of roughness just deaml there are subtler possibilities.
Researchers have known for some time that strusctwiéh outer length scales penetrate
into the buffer region (Hites 1997, Del Alamo & &mez 2003), and it has also been
suggested that those outer-layer structures growfiwairpin” eddies generated near the
wall (Head&Bandyopadhyay 1981, Adrian et al. 2000js therefore possible that at least
some rough walls may influence the whole layer pditying the form of the hairpins
(Bandyopadhyay & Watson 1988), and the behavidhefroughness layer in other cases
may be directly modified by events coming from thaside. Both mechanisms have been
proposed.

3.1.2 Fully rough flow

At Reynolds numbers large enough for the flow teyoReynolds number similarity, the
problem of determining the mean velocity profiletire logarithmic region devolves to
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finding the functional dependenceygfh (or AU/u,) andd/h upon the roughness geometry
as specified by; . The question of whether there are kinds of roughmvasich do not
achieve a fully rough state (even at very high Ré&ys numbers) is considered here. The
earliest approach to the problem of characterigyig or AU/u, was to define roughness
by analogy with particular, well-studied forms sueh the sand roughness of Nikuradse
(1933), for whichc, = 8.5 andyy ~ h/30. It is still common in engineering to define
roughness in terms of the "equivalent sandgraigioass heighths = 32.6/, introduced

by Schlichting (1936). The three quantitis§ , 4U*, andy," characterize roughness
interchangeably. The first one is most often useérigineering applications, the second
one in wind-tunnel research, and the last one aplggsics.

Note that, even if in Nikuradse’s cdsgds the grain size of the sand, it is in generayanl
convenient way of characterizing the drag increnthré to the roughness. Consider the
skin friction generated by two boundary layers, omggh and the other one smooth, with
identical mean velocitied at a given locatioy within the logarithmic layer. In the smooth
and rough cases the logarithmic velocity distribmitfor the mean velocity profile can be
written as

U|++%Eﬂnu,+:%D]nR+5.1:Bl (3.13)

and

D]n(hBJ +85=B, (3.14)

S

whereR = Uy/v, and the subindicesandr refer to smooth and rough values. These two
equations have to be solved fof = U/u,, and higher values dfi* imply lower skin
frictions. They both have the same form with diéfet right-hand sideB. It is easy to
check thatU™ is a monotonically increasing function Bf so that the difference in wall
drag between smooth and rough walls is controliethb difference

B - B, :%Eﬂn h! - 34 3.15)

Forhs' < 4 the skin friction of the rough wall would be dethan that of the smooth one.
There is no obvious reason why this should nohkectise, but the opposite is usually true.
Roughness elements seem to be more efficient gengraf skin friction than smooth
walls, presumably because they generate more tmbulissipation than the relatively
delicate viscous cycle. This is not an absolute,rahd some moderately rough surfaces
reduce drag (Tani 1988, Sirovich & Karlsson 199%&clBert et al. 2000). A well-
documented example is the flow over riblets, whach narrow grooves aligned with the
mean flow. They decrease drag by up to 10% (Wa@8d0), and are discussed below. In
most case$s’ ~ 4 is however a lower limit below which the dragtli® same as over a
smooth wall.

In the limit B » B, the viscous component of the skin friction is ngiplie compared with
the drag of the roughness elements, and the flaerbes asymptotically independent of
viscosity. In this limit
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r= (3.16)

so that to have a skin friction larger than twibattof a smooth wall we ned < B, /\2.
BecauseB, is approximately 20-30 in the logarithmic layeiistimpliesB, — B, > 7.5 and

hs" > 80. In practicen/h becomes independent kf around that threshold, beyond which
the flow is considered fully rough.

We stress that the previous argument deals wittdtag properties of the flow, and that
the equivalent sand roughness is a hydrodynamicegirthat needs to be related to the
surface geometry before it can be used.

Rather than, in micrometeorology surveys of eadiadby Tanner and Pelton (1960) and
Stanhill (1969) gavew/h = 0.13 €, = 5.10) andd/h = 0.64 for field crops and grass
canopies, which have proved to be good rules-afathun many cases and are still in
widespread use. For forests, measurements reviewdarvis et al (1976) suggested the
rather different typical valugg/h ~0.06,d/h~ 0.8.

The large differences between sandgrain, crop femedt values of/h andd/h reinforces
the need for understanding the influence of geome@&w do this, it is necessary to identify
and study experimentally the particular aspecbsaii which dominate the behavior of the
roughness as a momentum absorber. The main ortisdsaure the element aspect ratgs

= l/h, o; =1,/h, and the roughness densitydefined as the total roughness frontal area per
unit ground area, or (frontal area per elemenpl{gd area per element) (Koloseus and
Davidian 1966, Wooding et al 1973, Raupach et 80).9or three-dimensional roughness
4 = hl/D? whereas for transverse two-dimensional roughnesfs asi ribs or grooves -

o and4i = h/D. Data on the influence of these aspect ratiogptinare available for several
broad classes of roughness.

Three-dimensioned laboratory roughnegs) early and extensive study of the effect of
roughness density on yo/h was made by Koloseus and Davidian (1966); somdaf t
data for three-dimensional roughness are shownign &2a, along with data from
O'Loughlin (1965) and Raupach et al (1980). Conigaralata also appear in Seginer
(1974). In generalyy/h increases with increasingto a maximum value (&tmax, Say)
beyond which declines with further increasé..ihis behavior can be attributed to mutual
sheltering of roughness elements whier 4 max (Wooding et al 1973). However, the
function [yo/h](1) and the location of nax depend on the type of roughness, indicating that
other aspect ratios besideare required for a complete specification.

At low roughness densitied € 1 may Fig 3.2a suggests thgy/h varies linearly withi.
Lettau (1969), in an early investigation of rougssrgeometry effects in the atmosphere,
cortluded from data on flow over bushel baskets onoaein lake (Kutzbach 1961) that
yo/h = 0.51; however, he imposed no restriction analogous 4d. nax There is theoretical
support for a linear relationship whénr« 1 max (Wooding et al 1973), but the coefficient of
proportionality depends on the drag coefficienanfisolated individual roughness element
on an otherwise smooth surface.

Much less is known about the influence of othereaspatios than on yy/h for three-
dimensional roughness. A comparison of data foeethiand two-dimensional roughness
(see below) suggests that the effectopfis significant, but it seems that a definitive
experiment ors; has yet to be done. The rolegfwas studied by Wooding et al (1973),
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using the extensive data set of Marshall (197 By ttroposedy/h is proporzional tas, °*
for A « A max
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Fig. 3.2 - Normalized roughness lengtfh as a function of roughness density
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Two-dimensional laboratory roughnedsor transverse rectangular two-dimensional "bar"
roughness, the relevant length scales are thenstrise "wavelength’D, the lengthly of

the bars in the x direction, and the gap spBce I these give two independent
dimensionless aspect ratidss h/D andoy = I/h. The influence ok on AU/u;, or yg/h has
been extensively studied. In the case of squarecumyhnessd, = 1), Bettermann (1966)
and Liu et al (1966) showed thaU/u, and thereforgp/h has a maximum for a particular
spacing between elements approximately correspgrdihmax = 0.2; this is a qualitatively
similar finding to the three-dimensional case (H@a). Simpson (1973) referred to flow
visualizations by Liu et al (1966) to explain thHiehavior, arguing that fok > 0.2,
permanent separated vortices occupy the entiretycddtween adjacent square bars,
whereas foll < 0.2, reattachment occurs some distance beferadkt bar. Dvorak (1969)
recommended, using data from various sources (Beiten 1966, Liu et al 1966,
Schlichting 1968 and others), the following fornauli@r square-bar roughness (see also
Cebeci and Smith 1974, p 131):

ﬁ—%ﬂln h, = 17.35( O.706EI]n/11—1j for0.2<1<1 (3.17a)
ul’
&—%[ﬂn h, = —5.95( 0.479[I]n%—1j for1<0.2 (3.17b)
uT

with the qualification that (3.17b) may require ther verification. Later, Kader (1977)
ombined several data sets on twodimensional trassveughness of arbitrary aspect ratio
ox and concluded that

c, = 050@ 7% +5% (3.18)

wheresis a function of the surface geometric length scale

In this formulationc,, is a function not only of but also oy , the only other aspect ratio.
Equations (3.17) and (3.18) are compared in Figb 3vith data from Koloseus and
Davidian (1966).

Vegetation:For natural vegetated surfaces in the atmosphleeedata are scattered not
only because of roughness element variations lsotl@cause of measurement difficulties
associated with botyy and (especially) witli. One fairly widely available surrogate for

is the "leaf area index" (LAI), defined as the (eded) cumulative leaf area per unit
ground area. Stems are sometimes included (demendm the purpose of the
measurement) to produce a "plant area index" (AABach leaf or stem is regarded as a
roughness element, and leaves and stems are astuimedsotropically oriented, thén=
PAI/2 (or LAI/2 if only LAl is available).

Figure 3.3 shows data on the variatiorygh andd/h with 1 for vegetated surfaces, from
Jarvis et al (1976) and Garratt (1977), usirgLAI/2 where appropriate. There is a clear
increase ofi/hwith A, which is intuitively expected and is consisteitiwvthe definition of

d as the mean level of momentum absorption. Jijfe data form a qualitatively similar
peaked curve againstto the laboratory data (Fig. 3.2a), but with mscatter. However,
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yo/h for vegetation does not fall off as rapidly at higrand has a high@rnax (« 0.3) than
for laboratory roughness (for which 0.054<hx < 0.2, from Fig. 3.2). This suggests a
difference in mutual sheltering properties betwesrgetation and solid laboratory
roughness elements, which may be associated wathptbrosity,” or much more scattered
distribution of roughness elements through spaceyegetation relative to laboratory
roughness.

There have been many attempts to model turbulemt #nd momentum absorption in
vegetation canopies, and thence to mogél and d/h. As an example, Fig. 3.4 shows
results onyy/h and d/h from a higher-order closure model by Shaw and Pergio982).
They assumed a triangular distribution of leaf amgth height, with a peak at normalized
heightyma/h. The results suggest a substantial dependence lofyglbtand d/h on ymadh,
but for typical values (0.6 ¥nwa/h < 0.8) the agreement between the model and the field
data (Fig. 3.3) is reasonable.
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Fig. 3.3 -yo/h andd/h as a function of roughness densitipr field vegetation. Surfaces A-
G from Garratt (1977) and H-M from Jarvis et al {6
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Fig. 3.4 - Predictions from a second-order closaogelel (Shaw and Pereira 1982) of (a)
normalized roughness lenggiih and (b) zeroplane displacemelfh, for field vegetation.

3.1.3.’K’-Roughness

Much consideration has been given to the questiomwleether there exist roughness
geometries which (unlike the forms just considemal)not achieve a fully rough state at
high Reynolds numbers, in the sense of obeyin@j&agh, > .

Dimensional analysis suggests that in the limitMnich h* » 1 and viscosity becomes
irrelevant, hs should be proportional to the dimensions of theghmess elements. The
“normal” surfaces for which this is true are calletbugh, to distinguish them from tlie
roughness described below. The rdtith depends on the geometry of the roughness, and
particularly on its surface density, which was difged by Schlichting (1936) by the
solidity A, which is the total projected frontal roughnesgaaper unit wall-parallel
projected area. He performed a fairly completeaddetxperiments designed to test this
effect, which are still often used to test theoréasl empirical correlations. They are
presented, together with a few others, in figuke Fhere are two regimes: the sparse one
below A ~ 0.15, for which the effect of the roughness increagigls the solidity, and the
dense one for which it decreases because the resglaements shelter each other. In the
sparse region it is intuitively clear that the extoughness drag should be proportional to
the frontal surface of the roughness elements, hafid~ /1. Much of the scatter of the
original experiments in that range can be accoufttietly scaling the drag of each surface
by an appropriate drag coefficient of the individelements. Following Tillman (1944),
we usecp ~ 1.25 for two-dimensional spanwise obstacles, end: 0.15-Q3 for three-
dimensional rounded ones.
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A re-evaluation of Schlichting’s results was puldid by Coleman et al. (1984), and has
occasionally been used instead of the original expnts. The differences are only
significant for very sparse roughness, and theyuaesl in figure 3.%0 compute the error
bars.

The solidity has often been used for engineeringetations, but it cannot by itself fully
characterize a surface. For example, the mutudtesimg of the roughness elements
depends on other geometric factors, and correlatsoich as those in Figure dpply only

to particular sets of experiments. There is nonevgualitative theory for the power of
which should describe the dense regime. Figureu8dsAi™?, which is close to some
engineering correlations, but powers downiid have been proposed (Dvorak 1969).
There have been many attempts to improve the erapicorrelations by choosing better
parameters to describe the surface (Simpson 19@Bdywpadhyay 1987). Waigh &
Kind’'s (1998) is a particularly complete compilatio

Most correlations are restricted to surfaces wiyesmametry is easily described, and cannot
easily cope with irregular surfaces that are otiely known by their mode of preparation.
Townsin (1991) attempted to correlate the dragushssurfaces with the moments of the
spectra of the roughness height while analyzingasas of interest in naval construction,
and Raupauch et al. (1991) gave empirical cormalatifor plant canopies. Taylor et al.
(1995) pioneered an approach in which the flowhia kayer below the roughness top is
approximated by a series of two-dimensional watbpel slices, computing the drag in
each of them using a turbulence model. They hacesaaracess in the initial determination
of the drag characteristics of sparse roughnesaggs et al. 1988).
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Fig. 3.5 - Equivalent sand roughness for variegsirfaces versus the soliditycorrected
with empirical drag coefficients. See Jiménez (3304 primary references.
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3.1.4. 'D’-Roughness

The distinction betweed- andk-roughness was first made by Perry et al. (1968} also
summarized previous evidence fdrtype behavior. They observed that, in several
boundary layers over plates that had been roughbyetrrowspanwise square grooves,
the effective roughneds was not proportional to the roughness height fhéut to the
boundary-layer thickness (tlak,

k= 0.025 (3.19)

This result has to be taken with care because s ovdy documented for a single zero-
pressure-gradient case in which the ratio of thenbary layer thickness to the groove
depth was 10-20, and where asymptotic scaling $wsld not be expected.

This criticism is not valid for their adverse-press-gradient boundary layers, which were
thicker, but the only correlation in those cases timths was proportional to the offsefty

of the logarithmic layer’s origin with respect teettop of the grooves, which could not be
related to other physical lengths. It is nevertbgli@teresting that the valuef measured
at the downstream end of some boundary layers wiag farger than either the groove
width or the depth.

Figure 3.6shows a compilation of effective roughness heidbtsd-surfaces, and only
partially supports the conclusion that the effextisoughness is independent of the
roughness dimensions. In the individual experimergpresented by open symbdis|s
not proportional td, but neither is the overall picture consistentwatconstant value for
hdo. The problem is in part the narrow rangehaf in each experiment, but also that in
most cased/o is relatively large. Only Bandyopadhyay’'s (1987 pesments satisfy the
criterion set in the introduction thato > 40, and they are also the ones that behave less
like d-walls. Simpson (1973) studied the effechaf on the drag of a particul&rsurface,
and suggested that

AU* =AU -250h/5 (3.20)

whereoU™ would be an ideal value &ts = 0. That correction has been applied to the
solid symbols in figure 3.6, and the resulting esl@re in somewhat better agreement with
d-behavior, but the magnitude of the correction sgggthat there is a need for a definitive
set of experiments with emphasis on sufficienttyhhvalues of bota/h andh’.
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Fig. 3.6 - Equivalent sand roughness for variogsidaces versus the soliditys. The
solid symbols are corrected for the effechist See Jiménez (2004) for primary
references.

Even with these uncertaintidsroughness has been studied extensively, both beadais
difficult to understand how the origin of the loglamic layer could be offset by more than
the physical roughness dimensions, and becauseorhiges a way of constructing
boundary layers with a single length scale. Becanseh of the complication of wall-
bounded flows is due to the interplay between twdependent length scales, the
proportionality in Equation 3.19 implies théitype layers have only outer scales and are,
in a sense, pure core flows.

The grooves im-type walls are roughly square, with a solidity 0.5, which is in the limit
of extreme mutual sheltering in Fig. 3.5. The usexlanation for their behavior is that
they sustain stable recirculation vortices thataigothe outer flow from the roughness
(Fig. 3.7). Walls with grooves wider than 3+dehave likek-type surfaces, and also have
recirculation bubbles that reattach ahead of ttx mie, exposing it to the outer flow. Perry
et al. (1969) explicitly observed the differenceratirculation lengths, and Djenidi et al.
(1994) and Liou et al. (1990) confirmed it in flawsualizations of individual grooves.
Although this model explains how the flow becomsslated from the interior of the
grooves, makindps independent of their depth, the role of the boupdiayer thickness is
harder to understand. In the limit of ideally stalfoove vortices, the outer flow sees a
boundary condition that alternates between noalifhe rib tops and partial slip over the
cavities, and the relevant length scales would steebe the groove width and pitch, both
of which are proportional th. To get around this difficulty, it has been propbghat
groups of grooves occasionally eject their vowyiaiito the wall layer, and that these
ejections are triggered by large-scale sweeps natigig in the outer flow (Townsend
1976, p. 142). There has been a lot of discussionlether the outer flow structures
couple directly with near-wall events, with variomvestigators finding that the periods
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between buffer-layer “bursts” over smooth wallsleda outer units (Laufer & Narayanan
1971), inner units (Luchik&Tiederman 1987), or thgeometric mean (Shah&Antonia
1989).Afull discussion is beyond this review, buisi conceivable that a length scadle
could arise from those interactions.

Djenidi et al. (1994) visualized ejections from iwnidual groove vortices under turbulent
boundary layers, and Taniguchi & Evans (1993) gavielence of their modulation by
passing turbulence. Ghaddar et al. (1986a) analyzedsimpler system of a grooved
laminar channel and found that the vortices biftepontaneously to an oscillatory state
at fairly low Reynolds numbers and that the biftiora eventually leads to subharmonic
behavior in which several grooves eject collectiv€haddar et al. (1986b) later enhanced
the heat transfer in the channel by pulsating the fat frequencies resonating with the
natural instability, supporting the idea that sanilesonances could occur naturally oder
type surfaces.

(a)

9 9

Fig. 3.7 - Geometry of (aj-type and (bk-type slotted walls. Flow is from left to right.

It is likely that the observed behavior of "d-typ@ughness is related to the difficulty of
simultaneously achieving high roughness Reynoldmbais and a large separation
betweerny and roughness length scales in laboratory bourldsieys. Several experiments
have shown that with limited fetoh(from the start of the roughnessxat 0), h - d varies
linearly withx for "d-type" roughness (Perry et al 1969, Wood Antbnia 1975, Osaka et
al 1982, Bandyopadhyay 1987). Singées also approximately proportional tq this
behavior is consistent [through (3.15)] with a rbngss scaling ofi, as implied by the "d-
type" nomenclature. However, it is also clear thath scaling can only operate for limited
X, becausé - d cannot increase beyoidvhereas can increase without limit in principle.
At some downstream distance, bggrandh - d must approach a limiting value determined
by roughness geometry alone; only beyond this nitgtés the scale separation criterion
(vlu,, h, Lj) properly satisfied.

The wide interest in "d-type"” roughness has beetivated partly by the possibility of
generating an exactly self-preserving boundaryrlagetta (1962) showed that, for self-
preservation to exist), /U, and do/dx must be independent of These requirements
cannot be met on a smooth wall with zero pressuadignt, and in the case of a rough
wall, can only be met if the roughness scale valiresarly with x (see also Townsend
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1976). The observations described above suggestdhgpe” roughness fulfills the self-
preservation criteria in therangeoivhere [ - d) is the same order af

3.1.5 Transitional Roughness

The flow regime in whicth® is not large enough for a fully rough behaviorsemewhat
confusingly, called “transitionally” rough. The nanhas nothing to do with transition to
turbulence, which is controlled .

Transitional roughness functions for several s@s$aare collected in gigure 3.8, but it is
important to realize that the Reynolds number usethe abscissae is not based on the
equivalent sand roughneBs. We in the previous section thiaf is a flow property that
univocally determinestU*. What is done in practice, and what is done in Bi§, is to
assign to each surface a single “geometric” sandhoess, which is the fixed value that
corresponds to its skin friction in the fully rougkgime at high Reynolds numbers. This
geometric roughnedss,, is a property of the surface, and can be usedhaoacterize the
Reynolds number of the flow. It guarantees theapsié of all the roughness functions in
the fully rough regime. Nikuradse (1933) observeat,tfor graded

sand, the roughness function vanishelssat ~ 4, which has often been incorrectly quoted
as meaning that all surfaces belol= 4 are hydrodynamically smooth.

Colebrook (1939) collected results for several stdal pipes and found more gradual
transitions, also included in Fig. 3.8. His resulespend on the particular surface, but to
simplify their practical use, he proposed a “unsatt interpolation formula

AU :%Eﬂn(1+ 0261h;, ) 23)

which Moody (1944) later used to compute his comijmaised skin-friction diagram for
pipes. The discrepancy between the two resultsavasady noted by Schlichting (1968),
but became lost in practice. Surfaces beldwe 4 are still often considered “smooth,”
whereas engineers use Moody’s more gradual formula.

Bradshaw (2000) revived the question, noting thahiaimum transitional height was
unlikely for sparse roughness because the drafgpefraughness elements in a shear is
proportional toh® even in the low Reynolds number limit, and thiswt be reflected in
AU”. In recent years the matter has become topicahusec some of the experiments
undertaken to clarify the high Reynolds number baireof flows over smooth walls have
surfaces that would be hydrodynamically smoothooigh depending on which criterion is
used (Barenblatt&Chorin 1998, Perry et al. 2001gufe 3.8 shows that there is no “true”
answer, and that each surface has to be treatedduoally.

The solid symbols in figure 3.8 correspond to alar riblets measured by Bechert et al.
(1997). The drag-reducing property of streamwisgnald riblets is a transitional
roughness effect (Tani 1988). When they exdged 10 they loose effectiveness, and their
behavior whenh” » 1 is that of regulak-surfaces. Their drag-reducing mechanism is
reasonably well understood. Luchini, Manzo & PaA£&91) showed that, in the linfit is
very much less than 1, the effect of the ribletsosimpose an offset for the no-slip
boundary condition which is further into the flowrfthe spanwise velocity fluctuations
than for the streamwise ones. They reasoned timtwbuld move the quasi-streamwise
vortices away from the wall, thickening the viscaublayer and lowering the drag. They
computed the relative offsdi/h for several riblet families and estimated that
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AU* = 08Ay* (3.22)

assuming that the depth of the sublayer increassslg byAy. Jiménez (1994) carried out
direct numerical simulations of turbulent channetrporating the offset of the boundary
conditions, and confirmed that all the transverstogity fluctuations are shifted byy,
obtaining a drag lawtU" =~ 0.94y". Actual riblets satisfy a linear law similar to gion
13 with somewhat lower experimental slopes, whidtlrt et al. (1997) showed to be
due to the mechanical rounding of their tips. Beeaty/h is constant for each riblet shape,
this implies a linear behavior of the roughnesscfiom at lowh®. This is faster than the
guadratic one suggested by Bradshaw (2000), shoivatghere are roughness effects that
go beyond simple aerodynamic drag. Luchini et a)2991) argument and Jiménez’s
(1994) simulations are antisymmetric 4y when 4y « 1, and imply that the drag of
spanwise-mounted riblets should increase lineaitly /.

O

Fig. 3.8 - Roughness function for several transdity rough surfaces, as a function of the
Reynolds number based on the fully rough equivadant roughness.

Colebrook (1939) suggested that the reason forgtladual buildup of the roughness
effects in industrial surfaces is that they contaiagularities of different sizes, and that
each element becomes active when it individualghes a critical Reynolds number. The
overall smooth evolution of the drag is the sunthafse individual transitions. Colebrook
& White (1937) provided some support for this moithel series of experiments in which
they used sand grains of different sizes to roughemwall. Well-graded sand led to results
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agreeing with Nikuradse (1933), but as little aS8%.of larger grains were enough to
substantially lengthen the transitional regime. Teey sharp transition for the uniform
tightly packed spheres included in Fig. 3.8 alggpsuits this model.

Bandyopadhyay (1987) showed experimentally thafupper) andh. (lower) decrease as
the aspect rati@y increases, and that curves Mf)/u, againsth, for different surfaces
become similar when normalized hy (upper) and the value &fU/u, at h, (upper). This
was verified by Ligrani and Moffat (1986). Bandydpgay (1987) also correlateul
(upper) andh. (lower) with the Reynolds number associated whk bnset of, and
development of irregularities in, the vortex streleéd from an isolated roughness element
embedded in a laminar boundary layer.

For vegetation, viscous drag can still be impor@egpite large values & because the
drag-inducing roughness elements have Reynolds exsni/v orders of magnitude
smaller tharh, (wherel is an element dimension such as a pine needleetiarar a leaf
width, andU is the ambient velocity about the element). FoepieedledJl/v is around
30-200; for wheat leaves, around 500-2000. Thon6g)l@stimated the ratio of form to
viscous drag on a typical bean leaf as 3:1. Thisgosity provides significant drag in
many canopies.

There is another interesting interpretation of fegg3.8; roughness has two effects in the
transitional regime. In the first place it creates extra form drag, which increases skin
friction, but it also weakens the viscous genematmycle, which decreases it. The
geometric offset in riblets is an example of theosel effect, which is dominant in that
case because the riblets, aligned with the meaw fiave little form drag. AR" increases,
and the viscous cycle is completely destroyeds#wngs from that effect saturate, and the
form drag eventually takes over. Different surfasesig. 3.8 have different balances of
both effects. In the case of surfaces with spamdislyibuted roughness elements, the form
drag increases before the viscous cycle is moddiezt most of the wall, and the savings
are never realized. If this interpretation is cotyremniformly rough surfaces offer the best
opportunity for drag-reducing roughness, and Fi§.stiggests that it would be interesting
to extend the experiments on packed spheres ta lowe

3.2 TURBULENCE ABOVE THE ROUGHNESS SUBLAYER

Because dimensional arguments establish many prepef the mean velocity field in a

rough-wall boundary layer, it is worth examiningetlextent to which dimensional

reasoning also determines properties of the tunmeleespecially velocity variances and
turbulence length scales. It turns out that a npirgsically based form of dimensional
analysis is needed to understand the turbulendsstsis This section examines three
complementary hypotheses about length and velsciéyes for the turbulence above the
roughness (or viscous) sublayer: the wall-simyaréquilibrium-layer, and attachededdy
hypotheses. Together, they lead to a set of predgtfor turbulence length scales and
velocity variances which are comparable with thgakithmic profile law for the mean

velocity. For this analysis, a sufficiently genetaibulence statistic for consideration is the
two-point velocity covariance

u, (Y, (Y +r)=u?R, (Y.,r,d,h, L, v/u,) (3.23)
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in which the displaced height Y = yd-and the separation r are primary arguments, the
outer and surface length scales are secondary argagmand velocity scaling witl, is
assumed. However, similar dimensional argumentsyapphigher velocity moments as
well.

3.2.1 Wall similarity

The first hypothesis is one of flow similarity owdifferent surface types:

Outside the roughness (or viscous) sublayer, theutant motions in a boundary layer at
high Reynolds number are independent of the walljinmess and the viscosity, except for
the role of the wall in setting the velocity scaje the height Y =y - d and the boundary-
layer thickness.

This "wall similarity" hypothesis (our label) is axtension of the usual postulate of
Reynolds number similarity, which Townsend (197§)resses thus: "while geometrically
similar flows are expected to be dynamically simifatheir Reynolds numbers are the
same, their structures are also very nearly sinfolaall Reynolds numbers which are large
enough to allow (fully) turbulent flow." Providetfiat the Reynolds number is sufficiently
high, Reynolds number similarity implies that, edésthe viscous sublayer, the viscous
length scale/u, has no influence in (3.23); the wall similaritydoghesis makes the further
claim that, outside the roughness sublayer, thghoess length scaldsandL; are also
irrelevant. It appears that Perry and Abell (19%@)ye the first to advance this hypothesis
in essentially the form stated above; they caltetthe "Townsend hypothesis," since it is
implicit in the similarity arguments of Townsend9@ll, 1976). They supported the
hypothesis with an analysis of scaling laws foroe#ly spectra in several overlapping
spectral ranges, an idea extended later by Pealy(£986, 1987).

For the velocity covariance, the wall similaritygothesis is

u (Y)u, (Y +r)=u?R,(Y.r,3,) (3.24)

for large Reynolds numbers and for batlandY + r above the roughness sublayer. &n
priori motivation for the hypothesis (not a derivation)timat (3.24) is a dimensional
statement analogous to the outer-layer law (3.4)He mean velocity(Y). The foregoing
discussion of the mean velocity profile shows thath dU/dYandU(Y) itself, apart from a
heightindependent but roughness-dependent tramsddtivelocity, are independent of
surface length scalgh, L ,v/u,) in the outer layer, including the overlap regiorthatne
inner layer. Therefore, wall similarity holds faglative mearmotion at all heights above
the roughness sublayer. Since the turbulence nwagntnd is maintained by the mean
velocity profile, it is unlikely that surface lefgscales which are irrelevant for the mean
velocity profile are important for the dominantlutent motions.

There is strong experimental support for the watlilarity hypothesis, of at least three
kinds. Two of these (stress-to-shear relationstapg measurements of single-point
velocity moments) are reviewed now, while a thitsva-point velocity covariance
measurements) is considered in section 3.5.1.

Stress-to-shear relationshipsStrong, though indirect, evidence that the turbcgen
structure is essentially independent of the natdirhe wall is provided by the universal
value of the von Karman constakt(the ratio of the turbulent velocity scaleto the

normalized mean she&dU/dYin the inertial sublayer). It is found thiats independent of
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wall roughness to within experimental accuracy iothbthe laboratory and in the
atmospheric boundary layer [see Yaglom (1977) forrewiew of atmospheric
measurements]. Townsend (1976) pointed out the sstigpat this fact provides for
Reynolds number similarity, since the data spaeynBlds number range from“® 1.

The support for wall similarity is equally strikingince the data also span surface types
from smooth walls to natural vegetation.

Single-point measurements of velocity momehtsonsequence of (3.24) is that, provided
that the Reynolds number is sufficiently large,ticat profiles of single-point velocity

moments (°,v’,w’,uv, and higher moments) should collapse to commorvesur

independent of wall roughness, when normalized witmdé. Figure 3.9 shows a data set
from Raupach (1981) which tests this directly. Tlelnce measurements were made with
an X-wire probe in zero-pressure-gradient boundiaygrs over a smooth surface and five
fully rough surfaces of different densitiés all formed over the same splitter plate by
sequentially adding roughness elements (cylindé@isiw= 6 mm andy =1, = 6 mm).

The normalized profiles ofiv (Fig. 3.9a) and the standard deviatiens oy andoy, (Fig.
3.9b) all collapse to common curves except in theghness sublayers close to the
surfaces. The same collapse is evident in Fig. ®18¢he normalized third moments or
generalized skewnesses

MSO = uuq/o-l? M21 = UUV/UE HTW

MlZ = UV\/JU |]Tvz\/ M 03 = VVV/J\?\I
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Fig. 3.9 - Profiles againi/s of (a) J//ur : (b) 6y , ovanday, also normalized with, ; (c)
the normalized third moments.

A similar collapse of second and third moments whaserved by Andreopoulos and
Bradshaw (1981), who compared boundary layers swaoth and sand-roughened walls.
Kageyama et al (1982) presented a comparison betiickgype” roughwall and smooth-
wall boundary layers in which the collapse, althougasonable, was not as complete as in
Raupach's or Andreopoulos and Bradshaw's datanfthe problem being witla, in the
outer layer).

Care is required in making comparisons such asthbsve, because of (a) the influence
of variations in flow configuration and (b) measuent errors. Regarding (a),
configurational variations in boundary-layer floesn result from the choice between the
tunnel wall or a splitter plate as the working agd, and also from the choice of boundary-
layer tripping device, if any. Such variations asgected to influence mainly the largest
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scales of motion and hence the velocity momentkearouter layer (¥ o). Regarding (b),
errors are well known to affect turbulence measer@siwith X-wire probes close to the
surface, especially when the surface is rough (Retuet al 1980, Perry et al 1987); these

errors are responsible for the apparent decregsevir) (and probably ia, also) at lowy/

o in Fig. 3.9, as discussed in more detail laterminimize difficulties caused by both (a)
and (b), the best approach is to compare profileelocity moments taken over a variety
of surfaces (both smooth and rough) in the sameererpntal situation. All the
experiments cited above are of this kind. Provideat the large-scale flow geometry
(including the tripping technique) is held constgmbblem (a) should be minimized. As
for (b), constancy of instrumentation and experitaemechnique is no guarantee that
measurement errors are minimized, or even indepgradegoughness or of position in the
flow (since the errors worsen as turbulence intgnacreases), but such constancy does
remove gross variations from one experiment tolarot

3.2.2. Turbulence velocity scales, length scalesidaspectra

To obtain velocity and length scales for turbulentehe inner layer, Townsend (1961,
1976) used a set of arguments that have been nifugmtial, to the extent that they have
become part of the folklore of boundary-layer reseaTherefore, the original argument is
summarized here as accurately as possible. Towngg86l) made the following
"equilibriumlayer hypothesis":

In the inner layer, the local rates of turbulenhéiic energy production and dissipation
are so large that aspects of the turbulent motiomoerned with these processes are
independent of conditions elsewhere in the flow.

He called such a flow region an equilibridayer; these layers exist not only in zero-
pressure-gradient boundary layers but also in matner wall-bounded flows with
pressure gradients or wall transpiration.

For zero-pressure-gradient boundary layers, dyransanstraints ensure that the inner or
equilibrium layer is one of approximately constattess. With usual boundary-layer
approximations and at high Reynolds number (soouscterms are negligible), the
streamwise momentum equation in steady conditi®ns i

0 W P o

bl 3.25

ox ay ady oy 2)
whereP is the mean kinematic pressure. Given zero preggackent and slow streamwise
development, this equation approacties/dy = 0 as Yé = (y - d)/8> 0 (but without
going below the top of the roughnesy at h). Hence there is a "constant-stress"” layer near
the surface in whicluv(y) = -u,. In practice, the constant-stress layer is rouggyregion

h—d<y—d=Y $/10. Its upper height limit can be regarded assdrae as that of the

inner layer, though both are only vaguely determine

Townsend (1976) specified three conditions whichstmhe satisfied in an equilibrium

layer, the first being (clearly) that the turbuleiimetic energy budget must be in local
equilibrium. To the same approximation as (3.2%},turbulent kinetic energy budget is
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Where g* =u® +v? +W? is twice the local turbulent kinetic energy,is the fluctuating
kinematic pressure, andis the average energy dissipation rate. Local #dxjiwim occurs
when the advection terms (on the left-hand side)teansport terms (the second and third
on the right-hand side) are negligible in comparisaith local shear production and
dissipation (the first and fourth terms on the tighnd side). Then, (3.26) reduces to
w4 e=0 (3.27)
ay

Local equilibrium is likely in the inner layer (bwxcluding the viscous or roughness
sublayer) because the shear production term isoptiopal to 1/Y and so increases rapidly
as the surface is approached, but the advectiortuabdlent transport terms both remain
small (in the case of transport, this assumpticedea posterioriconfirmation).

The second requirement for an equilibrium layethest the layer must be thin, with depth
much less tha@a, so that the production and dissipation rates withare independent of
large eddies of scal& and therefore of the large-scale flow geometiyird; the shear
stress variation across the layer must be sma#inture that length scales associated with
the height variation of shear stress are unimptriana zero-pressure-gradient boundary
layer, this is satisfied by constancy of stressrrba wall and the requirement that the
layer be thin compared with

Given these constraints, dimensional analysis efttinbulent kinetic energy balance in an
equilibrium layer can be based gnand Y as the only relevant velocity and lengtHesca
since 6 has no influence because of the equilibrium-lalygpothesis, and the surface
length scale$( L;, v/ u,) are irrelevant by wall similarity (or Reynolds nuemtsimilarity
for a smooth wall). It follows that

o 3
a_U:i —uv= ur2 £= U, (3.28)
oy kZ kY

Hence the argument yields the logarithmic meanaiglgrofile, recovers constant stress
in the equilibrium layer, and also gives the adudhi#il result that the eddy length scale is
proportional to Y, since in the last of (3.28)can be regarded as the cube of an eddy
velocity scale divided by an eddy length scale. send (1961) showed that these results
for a zero-pressuregradient boundary layer haventegparts for equilibrium layers in
other wall-bounded flows with pressure gradientsvall transpiration, with modifications
dependent on the stress distribution.

In the above argument, the restriction to "aspetthe turbulent motion concerned with
energy production and dissipation” is crucial. Hfst restriction were not imposed, all
aspects of the turbulence would scaleupand Y in the inner layer, so that the ratghu,

, ov/u, anda,/u, would all be universal constants independent dh lsurface type and
pressure gradient. However, this is observed nbettrue, especially in equilibrium layers
with a range of pressure gradients (Bradshaw 1983@7b). Observations such as these
led Bradshaw (1967b) to divide the inner-layer tlebce into two components: a
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universal, active component, responsible for vattiarbulent transfer and scaling with
and Y, and a larger-scale, inactive componentrayisiom the effect of the outer-layer
turbulence upon the inner layer. Bradshaw attrihitee inactive component partly to
irrotational motions due to pressure fluctuatioeserated in the outer layer, and partly to
the large-scale vorticity field of the outer-layterbulence which the inner layer sees as
unsteadiness in the mean flow, or large-scale bota sloshing motions. These contribute

to oy, anday, but not tosy, or uv.
Following Townsend and Bradshaw, Perry and Abef7{) and Perry et al (1986)
developed scaling arguments to predict the formhefu, v, and w turbulence spectra

¢ wk), & WK, & wlk) (where k is the streamwise wavenumber), and thence (by

integrating the spectra ovéj the variances ofi, u,andw as functions of height. They

considered three spectral ranges, correspondiirgatbive, active and fine scale eddies (in
order of increasing A), which respectively obeyeastayer, innerlayer, and Kolmogorov

scaling:

A: outer-layer scaling, an, 0 — inactive eddies,
B: inner-layer scaling, an, Y — active eddies, (3.29)
C: Kolmogorov scaling, an v — fine-scale eddies,

The ranges overlap in two wavenumber intervals AB BC (where A overlaps B and B
overlaps C, respectively). In range BC (usuallyezhthe inertial subrange) all spectra are

dimensionally constrained to follow the Kolmogoraw ¢ o ¢*k > whereas in range

AB, the u andv spectra are proportional fo*. Ranges A and AB do not exist in the
spectrum since the inactive eddies have negligiblgcal motion.

Qualified support for the spectral scaling hypothe3.29) is provided by spectral
measurements in both laboratory boundary layers taedatmospheric surface layer.
Comprehensive laboratory spectral measurementsatamed by Perry et al (1987) over
smooth and mesh-roughened walls. Figures 3.10 dridshow their it spectra over both
wall types, which collapse in the outer (A, AB) amher (AB, B, BC) spectral ranges
when normalized with outer-layer and inner-layernlss, respectively. The Reynolds
numberd, (sometimes called the von Karman number) in theperanents was between
about 500 and 7000, not high enough to producedbspactra with extensive™ andk
behaviors in spectral ranges AB and BC, respegtietypical limitation in the laboratory.
A further

problem is the spread of convection velocitiesoat vavenumbers, to which Perry et al
attributed the less than satisfactory spectrabpsk with outer-layer scaling over the rough
wall (Fig. 3.11b). Considering these difficultighe spectral data in Figs. 3.10 and 3.11
offer reasonable support for (3.29).

Atmospheric surface (inner) layer spectra are marclader than laboratory spectra,oas

is typically 1d or more. Extensive spectral data have been mehsuseveral major field
experiments, one of the largest being at Kansd9@8 (Kaimal et al 1972, Kaimal 1973).
These data show that v, andw spectra conform well to inner-layer and Kolmogorov
scaling (ranges B and C), and exhibit extensivetisdesubranges (BC) with spectra
proportional tok *%. However, the atmosphericandw spectra do not generally conform
well to thek ™ spectral slope prediction for range AB (Kaimakefl972), although a few
atmospheric spectra do show b&th andk ° regions, such as spectra measured over the
sea by Pond et al (1966). A possible reason fogémeral absence ofka* region is that
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outer-layer (range A) scaling is more complicatedhe atmosphere than the laboratory,
because of the effect of buoyancy forces whichalmest always important for the largest
eddies in the atmospheric boundary layer. Thesemdaote an extra length scale, the
Monin-Obukhov lengthL, into the scale analysis; the influencelgofor the associated
dimensionless paramet¥f_, is largest at low wavenumbers, and thereforamges A and
AB.
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The spectral scaling (3.29) has implications foe trariances. By integrating over all
spectral ranges, Perry et al (1986) used (3.29etive the following behavior for the
variances in the inner layer:

u?/u? =B, - A On(Y/d)- ELY Y
v2/u? =B, - A, On(Y/8) - (4/3)E [y, 2 (3.30)
wo/u? = A, - (43) Y,

The constantdy, Ay, Az andE are universal for all inner layers, wheré&asandB, depend
on the large-scale flow geometry (thidg,andB, are different for boundary layers, pipes,
ducts, and so on). Perry et al (1987) deduced saloe all these constants from their
spectral data, obtaining slightly different valumser smooth and rough walls for reasons
which theyattributed to measurement errors. Their rough-wallles wered; = 1.26,A; =
0.63,A3 =1.78,B; =2.01,B, = 1.08, anct = 7.50. They emphasized that, fdru, « Y « ¢
andh «Y «¢ , the scaling laws for smooth and rough surfabesilsl be indistinguishable;
this is a requirement of the wall similarity hypesis.

The strongest challenge has come from Krogstad. €1292) and Krogstad & Antonia
(1994). They found that the one-point correlatiomes for all the velocity components are
about twice shorter for rough than for smooth b@updayers below/o < 0.5. Although
the height of their mesh roughnesg#h ~ 50 U* = 11), is marginal according to the
criteria developed above, it is a little too latgalismiss the results on those grounds.
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That observation has attracted a lot of interest, ib has been difficult for other
investigators to reproduce it. Krogstad et al. @9and Krogstad & Antonia (1999)
published frequency spectra farand v over the same rough wall used y Krogstad &
Antonia (1994), and there is little difference metpositions of their smooth and rough
spectral peaks af/6 = 0.4-05. The correlation time is only indirectly relatéo the
spectral peak, but this disagreement suggeststhigadifferences between rough and
smooth flows are not associated with the most etiergelocity structures.

Nakagawa & Hanratty (2001) studied a channel oweo-dimensional sinusoidal
roughnessd/h =~ 60, 4U" = 9), and found correlation lengthsg, which are equal to those
in smooth channels. Sabot et al. (1977) studiegra nough pipe with spanwise fencéh(

= 15 4U" = 17) and found that the streamwise integral lesdoru andv change little
with roughness. Comparing correlation lengths wiities requires choosing an advection
velocity, which changes both with the wavelengtid amth the distance to the wall
(Krogstad et al. 1998). The question is not trivaaid the ratio between the smooth and
rough times in Krogstad & Antonia (1994) variesvietn 1.6 and 2.5 depending on
whether they are normalized with the friction, fsteeam, or local velocities. The
advection velocity also changes from rough to simdlotws, as a natural consequence of
modifying the mean velocity profile. For exampleab8t et al. (1977) found that the
advection velocity of the large scales is 1.3 tirfaster in their smooth pipe than in the
rough one. However, none of these corrections asigm to fully account for the observed
differences in the correlation times.

Krogstad & Antonia (1994) also measured the in¢clomaangle of the twopoint correlation
function ofu between twgy locations. They obtain 38° in the rough case agdid%in the
smooth one. This disagreement is not as worryinth@®ne discussed above because it is
done fairly near the roughness layer and may loea effect, but Nakagawa & Hanratty
(2001) found no change in this quantity. Becausy thsed particle image velocimetry
(PIV), which is a purely spatial procedure, theggested that their disagreement with
Krogstad & Antonia (1994) may be due to the presipudiscussed ambiguity of the
advection velocity. Using different assumptions tbe velocities reduces the angle to
about 25° which, while still high, is closer to ttlmmooth one. Because of these
experimental uncertainties, and because of the ina@rgalue ofd/k in all these cases, the
claim of large changes in the length scales abbeerbughness layer requires further
confirmation.

3.2.3 The attached-eddy hypothesis

Earlier, Townsend (1976, pp 152-154) had obtait3e80) (but without the viscous terms
in y. %) from a different argument based on his "attacheti+dtypothesis." according to
which the turbulent flow field is a superposition of gesncally similar eddies with
velocity distributions

u; (%)= ug Dfi[x;:(aj (3.31)

wherex, = (Xa, Va, Z) IS the center of a particular eddy amds its velocity scale. The term
"attached" implies that all eddies are not onlymgetsically similar but have the same
geometrical relationship with the wall, scaling hvitthe center heighty,. By

ensembleaveraging an eddy field consisting of @aansuperposition of eddies of the
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form (3.31), imposing a continuity condition émo account for the presence of the wall,

and requiringuv (2) = u.? = const, Townsend derived the high Reynolds-numieit bf
(3.30) without further specifyinfy.

Perry and Chong (1982) were more specific alfputinvoking flow visualizations of
hairpin vortices in a smooth-wall boundary layerHyad and Bandyopadhyay (1981) to
suggest a model attached eddy consisting @f-adrtex"” inclined with the shear and with
legs trailing along the wall. Although this struatuleads to the spectral scaling laws
(3.29), and to (3.30) for the velocity variancéssiapparent that many other choicesffor
lead to similar results. This suggests that obsienva of spectra and variances alone are
insufficient to specify details of the eddy struetubeyond those implied by the
dimensional arguments given above.

3.2.4 Observations of velocity variances

One test of the wall similarity, equilibrium-layeand attached-eddy hypotheses is a
comparison of theiL predictionswith laboratory aathospheric data on the velocity

variancesu® =% vV’ = 6,2 and W’ = a,°. The wind tunnel data usually are at a fixed

height (for instanc&'/o = 0.1) whereas the field data are generally fromoug heights in
the atmospheric surface layer, typically in theghérange 5-20 m.

These data are generally consistent with the walilaity hypothesis. In laboratory
boundary layers, the ratieg/u, , o,/u, anda,/u, take values (at ¥/ = 0.1) of about 2.1 +
0.2,1.4 +£0.1, and 1.1 +0.1, respectively. Althoukere is scatter in the data, attributable
to measurement errors, there is also a weak Reymuichber dependence consistent with
that predicted by (3.30). There is some laboraésigence for a dependencesfu, and
ovlu, on Y/9, as suggested by (3.30), but the measurement preldeensubstantial. The
careful measurements of Perry et al (1987) prowadgood example: their X-wire
turbulence data supported (3.30) quite well for theomponent, partially for theu
component, and rather poorly for thiecomponent. Their work eliminated some of the
problems with X-wire probes that had afflicted earlexperiments. However, they
concluded that the remaining measurement diffieslt{fassociated mainly with limited
acceptance angles, crosstalk betweandv, and finite wire length) were great enough to
account for the fact that (3.30) was only partlgcassful in describing their data. Later,
Perry et al (1988) reported reasonable agreeméweba slightly modified forms of the
third relation in (3.30) and carefully selectedadfir o,/u,; the data selection ensured that
spatial resolution and cone angle problems weranmied and that the X-wire probes

yielded values oliv consistent with Clauser-chart or Preston-tube &alue

In the atmosphere over grassland sites in flatiters,/u, , o./u, ande,/u, take values of
about 2.4, 1.25, and 1.9, respectively, slightlghler than the typical laboratory values
(2.1, 1.1, and 1.4, respectively). This trend ialgatively consistent with (3.30) because
the atmospheric data are obtained at lowérayvd highety. than the laboratory data, with
both factors tending to increase the variancesrdoupto (3.30). An additional dynamical
influence on the large-scale, inactive motionshia a&tmospheric planetary boundary layer
is the Ekman spiral resulting from the rotationtleé earth, which introduces a lateral,
cross-isobaric shear amounting to a shift in wim@adion of typically 20° through the
depth of the planetary boundary layer (typicallyoader 1 km). This particularly affects,
and contributes to the larger differencesjfu, between laboratory and atmosphere relative
to the other two components.
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One significant point is the decrease in the vabfes/u,, ¢./u, ande,/u, over very rough
surfaces in the atmosphere (forests, corn cropafive to grassland atmospheric or wind
tunnel values. Over very rough atmospheric surfatesratios are approximately 1.9, 1.2,
and 1.4 aty = 2h and as low as 1.5, 1., and 1.3yat h. This is understandable because
fetch andtower height limitations inevitably restrmeasurement heights in these cases to
the roughness sublayey less than abouth?. Hence, comparison with (3.30) and with
other experiments, those which pertain to the ialestiblayer or equilibrium layer only, is
not appropriate. However, there is significancehe large decreases #/u, , ¢,/u, and
awlU, in the roughness sublayer over tall vegetationadgsied later, the flow near the top
of the canopy is dynamically more similar to a gamixing layer than a boundary layer,
because of a strong inflection point in the medoargy profile. The values of/u,, a/u,
anday/u, neary = h reflect this, as they bear little relationshiptypical inertial-sublayer
values and are much closer to typical values frbwn ¢ore of a plane mixing layer
(Wygnanski and Fiedler 1970).

3.2.5 Wake Intensity

Another indication of the effect of the roughnesstioe outer part of the boundary layer is
its effect on the wake parametHr The classical result is again thdtchanges little
between rough and smooth boundary layers at the $2@ynolds number (Hama 1954,
Clauser 1956), but later authors reported subsiadéviations. One problem is how to
define & in flows without a well-defined logarithmic layesuch as those with loé" or
olk, and the results from different investigatorsasealways comparable.

Tani (1987) reviewed several data sets using aommifanalysis scheme, and the
conclusion from his work is that most differences due to low values af/k. Although

for severalk-surfaces he fountl ~ 0-08 whend/k < 60, they all tend tdl ~ 0.45 when
o/k > 100. This is close to the vallie~ 0.52 for smooth walls (Fernholz & Finley 1996).
D-type surfaces are more interesting in this respecause the claim that their roughness
length scale is proportional to the boundary-layeckness suggests that the effect of the
roughness might be felt throughout the layer. Ta887) compiled some of those cases
and foundIT = 0.6-07 for all of them, which is higher than the smouwthH value,
although only the data from Bandyopadhyay (198VEl& > 100. As with most available
results ford-roughness, this one is tantalizing but requiredicmation.

3.2.6 Theoretical models

Numerical simulations, which have done so mucHhddfg other areas of turbulence, have
still not left their mark on the understanding ofigh-walled flows. There are numerous
modifications to Reynolds-averaged simulation medelat include roughness effects
(Patel 1998, Durbin et al. 2001), but they are stgr@ri applications of physical insight
that are beyond our scope. From the point of viéw priori simulations the problem is
computational cost. To be reasonably free fromctlireughness effects we ne&t > 50,
and to have well-developed roughness we should have80. To have a well-defined
rough turbulent flow that is neither transitionalthe sense of low*, nor of insufficient
boundarylayer thickness, we therefore néég 4000. The largest direct simulations of
wall-bounded flows have at presedit ~ 2000. Large-eddy simulations could help in
raising the Reynolds number, but they imply modglithe small scales, which is
dangerous when trying to clarify the effect of drsahle roughness. Direct simulations
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limited in one of the two parameters just mentioaes beginning to appear, (Bhaganagar
& Kim 2002, Lee 2002, Leonardi et al. 2002, Nozastal. 2002). Direct simulations of
the flow over riblets, in which the regime of irgst is that of transitiondl’, have been
available for some time (Chu & Karniadakis 1993p(ét al. 1993, Goldstein et al. 1995),
but they also have low/h. In all these cases the emphasis is on the ezpmtgentation of
the flow over the roughness elements, and on thalslef the flow within the roughness
layer. An alternative approach, which has to beliappwith care because it involves
modeling, but which bypasses some of the limitaiofh strict direct simulations, is to
substitute the effect of the roughness layer byemuivalent” wall-boundary condition.
Low-h" riblets can be substituted by an offset betweerldbations of the streamwise and
spanwise no-slip conditions. If we choose our origt the no-slip position fou, and
assume that the instantaneous velocity profilesskagar near the wall, we can write this
as

w(x,0,2)+a @ w(x0,2)=0 (3.32)

wherea is an adjustable parameter. Choi et al. (1993) Umethdary conditions of this
type as control devices to manipulate the skirtifnicin channel flows, obtaining changes
in the drag coefficient of the order of +50%'(~ +60). Jiménez et al. (2001) used mixed
boundary conditions that can be put in the formEguation 15 for the wall-normal
velocity to model the effect of a perforatedwalhefe is also in that case a large increase
in the skin friction, whichwas traced to the app®ae of large-scale instabilities of the
mean velocity profile, in the form of large spansvructures essentially spanning the full
boundary-layer thickness. They originate from &tlig damped linear mode of the mean
velocity profile over an impermeable wall, and cecinto the Kelvin-Helmholtz instability
of inflectional profiles in the limit of infinite @rmeability. Finnigan (2000) invoked similar
inflectional instabilities to explain the propegief the roughness layer above plant
canopies. It is interesting that such models geeerHiects similar to those of roughness
without considering the details of the individualighness elements, and that they produce
length scales which are only linked to averagegerties of the wall. This brings to mind
d-rough behavior, where the scale of the structigedetermined by the boundary-layer
properties instead of by the surface geometry. AAlgh the details are beyond the space
available in this chapter it is possible to dewastficial boundary conditions of the type of
Equation 3.32 fow that arise naturally as approximations of the fldang the grooves of

a d-wall under the effect of spanwise pressure grdsdienheir stability has not been
studied in detail but, in simple inviscid casegtlead to instabilities of the mean flow for
which the most unstable eigenmodes are large stvessnvelocity streaks.

The flow over rough walls is generally too complezhto sustain streaks like the ones
found over smooth walls, but Liu et al. (1966) abgenidi et al. (1999) observed
longitudinal streaks oved-surfaces. No direct simulations exist of fully dutent flows
with averaged boundary conditions designed to mimgb-h* directional wall roughness,
but considerations such as the ones above sudgasthtey could help to clarify the
dynamics of rough-wall turbulence in general, ahd-ooughness in particular.
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3.3 FLOW CLOSE TO AND WITHIN THE ROUGHNESS

Here the focus shifts from the overlying boundaayer to the flow in the roughness
sublayer, where the roughness has an explicit diggmnfluence and wall similarity does
not apply. In this layer, especially in the regigr< h, available mean and turbulent
velocity data are mainly from field vegetation cpies or wind tunnel models of canopies.
This bias occurs because (as already mentioned) aiahe more traditional types of
"engineering” rough surface, such as sandgrainhmegs, do not admit measurements
within the roughness, exceptions being flow viszaion results from the region within
the cavities of two-dimensional roughness (Liu lefl 266, Perry et al 1969). Therefore,
most of the present section is drawn from field avidd-tunnel work on vegetation,
though references to other types of roughnessbeithade wherever possible.

3.3.1 Mean velocity

Above the roughnesss height decreases, the mean velocity profilersetp depart from
the logarithmic profile law in the laydr <y <y, , where y (dependent on geometric
details of the roughness) is the upper height lohithe roughness sublayer. Laboratory
studies over three-dimensional roughness (O'Londt965, O'Loughlin and Annambhotla
1969, Mulhearn and Finnigan 1978, Raupach et a),19886) agree that,ys between R
and %, and that in the laydr <y <y, the sheadU/dyis less than the one obtained from
the inertial-sublayer valueBecause the momentum flux in the roughness subleyer
(nearly) constant with height for y b from (3.25) et seq, the reduced shear implies an
enhanced turbulent diffusivitf for momentum in the roughness sublayer, relativenéo
inertial-sublayer formK = ku(Y - d). An approximate form foK is K = ku,(yw - d),
independent of height fdr <y <y, (Raupach et al 1980).

Field work on the mean velocity profile close taugb surfaces has been prolific in the
area of forest meteorology (Thorn et al 1975, Gad@78, 1980, Raupach 1979, Cellier
1984, 1986, Chen and Schwerdtfeger 1989, Shutttewi®89). The findings are similar to
those from laboratory work, although the scattegrsater. The roughness-sublayer depth
ywhas been found to be as great lasds some rough, scrublike vegetated surfaces @&arr
1980), but for closely spaced canopies with« h such as wheat canopies, ig a little
above h, and the near-surface enhancementKofibove its inertialsublayer value is
negligible (Thom 1971). To explain the variationyinRaupach et al (1980) suggested that
Yw increases with roughness-element lateral dimehs@arratt (1980), on the other hand,
suggested that,yincreases as the mean spadinigetween plants increases.

It is worth noting the extension of these findingghe transfer of scalars, especially heat
and water vapor. Just above the canopy, the edtlysigities Ky (for heat) andKg (for
water vapor) are found to exceed the momentum siifity K by factors between 2 and 4
(Thom et al 1975, Raupach 1979, Garratt 1980, Bhdtth 1989). This contrasts with the
inertial-sublayer situation where all diffusivitieme nearly equal in thermally neutral
conditions.

Several physical mechanisms contribute to the bhehat K, Ky and Kg just above the
roughness. First, the vertica velocity eddy lengthleL, is proportiona to (y €) in the
inertial sublayer but scales with(or with h - d) in the roughness sublayer, taking values
there which are larger than the extrapolated ialestiblayer prediction. This is sufficient
to account for the enhanced eddy diffusivitieshia toughness sublayer, since the eddy
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diffusivity is of ordera\L, . A second, closely related factor is the dynamésemblance
of the flow near y #h to a plane mixing layer rather than a boundargidawhich provides
a reason for the difference between the momentutrsealar diffusivities, as the turbulent
Prandtl numbeK/Ky is known to be substantially less than 1 in a ngXeyer (Townsend
1976). Third, large eddies (inactive motions) make flow nonstationary on the time
scales of the active eddies responsible for vérti@nsfer; Townsend (1976, p 156)
showed that this leads to an increase in the edifiysivity by a factor [1 + &.° +
a.2)/(2U7)]. Finally, working in the opposite direction, persiste of the turbulent motion
on time scales of orddr,/o, leads to a reduction in effective vertical eddyfudiivities
within heights of ordeL, of sources or sinks of scalars and momentum ([@etrti978,
Raupach 1987, 1989b). The profiles of eddy diffirgiyust above (and within) the
roughness are the result of all of these mechanisms

Within the roughnessThe mean wind profile within the roughness or canaog
exemplified in Fig. 3.12a by several profiles frdield vegetation canopies and wind-
tunnel models of vegetation. In genetd(y) is strongly sheared near yhs with both U
itself and the sheadU/dy attenuating within the canopy at a rate dependingthe
roughness density A and other geometrical proggerlibe upper part of the within-canopy
U(y) profile is fairly well approximated by the empiricaxponential wind profile™:

% - ex;{— a[l—%ﬂ (3.33)

where the coefficient tends overall to increase withbut with considerable scatter.

In the lower part of the canopy, some workers haported "bulges” in the profile of
U(y); see, for example, the data for Uriarra Fores$tignl2a. Such a bulge, if real, implies
countercountergradient momentum transfer in théoregheredU/dy <0 (Shaw 1977).
However, most of these data were gathered with angmometers which are prone to
substantial overspeeding in the highly turbulerawfl within the canopy, so that
observations of bulges ib(y) within the canopy provide no proof of countergradie
momentum transfer. By contrast, there is directeexpental evidence for countergradient
scalar(heat, water vapor, and GQransfer, from measurements in Uriarra foresoresal
by Denmead and Bradley (1985, 1987). For a thexaletixplanation, see Raupach (1987,
1989b).
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3.3.2 Basic properties of the turbulence

Because the turbulence within the roughness sublage a very high intensity,/U
(typically between 0.5 and 5), its measurementifigcdlt, both in field canopies and in
windtunnel models. Appropriate instrumentation ualgds sonic anemometers (Coppin and
Taylor 1983) or servo-driven splitfilm anemometé8haw et al 1973) in the field, or
coplanar triple-wire probes in wind-tunnel moddtaall et al 1983, Legg et al 1984).
This type of instrumentation has been developed amlthe last 15 years or so. The
earliest turbulence measurements in vegetationptasavere restricted to fluctuations in
the horizontal wind component or the total windespéUchijima and Wright 1964, Allen
1968, Meroney 1968, 1970, Sadeh et al 1971), andehprovided no direct information
on the vertical eddy fluxes or vertical turbulerdgnisfer. Only fairly recently, beginning
with the turbulence measurements of Shaw et al4jLBcorn, has a substantial body of
data been assembled on all three components d¢fitivelent wind field in canopies. Here
we draw on a collation of seven comprehensive exygts on canopy turbulence: two in
field crops, two in forests, and three in windtunmedel canopies. Figure 3.12 shows, for
all seven canopies, roughness-sublayer profilesvedbcity statistics, plotted against
normalized heighy/h. The mean velocity(y) is normalized witHJ(h) and the turbulence
statistics withu,. Despite the wide range of canopy types represetiiede measurements
have some well-defined features in common. Prageif the mean velocity(y) (Fig.
3.12a), especially its inflectional form, have altg been noted. The normalized standard
deviationss/u, anda/u, (Figs. 3.12c and 3.12d) approach typical surfagerlaalues (2.4
and 1.25, respectively) only well above the candmth ratios fall with decreasing so
that aty = h, a,/u, is between 1.5 and 2.0 aagdu, between 1.0 and 1.1. Within the canopy,

au/u, anda/u, fall more strongly ag decreases. The profile of shear strass (Fig. 3.12b)
exhibits a constant-stress layer above the canopyrapid attenuation as y decreases

within the canopy. The correlation coefficiegt = uv/(oyoy), which is about -0.33 in the
surface layer well above the canopy, increases @dtiteasingy to a maximum magnitude
of about -0.5 ay = h; with further decrease in y,, attenuates rapidly within the canopy.
Hence, the turbulence at the top of the canopyery efficient at downward momentum
transfer, but deep within the canopy, the turbuteloses its ability to transfer momentum
as well as its overall strength.

Figures 3.12e and 3.12f show the skewnes$esandv, Sk and Sk, (in notation used in
other sectionsSk, = Msg and Sk, = Mpg). Despite variations due to morphological
differences, the clear overall trend is 8k, to be strongly positive an&k strongly
negative within and just above the canopy, indngathat the strongest turbulent events
there are downward-moving gusts. This indicatiom ¢t& made precise by quadrant
analysis. Kurtoses fan andv, not shown here, reveal the same trend towards vigty
intermittency in the canopy (Maitani 1979).

The single-point Eulerian length scalgsandL, can be estimated from the single-paint
andv integral time scales by applying Taylor's frozerbtldence hypothesis:

%j vit) vt +7)dr @)3
0

UV
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and similarly forL,. Near y =h, L, is of orderh andL, of orderh/3 (Figs. 3.12g and
3.12h), so that the turbulence length scales amgacable withh. It follows that the gusts
inferred from the skewness profiles are large stmes, coherent over streamwise and
vertical distances of orddr. The existence of such motions can be verifiediallg by
watching "honami," the traveling wind waves seerfielis of grass, wheat, or barley on
windy days (Inoue 1955, Finnigan 1979a, b).

Figure 3.12 suggests that the dominant velocitylandth scales for the turbulence in the
canopy areu, and h (or the closely related length scdle d). These scales provide an
approximate collapse of turbulence data from expenis in whichh ranges over a factor
of 400 andu, over a factor of 10 or more. The scatter in tha diadicates the influence on
the canopy turbulence of other length and velosdsles related to canopy morphology,
the fluttering of leaves and the waving of wholants, and viscous (Reynolds number)
effects which influence the drag on individual leaThom 1968, 1971). In the field, an
additional important complication is buoyancy, tgbuts effects are absent from the data
in Figure 3.12 which pertain only to thermally rmalitor slightly unstable daytime
conditions.

3.3.3 Measurement problems

We have referred several times to measurementgrsbin the high-intensity turbulence
near and within the roughness. These have prowedhlzsome and (at times) confusing,
especially in laboratory situations where X-wirelpes have been the main turbulence

sensors. The most obvious symptom is a decreaeeimeasured shear stress/ -just
abovey = h, seen in most laboratory measurements over rougls wigh X-wire probes.
Examples are the X-wire TTvP profiles measured byoAia and Luxton (1971a, b, 1972),
Mulhearn and Finnigan (1978), and Raupach et 8L&ee Fig. 3.9). Such a decrease, if
real, would violate momentum conservation in thestant-stress layer close to the
surface, unless an extra momentum transfer mechaeissts in the roughness sublayer.
There has been speculation that such a mechanisld be a systematic, time-averaged
spatial variation in the mean velocity field impddey the horizontal heterogeneity of the
canopy, leading to a horizontally averaged momenfilus <U"V">. Here, angle brackets
denote a horizontal plane average and double prianeleparture of a time-averaged
quantity from its horizontal average. Fluxes of thyge U"V"> were identified by Wilson
and Shaw (1977) for vegetation canopies, and ldbé&tispersive fluxes." An early
estimate by Antonia (1969) indicated that this tygfemomentum flux is unlikely to
account for observations with X-wire probes of appa stress decreases near transverse
bar roughness. Later, detailed measurements by dduih (1978) (bar roughness),
Raupach et al (1980) (cylinder roughness), Rauptah(1986) (model plant canopy), and
Perry et al (1987) (mesh roughness) demonstratgdhitb magnitude ofX'V"» is less than

a few percent ofl,” at most. This leaves no possible explanation Herapparent stress
decrease just above the roughness, other thandghsumement errors of X-wire probes.

Further evidence that measurement error is thelgmols provided by theiv data in Fig.
3.12b, which show convincingly that no apparenésstrdecrease is found in field data
measured with omnidirectional sonic anemometerd, iariaboratory data obtained with
coplanar triple-wire probes, which have far betteectional response than X-wire probes
(Kawall et al 1983, Legg et al 1984). All of thesmnsors indicate a layer of constant stress

-uw within the expected limits of the constantstregeia
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Theoretical and empirical error analyses on X-wp@bes were made by Tutu and
Chevray (1975), Raupach et al (1980), Legg et @284), and Perry et al (1987). All these
studies agree that the main problem is the limitdcity-vector acceptance angle of £45°
in a conventional X-wire probe, with secondary peofis being contamination of
streamwise and vertical velocity signals by theralt velocity component, and finite wire

length (in order of decreasing significance). Résarasurements afiv have addressed
some of these problems, and are of better qudléy the earlier data. Perry et al (1987)
showed that, by increasing the acceptance angla fiee usual +45° to +60° and/or
"flying" the probe in the streamwise direction tduce the turbulence intensigy/U,
acceptable measurements can be made with X-witgeprcAcharya and Escudier (1987)
confirmed the improvement in measurements resuftioign £60° X-wire probes. Li and
Perry's (1989) measurements of mv over a rough{vealhdary layer, obtained with either
a £60° stationary or a +45° flying X-wire probe,n&én close agreement with an analytical

expression oluv obtained by integrating the mean streamwise mamneiguation, using
a logarithmic profile law and Coles wake functionspecifyU(y).

3.3.4 Second-moment budgets

The mechanisms maintaining the turbulence in theyhloess sublayer, both above and
within the roughness, are partly elucidated bytthibulent kinetic energy and shear stress
budgets. The budgets must be considered in a Bpditmapractice, horizontally) averaged
form because a significant dynamical role is plapgdprocesses associated with spatial
heterogeneity at the length scales of individuagitmess elements.

Turbulent kinetic energy budgeEor a steady flow over a horizontal, immobile rough
surface at high Reynolds number (so that moledusarsport terms are negligible), and
with negligible advection, thermal forcing, and megaressure gradient, the horizontally
average turbulent kinetic energy budget is

ey
O%t/2:0=PS+PW+Tt+Td+Tp—<€> (3.35)

with

p, = () 2

S

oy
— U’
PW = —<uu;u>
axj
AN (3.36)
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The terms denote shear productié®),(wake productionR,), turbulent, dispersive and
pressure transporT{ Tq, Ty, respectively), and dissipatiore><It is convenient to write the
wake production term in tensor notation, with= (x, y, y, Ui = (U, V, W, u = (U, v, W,
and the summation convention effective. Of thesedePs, Ti, T, and ¢> are familiar as
spatial averages of the corresponding terms insthgle-point turbulent kinetic energy
equation, whereas the less familiar terRysand Ty arise from spatial heterogeneity at
roughnesselement length scales. The dispersivepmaintermTy is the vertical gradient of

a dispersive turbulent kinetic energy flukrectly analogous to the dispersive momentum
flux <U"V">. Since the dispersive momentum flux is negligiblatree to the turbulent
momentum flux, it is likely that the dispersive lutent kinetic energy flux is likewise
negligible, so thaly is negligible relative td:.

The wake production term,, is far from negligible (Wilson and Shaw 1977). dtthe
production rate of turbulent kinetic energy in tiwakes of roughness elements by the
interaction of local turbulent stresses and timeraged strains. Lik€s, P, represents a
conversion of mean to turbulent kinetic energy, theé two terms operate at different
scales:Ps creates "shear turbulence" with a length scalerdérch within and just above
the canopy, whereds, creates "wake turbulence" with a length scale ef ander of a
typical roughness-element wake width. In vegetatianopies, wake turbulence is usually
much smaller-scale than shear turbulence. It cashben (Raupach and Shaw 1982) that
Pw is approximately equal to the rate of workinglué tmean flow against drag:

P:—Uf:—U@ 3.37
=) =) 337

wherefy is the horizontally-averaged total force exertgdtlire elements on the flow, a
negative quantity. Figure 3.13a shows measuremé&ots, Raupach et al (1986), of the
termsPs, P, [using (3.37)] and; in the "WT strips" wind-tunnel model plant canopye
curveD is the residuat Ps - P, - T, equal toT,, - < if Tqis negligible as argued above.
The main features are the peak in shear produBtjoeary = h, the large wake production
Pw in the upper part of the canopy, and the major odleirbulent transport; in carrying
turbulent kinetic energy from the regions of strgmgduction neay = hto lower levels in
the canopy. In the lower part of the canopy, thibulent kinetic energy budget reduces to
an approximate balance between transport and digsip The importance of; is related
to the dominant role of sweep motions, or gustspamentum transfer (section 3.4.2).
Two aspects of the turbulent kinetic energy budigenhot emerge from Fig. 3.13a. Firsg,
(which could not be measured) is probably significaitani and Seo (1985) estimated it
in a cereal canopy in the field from surface pressneasurements, concluding tigtis
comparable withT; and likewise acts as a gain term in the budget dedpe canopy.
Second,P,, converts not only mean kinetic energy but alsodasgale (shear) turbulent
kinetic energy into wake-scale turbulent kinetiemgy. This conversion is not evident in
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(3.37), which is spectrally integrated over allbwience scales. However, since the small-
scale wake turbulence is much more quickly dissghathan the larger-scale shear
turbulence, the effect is that the dissipation cdtéhe shear turbulence within the canopy
iIs much greater than would occur for free turbudemath similar velocity and length
scales. The rapid dissipation rate of the wakeulerice also accounts (Raupach and Shaw
1982) for the fact that, in velocity spectra meadwvithin canopies, little extra energy is
seen at wavenumbers characteristic of elementHesagles, despite, being as large as
or greater thals in the upper part of the canopy as in Fig. 3.13a.

Fig. 3.13 - Terms in the second moment budgetsarf\lVT strips” canopy.

Shear stress budgdtinder the same conditions as (3.35), the horiziynéaleraged shear
stress budget is

o(uv . : . . : -
<at>:0=Ps+Pw+Tt+Td+Tp+q’ (3.38)
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oy
P, = —{ uu; 63’3 +U,U, aagl>
J J
-2
- (3.39)
T, = —aiy<v ‘uv >
T2 )

-

The terms in (3.38), distinguished by primes, cgpoad in name and mnemonic to the
terms in (3.35) except for the pressure-strain témwvhich is the main destruction term
for shear stress. The dispersive transport f&rris usually negligible in practice, just as
for Tqin (3.36). However, in contrast &,, which plays a very important part in (3.35), the
wake production terr®,, in (3.38) is also usually negligible.

Figure 3.13b shows direct measurements of the tBgn@dT; in the shear stress budget
(Raupach et al 1986). As for the turbulent kinetiergy budget, shear productipaaks
strongly neay = h, while turbulent transport is a loss ngax h and a gain lower down

(noting that, becausew is negative wherea?/z IS positive, gain terms are on the right

of Fig. 3.13a but the left of Fig. 3.13b). The rofetransport in the shear stress budget is
relatively much smaller than in the turbulent kinegnergy budget, because the transport
term ratioT;/ T; is of order only about 0.2 in the canopy, wherdestwo production
terms are comparable near 1=

The main features of Figs. 3.13a and 3.13b areircoedl by a growing number of
measurements from both wind-tunnel models and fialtbpies. However, the discussion
has been restricted to vegetationlike roughnesxldservational reasons already outlined.
The conceptual framework of (3.35), (3.37), an@&®is valid for any roughness type, but
the quantitative behavior of the budgets is anothatter; although the main features of
Fig. 3.13 probably carry over at least to threedisnenal roughness such as sandgrain
roughness, separate investigation is required i@-dimensional bar roughness, either
widely-spaced ("k-type") or narrow-cavity ("d-type"
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3.4 ORGANIZED MOTION IN ROUGH-WALL BOUNDARY LAYERS

It is now generally recognized that turbulent flowsiversally exhibit various forms of

organized motion, sometimes referred to as cohestnttures. The literature on these
motions is vast: see, for example, the reviews afht@ell (1981), Hussain (1986), and
Fiedler (1987). Smooth-wall boundary layers ard wegdresented in this extensive body of
work; rough-wall boundary layers far less so.

3.4.1 Two-point velocity correlation functions

A traditional but useful starting point for an exaation of organized motion is the two-
point, time-delayed velocity correlation function

)= u, (x, Y.zt +7) W, (0, vz 0t)

7 ()i (v,

whereyr is the height of a reference sensorxatzf = (0, 0). The correlation function
depends explicitly on both the heightsand yr because of vertical inhomogeneity, but
depends only on the horizontal separatigre) and the time interval because horizontal
homogeneity and steady flow are assumed. The swalé horizontal variability in the
roughness sublayer is ignored in (3.40); this ®ifiable for many vegetation canopies,
including those discussed below, but may not befigisle for two-dimensional laboratory
roughness, for example.

r, (%, v,2,7,2, (3.40)

Above the roughness sublayér:the inertial sublayer and outer layer, dataijpover both
rough and smooth walls generally show thats independent of the nature of the wall,
thus providing direct support for the wall simitgrhypothesis (section 3.2.1). For smooth-
wall boundary layers, there are many measuremeints; csee Townsend (1976) for
primary references. Brown and Thomas (1977) crossleded signals from a wall probe
with u signals in a smoothwall boundary layer, findingtthlde maximum correlation
occurred along a line in they plane sloping obliquely with the flow at an angfeabout
18° to the horizontal. Comparable rough-wall dataehbeen obtained by Bessem and
Stevens (1984) and Osaka et al (1984), over "k“tgpel "d-type" walls, respectively; in
both cases, the locus of maximuncorrelation was similar to that found by Brown and
Thomas.

Within the roughness sublayefwo-point correlations close to and within the rbngss
are available from work on vegetation canopiesufe@.14 shows contours, in tkand
yz planes, of the spatial correlation at zero time delagi(X, v, 2,0, yr), from the "WT
wheat" canopy. The reference height was= h. There is good correlatiofr;; > 0.3)
within the region (-B < x<2h, 0<y<2h, -h<z<h,), a result which is consistent with the
rough estimates of eddy length scales made inase8t3.2 from single-point data. In the
Xy plane, the contours are roughly elliptical and slopliquely with the flow; the slope is
about 18° above the canopy and less within themano
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Fig. 3.14 - Contours af1(X, z, z,0, yr) in and above the “WT wheat” canopy.

A slightly different view is offered by space-tin®rrelations with vertical separation,
ri(0, y, 0,1, yr). Figure 3.15 shows these correlationsd@ndv, from "WT wheat," while
Fig. 3.12 shows similar correlations far v, wand also for temperatur@ from the
"Moga" forest micrometeorology experiment (New $oWales, Australia). The field data
in Fig. 3.16 are typical of several recent foresbtilence experiments (Gao et al 1989,
Shaw et al 1989). The agreement between wind tuammetlfield results underlines one of
the themes of this review, that experiments onraaitegetation and laboratory roughness
can provide complementary insights: field measurémeith sonic anemometers offer an
unambiguous resolution of all three velocity comgais which is not achievable in
laboratory roughness sublayers, whereas laborategsurements (Fig. 3.15) offer higher
measurement density and reproducibility than telkel fi

A striking feature of Figs. 3.15 and 3.16 is thi#edlence in the correlation functions foy

v, w,andé. Forv andd, and to a lesser extent forthe maximum correlation occurs at a
time delayr which increases as the height separation increasesistent with Fig. 3.14
and the Brown and Thomas (1977) result. It folldinat the motions dominating the w,
and @ correlations are inclined structures leaning witle shear. Fow, however, the
maximum correlation occurs with zero time delay tlsat organized fluctuations nare
aligned vertically, both within and above the rongks. The region of strongcorrelation

is also more localized than for w,or 6. As with other features of; these results agree
well with smooth-wall data: Antonia et al (1988ufa that the maximum correlation
over a smooth wall occurs at= 0 for a wide range of botykx andy, again implying a
vertical alignment of organizedfluctuations.
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Fig. 3.15 - Vertically separated space-time cotiatesr (0, y, 0,1, yr) in and above the
“WT wheat” canopy.

Fig. 3.16 - Vertically separated space-time cotiatesr,(0, y, 0,1, yr) in and above the
Moga forest canopy.

In summary, two-point correlation functions confimmall similarity above the roughness
sublayer, and yield eddy length scales, orientatiamd convection velocities both above
and within the roughness sublayer. However, theyamly weak indicators of the flow

fields associated with organized motions; otheetgp analysis are required to elucidate

these.
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3.4.2 Manifestations of organized motion

Organized motion is manifested in a variety of dqu@serent features or structures; for
example, Kline and Robinson (1990) identified eityppes of structure in smoothwall
boundary layers. Here we focus on four manifestatiof organized motion: (a) low-speed
streaks (mainly a smooth-wall phenomenon); (b) tejas and sweeps; (c) ramp-jump
(sawtooth) structures in velocity and temperatugeas; and (d) large-scale, outer-layer
motions. Of these, (b) and (c) have received mibsh@on in rough-wall work.

(a) Low-speed streakKline et al (1967), Kim et al (1971) and many swextiag workers
recognized low-speed streaks associated with stesanvortical motion in the smooth-
wall inner layer ¥. < 100). This body of work has also identified a '&iurg process" in
which the streaks are cyclically formed near thd wad ejected into the overlying flow.
The whole phenomenon is often presumed to be gengal condition of the smooth-wall
turbulent boundary layer.

The existence of low-speed streaks in rough-walundary layers is much more
problematical. They are observed over certain roughs: The flow visualizations of Liu
et al (1966) and Osaka and Mochizuki (1987) haveaked low-speed streaks on narrow-
cavity bar ("d-type") roughness, with the streaisring and bursting continuously at a
pseudowall defined by the tops of the bars. Wittrease in the gap spade { Iy)/h, the
streaky pattern disappeared, to reappear at lidghlf)/h in the reattached flow region
between the bars. It is probable that these lowedpstreaks are formed when the
barroughened surface (or some part of it) acts miyeedly like a smooth wall. In contrast,
the near-wall flow over most rough surfaces is istudoed by the roughness elements that
longitudinal low-speed streaks are eradicated,tressed by Liu et al (1966). However,
there is still a possible rough-wall counterpartdbleast some aspects of the smooth-wall
"bursting process," as the following observatiomsvs.

(b) Ejections and sweep§&rass (1971) used hydrogen bubble flow tracershagit-speed
motion photography to obtain both a visual and angjtative description of a free surface
channel flow for three types of surface conditismooth, transitional, and fully rough.
The roughness was made of close-packed roundedlegeblb diameter 9 mm. The
visualizations of the rough-wall flow clearly shadvthe fluid ejection and inrush (sweep)
previously identified in the "bursting process” tfosmooth wall. Grass concluded that the
inrush and ejection events were present irrespeafvthe surface condition, but noted
differences in these events between smooth-wallrangh-wall flows. For smooth-wall
flows the ejection sequence draws on viscous sablayid with an embedded structure of
low-speed streaks, whereas for rough walls the ceodior ejected fluid is the low-
momentum fluid trapped between the roughness elem@&mass noted that over a rough
wall the ejections could be relatively violent, igjected fluid "rising almost vertically
from the interstices between the roughness elemidtésalso observed that the ejections
were often coherent and identifiable through muicthe flow; in contrast, coherent inrush
or sweep motions were confined to the region cloghe wall.

A quantitative measure of the relative importantejections and sweeps is provided by
guadrant analysis, introduced for smooth-wall fldiallace et al 1972, Lu and Willmarth
1973, Brodkey et al 1974) and later applied to wgll flows by Nakagawa and Nezu
(1977) and Raupach (1981) in the laboratory, Arst@¢hB77) and others in the atmospheric
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inertial sublayer, and Finnigan (1979a) and Shaal €1983) in the atmospheric roughness
sublayer over field vegetation. In this techniquestantaneous events are defined by
quadrant in theuv plane, as outward interactions, ejections, inwartkractions, and
sweeps (the first, second, third, and fourth quatdrarespectively), with the total stress
equal to the sum of the conditionally averaged rdontions (denoted by double angle
brackets) from each quadrant:

uv=((uv), +((uv)), +((uv)_ +{(uv), (3.41)

Nakagawa and Nezu (1977), using an open-channel Watv over glass-bead roughness,
made several significant findings: (1) Sweep everts more important than ejection
events for momentum transfer close to a rough wailh the sweep-toejection ratio
«UW>4/«<UW>; increasing with decreasing height and increasoughness; (2) the events
dominating momentum transfer are highly intermittand occupy a small fraction of the
time, with the fraction decreasing with decreadiegght and increasing roughness; (3) a
cumulant-discard analysis, using a third-order Gf2marlier joint probability distribution

for u andv, can account for the relationship between the quedtacomposition ouv
and the normalized third momentswéndv. This last result provides a link between the
organized motion of the flow (as quantified by qgued analysis) and the turbulent energy
budget (3.35), through the turbulent transport teutnich involves vertical gradients of the
third moments. Raupach (1981), with wind-tunneladiiom a smooth surface and five
cylinder-roughened surfaces of progressively irgrgaroughness density, confirmed the
importance of sweeps near rough walls and used géaka and Nezu's cumulant discard
analysis to relate the normalized third velocitymaemts to the difference between sweep
and ejection contributions to stress:

({uv)), ~{{uv)

_\ 72 = 037M,, = -075M,, = 073M, = —063M (3.42)
uv

where M;; are the normalized third moments or skewnesses.cbhstants in (3.42) are
experimental, derived from measurements throughbet smooth-wall and rough-wall
flows including the region within the roughnesst lary similar values emerge from the
cumulant-discard theory. Later measurements ham@rowed that (3.42) also applies in a
smooth-wall boundary layer, but only if the Reyroldumber is sufficiently large. For
vegetation, the early work of Finnigan (1979a) twé small data set) was followed by
Shaw et al (1983), who applied quadrant analysisitioulence data from a corn canopy,
finding «uw>4/<«cuw>, values of about 2 near y i and higher within the canopy, thus
confirming that sweeps dominate the momentum teansfose to and within field
canopies.

One dramatic visualization of the spatial structafesweeps in a rough-wall boundary
layer is the phenomenon of "honami,” or travelingpdvwaves in cereal (wheat, barley,
rice, grass) canopies. For one engaged in researdfoundarylayer turbulence, watching
these waves is time well spent. The phenomenowomdmi was named and first studied by
Inoue (1955), and has since been investigated taild®y Finnigan (1979a, b). He found
that the waves are initiated by gust fronts, or egyge moving across the canopy at
convection speeds substantially greater than tbal lmean wind speed. Each gust, as it
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advances, bends over a patch of stalks which undsrgamped oscillation (typically for
about two cycles) after the gust has passed, tleadicg the impression of a wave moving
through the canopy. By studying motion pictureswalving canopies and by analyzing
short-time, vertically separated, space-time cati@hs, Finnigan found that the
streamwise separation between gusts was alie8h,5close to the valueh8 inferred by
several spectral and correlation methods for tipec#y streamwise separation between
quasicoherent eddies.

(c) Ramp-jump structures in signal€hen and Blackwelder (1978) observed correlated
ramp-jump (sawtooth) patterns in temperature sgyttaoughout a smooth-wall boundary
layer, which they suggested to be a direct linkveen the wall region and the outer layer.
This suggestion should be equally true in a rough-woundary layer. Indeed, such
patterns were first observed in the (definitely glowwall) atmospheric surface layer by
Taylor (1958) and Priestley (1959), though the terajure structure in many of these early
observations was largely determined by free comwectther than thermally near-neutral
shear turbulence. Nevertheless, for moderatelyablestconditions in the atmosphere,
Antonia et al (1979) concluded that the observedilaiity between laboratory and
atmospheric ramp-jump temperature structures shmeiliciterpreted as the signature of an
organized large-scale sheardriven motion, rathan #is a consequence of the buoyancy
field (which, of course, also produces large-saaiganized motion). Wyngard (1988)
reinforced the dominance of shear turbulence dio$ke surface, even in strongly unstable
atmospheric boundary layers.

Many subsequent observations have confirmed thapjtanp structures are universally
observed in both rough-wall and smooth-wall boupdayers, in both the atmosphere
(over land and sea) and the laboratory, and alsovétocity components as well as
temperature (for example, Antonia and Chambers ,18hA8nia et al 1979, Phong-Anant
et al 1980, Antonia et al 1982). The velocity amchperature signals yielding the two-point
correlation functions in Figs. 3.14-3.16 all exkehi these structures, to the extent that they
substantially determine the shape of the corralatimctions; Figs. 3.14-3.16 therefore
indicate that the ramp-jump structures extend tinéoroughness itself. Further unpublished
wind-tunnel measurements by us, over a slightlydtegravel roughness, have confirmed
that temperature ramp-jumps are observed cohertémtbyighout the whole (rough-wall)
boundary layer, fromy ktoy=9.

Direct observations from vegetation canopies indi@aclose association between ramps
and jumps in velocity components or temperature #re sweeps which dominate
momentum transfer within and close to the canopggnigan 1979a, b, Denmead and
Bradley 1985, 1987). A good example appears in Bifj7, from a forest experiment at
Camp Borden, Ontario, Canada (Gao et al 1989, Séiawl 1989). This shows the
ensemble-averaged potential temperature field fortdmperature ramp-jump events
during a 30-min run in slightly unstable conditiprthe selection criterion being the
presence of correlated temperature jumps at sel@mlls within and above the canopy.
Temperature contours are plotted in theé ¢ plane (so that the horizontal axis
corresponds to ax axis with the frozen-field approximation), togethéth instantaneous
wind fluctuation vectors uV) (shown as arrows) from sonic anemometers. The
temperature jumps form a sharp, inclined microfronspace, dividing warmer, slower,
ascending air ahead of the microfront from a welirted region of cooler, descending,
faster-moving air immediately behind. There is atemse sweep motion just behind the
microfront neary = h; in contrast, the strongest motion at higher leygl~ 2h) is an
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ejection just ahead of the microfront. This is dgstent with the quadrant-analysis results
discussed above. The microfront itself, involvingemperature fall of about 1.2° in 3 s, is
somewhat smeared by the ensembleaveraging prosdssas even sharper in individual
realizations. During the analyzed 30-min run, tlfeehsembleveraged events occupied
33% of the time but accounted for over 75% of thattand momentum transfer, indicating
strongly that ramp-jump events coincide with thgamized motions which dominate the
transfer.

Although these results demonstrate that sweepstigs, and ramp-jump structures (or
microfronts) are closely associated, the spatiaticmship suggested by Fig. 3.17 must be
interpreted with caution: The relationship is basaca ensemble-averaged result and may
not apply instantaneously, largely because thereblseaverage is taken over a set of
twodimensional streamwise slices through structatesandom lateral displacements and
stages of evolution. Some of the threedimensiomzle is indicated by the work of
Robinson et al (1989), who found that, in a nunaycsimulated smoothwall boundary
layer, ejections and sweeps occur alongside qu&sirswise "legs" of A-vortices (see
next section), with sweeps most prevalent on thevand side of the necks of vortical
arches and ejections most common just upstrearbelod vortical arches.
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Fig. 3.17 - Vertical cross section of ensemble-aged temperature and fluctuating
velocity fields in Camp Borden forest.

(d) Large-scale outer-layer motionghe wall similarity hypothesis implies that orgaetz

motions should be the same in the outer parts afoimmwall and rough-wall boundary
layers, a contention supported by the availabla.dBfbe turbulent-nonturbulent interface
was first studied by Corrsin and Kistler (1955)anboundary layer developing over a
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corrugated rough wall. The properties of large-adtallges in the boundary layer, inferred
from ensemble-averaged velocity distributions cbaded with respect to the interface,
are similar over a smooth wall (Kovasznay et alQ)9nd widely spaced bar roughness
(Antonia 1972). The latter paper showed that therelayer similarity between these two
flows is also evident from profiles of mean velgaind a wide range of velocity moments,
further supporting the wall similarity discussiansection 3.2.1.

3.4.3 Inferred structure of the organized motion

The above manifestations of organized motion acty evident in flow visualizations or
turbulence signals with minimal conditioning. Innt@st, the complete structure of the
organized motion near a rough wall, as for anyuleit flow, is not immediately evident
in either point measurements or flow visualizatiang must be inferred from all the above
information (and more) by a variety of methods. ISunferences are difficult and
contentious at present; the form of the organizetion near both rough and smooth walls
is widely regarded as an unsolved problem. Nevksse we conclude the discussion of
organized motion by mentioning a few current vieiaps

A widely used, though not universally accepted, etddr the dominant form of organized
motion in a boundary' layer is the inclined horseshhairpin or A-vortex, sometimes
identified with the inclined double-roller eddy ®bwnsend (1976); we will refer to this
structure as a A-vortex. Such a structure was ¢#teatly deduced long ago by
Theodorsen (1952) and Hama (1963), inferred froro-paint velocity correlations by
Townsend (1976), and identified in smooth-wall flevgualizations by Falco (1977) and
particularly Head and Bandyopadhyay (1981). Nunaérsupport came from the direct
numerical simulations of smooth-wall fully developehannel flow by Moin and Kim
(1985). In a review of rapiddistortion theory, 3b\{il987) concluded that the total
turbulent kinetic energy in a boundary layer istitianed in the ratio 60:20:20 between A-
vortices, transverse vortices (possibly identigahlith the loops joining the "legs" of the
A-vortices at the top), and fine-scale turbulenmegent as a result of the stretching, spin-
up and decay of the A-vortices). Perry and Chor®$2) used a hierarchy of A-vortices to
construct a detailed theoretical model of a smaedh-boundary layer, which predicts
realistic mean velocity profiles, second velocitgments and spectra.

Despite the popularity of the A-vortex model, italsnost certainly an oversimplification.
Direct numerical simulations of smooth-wall boundiyer and channel flows (Robinson
1989, Moin and Spalart 1987) indicate that manyotiipes of vortical structures are also
present besides A-vortices. The near-wall region € 100) is dominated by
guasistreamwise vortices with an outward tilt, vetaer spanwise and 45° vortices are more
likely to occur in the outer region. Robinson (1989und that evidence for the dominance
of particular forms such as horseshoes, hairpind,s® on is not yet conclusive. Despite
these caveats, the A-vortex model is a simple pciuth a degree of theoretical support,
experimental verification, and predictive power @otilable from other models, so we
shall continue to base the present discussion dribun

Almost all of the above evidence on vortical stames conies from smooth-wall boundary
layers. However, the wall similarity hypothesis lmp that the dominant organized
vortical motions in smooth-wall and rough-wall bdany layers must be similar, except in
the viscous or roughness sublayers. On this b#ssA-vortex model should describe
organized motion in the bulk of the rough-wall bdary layer (in and above the inertial
sublayer), with similar caveats as for a smooth-lwalindary layer. One direct piece of
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supporting evidence, from a rough-wall channel fleswthe threedimensional velocity and
vorticity fields constructed by Grass (1983) frongitized marked-particle tracks: the
constructed vorticity field contained evidence o¥dértices, though their importance, both
in terms of frequency of occurrence and contributio the transfer process, could not be
established.

Finally, we return to a sharper form of the questposed in the introduction of this
section: how are vortical structures in the bulkie boundary layer (possibly A-vortices)
coupled to the nearwall motion in the roughnesdasal (for a rough wall) or the viscous
sublayer (for a smooth wall)?

Near the roughness, one expects to find organieetital structures in roughness-element
wakes which are absent in smooth-wall flow. For-tlimensional bar roughness, several
vortical structures have been observed in the ieaviietween elements, as reviewed by
Wood and Antonia (1975). For threedimensional roegs, Bandyopadhyay and Watson
(1988) proposed "necklace" vortices straddling ritlxeghness elements near their bases.
However, such proposals (especially in the threeedsional case) are necessarily rather
specific about roughness type, as the element dieteemines the nature of the wake. In
contrast, there is attraction in a mechanism fganized motion in the roughness sublayer
which is largely independent of roughness type smttividual element wakes, in part
because the wakes are often not the most energeticres of the flow (for vegetated
surfaces it is almost impossible to detect themissrete vortices), but also because of

the simplifying property of such a mechanism. Tlalofving "wake-independent”
suggestion centers on vegetation and similar tygfesoughness but may have wider
applicability.

Raupach et al (1989) postulated that the flow tieartop of the canopy is dominated by
the intense shear layer centered on the infleg@nt in U(y) neary = h (see Fig. 3.16a).
The length scale for the depth of this layerhis d, d being zeroplane displacement.
Associated with the inflection point is an intenswjscid (Rayleigh) instability leading to
rapidly growing, transverse vorticity perturbationgith a streamwise wavelength
determined byh - d (typically, the wavelength is about 30{ d) or 81). These motions,
together with subsequent, three-dimensional secgndstabilities, are the fastest-growing
perturbations near = h; and are therefore likely progenitors for theyudkeveloped, highly
energetic turbulence field neyar= h. This field retains as its length scale "signatuheit of
the original, inviscid, inflection-point instabyit The secondary instabilities lead to A-
vortex structures (Pierrehumbert and Widnall 1382yly et al 1988) within the roughness
sublayer, just as in the overlying boundary layis is consistent with the observations of
microfronts and lines of maximum twopoimtw, andd correlation within and just above
the canopy, similar to those in the inertial sublagnd above (Figs. 3.14-3.17). A similar
inflectional instability process occurs in a planmexing layer, leading likewise to a
turbulent length scale proportional to the locgkladepth (Wygnanski and Fiedler 1970).
This explains one attribute already noted in sac8a} and elsewhere: near the top of a
vegetation canopy, basic turbulence propertiesh(saag the ratioss/u, and s./u,, the
skewness profiles, and the turbulent energy budgspecially the role of turbulent
transport) tend to be more reminiscent of a mixaygr than a boundary layer.

This proposed mechanism is fairly easy to visudiarevegetation and similar roughness
where the element (leaf) length scales are smathpemed withh and horizontal
heterogeneity is relatively unimportant. For lalbora threedimensional and two-
dimensional roughness with element dimensions coabea withh, individual roughness
elements can generate strong wakes (for exampleanstvise vortices in the case of
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discrete three-dimensional roughness elements)hwiriay play a role in the transfer
process. However, there is almost always a strenigcal shear just above the elements, so
the effects of individual element wakes may wellcbasidered as superposed upon some
more general process such as that just described.

In conclusion, in order to understand the meaninthe work done and explained in the
next chapters, here we have attempted to placenwdtlsingle framework two bodies of
research which, till now, have been largely separatboratory and theoretical work on
rough-wall turbulent boundary layers, and microroatéogical studies in the atmospheric
surface layer. By combining insights from both d&l a fairly complete picture of the
rough-wall turbulent boundary layer emerges. Theoflyesis of wall similarity, that
rough-wall and smooth-wall boundary layers at sigfitly high Reynolds numbers are
structurally similar outside the roughness (or o) sublayer, is well supported by many
kinds of observation. The flow in the roughnesslaydr is more difficult to measure than
that in the overlying boundary layer, not only hesm of spatial heterogeneity but also
because of high turbulence intensities, which ohiee unacceptable errors with many
laboratory velocity sensors, including X-wire prebeHowever, careful measurement
techniques in the laboratory, using flying X-wireopes or coplanar triple-wire probes,
have eliminated some of these difficulties. Fotdfigegetation, threedimensional sonic
anemometers provide an unambiguous measure diral tvelocity components superior
to anything obtainable with current laboratory sgss Together, these techniques have
facilitated the exploration of the main propertefsthe roughness sublayer, including its
spatial heterogeneity, its turbulence structuréemms of velocity moments and second-
moment budgets, and the organized motion withinT. a surprising extent, these
properties are common across a wide variety oflioags types.

An important fundamental role for the study of rbuagall boundary layers is in tackling
the general problem of boundary layer turbulence i dominant forms of organized
motion. It is clear that conditions at the wall che drastically altered by roughness
without changing the main boundary-layer struct(oatside the roughness or viscous
sublayer) in any fundamental way. This providedrang clue about the selforganizing
properties of boundary-layer turbulence, which, wheoperly understood, will offer much
to the study of turbulence in general.
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4. Problem Formulation

In this chapter, we introduce the problem formulati First we present the governing
equation, then numerical method and the boundangittons used are discussed. We
conclude by describing in deail the immersed boundaethod used to simulate the
roughness.

4.1 Governing equations

The equations of conservation of momentum and fieasscompressible flow are

%+i(uﬁuj):—£%+vﬂﬂzui (4.1)
ot 0x P 0X;
ou;
=0 4.2
™ (4.2)

The large-eddy simulation equations are deriveanfr@.1l) and (4.2) by applying a
filtering operation (Leonard, 1974), defined as

f(x)= I f (x) [G(X, X ;Z)dx' (4.3)

whereG is a filter function with a characteristic IengTE, Applying filtering to both sides
of (4.1) and (4.2), one obtains

o, , 0 _19p

—+—(uu,) = +v D%u, 4.4
UL e . (4.4)
ou.
_ 1 = 4.5
o (4.5)

Here the overbar denotes the filtered quantitiedirihg the residual-stress ten35r

R _ _ .
Iy =uu; —u uj (4.6)
the anisotropic residual-stress tensor

Tijr = TiJR _% B—iJRJij (4.7)

and including the isotropic potion of the residstaéss into the modified filtered pressure
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E=5+%goni$ (4.8)

then (4.4) becomes

_ - P — or;
_'+i(ui uj) :—la_P-{-V |:|]:|2ui -y
X P 0X

j i i

(4.9)

This equation, together with (4.5), will be soladhis study.

4.2 Sub-grid scale model

A linear eddy-viscosity model is used to link tlesidual stress tensor to the filtered rate of
strain,

I

Iy =-20; S (4.10)

wherevr is the eddy viscosity, and the filtered rate odistis

— U ou.
S =%[Egi +a_JJ (4.11)
X, 0X,

The eddy viscosity is modeled as
v, =12[B=cN?[8 (4.13)

wherelsis the subgrid-scale length scale, which is takelet proportional to the grid filter
width, A = (AxAyAz)*®, and S is the grid-filtered strain-rate

S= (Zéj éij )]/2 (4.14)

In the current studyc is modeled by the Lagrangian Dynamic Eddy-Visgositodel
(Meneveau et al., 1996).

c=—T[tM (4.15)
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where( . andf wm represent the averageBlicL;> and M; M;;> along particle paths, and
are calculated as follows. Filsf andM;; are obtained from:

— = s
L, =u u; —u u, (4.16)
2850 2=
M, =a’A” S5, -A S5 (4.17)

where m denotes filtering by the test filter, and = Z/E is the ratio of the test filter
width to the grid filter width. TherR y andPuy are calculated as

P =LM, Pow =M;M, (4.18)
The new numerator and denominator of (4.15) a(nh&)‘h time step are obtained from:
lh =Rl (L, (4.19)
ww =R L e" ), (4.20)

where" = At" /(Atn +T”), Atis the time stepT is a time constant defined as

T" =158x(-827, 7 ) (4.21)

4.3 Time-advancement and discretization

The fractional time-step method (Chorin, 1968; K&rMoin, 1985) is used to solve the
governing equation (4.9) and (4.5). First the pretl value of the velocity field is solved
from the momentum equation without the pressurm.teé8econd-order Crank-Nicolson
time advancement is applied on the wall-normal auscand wall-normal subgrid-scale
viscosity terms. The explicit Adams-Bashforth tiedvancement is applied for all other
terms. For the-momentum equation,

{1—%&6%[(1/ +u] )]}ﬁ =u"+ At[g ) —% Fu”’lJ +%Ata%{(v +ur )aaiy} (4.22)

where
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F, :—aunun _aan\—ln _aanv—vn +i{(v+v{‘)£]+il(v+v$)ai}+

! ox ay 0z  0x ox | 0z
o ,ou") af ,ov' ] af ,ow"|| 10P"
—| Vr — + Vi — + Vi—||————
0x ox ay 0x 0z 0x L 0X
In analogy, forv-momentum
1-2at 2y +ur)lv=v" +At(§ Fr-t FV”‘lj st 9| (pun)2
27 9y 2 2 279 dy

where

Y ox ay 0z  Ox
o ,ou") o ,ow' || 10P"
—_ VT - |4+ VT - ||-=="
0x ay 0z ay p oy

and forw-momentum

F'=- ov'u’ - ov'V' - ov'w +i{(v +V7 )il +i!(v +V7 )i} +

{1_%Ataiy[(v + V_Ir_‘ )]}Vﬂ\/: Wn +At[g Fv\? —% Fv\?_lJ +%Ati{(l/ +V1r—])av_vn]

oy oy
where
Loow'd aw'v' aw'w' | @ ow' | d RY
Fo =-— - - +— (I/+I/T)— +— (I/+I/T)— +
ox oy 0z ox ox 0z 0z

o .ou") af ,ov'| af ,ow' || 10P"

v i ol i 4 el e B4 vl R

0x 0z ay 0z 0z 0z L ZX
After the prediction step, the Poisson equaticsoised

2ch+1 = ia_u_'

At 0x;

where® satisfies

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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, _
00, 0 | 7 0" |_00P (4.29)
0% 0X 0X; 0X; 0X;

in which

n

oP=P" -P (4.30)

The velocity is then corrected to obtain a divergefree velocity field

ut =g -ad® (4.31)
X

1

Second-order central ftierencing is used for all terms. For the convectigan, a
reverseweighting (or volume-weighting) (Ham et 2002) technique is used to interpolate
the velocity field to evaluate derivatives at aggired location. Define the averaging
operators:

—-—X

0}

_ (Xiwz - X )cDin+1/2,j,k + (Xi - Xi—yz)q)in—yz,j,k
i ikn - 2

(4.32)

and

_ Pl TPk (4.33)
ivjkn Xivy2a = X2

where @ is a staggered variable, and tkesuperscript denotes interpolation in tke
direction. Taking the convection terms in the u-neobnm equation for an example, the
convection term in the discretized u-momentum dquoas obtained as

a(uuj ) _ouu”
ox, X

I I

(4.34)

in which summation is applied for repeating sulpgcando denotes discrete ffierencing.

4.4 Boundary conditions
Periodic boundary conditions are applied in thengpse direction and for the outflow. At

the inflow, the recycling method is used. At theefrstream the same setup used in
previous studies of this flow (Piomelli et al., 20@e Prisco et al., 2007; Piomelli &
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Scalo, 2010) is applied here: a profile of theastreiise timeaveraged velocity is assigned,
and the mean free-stream wall-normal velocity conepd, V..(X) , is derived from mass
conservation (Lund et al., 1998)

v, =u_ 2% (5 —p)e (4.35)
ox 1)
and the irrotational condition
a—U + oV, =0 (4.36)
ay|, OX

whered” is the local displacement thickness #ritie domain height.

4.5 Immersed boundary method

Immersed boundary methods (IBM) are widely uselaiadle moving or deforming bodies
with complex surface geometries embedded in a flblaey do not require the Eulerian
grid to be body-conforming, since the no-slip boanydcondition is imposed on the
boundary surface by spreading boundary forces doEiherian cells. The IBM was first
introduced by Peskin (1972), who calculated thenany force on the Lagrangian grid
points as a singular function using Hooke’s lawd apread it on to the neighbouring
Eulerian cells with regularized delta functions. W& similar approach, Goldstein et al.
(1993) obtained the forcing function from a feed#banechanism. These approaches,
however, require some empirical parameters, and gt constraints on the time step or
the deformation from immersed boundary. Direct folations of the forcing function were
introduced by Fadlun (2000), who modified the deésized momentum equation so that the
interpolated velocity at the interface equals tbquired value, giving sharp interfaces.
However, the interpolation is easy to carry outyofdr simple and regular interface
geometries. Balaras (2004) extended the approacbrnplex geometries. In this study, to
represent the random roughness elements while anaiimg the simplicity of the Cartesian
approach, we use an IBM based on the volume-af-fyniproach. This technique was first
applied by Scotti (2006) to the study of roughnegh DNS.

The volume-of-fluid (VOF) IBM method was first inttaced by Hirt & Nichols (1981) to
study the interface betweerfferent types of fluid. In this method, the volumactions®

in surface cells are calculated (for incompresdibiiels) from a conservation equation,

‘L‘:’ +0 Eﬂcb\?) =0 (4.37)

then, the amount of fluid transferred from the tgesin cell to the downstream one is
calculated from the product df and the flux boundary area. This method is sinaie
effective. It describes immersed interfaces in a pwsmlinear sense, and ensures
conservation of mass for each type of fluid (witimservation of totab).
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In this study, the interface is between steadfaserroughness and a fluid; thus both the
time-derivative term and the convection term in3{}.equal zero. Instead, the volume
fraction of each cell occupied by fluid, is calculated in pre-processing. Note that, due t
the staggered grid arrangementfatient volume fractions are used for the three wgioc
components and the subgrid-scale viscosity. A fisdenposed on the right-hand side of
the momentum equation to reduce the velocity prtogaally to the solid volume in each
cell. This method is less accurate than, for irstanirect forcing (Fadlun et al., 2000); it
is, however, adequate for the present applicasimte the description of the rough surface
is only an approximation to real sandpaper. The iBlnposed by calculating the forcing
term

o

fr=—(1- q:)% (4.38)

after the prediction step. Afterwards, the predictstep is carried out for a second time

with the forcing term as the source term, and tloglifred intermediate filtered velocity is
obtained (taking the filteredsmomentum equation as an example),

{1—%6%{0/ + Oy )aiy}ﬁi = {1+ %a%{(v + oy )aiy}ﬁ” +

4.39
AtB(RHS“ ¥ fX“)—%(RHS“‘1+ f:*)} (4:39)
where
Rpg o uu _ouv' ou'w 10P
0Xx oy 0z P 0X
9 ou" | @ ou”
—|v+ov] ) — |+ | v+ DV | — |+
GX{( T) aX] 02{( T) 0z ] (4_40)

(‘Di V{_‘ai +(‘Di V{_‘ai +(‘Di V-Pal
0X 0x oy 0x 0z 0Xx

and, to accommodate the change of filter lengtbeills cut by the immersed boundaries,
the eddy viscosity in these cells is also redugeggrtionally to the volume of fluid.
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5. Model Validation

This chapter describes the validation of the modeth particular stress on the
implementation of the IBM, whose spatial and temap@ccuracy are analyzed. This is
done in two cases. First, a two-dimensional chafioel is studied, in which the channel is
tilted with respect to the wall, to investigate thehaviour of the IBM on immersed
boundaries that are not aligned to the cell bouadain a case for which the analytical
solution is known. Then, the flow over a stationayinder is studied to investigate the
average ffect of random cutting of grid cells by the immer&edindary, and the accuracy
of the method in an unsteady flow. Finally, an opbannel flows with a varying
roughness surface is studied to validate the roeggnmodeling within the LES
framework, and the grid resolution required for quge resolution of the roughness. The
results are compared to those obtained by Sc@figR

5.1 Tilted plane-channel flow

First, a two-dimensional, laminar flow in a chantiged with respect to the grid lines is
studied. A velocity profile is given at the inlerad convective outflow boundary condition
directions respectively, whetes the channel width. Three progressively refinegshes
are used to study the spatial accuracy of the suseheme compared to the analytical
result. The channel is tilted by 45° . Here theeremce length is the channel height 1,
and the reference velocity is the maximum velooiggnitudeVmax = 1 (WhereV = (F +
v?)¥). The Reynolds number, based loandVpax is equal to 1. A uniform mesh is used
throughout the domain; immersed boundaries ardeapf model the no-slip condition on
both walls of the channel.

The contours of the volume-of-flud and the velocity-magnitude contours are presented
in figure 5.1. The velocity is zero outside the @ boundaries, and within the channel a
parabolic profile is obtained. The magnified plétdd shows the non-zero values ®fat
the cells that are either cut by the immersed baogndr are outside the immersed object.
The magnified plot of velocity magnitude shows thalocity is non-zero at the cells that
are partly occupied by the immersed object.

To determine the spatial accuracy of the methoethufferent resolutions are studied
with a fixed time-step sizét' = 3x 10 (wheredt* = AtVmal ). The number of grid points
(in x andy) is 96x 125, 192x 250, and 384«500. The number of grid points used to
describe the channel-flow profile (perpendicular ttee center-line) is 12, 24, 48,
respectively.
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Fig. 5.1 - Contours of volume of fludl (top) and velocity magnitude (bottom) in the dlte
channel. Magnified plots of a region near the t@h are shown on the right. 86125 grid
points are used ixandy. The white lines mark the exact locations of tharmel walls.

The resulting velocity profiles are compared witle tanalytical profile in Fig. 5.2. We
observe two types of error: near the wall, the lip-eondition is not verified on the grid
cell intersected by the boundary; furthermore, ¢katreline velocity tends to be higher
than the analytical solution. The combination afsth errors yields first-order accuracy, as
shown in figure 5.3, in which the, andL.,, norms are shown for various grid resolutions.
The error norms here are averaged over the stresdinection.
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and its magnified plot (bottom).
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Fig. 5.3 - Spatial accuracy for the flow in a tiltehannel. The lines correspond to first and
second-order accuracy, respectively.

The first-order accuracy of the IBM is due to tteetfthat the VOF vyields a félised
interface, whose exact location can be determimdy to the order of the grid size. With
reference to figure 5.2, one notices that extrapaahe velocity profile from the last two
inner points to zero gives a virtual position o€ tivall that corresponds to a narrower
channel than the nominal one. This naturally yigliace mass is conserved) a higher
centerline velocity.

To clarify this issue, at eachlocation we computed the parabola that best ifita (east-
squares sense) the velocity profile (Fig. 5.4). Wen use the zero crossings of the
parabola to determine the “real” location of thellwandicated with a triangle in the
figure). If we compare the numerical solution wiltie best-fit parabola, we obtain second
order accuracy (Fig. 5.3); however, if we compdme diference between the “real” and
nominal location of the walls (Fig. 5.5), we obsethiat the dference decreases with first-
order accuracy only.
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The conclusion of this test is that the main limia of the VOF-based IBM method
comes from the difficulty in determining the exémtation of the interface. For problems
in which the geometry of the immersed boundarylmdescribed with high accuracy, this
limitation may be significant. In the applicatiotudied here, the flow over a rough wall,
on the other hand, the description of the boundaonly approximate, and this error is not
expected to ffect the results significantly.

Altough this problem is steady state, we demorssirafigure 5.6 that the solution depends
weakly on time-step size. This might be due totime-dependence of the forcing defined
for the IBM. As At* reduces asymptotically to zero, the error appreadn asymptotic
non-zero value, with the “real” location of the Wapproaches the one corresponding to
zero -At".

Error norms

At

Fig. 5.6 - Dependence of the error on the time steptilted channel. The error is
defined as the ffierence from the case with smallest time-step size.

5.2 Flow over a two-dimensional circular cylinder

To study the flow over a general shape describedthgy immersed boundary, we
investigate the use of IBM in simulating a statignavo-dimensional cylinder. Uniform
free-steam velocity in the-direction is assigned at the inflow. At the ouflahe
convective boundary condition is applied. Free-blijundary conditions are used for both
the top and bottom boundaries. The reference lesgthvelocity are the cylinder diameter
d and the uniform inlet velocity.,, both of which are set to a unit value. The donsi®,
49d] and [0, 6@] in x andy, with the cylinder at [@, 30d]. The Reynolds number based on
d andU. is 20.

To carry out the grid refinement study, two resols are used (Table 5.1). Grids are
stretched in botlx andy directions. Close to the cylinder (8.4x& < 10, and 29 /d <
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31) the mesh is uniform and takes the smallestevatiross the domainx = Ay = Amjn.
The grid starts to be stretched outside of thigoregvith a stretching rate less than 3% for
23 <y/d< 37 and 5.5 x/d < 16.5. A constant time-stefi* = At U,./d = 1x 10 is used in

all cases. In Table 5.2, the present results angpaced to those in the study by Taira &
Colonius (2007), where a direct-forcing immerseduritary method was used, with
domain size [-30, 30d] x [-30d, 3Qd], and the cylinder at [0, 0]. Also the experiménta
studies by Tritton (1959) and Coutanceau & Boud®¥{) are listed. The size and shape
of the wake is characterized by lengths, b, and 6 , which are illustrated in figure 5.7.

Case B Case A Taira B Taira A
My % Ty 400 x 500 300 = 420 300 x 300 150 x 150
Anmin 0.02d 0.04d 0.02d 0.04d

Table 4.1 - Grid resolutions used in cylinder flsimulation
compared to previous simulations (Taira & ColonRE&07).

Fig. 5.7 - Definition of the characteristic dimemss of the wake structure.

The drag coefficient is defined as

F

T l207A G-

where the reference aréas taken to be x 1 in the current two-dimensional flow, akg
is the total drag force summed within the two-digienal domain with unit depth,
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Fo=[ fav (5.2)
\%

whereV is the whole domain area afids the local forcing imposed by the IBM,

2 2
X:%+ai/+l%—va_g—va_\2/ (53)
ox 9y pox  ox oy

In general, the results match each other very Wélé grid resolution slightly influences
the characteristic lengths of the cylinder wall.is the least sensitive to resolution, while
there is a 2% increase fafd and a 2% decrease fiddl from the coarsest case to the finest
case. Both simulations give higher valuesuafandl/d than the experimental resul&;in
this study is systematically higher than the refeeenumerical and experimental results by
about 10%, probably because of the error due tosthearing ffect of the virtual
boundary. This error slowly decreases as the nsestfined.

Case B Case A TairaB Taira A C.B.expt. T. expt.

' 2.23 2.26 2.06 2,07 — 2.09
a/d 0.37 0.36 0.37 0.39 0.33 -
b/d 0.44 0.44 0.43 0.43 0.43 -
1/d 0.a97 0.99 0.94 0.97 0.93 -

[ 446" 45.0° 43.3° 14.1° 45.0° —

Table 5.2 - Grid convergence study on the flow @vetationary cylindert” = 0.0001.
Here, “C.B. expt.”, and “T. expt.” Indicates exprantal studies by Coutanceau & Bouard
(1977) and Tritton (1959).

It is shown again here that the steady solutioreddg on the time step. Calculations were
carried out for the grid of Case D, wittt* = 0.0012, 0.0003, and 0.0001. The results
reported in Table 5.3 show somffeet of time-step, which changes the flow-field l#ng
scales by approximately 2% over the rangeftbfconsidered. For steady-state problems,
this dependence is built into the formulation af W¥OF-based IBM. Aglt* goes to zero, in
any cell with® < 1 the velocity eventually goes to zero too. s tcase, the virtual
boundary is no longer smooth, but becomes pixellatéth a scale proportional to the grid
size; this increases local forcing, and consequdetids to higher values @4 Such
effective roughness may exert a visible influenceamihar flows. In turbulent flows,
however, in which local grid size is supposed tosbsller than the viscous sublayer
thickness, it will still result in a hydrodynamigabmooth surface. Besides, the drag force
from the rough wall in the study of turbulent boangd layers in the next chapter is
calculated from global momentum balance for eactticad slice of the domain; this
approach decreases the influence of local erraxdiroby the IBM. Therefore, the error in
Cq as is found in the current testcase could be densi negligible in the discussion in
chapter 6.
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Af* 00012 0.0003 0.0001
Cy 2.19 2.25 2.26
a/d 037 0.3% (.38
h/d 0.44 0.44 0.44
I/d 097 0.98 0.99
o) 45.0° 45.0° 45.0°

Table 5.3 - Influence oft on cylinder wake and drag coefficient with theotagon in
Case A.

Fig. 5.8 - Iso-surface @b (coloured byy/h) showing a section of the rough wall used in
the open-channel testcase, witk 0.04. Hereb = 0.9.
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5.3 Rough-wall channel flow

To validate the roughness simulated by the IBM, #ndarry out a grid-resolution study,
we perform LES of channel flow with roughness. Haneopen channel is chosen in order
to reduce the domain size required. Periodic boyndanditions are applied in the
spanwise and streamwise directions; and the stresampressure gradient is constant
through out the domain; a free-slip boundary coadits used for the top boundary. At the
bottom, roughness elements are modeled using e IB
We use the virtual sand-paper roughness model peabby Scotti (2006): the sandgrains
are represented by uniformly distributed but raniyooniented ellipsoids of the same size
(larger than the cell size) and shape. Only onarmater, the equivalent sandroughness
heighths, is needed to describe the roughness geometndiatribution, with the semi-
axes of the ellipsoids set g, 1.4hs, and 2hs, and a separation oft2 between centers of
neighboring ellipsoids in streamwise and spanwisections, (i.e., the bottom wall is
discretized into tiles of the sizel2x 2 hs, and each of them contains a roughness element).
The roughness heiglht; is chosen to be 0.0R50.03, wherel = 1 is the half-channel
height. Sincehs alone can describe the roughness surface, frorm berwe call it
“roughness height” for simplicity and denote it hy The iso-surface of the volume
fractions®, defined in section 4.5, in particuldr= 0.9, withh = 0.04 on a section of the
bottom wall is presented in figure 5.8, which shake shape and distribution of roughness
elements.
Scotti’'s model of roughness is very useful, siratesfies the following requirements:

— ltis characterized by a small set of parameters;

— Itis easy to implement numerically;

- the effects on the bulk properties of the flow ¢ealy defect, friction

coefficient,...) is known a priori;
— the boundary layer has properties that match obsens.

We want to remark that in Scotti's model of rougtsi¢he volume fraction is calculated
once for a given cartesian grid and roughness hajgh is then used to include the effect
of the rough boundary at each time step basedefotlowing procedure:

1) compute the intermediate velocity field whiclcludes the effects of advection and
diffusion;

2) multiply the intermediate field b$ to include the effect of roughness;

3) calculate the pressure field necessary to prdipeccorrected intermediate field onto the
space of divergenceless fields;

4) apply the pressure correction to obtain theacigldield at the end of the time step.

The appeal of this method is that it is extremeippde to implement numerically. Of
course, it is possible to use an immersed bouna@tod to achieve the same result with
higher accuracy (sand grains, trees, etc.) whosdacgu is not known if not
approximatively. However, the computational costuidobe higher, without a clear
benefit, since we are interested in boundariesd(gaains, trees, etc.) whose surface is not
known if not approximatively.

The domain size we used in our open channd isl& 3l in X, y, andz directions; the
reference velocity and length scales arandl. The Reynolds number Rebased on u
andl, is 800, which gives" = 20 and 40 respectively fbg = 0.02% and 0.0& A uniform
mesh, with constant step, is used in the streamavidespanwise directions.
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The situation is different for thedomain: here we want to focus on the rough walhde
this region must be solved carefully: we usegraesh which is uniformAy” < 1) within
the regiony < 1.5 (which includes the highest point of roughnesselats). Foly > 1.5,
Ay* increases with a stretching rate of less than R%ugh out the boundary layer with a
hyperbolic tangent behaviour.

Two progressively refined grid resolutions are camegd, together with the one used in the
DNS in open-channel flows in Scotti (2006).

Table 5.4 lists the number of grid points xiny and z direction), grid size in wall unit, as
well as the number of grid points per roughnesmetd, N and N, in the streamwise and
spanwise directions; they are defined, respectjadyd/1x and 2/4z

Mesh A B Scotti (2006)
Grid size 96 x152x96 192 x152x 192 386 x 2588
N (h=0.023) 0.8x1.6 1.6x3.2 257x7.72
N (h=0.09) 1.6x3.2 3.2x6.4 5.14 x 15.44
AX 50 25 15.2
AZ 25 12.5 5.2

Table 5.4: Grid size and grid resolution for eadsim compared to Scotti (2006)

Ay" (1) is less than 1 for all cases. Also, focusas given on N, since the roughness
elements are much better resolved vertically thay ire horizontally.

For smooth-wall flows, to resolve the spanwiseadtsein LES 4x" ~< 60 and1z" =< 25.

In the transitionally rough regime, the roughneesnents interfere with the Her-layer
production cycle, but do not completely destroythiys, the influence of roughness on the
forming of streaks is limited: the characteristiok the near-wall structures are still
comparable to those over a smooth wall. Therefwes expect that this near-wall flow-
structure constraint also applies to rough wallsesMes A and B both satisfy this
requirement. Another constraint is imposed by aarable description of the shape of the
roughness elements: it has been widely presentettheanliterature that theffects of
roughness vary with the element shape (as widedgrdeed in chapter 3). Table 5.4 shows
that the lower resolution, which marginally resaithe near-wall structures from the point
of view of the smooth-wall criteria, also descriltes shape of roughness elements, at least
marginally (e.g., N= 0.8 and 1.6 in Mesh A).

The grid-refinement study is carried out considgriirst- and second-order turbulent
statistics. For the mean flow, the roughne$sae is represented by the roughness function
AU*(y"), which is plotted againgt” in figure 5.9 for each resolution. It is cleartthath
mash A and mash B resolve well the mean momentwsorpition by roughness, and the
results obtained fit very well with Scotti’s.

From now on to compare the two meshes we consitgrtioe lowest roughness heidiit

= 20, for which the shape description is the maogical (the size of the roughness is
smaller).
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¥ Colebrook (1239)

| O Scotti (2006) DNS
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Fig. 5.9 — Grid refinement study: roughness functiceS and DNS results compared to
experiment results in Colebrook (1939).

Fig. 5.10 shows that, when the zero-plane displac¢this added to the y-axis, curves of
both the meshes collapse well with the DNS and $hmaall experimental results.

Thus Meshes A and B adequately resolve the mean flacould be either calculated as
the centroid of drag profile exerted by the rougimelements (Jackson, 1981), or obtained
by fitting measured mean velocity profiles to asedniorms (Bandyopadhyay, 1987).
Hered is calculated from the first method based on #@meptoral- and spatial-averaged
momentum equation (refer to Scotti (2006) for de}aand is found very close to 0.8or
both Case A and Case B, consistent with the vabt@ieed in Scotti (2006). This indicates
that the generalffect of drag force on the mean flow outside of theghness sublayer is
well resolved and our model is validated with Stotine.

In figure 5.11, the three components of turbuldunttéiation are compared to the smooth-
and rough-wall DNS results and the smooth-wall expental results from Wei &
Willmarth (1991). For 100 " < 500, both results obtained with Mesh A and MBsh
collapse very well with the reference data in thamsvise and vertical directions, while for
the streamwise direction the LES results is shighilver than the DNS and experimental
results.
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Fig. 5.10 — Mean velocity profiles foi = 20; comparison between grids.
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Fig. 5.11 — Influence of grid resolution on theogty fluctuations for LES of open

channel flow over a rough wall.
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Overall, the results satisfy the wall similarity gothesis proposed by Raupach et al.
(1991). The results also show that Mesh A resollesflow statistics well for the rough-
wall open-channel flow even with a lower resolutiblan Mesh B. Thus, one concludes
that for this given roughness model and conditi@tdeast one and two grid points per
roughness element in the streamwise and spanwisetidns, respectively, are required to
resolve the roughnesgfect on the first- and second-order statistics.

As the grid resolution increase, the change inlvesoroughnessffects on the mean flow
and turbulent fluctuations is not apparent, propahle to the nature of randomness for
this roughness model: a range of element shapeklwwooduce the samedfect outside of
the roughness sublayer. An accurate descriptioel&inent shape is not necessary to
resolve the time- and space-averaged roughrfésstseon low-order flow statistics for this
roughness model.
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6. Results

In this chapter we present the results of the stfdypen channel flows over smooth and
rough walls, where the dimension and geometry & fatches, together with the
roughness height, are the parameters we vary., Firgummary of all the cases is
presented, with an introduction of the problem getnd explanations regarding the
choices made; then, we describe and show the gepofdhe smooth-rough patches; after
that, the calculations of the zero-plane displacenfer developing flows and the wall
shear stress are described.

Finally, plots and figures of mean velocity, Reya®ktresses and turbulent structure are
shown and described, in order to understand coeipléte behavior of the flow.

6.1 Case setup

Here we present a summary of all the cases gederEbey are summarized in Table 6.1,
together with some important parameters.

Our goal was to maintain for all the cases &eund the value 800, with an error less than
5%, over the rough patches, in order to be abldota reasonable comparison. So, where
the Reynolds number is lower, for instance in tiRal Zase, the value indicated is the
global Re, evaluated through all the domain; we verified thray in the rough region Re
satisfies our requirement. Moreover, the, Reconstant for every case with the samge
which implies that the conditions over the rougkchas should not be very different from
the completly rough case, where, Beactually very close to 800.

From Table 6.1 one can see that the domain sirg dhe spanwise direction isn’t constant
for every case. In fact we used a bigger domairttfeh” = 40 cases, in order to obtain a
better sampling of the roughness: in fact, whenobt&in the 2d statistics, which means
that all the quantities are averaged in time anthénspanwise direction, we have a worse
sampling of the roughness for the cases in wiidk higher, and that leads to higher
fluctuations of our variables, in particular thelighear stress. To avoid this problem, and
to have the same number of roughness element® indinection, we used a double wide
domain whenh® = 40 (double tharh® = 20, so the number of roughness elements is
costant).

Cases R2B, R4B and R4S were used to analyze tbet eff the spanwise domain on the
results: case R2B was run with the same conditainsase R2, but with double wide
domain, and double number of point mdirection, in order to maintain the same
resolution. The same for cases R4S, R4 and R4Byhich thez domain andng are
increased by a factor of 2 every time.

For all the cases we respected the conclusioneofjtid size presented in section 5.3, in
order to resolve the roughness effect on the fanstt second-order statistics.

All the cases were run for more than 400 time yaiéfined a$/Uy, to achieve steady state
and to accumulate statistics. We started from mheosh case, then the final field was used
as an initial condition fon™ = 20, and so on for th&" = 40 cases. Statistical convergenge
is gauged by measuring the deviation of the tatass (turbulent and viscous) from a
linear profile; convergenge is deemed satisfactadngn the discrepancy is less than 0.5%.
The output sampling frequency was taken equal tom@ units.
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Case number of patches “h Re, Re domain X 1 X ne
S 0 0 16000 839 &l x 3 96x152x192
R2 1 19-21 12400 792 I8l x3 96x152x192

R2B 1 19-21 12400 801 | 8l x68 96x152x384
R4 1 38-42 10100 789 | 8l x68 96x152x192

R4B 1 38-42 10100 772 [ 81 x 12 96x152x384

R4S 1 38-42 10100 792 1%l x3d  96x152x96

2P2 2 19-21 12400 754 16l x3 96x152x192

2P4 2 38-42 10100 744 16l x 6  96x152x192
4p2 4 19-21 12400 776 16l x3 96x152x192
4P4 4 38-42 10100 765 6l x 6  96x152x192
8P2 8 19-21 12400 798 1%l x3d 96x152x192
8P4 8 38-42 10100 825 | 6l x68 96x152x192

Table 6.1 - Case summary with parameters.

6.2 Patches generation

In this section we described the geometry and tbegeding we used to obtain the rough
patches, which were used in the 2P2, 2P4, 4P2,8F2and 8P4 cases.

At first we generated the roughness with Scottisthnd, as explained in section 5.3: the
saind grains are represented by uniformly distedubut randomly oriented ellipsoids of
the same size and shape. In this way we obtaireeddimpletly rough cases (R2, R2B, R4,
R4B and R4S). In this section, for simplicity, wéliocus on theh® = 20 cases, since the
method used for the" = 40 cases is exactly the same. Figure 6.1 shiosvisb-surface of
@ (® = 0.9) for the R2 case; we can see that all tiaewbl is completely rough.
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Fig. 6.1 - Iso-surface @b (® = 0.9 ) coloured bw/U.,, for case R2.

After that, without generating new randomly oriehtlipsoids but keeping the same, we
mulitply the volume of fluid® obtained for the completly rough case by a fumct{g),
plotted in Figs. 6.2, 6.4 and 6.6 for, respectivebses 2P2, 4P2 and 8P2. Figs 6.3, 6.5 and
6.7 show the iso-surface ®f (® = 0.9) for the same cases.

Wheref = 1 ® is not modified in any way and the surface is shene as the completely
rough case. Wherke= 0, instead, the roughness is removed and we &amooth wall.
The transition between patches is realized withypelbolic tangent behavior, and the
slope is maintened the same for every case. Sireeamg using periodic boundary
condition in the streamwise direction, the positadrthe rough and smooth patches is not
important; thus the rough patches are placed imikielle of the domain.

For every patch-case, the section of the channalhaib rough is exactly the same as the
smooth section; that implies that half the domaismooth and half is rough.
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Fig 6.2 - Functiori as a function ox for the case 2P2.
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Fig. 6.3 - Iso-surface ab (® = 0.9 ) coloured bwU,, for case 2P2.
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Fig. 6.4 - Functiori as a function ok for the case 4P2.

Fig. 6.5 - Iso-surface @b (® = 0.9 ) coloured bwU,, for case 4P2.
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Fig. 6.6 - Functiori as a function ok for the case 8P2.

Fig. 6.7 - Iso-surface @b (® = 0.9 ) coloured bwU,, for case 8P2.
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6.3 Preliminary calculation
6.3.1 Calculation of zero-plane displacemert
The approach described in Scotti (2006) is usechlculated, except that the streamwise

flow development is also considered. First theantneous local drdgis calculated from
the governing equation:

f, :%+—a(quj)+a_6_i|:(v+|4)aui} 9 {(V"'VT)a_l:(j} (6.1)

ot 0X; ox;  0X; K _a_xi

i i

Then, its streamwise compondgpis averaged in both time and the spanwise dinecdad
Is used to calculatedifrom

f y(t.(x y))dy

108, v)ay

The result for case R2B is plotted in figure 6.8jck shows thatl/l remains around 0.8,
which is the same result obtained by Scotti (208@jgin, this result validates our model
and our results.

Howeverd/l is found to be very sensitive to insufficient stal sampling, as shown by
the scatter of the data. From here on we willdet= 0.8 through out the domain for
simplicity.

Note that, if we take for instance case R2B, the plotted in Fig. 6.8, and we averatdje
also in streamwise direction (which is exactly $totnethod to obtaiml/l), we obtain as a
resultd/l = 0.8168, very close to his value.
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Fig. 6.8 — Streamwise distribution @ in case R2B. The two red lines shdiv= 0.7 and
0.9.

6.3.2 Calculation ofzy,

In the present simulation, the drag force exertedhe rough wall is due to the sum of
viscous and form drags. Integrating the streamwisenentum equation from= 0 to the
top of the domainy =1, gives

| _
J-ay{VH/T }dy jfdy—
0

| | 2 2
a_u J- auu auv auw q __J- J‘ a u a y+ (6.3)

0

' L0, ov), o ou), af ow

I P el R B el dy

5 ax ay ox) 0z\ ' o0z az T ox
wheref, represents the drag force in the streamwise @reclue to roughness. Note that
this integration includes the solid part of the @m(beneath the top of the roughness
elements), where the right-hand side is zero thridhe left-hand side of (6.3) represents
the (local and instantaneous) stress on the rowdh #y(x,zt). Note that, the second term

on the left-hand side of (6.3) contains most offthren drag and the viscous drag; the first
term is nearly zero, since, under such roughnestemthe argument of the integral at the

| o
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bottom boundary is nearly zero due to the roughbésskage. The instantaneotscan
then be averaged in both the spanwise direction tand to get <,>. The friction
coefficientC; can then be obtained from

- _{n) (6.4)
bopw/2 '

as profusely described in chapter 2 (equation 2.14)

6.4 Description of the flow

In this section, we give a description of the flamd show the boundary layer quantities.
The goal is to describe, at first, the flow behavitar a turbulent boundary layer over a
smooth wall and a rough wall. Then, the patch casesntroduced and compared with the
previous cases, to show the influence of the geymiehe roughness height is the other
parameter which has been varied and its effecttherlow are shown. To help us in the
explanation of the flow behaviour we show locaéatnwise velocityr and contour of the
different terms that come out the momentum equation

6.4.1 Streamwise development af, and C; - smooth and rough cases

The streamwise development ©f , obtained as defined in (6.4), is plotted irufig 6.9
for cases S and R2. The smooth case was obtainegl th& vof method, as for the rough
cases, but settingg = 0 everywhere in the domain, in order not to hemgghness. The
result obtained is in accord with the classic sidorbulent open channel flow, at the
same Reynolds number, obtained without using thedme boundary method; thus our
technique to obtain the wall shear stress from nmbume equation (section 6.3.2) is
validated.

When roughness is introduced, the fluctuation€:o{which are due to fluctuations &)
are quite large in magnitude and high in frequeinegt line). We investigated the nature of
those fluctuations, and we saw that they are dwe pmoblem of sampling the roughness:
even if the ellipsoids, generated with Scotti’s Inoet, are randomly oriented, there are
some favored structures and locations, and the hroegp, averaged iz, is not
homogeneous.
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Fig. 6.9 - Streamwise development@ffor case S (black line) and for case R2 (red)line

In figure 6.10 the wall shear stregsand contour of volume of flui® for case R4 are
shown. In this figure, and in all the following oz, is nondimensionalized with the
densityp and the square of the bulk velocity, as defined in chapter @, which is a local
variable and a function of y, z, has been averaged in the spanwise directios plbssible
to see the strong relation betwegrand ®@: since the roughness is not perfectly random
and there are peaks and valleys, those same padkgalleys are found also in thg
streamwise development.

This phenomenon is more relevant for cases in whick 40, because the roughness
height is double and so there are also fewer ellidssper spanwise unit. That's why, in
order to reduce the fluctuations and improve thmeismg of the roughness, the main rough
cases withh® = 40 were computed using a bigger spanwise donwiih, I, = 6, as
described in table 6.1.
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Fig. 6.10 - Streamwise developmentghU,> and contour ofd (® = 0.8) averaged in
spanwise direction for case RA4.

The effect of the spanwise domain is shown in B, where domain, mean wall shear
stress and its standard deviation are shown fagscaR4S, R4 and R4B. We define the
standard deviatioa as

U=J%§Xx—uf (6.5)

i=1
where the mean value is defined as

N

X (6.6)

i=1

One can see that the standard deviation decreagethe increase of the domain, but the
decrease is not linear.

109



Case domain o <T3>

R4S 6x1x3 0.03 0.0062
R4 dxlxa 0.02 0.0061
R4B dxlx12 0.015 0.0059

Table 6.2 — Effect of the spanwise domain in thegtmess sampling.

To better show the global effect of roughness, filter 7, with wavelet transform.
Wavelets are mathematical functions that cut up d@db different frequency components,
and then study each component with a resolutioncimeat to its scale. They have
advantages over traditional Fourier methods inyamad physical situations where the
signal contains discontinuities and sharp spiké® flindamental idea behind wavelets is
to analyze according to scale.

Wavelet, exactly as Fourier transform, are lingagrations that generate a data structure
that contains logn segments of various lengths, usually filling @rahsforming it into a
different data vector of lengti'.2

The mathematical properties of the matrices inwblvethe transforms are similar as well.
The inverse transform matrix for both of them is transpose of the original. As a result,
both transforms can be viewed as a rotation intfancspace to a different domain. For the
Fourier transform, this new domain contains basnetfions that are sines and cosines. For
the wavelet transform, this new domain containserammplicated basis functions called
wavelets, mother wavelets, or analyzing wavelets.

Both transforms have another similarity: the bdsisctions are localized in frequency,
making mathematical tools such as power spectra ({moich power is contained in a
frequency interval) and scalegrams useful at pgkiat frequencies and calculating power
distributions.

Neverthless, the most interesting dissimilaritywesn these two kinds of transforms is
that individual wavelet functions are localizedsipace: Fourier sine and cosine functions
are not. This localization feature, along with wlat® localization of frequency, makes
many functions and operators using wavelets "spavken transformed into the wavelet
domain. This sparseness, in turn, results in a eurob useful applications such as data
compression, detecting features in images, andviegooise from time series.

Figure 6.11 shows the wall shear stress for casbdRare and after the filtering process:
the magnitude of the fluctuations has been redumeduantify this reduction the standard
deviation is indicated in the legend: decreases by half after the filtering process;
however, the local behavior of,, due to roughnesg maintained and only the highest
wavenumbers are removed.
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Fig. 6.11 -tw/pUy° for case R4 before and after the filtering process

In figure 6.12 the filtered, for cases S, R2 and R4, together with the frezastrvelocity

U, and the friction coefficien€; are compared,, increases passing from the smooth case,
to theh” = 20 case and again to the= 40 case, in accord to the fact that the highé¢heé
roughness, the bigger is the effect of viscosityttmcomputation of the wall shear stress.
U, increases as well with the increase of the roughhegght due to an upward shift of the
flow: the roughness creates a blockage for the ,flmlvich moves upward in order to
preserve the mass flux.
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Fig. 6.12 - Streamwise development of the nondioeasized wall shear stresgpUy’,
free-stream velocity,, and friction coefficientC; for cases S, R2, R4 after filtering.

From now on we will apply always our filtering pess and we will use the filtered wall
shear stress by default; in fact, the filteringnsilgis preferable because, as we will see in
the next section, it is closer tQ obtained from the log law assumption, in which libeal
fluctuations are very small.
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6.4.2t, from the log law assumption

At this point we compare the wall shear stressiobthfrom momentum equation and
filtered with wavelets, the one shown in Fig. 6.4#h 7, obtained from the assumption of
the log law: in fact, the standard approach touwate the wall stress in boundary layers
over rough surfaces is to assume that in the qveeigion

U+(y+):%Eﬂn(y+—d)+ B-AU*(h*) 6.7)

wherek is the Von-Karman constant (typically the valud10is used), 5 B < 5.5 a
universal constantAU" the roughness-dependent velocity defect (Fig.)6.48dd the
location of the virtual wall. Usually, experimentdta points are fitted to equation 6.7 to
determine appropriate values Bfd, AU™, andu, in an iterative method. And that is the
procedure we adopted to obtain a new streamwisela@went ofr,, fitting the log law in
the region 200 <y(— d* < 230. The two different functions are plottedFigs. 6.14 and
6.15 for two different cases. We can see thatbtained from log law is more stable, but it
can not capture the large fluctuations due to tlugihness. However, the interesting result
is that the mean value af within all the domain is the same for the two noel, with an
error less than 5%. This result allows us to say, ttor the completely rough cases, the log
law is valid through all the domain, our model ofighness agrees with existing data, from
which the roughness function has been built, aedptiocedure we used to obtajpfrom
momentum gives reasonable result.
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Fig. 6.13 - Roughness function8)” versush'.
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Fig. 6.14 - Streamwise developmentghU,> obtained by fitting the log law (red line)
and by the momentum equation (black line) for da2e
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Fig. 6.15 - Streamwise developmentghU,> obtained by fitting the log law (red line)
and by the momentum equation (black line) for da4e
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6.4.3 Streamwise development af, and C; - patch cases

In this section we analyze the streamwise developmkr, andC; for the patches cases,
which are the cases were the domain is partly mantl partly rough; the geometry of
this patches varies from one case to another gdylexplained in section 6.2.

The wall shear stress, for case 2P2 is plotted in figure 6.16, obtaineithvithe two
different methods explained. The interesting resuthat this time there is a discrepancy
between,, obtained from momentum and from the log law: ewé¢he mean values of the
two functions are the same, from log law is built from ara priori assumption (the
existing of the log law through all thedomain).z,, from momentum, instead, is obtained
from the balance of the momentum equation, thus #ensitive to the local variation of
such quantities as the pressure gradient, the ctimeeterm, the viscous term and the
reynolds stress term. From thjgswe can see that there is a huge peak just atetiaerding

of the rough patch, fax = 1.9. Note that the transition between patches is hoig, but
smoothed with an hyperbolic tangent function, aglared in section 6.2. This peak is
physical, as we can see from the momentum equegiars plotted in Figs. 6.17 - 6.19.

9_ ........... Er ............ _ ............ LR R R P RIS ;

log law
momertun |

Tw [P Us?

" i i i i i i i |
-1 0 1 2 3 4 4 B 7

X0
Fig. 6.16 - Streamwise development of the nondirioerdized wall shear stresgpUy?
obtained by fitting the log law (red line) and byetmomentum equation (black line) for
case 2P2.

115



i

] 0,5 1 IR 2 2,h 3 3,5 4 4.5 5 5.5 5

Fig. 6.18 - Reynolds stress term and viscous tarthe momentum equation for case 2P2.
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Fig. 6.19 - Forcing term in the momentum equatmmnchse 2P2.

From Figs 6.17 - 6.19 we can see thax at1.9 the momentum equation terms increase
suddenly (in absolute value) due to presence dajlmess, which introduces a drag force
against the flow; thus the wall shear stress irsggat the same location, with a local
behaviour that can not be seen from the log lawrapsion.

A similar situation occurs at the end of the royngitich, atx = 4.3: here the flow comes
across an adverse pressure gradient (APG) andpdbe relatively low Reynolds number
and high roughness height, it separates creatnegieculation region, which leads to very
low value ofz,. In fact, ourr, is averaged in the spanwise direction, but locatysomez
locations,r,, assumes negative value just at the the end afotlngh patch, as we can see
from Fig. 6.20: it shows the streamlises and thetauar of the streamline velocity? at 4 <

x/l < 6 andz = | for the case 2P2, together with the volume of 8didfor the same case in
the same streamwise location. The recirculatiomoregs clearly visible at the end of the
roughness, with negative valueliwhich leads to local negative valuempf

In figure 6.21 and 6.22 comparisons between theoimcase, the completely rough case
and the 2 patch case are shown. In Fig. 6124 20, while in Fig. 6.22h"= 40 for the
rough cases. We can notice that the 2 patch cdse/é® close to the smooth case in the
smooth region and close to the rough case in thghroegion. The only two irregularities
are in the transition regions smoot-rough patch emeyh-smooth patch, as observed
before.

In Fig. 6.23 - 6.25 friction coefficien€; and the free-stream velocity,, are plotted,
respectively for the 2 patch cases, 4 patch casésBgpatch cases; cases with different
roughness height are plotted together, to showeffect of this parameter. When the
roughness height is highey, andU,, increase, as we’ve already noticed in the comiylete
rough cases.

From these plots we notice that the patch caseaveein a pretty similar way: the peak
exists always at the beginning of a rough patchienohagnitude remains almost constant
in the differen patch cases; the same for the ysl& the end of rough patches. Hence the
influence of the geometry is little.
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Fig. 6.21 - Streamwise development of the frictoefficientC; and the free-stream
velocity U, for cases S, R2, 2P2. Blue lines show locatiomrswghness for 2P2 case.
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Fig. 6.22 - Streamwise development of the fricttoefficientC; and the free-stream
velocity U,, for cases S, R4, 2P4. Blue lines show locatiomswghness for 2P4 case.

Note that for the 4 patch cases and 8 patch casesveid the problem of sampling the
roughness using a phase space average along ¢aengiise direction: all the quantities,
which are already averaged in time and spanwisctitin, are also averaged along xhe
domain, with a space shift depending on the nunobeough patches. For instance, the
streamwise velocity for the 4 patches cases becomes:
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n, 1 n, n,
u0<x<—,y|==|u0<x<—,y|+u —+1<x<n,

(6.8)
u rr1<x<n, y|=u O<x<k y
2 "’ 2’

wheren; is the number of point in thedirection, indicated in Table 6.1 for every casee T
8 patches cases allow us to average even more, thieke are more patches:

n
uo<x<—,y|=
( 4 yj

n. n n 3[h,
u—'+1<x<—',y =u _'+1<X<_',y =
4 2 2 4

uﬂ+l<x<n =u O<x<i
4 i Y 2,y

u0<x<i +Uu &+1<x<ﬁ +
i 4 2

NI

n, 3 3[h
u —++1<x<—=,,y|[+u —-+1<x<n,y
2 4 4

(6.9)

Thanks to the phase average we can average thargamaarticular the rough domain,
the one which gives problem with the sampling, iorenpoint, still maintaining the main
behavior of the flow above rough or smooth patches.
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Fig. 6.23 - Streamwise development of the fricttoefficientC; and the free-stream
velocity U, for cases for cases 2P2 and 2P4. Blue lines sboatibns of roughness.
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Fig. 6.24 - Streamwise development of the fricttoefficientC; and the free-stream
velocity U, for cases for cases 4P2 and 4P4. Blue lines sboatibns of roughness.
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Fig. 6.25 - Streamwise development of the frictoefficientC; and the free-stream
velocity U, for cases for cases 8P2 and 8P4. Blue lines sbcatibns of roughness.

We can notice the similarities between the 2 patde and 8 patch case also comparing
the momentum equation terms from Figs. 6.18 anél Gcase 2P2) with following Figs.
6.26 and 6.27 (case 8P2). The influence and maimitd the different terms above the
patches are the same.
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Fig. 6.26 - Pressure term and convective termemtlomentum equation for case 8P2.

Fig. 6.27 - Reynolds stress term and viscous tarthe momentum equation for case 8P2.
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6.5 Mean velocity

In this section we show the mean velocity of th&clpaases in different locations, and
we compare them with the rough cases, with the saoghness heigth®, and the smooth
case, in order to study the effect of local rougisnen the flow. For rough cases, the
vertical location is shifted by the zero-plane thspmentd, as defined in (6.2), whild =

0 for smooth case. Both inner and outer scalingsused, although the inner scaling is
more interesting since we maintained Renstant for every case.

Figs. 6.28 shows the mean velocity plots for theatim case and the two completely rough
cases; we can notice that, under inner scalindilggare similar in the outer layer, except
for an offset depending on the roughness heighthEBtmore, the log law, represented by a
thin black line, is respected in all the cases.

Note that thex location is not indicated, since it doesn’t afféoe plots; Thus only one
position is sufficient to show the mean velocity fioese cases.
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Fig. 6.28 - Profiles of streamwise mean velocitydases S, R2, R4 with inner (left) and
outer (right) scalings. Thin black lines in theénrscaling represent the log law.
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Now we focus on the patch cases: Fig. 6.29 showsirther scaling for case 2P2,
compared with the completely rough case R2 anditheoth case S. In all the following
plots we decided not to consider the zero-planglaltement, since the value af is not
well determined in the transition region, wherasitneither 0 (smooth patches) nor 0.08
(rough patches) and it could bring to unphysical amsunderstood results.

Thex location of the plots are chosen through all themaio, with a step equal @6 = 0.5,

in order to study the effect of local roughness. &8B notice that over the smooth patch,
xlo = 0.5 and 1, the patch case fits well the smooth;dhsa the transition to roughness
begins and, at/o = 1.5, the mean velocity of the patch case is@pgring the one of the
rough case; this transition ends quickly, and/é&t= 2 the surface is completely rough and
the patch case collapses with the rough case.slipisrposition between case R2 and 2P2
is evident over all the rough domain, siné¢é = 4; then transition to smoothness begins,
and atx/o = 4.5, the patch case departes from the rough cAse/o = 5 the patch case
collapses again with the smooth one. We can natiaethe plots ax/o = 6 andx/o =0.5
are very close, since periodic boundary conditemesimposed and this process is repeated
every time.

A similar analysis can be done for cases S, R42&l (Fig. 6.30), where this time the
roughness height Is" = 40.

Figure 6.31 shows a comparison of mean velocitesdses S, R4, 2P4, the same of Fig.
6.30, with outer scalings, which give the advantdge the wall shear stress doesn’t affect
the results: we can see that in the outer layethie® curves collapse perfectly, at every
location. Instead in the inner layer we can notcstreamwise development of the patch
case, similar to the one observed under the irtsings.
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Fig. 6.29 - Profiles of streamwise mean velocitydases S, R2, 2P2 with inner scalings.
Thin black lines represent the log law.
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Thin black lines represent the log law.
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Fig. 6.31 - Profiles of streamwise mean velocitydases S, R4, 2P4 with outer scalings.

Finally, we focus on the number of patches, theogarameter we are studying: in figure
6.33 - 6.35 patch cases are compared. To makesanaae comparison thelocation of

the plots are different, since the position of plagches changed between cases. We defined
4 stations, with the same step, but shifted, ireotd study the smooth-rough and rough-
smooth transitions. The positions of the statiores summarized in fig. 6.32, where the
transition functiong are plotted for different cases. The precise pmsstiof the stations are
summarized in Table 6.3. Note that in the 4 ana@t8lpcases, the phase average has been
applied (equations (6.8) and (6.9)); hence, thexbien of the flow is the same over every

patches.
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Fig. 6.32 — Transition functiorfdor cases 2P2, 2P4 (above), 4P2,4P4 (middle) a@d 8P
8P4 (below) with indicated the positions of theistzs.

Case Station A Station B  Station C  Station D
x/0 x/o ) x/0

2P2, 2P4 1.125 1.875 4.125 4.875

4P2, 4P4 3.375 4,125 4.875 5.625
8P2, 8P4 1.5 2.25 2.25 3

Table 6.3 — Positions of the stations used in teamvelocity compare plots.
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From figure 6.33 we notice that thé = 20 cases are not influenced by the number of
patches: when the roughness is low, the three suageee very well over the smooth,
rough and transition domain. The situation is défe for theh® = 40 cases (Fig. 6.34):
here we notice that the 8 patch case doesn'tdi2tland 4 patch cases at the station A, at
the end of a smooth region, where we notice th#ttenbuffer layer the green line is lower
than the others, closer to the situation we haw awough patch instead of a smooth one.
We can say that the influence of rough patch fraquemore significantly affects the
ability of the flow to adapt from rough to smoothah from smooth to rough, since the
agreement with the other cases is respected abrst&t Hence, under the present
conditions that we used for these simulations,ctitecal number of patches is between 4
and 8, since for 8 patches the smooth and rougbrmeghange too frequently for the flow
to reach the smooth equilibrium status.
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Fig. 6.33 - Profiles of streamwise mean velocitydases 2P2, 4P2 and 8P2 with inner
scalings.
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Fig. 6.35 - Profiles of streamwise mean velocitydases 2P4, 4P4 and 8P4 with outer
scalings.

6.6 Reynolds stresses

In this section Reynolds stresses are shown arskipied, plotted againt both the normal
wall direction and the streamwise one.

At first a comparison between the smooth and theptetely rough cases is shown in
figure 6.36. Reynolds stresses are normalized Vaitlal u,. The x/0 parameter is not
indicated since it doesn’t affect the completelyosth and rough cases. A single large
peak is observed for the smooth case, and the todgniof the components are in
agreement with the smooth turbulent channel flogotli (section 2.6); for the completely
rough cases the peak is shifted and localizedtivinaer region inside the outer layer; This
indicates that for higlh the turbulence generation mechanism is noticealbdyed by the
roughness, and the near-wall roughness-inducedreadtirbulence motions meet the
inactive motions farther away from the wall.
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Fig. 6.36 - Components of Reynolds stress tensadses S, R2 and R4 plotted
againsty/d. The profiles are shifted for clarity.

For case 2P2 (plotted in Figs. 6.37 and 6.38 &trdiitx locations), we observe that, over
a rough patchx(6 = A andx/6 = F), the rough case collapses very well with the
corresponding completely rough one, and the Regnsttesses are very close; instead,
over a smooth patchw/p = C andx/o = D), the situation is more complicateduw=
component of Reynolds stress is lower than the mmase and extend in the same region;
other components, in particulaww>, have got higher stresses than the smooth oag: th
extend in a wide region (both in the inner and oiager), like the smooth case, but the
magnitude is higher. This indicates that the flosvaiffected by the presence of the
roughness, which increases the stresses alsolwmventooth region.

Similar results occur in case 2P4, plotted in fegGr39 - 6.40.
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Fig. 6.37 - Components of Reynolds stress tensadses S, R2 and 2P2 plotted
againsty/d. The profiles are shifted for clarity.
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Fig. 6.38 - Components of Reynolds stress tensadses S, R2 and 2P2 plotted
againsty/d. The profiles are shifted for clarity.
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Fig. 6.39 - Components of Reynolds stress tensadses S, R4 and 2P4 plotted
againsty/d. The profiles are shifted for clarity.
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Fig. 6.40 - Components of Reynolds stress tensadses S, R4 and 2P4 plotted
againsty/o. The profiles are shifted for clarity.
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In the next figures we show contours of Reynoldsssies, normalized witl,., through
thex andy domain for the patch cases. Also a streamlingisgairomy/d = 0.2 is plotted

in every components. At first the threé = 20 cases are plotted in Figs. 6.41 - 6.43 with
the same scale in the legend in order to comparadbults. Then the" = 40 case are
shown, whit a higher scale, since Reynolds streasesin general, higher through all the
domain.

We can see a high increase oig component above the rough patches; this compasient
the most affected by local roughness. Also the><component has a very interesting
behavior: it suddenly decreases just before a r@agbh, assuming also negative values,
and, in a similar way, it increases very rapidlytreg end of the patches. This increase is
due to recirculation regions and possibly sepanatiocthe flow, as shown in Fig. 6.21. The
phenomenon is emphatized for thfe= 40 cases, plotted in Figs. 6.44 - 6.46.

We can also notice that the streamiles, startingdat 0.2, are deflected, since the flow
shifts upwards over the rough patches due to bieakage effect.
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Fig. 6.41 - Contours of Reynolds stress tensor @yrapts for case 2P2. Black lines are
streamlines ag/d = 0.2.
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Fig. 6.42 - Contours of Reynolds stress tensor @rapts for case 4P2. Black lines are
streamlines ay/d = 0.2.
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Fig. 6.43 - Contours of Reynolds stress tensor @yrapts for case 8P2. Black lines are
streamlines ay/d = 0.2.
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Fig. 6.44 - Contours of Reynolds stress tensor ayrapts for case 2P4. Black lines are
streamlines ag/d = 0.2.
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Fig. 6.45 - Contours of Reynolds stress tensor @yrapts for case 4P4. Black lines are
streamlines ay/d = 0.2.
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Fig. 6.46 - Contours of Reynolds stress tensor @yrapts for case 8P4. Black lines are
streamlines ag/d = 0.2.

6.7 Turbulent structures

The roughness effects on flow reversion in the wesll region can be illustrated by
instantaneous contours of the velocity fluctuationis a plane near the wall. Figures 6.47
- 6.48 compare contours in the smooth case (S) and the completelgh cases (R2 and
R4). The wall-distance of the planes are chosdheasame location (in wall units) in the
buffer layer, which extends in the region 5y&< 30; in the rough cases the zero-
dispacemend is taken in account for the for tlydocation.In the smooth case, we observe
the well-known establishment of very elongatedadtseof high-low streamwise velocity,
an indication of the stabilization of the inner éayand the reduction of the burst cycle.
When the roughness is present, the elongated gtstalctures are barely established and
are not so clear; they are significantly disrugtgdocal disturbance an the generation of a
turbulent spot is observed in Fig. 6.48. In thehbigt rough caséh{ = 40) the structures
are difficult to see and the velocity fluctuaticagpears more disuniform.

The patch cases are shown in Figs. 6.49 - 6.5Iphgerve the local disturbance induced
by the roughness over the rough patches; theneegren where the flow is more turbulent,
the velocity fluctuations are higher in absolutéueathese regions are easily visible when
the roughness is higher. Only when the frequendh@patches is too high (8 patch cases)
the separation between smooth and rough regionstiany more easy to observe. Note
that one should take in account the change indhgth scale: the viscous length scale,
vlu,, increases as a result of the decreasg @fer the smooth patches. Also the zero-plane
displacement is actually varying from O over the smooth patctee6.08 over the rough
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ones. In figures 6.49 — 6.51 we considér= 0.08 (as in the completely rough case), but
we have to remember that, in the smooth patchesreveisualizing the velocity in a lower
level of the buffer layer, sina&= 0. That can bring to a lower velocity in thesgions.

The significance of the roughness disruption isedeined by the importance of the

roughness-induced burst cycle, which depends omxtension of the roughness sublayer
into the buffer layer.
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Fig. 6.47 - Contours of streamwise velocity fludtoasu for case S (in the plang =
10 — 20).
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Fig. 6.48 - Contours of streamwise velocity fludtoasu for (a) case R2 and (b) case R4
in the planey - d)* = 10 — 20.
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Fig. 6.49 - Contours of streamwise velocity fludtoasu for (a) case 2P2 and (b) case
2P4 in the planey(- d)* = 10 — 20.
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Fig. 6.50 - Contours of streamwise velocity fludtoasu for (a) case 4P2 and (b) case
4P4 in the planey(- d)* = 10 — 20.
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Fig. 6.51 - Contours of streamwise velocity fludtoasu for (a) case 8P2 and (b) case
8P4 in the planey(- d)* = 10 — 20.

6.7.1 The Q-criterion

Turbulent structures can be visualized with thecalbed Q criterion. The easier way to
visualize turbulent structures is looking for higbrticity modulus w: it's a possible
candidate for coherent-vortex identification, esgc in free shear flows. For instance,
Comte et al. (1998) extensively discussed the dycgof streamwise vortices in a mixing
layer on the basis a@f-isosurfaces. In the presence of a wall, howeves,dur study, the
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mean shear created by the no-slip condition isllyssignificantly higher than the typical
vortical intensity of the near-wall vortices. A meosophisticated criterion is therefore
required to distinguish vortices from internal shiegers in those types of flow.

A fluid parcel winding around a vortex needs to(inea frame moving with the parcel) in
approximate balance between centrifugal and ($tptiessure-gradient effects, according
to the following Euler equation:

%+wxu:—£DP (6.10)

ot P

If, as a condition, coherent vortices should appnately keep their shape during a tifie
far enough in front of the local turnover timé", then, in a frame moving with a coherent
vortex and supposed locally to be Galilean, thie @it the second to the first terms on the
left-hand side of (6.10) is of the order @tw. Thus the equation reduces to the
cyclostrophic balance:

wxu=-10p (6)1

Yo,

Under the assumptions implied by (6.11), the dywapnessure should decrease inside a
vortex tube in order to counterbalance the cergafeffects. Isosurfaces of pressure have
also been used by Comte et al (1998), and Robiagd®91) investigation of coherent
structures in a turbulent boundary layer suggdstssuperiority of pressure as a vortex
eduction criterion rather than the vorticity modultiowever, the threshold to be used for
proper isopressure surfaces strongly depends omprbgsure surrounding the vortical
structure. In regions of high concentrations oftiees, this criterion may fail to capture the
details of the vortical organization.

The criterion which is here presented study shaoese properties with both the vorticity
and the pressure criterion. The Q-criterion wasetafter the second invariant of velocity
gradient tensoVu by Hunt et al (1998). The second invariant Q is:

Q:%(QijQij _Sj Su) (6.12)

whereQ; = (ui; — u,))/2 andS; = (ui; + u;;)/2 are respectively the antisymmetric and the
symmetric components &u. In other words, Q is the balance between thegioot rateQ?
= Q;Q; and the strain rat& = §;S; . The implication of the latter observation isrffai
straightforward: positive Q isosurfaces isolateaarevhere the strength of rotation
overcomes the strain, thus making those surfadgiblel as vortex envelopes. Further
support can be found by recasting (6.12) in a fatmch relates to the vorticity modulus:

Q=5 -25) 613

Since vorticity should increase as the centre eiibrtex is approached, Q can be expected
to remain positive in the core of the vortex. Thjgeculation, which arises from good
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sense, can be proven providing a few approximatmussubsequently linked to pressure
lows. One should be reminded that Q is equal tbthalLaplacian of pressure:

11 1 1 1
QZE(EWZ -3 Sljjz_i(slj +E£ijkcq<j(slj +§£ijka)kj:

|=-29.0 [uu ]= L op (6.14)
2 =] J 2p

i

1 1
oW :_Eai [Uj“'

According to the maximum principle, the pressureximam occurs only on the boundary
if Q is strictly positive and the pressure minimaoturs only on the boundary if Q < 0. As
stated by Jeong and Hussain (1995), there is nessary implication for the pressure to
reach a minimum within a region of positive Q. Altlyh it has been suggested that a
minimum of pressure might not be appropriate withmagglomeration of vortices, one
should check the correspondence of the pressuterion with the Q criterion for an
isolated vortex tube which contains a pressure ldowever, the Q criterion (Q > 0) is a
necessary condition for the existence of a thinjweassure tube.

The isosurfaces of the second invariant of the orgldensor Q shown in figures 6.52 -
6.54 help to explain some of the phenomena obseM#dle in the smooth case the
isosurfaces are few, in the rough cases we obsenearly homogeneous distribution of
eddies. These eddies are generated by the wakéseafoughness elements, and are
essentially locked to the roughness element. Thay imcrease flow mixing, and play a
role in the break-up of the streaks that would ntiee be stabilized in a smooth case. This
happens because the roughness-generated eddlasgarenough to reach the layer where
the majority of the energy is generated, so thetudd the stabilized structures.
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Fig. 6.52 - Isosurfaces of Q (Q = 10), colouredbhyn cases S (a), R2
(b), and R4 (c).
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Fig. 6.53 - Isosurfaces of Q (Q = 10), colouredhyn cases 2P2 (a), 4P2
(b), and 8P2 (c).
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Fig. 6.54 - Isosurfaces of Q (Q = 10), colouredhyn cases 2P4 (a), 4P4
(b), and 8P4 (c).
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7. Conclusions

We carried out large-eddy simulations of open cleafiows over smooth and rough walls.
Parameters studied include the roughness heighthle dimension and geometry of the
smooth and rough patches, and the Reynolds nunasedbon the friction velocity (Re

A sand-grain roughness model (Scotti, 2006) wasd,us@th the no-slip boundary
conditions on the solid-fluid interface imposedwén immersed boundary method based
on the volume of fluid.

First of all, we presented and discussed the thebtyrbulent channel flows, at first for a
regular smooth wall, and then introducing the rowegs and analyzing its effects on the
flow. We summarized the current knowledge on thestter, putting together, within a
single framework, laboratory and atmospheric rougti-studies.

After that, we presented the problem formulationd @&xplained the numerical method
used to solve the flow. This model was, then, \&éd: the spatial and temporal accuracies
of the immersed boundary method were studied wiih test-cases: a two-dimensional
open channel at an angle with respect to the gnd,flows over a stationary cylinder at Re
= 20 based on the uniform inflow velocity and tlyéirder diameter. Also, simulations on
equilibrium rough-wall open-channel flows were @&arout, giving results that match the
reference DNS results in the mean flow (in termsttef mean velocity profile, the
roughness function), and Reynolds normal stres3é® calculation of zero-plane
displacementl matched Scotti’s results (2006), althoudfhwas found to be very sensitive
to insufficient statistical sampling, as shown hg scatter of the data. A requirement on
the LES grid resolution was given to resolve thecify exerted by the roughness for
equilibrium turbulent flows. It was verified thahda current method with such grid
resolution resolves well the flow for the smoothveand rough-wall open channel from
the comparison with previous DNS and experimemsiliits.

After describing the parameters and the procedsed to obtain the rough patches, results
of the simulations were presented. From the straaengevelopment of the wall shear
stressr,, and the friction coefficien€: we noticed large magnitude fluctuations above the
roughness, due to a problem of insufficient sangpleven if the ellipsoids, generated with
Scotti's method, are randomly oriented, there amaesfavored structures and locations;
this phenomenon can be reduced increasing the sgamemain or filtering the signal
with wavelet transform, which allows us to analgoeording to scale and, thus, to remove
only the highest wavenumbers. Comparing wijtlobtained from the assumption of the log
law (the standard approach to analyze velocityil@ofin boundary layers over rough
surfaces, based on an a priori assumption) we wawdifferent results between completely
rough cases and patch cases: for rough cases fevgrirom the log law can’t capture
fluctuations due to local roughness, the mean vafuthe two functions is very similar,
with a difference less than 5%, letting us to dagt the log law is valid through all the
domain and the procedure we used to obtgifnom momentum gives reasonable result.
For patch cases, instead, in the smooth-roughiti@msnd rough-smooth transition the
two functions behave quite different; from the log law can’t capture the local variation
of flow quantities close to the wall, where, foraexple, the pressure gradient increases
abruptly when the flow runs into roughness, makipffom momentum increase as well.
Moreover, when a rough patch ends, the flow conoessa an adverse pressure gradient
(APG) and, due to the relatively low Reynolds numbad high roughness height, it
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separates creating a recirculation regidn<(0), which leads also to local negative values
of 7.

From smooth and completely rough mean velocity il@®fwe saw that, under inner
scaling, profiles are similar in the outer layexcept for an offset depending on the
roughness height. Furthermore, the log law is retsplein all the cases. Also the velocity
profiles (with outer scaling) shifted by the virtuarigin d match well the smooth and
rough wall profiles in the outer layer under thensaequilibrium or non-equilibrium state.
Studying mean velocity profiles for the patch caaeslifferentx locations, we observed
the influence of the number of patches: whér 20 profiles for 2, 4 and 8 patches agree
very well over the smooth, rough and transition dors; the situation is different fow =

40 cases: here we noticed that, only above smegjibnis, the 8 patch case mean velocity
profile is lower than the the corresponding 2 arhtth cases within the buffer layer; the
influence of rough patch frequency more signifibamtffects the ability of the flow to
adapt from rough to smooth than from smooth to lnpuws their agreement is respected
elsewhere. Hence, under the present conditionsoahdfor high roughness height, the
critical number of patches is between 4 and 8,esiioc 8 patches the smooth and rough
regions change too frequently for the flow to ret@smooth equilibrium status.

Close to the wall, the presence of roughness isegethe Reynolds stresses and creates
inner peaks in the Reynolds-stress profiles. Fghdrih, the magnitude of such increase is
higher, and this peak moves towards the overlapmegntil it merges with the outer peak
of the Reynolds stress profile, indicating that thebulence generation mechanism is
noticeably altered by the roughness, and the naefirreughness-induced active turbulence
motions meet the inactive motions farther away fritva wall. For a low value off,
however, the region of increased Reynolds stregstduhe roughness is well separated
from the outer peak. In general, roughness tendsiake the Reynolds stresses more
isotropic, consistent with experimental resultsagie#d in quasi-equilibrium flows (Cal et
al., 2009). When patch cases are plotted, we ribtlza the frequently shift between rough
and smooth patches tended to increase Reynoldseatrever smooth regions, in particolar
|<uv>|, probably due to the presence of separatioromsgalready observed in those
areas.

The visualizations of isosurfaces of the secondriawnt of the velocity tensor Q helped to
explain some of the phenomena observed: while énsthooth case the isosurfaces are
few, in the rough cases we observe a nearly honsmgendistribution of eddies; these
eddies are generated by the wakes of the rougletesents, and are essentially locked to
the roughness element. They may increase flow mj»and play a role in the break-up of
the streaks that would otherwise be stabilized smaoth case. This happens because the
roughness-generated eddies are large enough to tieadayer where the majority of the
energy is generated, so they disturb the stabiktedttures.

This study shows that the roughness affects dyremtly the flow close to the wall: its
blockage effect extends only to= d in the mean flow; also, it increases the Reynolds
stresses and decreases the Reynolds-stress goysaiitbin limited region near the wall.
As a result, the roughness affects significantly itimer-layer quantities likg, andC; but

the outer layer quantities are not sensitive tovér@tion of the surface condition.
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