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Abstract 
 

 
In this thesis we proposed to carry out large-eddy simulations, to study the effects of local 
roughness in turbulent open channel flows. 
At first, we summarized the theory of turbulent channel flows, which is at the base of this 
work. Then, the current knowledge about roughness is presented and discussed widely, 
comparing laboratory and atmospheric rough-wall studies within a single framework. 
After that, we discuss our sand-grain roughness model, with the no-slip boundary condition 
modeled by an immersed boundary method. The properties and accuracies of the scheme 
are studied, the roughness model is validated, and the spatial-resolution requirements are 
determined. The model is applied to open channel flow, with simulations carried out 
underlining the effects of two parameters: the roughness height and the geometry of the 
rough and smooth patches. 
Finally, results are presented: the roughness effects are limited to the roughness sublayer; 
its blockage effect extends only to y = d in the mean flow; the roughness significantly 
affects the inner-layer quantities like the friction velocity uτ and the friction coefficient Cf, 
while the local Reynolds number, the outer-layer mean velocity, as well as the Reynolds 
stresses beyond the roughness sublayer, are not sensitive to the roughness. The comparison 
between τw from momentum balance and τw from the log law assumption matches 
everywhere, except in the smooth-rough and rough-smooth transition regions where τw 
from the log law can’t capture the local variation of flow quantities close to the wall, and 
thus the log law is not valid. Studying mean velocity profiles for the patch cases at 
different x locations, we observed the influence of the number of patches: while low 
roughness height cases are not influenced by this parameter, when the roughness is higher 
the 8 patch case mean velocity profile, above smooth regions, is lower than the the 
corresponding 2 and 4 patch cases within the buffer layer, thus the influence of rough patch 
frequency more significantly affects the ability of the flow to adapt from rough to smooth 
than from smooth to rough and, under this conditions, the critical number of patches is 
between 4 and 8. 
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Prefazione 
 
 
Per realizzare questa tesi mi sono recato alla Queen’s University, Kingston, Ontario, 
Canada, in particolare presso McLaughlin Hall, Department of Mechanical and Materials 
Engineering, dove ho lavorato come ricercatore sotto la supervisione del Prof. Ugo 
Piomelli, per una durata complessiva di 6 mesi. 
Lo scopo che ci siamo proposti è stato quello di effettuare uno studio numerico, tramite 
l’utilizzo di Large-Eddy Simulations, su rugosità localizzata all’interno di un canale aperto 
attraversato da un flusso in regime turbolento. La rugosità è, infatti, un importante 
parametro che influenza numerosi applicazioni in fluidodinamica; in generale, quando un 
flusso lambisce una parete rugosa, il flusso stesso è alterato in maniera difficile da 
prevedere. A causa delle sue caratteristiche impronte, per esempio, una pallina da golf può 
viaggiare molto più lontano di una versione liscia della stessa pallina: le impronte 
inducono turbolenza e ritardano la separazione dello strato limite, riducendo in questo 
modo la resistenza di forma che si genera. 
Un esempio più ingegneristico sull’importanza della rugosità è quello delle palette di una 
turbina, dove la rugosità superficiale aumenta lo scambio termico e favorisce il 
raffredamento delle palette, allungando loro la vita. Strati limite caratterizzati da rugosità 
sono tipici anche nei flussi geofisici: la superficie sottostante è quasi sempre rugosa, come 
nel caso di foreste, città o fondali marini, e questo può influenzare numerosi studi, come le 
previsioni meteorologiche. 
Nella prima parte della tesi è riassunta la teoria dei flussi turbolenti in canale; il channel 
flow è un flusso di parete tipico di applicazioni ingegneristiche, ed è alla base di questa 
tesi. Dopo una breve descrizione del flusso, sono riportate e descritte le equazioni di 
bilancio di massa e di quantità di moto, che portano a definire la tensione di taglio di parete 
τw, il coefficiente di attrito Cf  e altri importanti parametri. Sono poi definite e analizzate le 
varie regioni di parete, con particolare attenzione all’outer layer dove la log-law è valida. 
In seguito, è analizzata l’influenza del numero di Reynolds sul flusso, in particolare sui 
profili di velocità media e sulle tensioni di Reynolds. Infine, vengono riportate 
considerazioni di natura energetica, definendo il bilancio dell’energia cinetica turbolenta e 
analizzando il comportamento dei termini di produzione, dissipazione, trasporto, diffusione 
e convezione nelle varie regioni di parete, al variare del numero di Reynolds. 
Nel capitolo successivo la rugosità superficiale è introdotta e sono riportati le più recenti 
considerazioni e studi a riguardo: flussi turbolenti su superfici rugose sono stati studiati già 
a partire dai lavori di Hagen (1854) and Darcy (1857), che erano interessati alle perdite di 
pressione all’interno di condotti d’acqua. Tuttavia, durante l’ultimo secolo di ricerca, flussi 
su pareti rugose hanno ricevuto molta meno attenzione dei corrispondendi flussi su pareti 
lisce, il che è giustificabile col fatto che si è voluto prima studiare le condizioni di parete 
più semplici possibili, e solo in seguito introdurre complessità come rugosità, gradienti di 
pressione, curvature… Tuttavia, questa negligenza può aver oscurato il potenziale 
contributo della rugosità alla ricerca su flussi di parete, in generale. In questa sezione, 
infatti, è riportato un dettagliato studio di flussi turbolenti su pareti rugose, con particolare 
attenzione alle interazioni tra inner e outer layers; un modo di porre il problema è questo: 
pareti lisce e pareti rugose inducono essenzialmente alla stessa struttura turbolenta 
nell’outer layer, ovvero ad una regione con debole sforzo di taglio, pochi meccanismi di 
instabilità e debole produzione di energia cinetica turbolenta. Al contrario, vicino alla 
parete, dove lo sforzo di taglio e la generazione di turbolenza sono elevate, i due flussi 
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sono nettamente diversi e controllati da lunghezze di scala diverse. Come possono due 
diversi processi nell’energetico inner layer portare essenzialmente agli stessi risultati nel 
più passivo outer layer? In questa stessa sezione abbiamo anche descritto diversi tipi di 
superfici rugose che sono state usate in letteratura nel passato per modellizzare la rugosità 
cercando di introdurre il minor numero di parametri possibile.  
Nel capitolo successive viene presentata la formulazione numerica del problema: abbiamo 
implementato Large-Eddy Simulation (LES) con un dynamic sub-grid scale model, in cui 
un fractional time-step method (Chorin, 1968; Kim & Moin, 1985) e second-order central 
differencing sono usati per risolvere le equazioni di bilancio. Per quanto riguarda le 
condizioni al contorno, periodic boundary conditions sono usate nelle spanwise e 
streamwise directions, free-slip conditions nel limite superiore del canale e no-slip 
conditions alla parete, con l’utilizzo di un Immersed Boundary Method (IBM) 
nell’interfaccia tra fluido e rugosità superficiale. 
Il modello è stato poi validato, concentrandosi in particolar modo sull’accuratezza spaziale 
e temporale dell’IBM; in primo luogo è stato studiato un canale 2D inclinato rispetto alla 
parete, per analizzare il comportamento dell’IBM quando il flusso al contorno non è 
allineato con le celle. Dopodichè abbiamo studiato l’accuratezza del modello in un flusso 
instazionario attorno ad un cilindro. Infine, abbiamo analizzato il flusso nel nostro open-
channel con superficie rugosa, validando il modello e determinando i requisiti richiesti 
dalla griglia per avere una adeguata risoluzione della rugosità. 
Infine, i risultati delle nostre simulazioni sono presentati nell’ultimo capitolo: 
dall’andamento in direzione streawise della tensione di taglio di parete τw e del coefficiente 
di attrito Cf  abbiamo osservato elevate fluttuazione in corrispondenza delle superfici 
rugose, dovute ad un problema di sampling: benchè gli ellissoidi generati col metodo di 
Scotti siano orientati in maniera casuale, esistono delle strutture favorevoli e ricorrenti; 
questo fenomeno può essere limitato incrementando il dominio in direzione spanwise o 
filtrando il segnale tramite trasformate wavelet. Confrontando τw ottenuta dal bilancio di 
quantità di moto con τw ottenuta dall’assunzione a priori della log law, si nota come le due 
funzioni siano in ottimo accordo ovunque eccetto nelle regioni di transizioni tra superficie 
rugosa e lisca (e viceversa), dove avvengono fenomeni locali complessi vicino alla parete, 
e la log law non è, quindi, più valida. 
Studiando i profili di velocità media abbiamo osservato l’influenza del numero di patch: 
per bassa rugosità (h+ = 20) le simulazioni non sono influenzate da questo parametro, 
mentre per elevata rugosità (h+ = 40) il profilo di velocità per il caso con 8 patch si 
differenzia dai corrispondenti casi con 4 e 2 patch, permettendoci di concludere che la 
frequenza delle patch influenza maggiormente la capacità del flusso di adattarsi da rugoso 
a liscio che viceversa, e che, sotto queste condizioni, il numero critico di patch sia tra 4 e 8. 
In generale, gli effetti della rugosità sono limitati al sublayer rugoso; il suo effetto di 
ostruzione si estende solo fino a y = d nel flusso medio; la rugosità influenza 
significativamente le quantità dell’ inner-layer come la velocità di attrito uτ e il coefficiente 
di attrito Cf , mentre il numero di Reynolds locale, la velocità media nell’outer-layer e le 
tensioni di Reynolds al di sopra del sublayer rugoso non sono sensibile alla rugosità. 
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1. Introduction
 

 
Hydrodynamically rough boundary layers are found in many applications: dimples on golf 
balls, cholesterol in blood vessels, skyscraper-studded grids of a large city… In general 
when there's fluid flow over a rough surface, the flow is affected in ways that are 
challenging to predict. Because they are dimpled, for example, golf balls fly much farther 
than would a smooth version of the same ball. The dimples induce turbulence and delay the 
separation of the boundary layer that forms near the ball's surface thus reducing the drag 
(Fig. 1.1). 
A more telling example of why roughness matters in engineering applications is turbine 
blades, where surface roughness improves heat transfer and decreases temperature of the 
turbine, extending the life of the blades. In that case, roughness has the same effect of ribs 
or pins, which have been largely studied in the past years (Fig. 1.2). On the other hand, 
roughness and accumulated debris could affect the performance of turbine blades and lead 
to a faster deterioration. To replace one blade of a power-generating turbine can cost up to 
a million dollars when considering lost flight time. 
 

 
  

Fig. 1.1 - Effect of dimples in a sphere. 
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Fig. 1.2 - Effect of different rib configurations in turbine blades. 
 
 

Rough boundary layers are usually the norm in geophysical flows, too: the underlying 
surface is almost always rough, like woods and cities (Fig. 1.3), and that can affect weather 
forecast, prediction of air pollution, dispersion of volatile materials… 
 
 

 
 

Fig. 1.3 - Flow visualization in an urban area. 
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In addition to the engineering and meteorological motivations for research on the rough-
wall boundary layers, there are basic considerations: for a smooth-wall boundary layer, 
many investigations have been carried out to study the relative importance of the inner and 
outer regions of the boundary layer. Rough-wall boundary layers may help the 
understanding of this interaction, since both the smooth-wall and rough-wall boundary 
layers have essentially the same structure in the outer layer while, close to the wall, they 
are very different, and are controlled by different length scales: the roughness introduces a 
layer where the turbulent structure is significantly influenced by the viscous length scale 
and roughness length scales. So, if, more generally, the turbulence structure over a 
significant part of the layer is essentially unchanged in spite of significant alterations of the 
wall, this perspective would imply even less communication between the wall region and 
the outer region of a boundary layer than may be normally assumed. 
To study the inner/outer layer interaction, a systematic study is required with both isolated 
and combined alterations of the inner and outer layer flow conditions, which leads to the 
idea of studying boundary layers with alternate rough and smooth patches developed along 
the streamwise direction. 
Till present day, it is known that surface roughness, in addition to increasing the skin 
friction characteristics, has significant effects on mass and heat transport in the flow. 
Neverthless, the effects of roughness on momentum, heat and mass transfer characteristics 
are not well understood. The problem of surface roughness is complicated by the fact that 
the geometry and length scales of roughness elements vary widely, from regularly spaced 
two-dimensional ribs to random three-dimensional roughness, such as manufacturing 
roughness and riverbeds. In the past, two-dimensional ribs were employed a lot, because, 
thanks to their geometrical simplicity, it was possible to apply direct numerical simulation 
(DNS) or large eddy simulation (LES) to thoroughly study the flow fields. 
However, during the last years, more elaborate models of roughness has been used in 
simulations, thanks to development of the immersed boundary method: this gave an 
advantage in the knowledge of the physics involved, because it allows to know what’s 
happening very near the wall, where in experiment it’s difficult to insert a probe to 
measure the flow effects.  
To look closely into the physical effect of surface roughness, we carry out large-eddy 
simulations with varying the roughness height and the length of the rough and smooth 
patches, to cover a wide range of values, enabling direct interaction of roughness 
disturbance and typical smooth-wall boundary layer. 
Complete data of the flow field are provided from numerical simulations, and thus the 
mean and instantaneous properties of the flow can be studied in action. 



 4

2. Turbulent Channel Flow 
 
 
In this chapter we summarize the theory of turbulent channel flow over smooth surface, 
which is at the very base of this thesis. Channel flow is a wall flow and it is often found in 
engineering applications, like flow through dutcs or boundary layers. 
 
 
2.1 A description of the flow 
 
As sketched in Fig. 2.1, we consider the flow through a rectangular duct of height h = 2δ. 
The duct is long (L/δ ≫ 1) and has a large aspect ratio (b/δ = 10 in Fig. 2.1). The mean 
flow is predominantly in the axial direction (x), with the mean velocity varying mainly in 
the cross-stream direction (y). The bottom and the top walls are at y = 0 and y = 2δ, 
respectively, with the mid-plane being y = δ. The extent of the channel in the spanwise (z) 
direction is large compared with δ so that (remote from the end walls) the flow is 
statistically independent of z. The centerline is defined by y = δ, z = 0. The velocities in the 
three coordinate direction are (U,V,W) with fluctuations (u,v,w). The mean cross-stream 
velocity W is zero. 
Near the entry of the duct (x = 0) there is a flow-development region. We, however, 
confine our attention to the fully developed region (large x), in which velocity statistics no 
longer vary with x. Hence the fully developed channel flow being considered is statistically 
stationary and statistically one-dimensional, with velocities statistics depending on y. 
Experiments confirm the natural expectation that the flow is statistically symmetric about 
the mid-plane y = δ; the statistics of (U,V,W) at y are the same as those of (U,-V,W) at 2δ – 
y. 

 
Fig. 2.1 - Sketch of channel flow. 

 
 

The Reynolds numbers used to characterize the flow are  
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                                                       νδ U)2(Re=                                                            (2.1) 
 
                                                       νδ00Re U=                                                              (2.2) 

 

where U0 is the centerline velocity, U  is the bulk velocity 
 

                                                      ∫=
δ

δ 0

1
dyUU                                                             (2.3) 

 
The flow is laminar for Re < 1350 and fully turbulent for Re > 1800, although transitional 
effects are evident up to Re = 3000. 
 
 
2.2 The balance of mean forces 
 
The mean continuity equation reduces to 
 

                                                          0=
dy

Vd
                                                                (2.4) 

 
since <W> is zero, <U> is indipendent of x. With the boundary condition <V>y=0 , this 
dictates that <V> is zero for all y, so that the boundary condition at the top wall <V>y=2δ = 0 
is satisfied. 
The lateral mean-momentum equation reduces to 
 

                                                
dy

pd

dy

vd

ρ
1

0
2

−−=                                                       (2.5) 

 
which, with the boundary condition <v2>y=2δ = 0, integrates to 
 

                                                   
( )

ρρ
xpp

v w=+2                                                        (2.6) 

 
where pw = < p(x,0,0) > is the mean pressure on the bottom wall. An important deduction 
from this equation is that the mean axial pressure gradient is uniform across the flow: 
 

                                                            
dx

dp

dx

pd
w=                                                          (2.7) 

 
The axial mean-momentum equation,  
 

                                             0
1

0
2

2

=−−=
dx

pd

dy

uvd

dy

Ud

ρ
ν                                      (2.8) 
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can be written  
 

                                                                
dx

dp

dy

d w=τ
                                                         (2.9) 

where the total shear stress τ(y) is 
 

                                                        uv
dx

Ud
ρρντ −=                                              (2.10) 

 
For this flow there is no mean acceleration, so the mean momentum equation (2.9) 
amounts to a balance of forces: the stress is balanced by the pressure gradient. 
Since τ is a functions only of y. and pw is a function only of x, it is evident from equation 
(2.9) that both the first member and the second one are constant. The solutions for τ(y) and 
d pw/dx can be written explicitly in terms of the wall shear stress 
 
                                                                    ( )0ττ =w                                                      (2.11) 

 
Because τ(y) is antisymmetric about the mid-plane, it follows that τ(δ) is zero; and at the 
top wall the sress is τ(2δ) = -τw. Hence, the solution to equation (2.9) is  
 

                                                                
δ

τ ww

dx

dp
=−                                                     (2.12) 

and  
 

                                                             ( ) 






 −=
δ

ττ y
y w 1                                                (2.13) 

 
The wall shear stress normalized by a reference velocity is called a skin-friction 
coefficient. On the basis of the centerline velocity and the bulk velocity we define 
 

                                                              






= 2
02

1
Uc wf ρτ                                            (2.14) 

  

                                                              






=
2

2

1
UC wf ρτ                                           (2.15) 

 
To summarize: the flow is driven by the drop in pressure between the entrance and the exit 
of the channel. In the fully developed region there is a constant (negative) mean pressure 
gradient ∂<p>/∂x = dpw/dx, which is balanced by the shear-stress gradient ∂τ/∂y = -τw/δ. 
For a given pressure gradient dpw/dx and channel half-width δ, the linear shear-stress 
profile is given by equations (2.12) and (2.13) independent of the fluid properties (for 
instance turbulent). Note that, if the flow is defined by ρ, δ, ν and dpw/dx, then U0 and 

U are not known a priori. Alternatively, in an experiment U  can be imposed and then the 
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pressure gradient is unknown. In both cases the skin-friction coefficient is not known a 
priori. Of course all these quantities are readily determined for laminar flow. 
 
 
2.3 The near-wall shear stress 
 
Figure 2.2 shows the mean velocity profiles obtained by Kim et al. (1987) from direct 
numerical simulations of fully developed turbulent channel flow at Re = 5600 and Re = 
13750 (Reynolds bulk number, as defined in equation (2.1)). The objective if this and the 
next subsection is to explain and quantify these profiles. 
 

 
Fig. 2.2 - Mean velocity profiles in fully developed turbulent channel flow from the DNS 

of Kim et al. (1987); dashed line Re = 5600, solid line Re = 13750. 
 

 
The total shear stress τ(y) is the sum of the viscous stress and the Reynolds stress, as 
written in equation (2.10). At the wall, the boundary condition U(x,t) = 0 dictates that all 
the Reynolds stresses are zero. Consequently the wall shear stress is due entirely to the 
viscous contribution, 
 

                                                   
0=











=

y

w dx

Ud
ρντ                                                       (2.16) 

 
Profiles of the viscous and Reynolds shear stresses are shown in Figure 2.3. 
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The important observation that the viscous stress dominates at the wall is in contrast to the 
situation in free shear flows. There, at high Reynolds number, the viscous stresses are 
everywhere negligibly small compared with the Reynolds stresses. Also, near the wall, 
since the viscosity is an influential parameter, the velocity profiles depends upon the 
Reynolds number (as may be observed in Figure 2.2) and this is again in contrast to free 
shear flows. 
 

 
Fig. 2.3 - Profiles of viscous shear stress and Reynolds shear stress in turbulent channel 

flow. DNS data of Kim et al. (1987); dashed line Re = 5600, solid line Re = 13750. 
 
 

It is evident that, close to the wall, the viscosity ν and the wall shear stress τw are important 
parameters. From these quantities (and ρ) we define viscous scales that are appropriate 
velocity scales and lengthscales in the near-wall region. These are the friction velocity 
 

                                                             
ρ

τ
τ

wu =                                                           (2.17) 

 
and the viscous lengthscale 
 

                                                         
τ

ν
ν

τ
ρνδ

uw

==                                                    (2.18) 

 
The Reynolds number based on the viscous scales uτδν/ν is identically unity, while the 
friction Reynolds number is defined by 
 

                                                          
ν

τ
τ δ

δ
ν

δ
==

u
Re                                                    (2.19) 

 
The distance from the wall measured in viscous lengths (or wall units) is denoted by  
 

                                                            
νδ
τ

ν

yuy
y ==+                                                    (2.20) 
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Notice that y+ is similar to a local Reynolds number, so its magnitude can be expected to 
determine the relative importance of viscous and turbulent processes. In support of this 
supposition, Fig. 2.4 shows the fractional contributions to the total stress from the viscous 
and Reynolds stresses in the near-wall region of channel flow. When they are plotted 
against y+, the profiles for the two Reynolds number almost collapse. The viscous 
contribution drops from 100% at the wall (y+ = 0) to 50% at y+ ≈ 12 and is less than 10% 
by y+ = 50. 
Different regions, or layers, in the near-wall flow are defined on the basis of y+. In the wall 
region y/δ < 0.1, there is a direct effect of molecular viscosity on the shear stress; whereas, 
conversely, in the outer layer y/δ > 0.1 the direct effect of viscosity is negligible. Within 
the viscous wall region, in the viscous sublayer y+ < 5, the Reynolds shear stress is 
negligible compared with the viscous stress. As the Reynolds number of the flow 
increases, the fraction of the channel occupied by the wall region decreases, since δν/δ

 

varies as Reτ
-1

 (from equation 2.19). 
 

 
Fig. 2.4 - Profiles of the fractional contributions of the viscous and Reynolds stresses to the 
total stress. DNS data of Kim et al. (1987); dashed line Re = 5600, solid line Re = 13750. 

 
 
2.4 Mean velocity profiles 
 
Fully developed channel flow is completely specified by ρ, δ, ν and dpw/dx; or, 
equivalently, by ρ, δ, ν and uτ, since we have 
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21








 ⋅−=
dx

dp
u w

ρ
δ

τ                                                       (2.21) 

 
There are just two independent non-dimensional groups that can be formed from ρ, δ, ν, uτ  
and y and consequently the mean velocity profile can be written 
 

                                                 







⋅= ττ δ
Re,0

y
FuU

                                                   
(2.22) 

 
where F0 is a universal non-dimensional function to be determined. 
 
While this approach to determining the mean velocity profile appears natural, it is, 
however, preferable to proceed somewhat differently. Instead of <U>, we consider the 
velocity gradient d<U> /dy, which is the dynamically important quantity, The viscous 
stress and the turbulence production, for example, are both determined by d<U> /dy. Again 
on dimensional grounds, d<U> /dy depends on just two non-dimensional parameters, so 
that (without any assumption) we can write 
 

                                                








Φ⋅=

δδν

τ yy

y

u

dy

Ud
,

                                                   
(2.23) 

 
where Φ is a universal non-dimensional function. The idea behind the choice of the two 
parameters is that δν is the appropriate lengthscale in the wall region, while δ is the 
appropriate scale in the outer layer. The relation 
 

                                                       
τ

ν δδ
Re=















 yy
                                                   (2.24) 

 
shows, as is inevitable, that these two parameters contain the same information as y/δ and 
Reτ (equation 2.22). 
 
2.4.1 The law of the wall 
 
Prandtl (1925) postulated that, at high Reynolds number, close to the wall (y/δ ≪ 1) there 
is an inner layer in which the mean velocity profile is determined by the viscous scale, 
independent of δ and U0. Mathematically, this implies that the function Φ(y/δν, y/δ) in 
equation 2.23 tends asymptotically to a function of y/δν only, as y/δ tends to zero, so that 
equation 2.23 becomes 
  

 
       for   y/δ ≪ 1                     (2.25) 
 

where  
 









Φ⋅=

ν

τ

δ
y

y

u

dy

Ud
I
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







Φ=








Φ

→ δδδ ν
δ

ν

yyy
y

I ,lim
0

   
                                       (2.26) 

 
With y+= y/δν and u+(y+) defined by  
 

                                                                    τu

U
u =+

   
                                                 (2.27) 

 
equation (2.25) can alternatively be written 
 

                                                             
( )+

++

+

Φ⋅= y
ydy

du
I

1

                               
             (2.28) 

 
The integral of equation (2.28) is the law of the wall: 
 

                                                              
( )++ = yfu w

    
                                                  (2.29) 

 
where 
 

                                                   
( ) ( )∫

+

Φ⋅=+
y

Iw dyy
y

yf
0

''
'

1

   
                                          (2.30) 

 
The important point is not equation (2.30), but the fact that(according to Prandtl’s 
hypothesis) u+ depends solely on y+ for y/δ ≪ 1. 
For Reynolds numbers not too close to transition, there is abundant experimental 
verification that the function fw(y+) can be determined for small and large values of y+. 
 
2.4.2 The viscous sublayer 
 
The no-slip condition <U> y=0 corresponds to fw(0) = 0, while the viscous stress law at the 
wall, equation (2.16), yields for the derivative 
 
                                                             ( ) 10' =wf                                                           (2.31) 

 
Note that this is simply a result of the normalization by the viscous scales. Hence, the 
Taylor-series expansion for fw(y+) for small y+ is 
 
                                                     ( ) ( )2+++ Ο+= yyyfw                                                 (2.32) 

 
In fact, closer examination reveals that, after the linear term, the next non-zero term is of 
order y+4. 
Figure 2.5 shows the profiles of u+ in the near-wall region obtained from direct numerical 
simulations. The departures from the linear relation u+ = y+ are negligible in the viscous 
sublayer (y+ < 5), but are significant (greater than 25%) for y+ >12. 
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Fig. 2.5 - Near-wall profiles of mean velocity from the DNS data of Kim et al. (1987); 

dashed line Re = 5600, solid line Re = 13750, dot-dashed line u+ = y+. 
 
 

2.4.3 The log law 
 
The inner layer is usually defined as y/δ < 0.1. At high Reynolds number, the outer part of 
the inner layer corresponds to large y+. As has already been discussed, for large y+ it can be 
supposed that viscosity has little effect. Hence, in equation (2.25), the dependence of 
ΦI(y/δν) on ν (through δν) vanishes, so that ΦI adopts a constant value denoted by k -1: 
 

                                           ( )
k

yI

1=Φ +       for  y/δ ≪ 1 and y+ ≫ 1                              (2.33) 

 
Thus, in this region, the mean velocity gradient is 
 

                                                         
++

+

⋅
=

ykdy

du 1

                                                         
(2.34) 

 
which integrates to  
 

                                                      By
k

u +⋅= ++ ln
1

                                                     (2.35) 

 
Where B is a constant. This is the logarithmic law of the wall due to von Kàrmàn (1930), 
or simply the low lag, and k is the von Kàrmàn constant. In the literature, there is some 
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variation in the values ascribed to the log-law constants, but generally they are within 5% 
of k = 0.41 and B = 5.2. 
The log law is revealed in a semi-log plot; Fig. 2.6 shows measured profiles of u+(y+) for 
turbulent channel flow at Reynolds numbers between Re0 ≈ 3000 and Re0 ≈ 40000. It may 
be seen that the data collapse to a single curve, in confirmation of the law of the wall, and 
that for y+ > 30 the data conform to the log law, except near the channel’s mid-plane (the 
last few data points for each Reynolds number). 
The region between the viscous sublayer (y+ < 5) and the log law region (y+ > 30) is called 
buffer layer. It is the transition region between the viscosity-dominated and the turbulence-
dominated parts of the flow. The various regions and layers that are used to describe near-
wall flows are summarized in Fig. 2.7. 
 

 
Fig. 2.6 - Mean velocity profiles in fully developed turbulent channel flow measured by 

Wei and Willmarth (1989); line the log law, symbols different Reynolds numbers. 
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Fig. 2.7 - A sketch showing the various wall regions and layers defined in terms of y+ and 
y/δ, for turbulent channel flow ah high Reynolds number.  

 
 
2.4.4 The velocity-defect law 
 
In the outer layer (y+ > 50), the assumption that Φ(y/δν , y/δ) is independent of ν implies 
that, for large y/δν , Φ tends asymptotically to a function of y/δ only: 
 

                                             













Φ=








Φ

∞→ δδδν
δν

yyy
y

0,lim
                                              

(2.36) 

 
Substituting Φ0 for Φ in equation (2.23) and integrating between y and δ then yields the 
velocity-defect law due to von Kàrmàn (1930): 
 

                                                      






=
−

δτ

y
F

u

UU
D

0                                                   (2.37) 

 
where 
 

                                                 ( )∫ Φ⋅=







1

0 ''
'

1

δδ y

D dyy
y

y
F                                              (2.38) 

 
By definition, the velocity defect is the difference between the mean velocity <U> and the 
centerline velocity U0. The velocity-defect law states that this velocity defect normalized 
by uτ depends on y/δ only. Unlike the law-of-the-wall function fw(y+), here there is no 
suggestion that FD(y/δ) is universal: it is different in different flows. 
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At sufficiently high Reynolds number (approximately Re > 20000) there is an overlap 
region between the inner layer (y/δ > 0.1) and the outer layer (y/δν > 50) (see Fig. 2.7). In 
this region, both equation (2.25) and (2.36) are valid, yielding (from equation (2.23)) 
 

                                   







Φ=







Φ=⋅

δδντ

yy

dy

Ud

u

y
I 0       for   δν ≪ y ≪ δ                   (2.39) 

 
This equation can be satisfied in the overlap region only by ΦI and Φ0 being constant, 
which leads to 
 

                                                   kdy

Ud

u

y 1=⋅
τ

      for   δν ≪ y ≪ δ                              (2.40) 

 
This argument, due to Millikan (1938), provides an alternative derivation of the log law. It 
also established the form of the velocity-defect law for small y/δ: 
 

                                     1
0 ln

1
B

y

k

y
F

u

UU
D +







⋅−=






=
−

δδτ

      for y/δ ≪ 1              (2.41) 

 
where B1 is a flow-dependent constant. 
Figure 2.8 shows the velocity defect in the DNS of turbulent channel flow. It may be seen 
that the log law is followed quite closely between y/δ = 0.08 (y+ ≈ 30) and y/δ = 0.3. Even 
in the central part of the channel (0.3 < y/δ < 1.0) the deviations from the log law are quite 
small; but it should be appreciated that the arguments leading to the log law are not 
applicable in this region. 
Let U0,log denote the value of <U> on the centerline obtained by extrapolation of the log 
law. For y/δ = 1, equation (2.41) then yields 
 

                                                        1
log,00 B

u

UU
=

−

τ

                                                      (2.42) 

 
which provides a convenient way to determining B1. It may be seen from Fig. 2.8 that the 
difference U0 - U0,log is very small (about 1% of U0) which makes B1 difficult to measure. 
The DNS data yields to B1 ≈ 0.2, but from a survey of many measurements, Dean (1978) 
suggested B1 ≈ 0.7. The uncertainty in B1 is of little consequence: the point is that it is 
small. 
However, we must take in account that in the outer layer of boundary layers, the deviations 
from the log law are more substantial. 
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Fig. 2.8 - Mean velocity defect in turbulent channel flow. Solid lines, DNS of Kim et al. 

(1987) Re = 13750 and dashed line log law from equation (2.35). 
 
 
2.5 The friction law and the Reynolds number 
 
Having characterized the mean velocity profile, we are now in position to determine the 
Reynolds-number dependence of the skin-friction coefficient and other quantities. The 

primary task is to established relationships among the velocities U0 , U  and uτ. 
A good estimate of the bulk velocity is obtained by using the log law (equation 2.50) to 
approximate <U> over the whole channel (for consistency at y = δ), this requires taking B1 
= 0). As we have seen, in the center of the channel, the departures from the log law are 
quite small (Fig. 2.8): near the wall (y+ < 30) the approximation is poor (Fig. 2.6), but this 
region makes a negligible contribution to the integral of <U>, except at very low Reynolds 
number. The result obtained with this approximation is  
 

                            4.2
1

ln
111

00

00 ≈=






⋅−≈
−

=
−

∫∫ k
dy

y

k
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u

UU

u

UU δδ

ττ δδδ
                 (2.43) 

 
This estimate agrees well with the experimental data which are scattered between 2 and 3 
(Dean 1978), and the DNS values of 2.6, at Re = 13750. 
The log law in the inner layer (equation 2.35) can be written 
 



 17

                                                      1ln
1

B
y

ku

U
+







⋅=

ντ δ
                                               (2.44) 

 
whereas in the outer layer is it (equation 2.41) 
 

                                                 1
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When these two equations are added together the y dependence vanishes to yield 
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               (2.46) 

 
For given Re0 this equation can be solved for U0/uτ, hence determining the skin-coefficient 
cf  =  τw/(0.5ρU0

2) = 2(uτ/U0)
2. With the aid of the approximation equation (2.43), Re, 

defined in equation (2.1) and Cf , as defined in equation (2.15), can also be determined. 
Figure 2.9 shows the skin friction coefficient cf  obtained from equation (2.46) as a 
function of Re (solid line). Also shown is the laminar relation and the experimental data 
compiled by Dean (1978) (symbols). The dashed line is, instead, the laminar friction 
coefficient cf  = 16/(3Re). For Re > 3000, equation (2.46) provides a good representation of 
the skin-friction coefficient. It is interesting to note that Patel and Head (1969) found that 
Re = 3000 is the lowest Reynolds number at which a log law with universal constants is 
observed. 
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Fig. 2.9 - The skin-friction coefficient cf  =  τw/(0.5ρU0

2) against the Reynolds number 

νδ U)2(Re=  for channel flow. 
 
 

The ratios of the mean flow to viscous scales are shown in Fig. 2.10 and 2.11. The 
lengthscales ratio δ/δν = Reτ increases almost linearly with Re, a good approximation being 
Reτ ≈ 0.09Re0.88. Consequently, at high Reynolds number the viscous lengthscale can be 
very small. As an example, for a channel with δ = 2 cm, at Re = 105 the viscosity scale is δν 
≈ 10-5 m, so the location y+ = 100 is just 1 mm from the wall. Needless to say, there are 
considerable difficulties in making measurements in the viscous wall region of high-
Reynolds-number laboratory flows. 
In contrast, the velocity ratios increase very slowly with Re (Fig. 2.11). As a consequence, 
a significant fraction of the increase in the mean velocity between the wall and the 
centerline occurs in the viscous wall region. In the example introduced above (δ = 2 cm, 
Re = 105) it follows that, at ) it follows that, at y+ = 10, the mean velocity is over 30% of 
the centerline value, U0. 

Figure 2.12 shows the Reynolds-number dependence of the y locations that delineate the 
various regions and layers. According to this plot, a log-law region (30δν < y < 0.3δ) exists 
for Re > 3000, in agreement with the experimental observations of Patel and Head (1969). 
On the other hand, a Reynolds number in excess of 20000 is required for there to be an 
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overlap region, according to the criterion 50δν < y < 0.1δ. As has already been observed, 
the log law persists beyond the region suggested by the overlap argument. 
 

 
Fig. 2.10 - The outer-to-inner lengthscale ratio δ/δν = Reτ for turbulent channel flow as a 

function of the Reynolds number. 
 

 
Fig. 2.11 - Outer-to-inner velocity-scale ratio for turbulent channel flow as functions of the 

Reynolds number. 
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Fig. 2.12 - Regions and layers in turbulent channel flow as a function of the Reynolds 

number. 
 
 

2.6 Reynolds stresses 
 
Figure 2.13, 2.14 and 2.15 show the Reynolds stresses and some related statistics obtained 
from the DNS of channel flow at Re = 13750. In order to discuss these statistics, it is 
useful to divide the flow into three regions: the viscous wall region (y+< 50); the log-law 
region (50δν < y < 0.3δ, or 50 < y+< 120 at this Reynolds number); and the core (y < 0.3δ). 
In the log-law region there is approximate self-similarity. The normalized Reynolds 
stresses <uiuj>/k  are essentially uniform, as are the production-to-dissipation ratio, P/ϵ, 
and the normalized mean shear rate, Sk/ϵ (where S = ∂<U>/∂y). It is possible to observe 
that the values from experimental data that the values of <uiuj>/k are within a few percent 
of those measured by Tavoularis and Corrsin (1981) in homogeneous shear flow. 
Production P and dissipation ϵ are almost in balance, the viscous and turbulent transport of 
k being very small in comparison. 
On the centerline, both the mean velocity gradien and the shear stress vanish, so that the 
production P is zero. Fig. 2.15 shows the gradual changes of P/ϵ, Sk/ϵ and ρw from their 
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log-law values to zero on the centerline. Fig. 2.14 indicates that the Reynolds stresses are 
anisotropic on the centerline, but considerably less so than in the log-law region. 
 

 
Fig. 2.13 - Reynolds stresses and kinetic energy normalized by the friction velocity against 

y+ from DNS of channel flow at Re = 13750 (Kim et al. 1987). 
 

 
Fig. 2.14 - Profiles of Reynolds stresses normalized by the turbulent kinetic energy against 

y+ from DNS of channel flow at Re = 13750 (Kim et al. 1987). 
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Fig. 2.15 - Profiles of  the ratio production to dissipation (P/ϵ), normalized mean shear rate 
(Sk/ϵ), and shear stress correlation (ρw) from DNS of channel flow at Re = 13750 (Kim et 

al. 1987). 
 

 
The wall region contains the most vigorous turbulent activity. The production, dissipation, 
turbulent kinetic energy and anisotropy all achieve their peak values at y+ less than 20. We 
shall examine the behavior in this region in more detail. 
The boundary condition U = 0 at the wall determines the way in which the Reynolds 
stresses depart from zero to small y. For fixed x, z and t, and for small y, the fluctuating 
velocity components can be written as Taylor series of the forms 
 
                                                       ...2

111 +++= ycybau                                             (2.47) 

                                                       ...2
222 +++= ycybav                                            (2.48)            

                                                      ...2
333 +++= ycybaw                                            (2.49) 

 

The coefficients are zero-mean random variables, and, for fully developed channel flow, 
they are statistically independent of x, z and t. For y = 0, the no-slip condition yields u = a1 
= 0 and w = a3 = 0; and similarly the impermeability condition yields v = a2 = 0. At the 
wall, since u and w are zero for all x and z, the derivatives (∂u/∂x)y=0 and (∂w/∂z)y=0 are also 
zero. Hence the continuity equation yields 
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The significance of the coefficient b2 being zero is that, very close to the wall, there is a 
two-component flow. That is, to order y, v is zero whereas u and w are non-zero. The 
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resulting motion corresponds to flow in planes parallel to the wall. This is called two-
component flow, rather than two-dimensional flow, because u and w vary in y direction. 
The Reynolds stresses can be obtained from the expansions of equations (2.47), (2.48) and 
(2.49) simply by taking the means of the products of the series. Taking account of the 
coefficients that are zero, to leading order in y the Reynolds stresses are 
 
                                                     ...22

1
2 += ybu                                                      (2.51) 

                                                     ...42
2

2 += ycv                                                       (2.52) 

                                                    ...22
3

2 += ybw                                                       (2.53) 

                                                     ...3
21 += ycbuv                                                    (2.54) 

 
Thus, while <u2>, <w2> and k increase from zero as y2, -<uv> and <v2> increase more 
slowly, as y3 and y4, respectively. These behaviors can be clearly seen in log-log plots of 
<uiuj> against y; they are also evident in figure 2.16, which shows the profiles of <uiuj> 
and k in the viscous wall region.  

 
Fig. 2.16 – Profiles of Reynolds stresses and kinetic energy normalized by the friction 
velocity in the viscous wall region of a turbulent channel flow: DNS data of Kim et al. 

(1987). Re = 13750. 
 
 

For fully developed channel flow, the balance equation for turbulent kinetic energy is 
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Fig. 2.17 shows the terms in this equation for the viscous wall region. In order, the terms 
are production, pseudo-dissipation, viscous diffusion, turbulent convection and pressure 
transport. 

 
Fig. 2.17 – The turbulent-kinetic-energy budget in the viscous wall region of channel flow; 

terms in equation (2.64) normalized by viscous scale. From the DNS data of Kim et al. 
(1987). Re = 13750. 

 
 

Like -<uv>, the production P increases from zero as y+. It reaches its peak value well 
within the buffer layer, at y+ ≈ 12. In fact, it can be shown that the peak production occurs 
precisely where the viscous stress and the Reynolds shear stress are equal. Around this 
peak, production exceeds dissipation (P/ϵ ≈ 1.8), and the excess energy produced is 
transported away. Pressure transport is small, while turbulent convection transports energy 
both toward the wall and into the log-law region. Viscous transport transports kinetic 
energy all the way to the wall. 
We can notice that the peak dissipation occurs at the wall, where the kinetic energy is zero. 
Although the fluctuating velocity vanishes at y = 0, the fluctuating strain rate sij and hence 
the dissipation do not. The dissipation at the wall is balanced by viscous transport 
 

                                               
2

2
~

dy

kdνεε ==           for y = 0                                          (2.56) 

 
the other terms in equation (2.56) being zero. 
For fully turbulent flow, the statistics considered here (normalized by the viscous scale) 
have only a weak dependence on Reynolds number in the inner layer (y/δ < 0.1). Figure 
2.18 shows profiles of the r.m.s. of u and v measured at various Reynolds numbers. The 
peak value of u’/uτ appears independent of Re; but at y+ = 50 (which is within the inner 
layer for all but the lowest Reynolds number) the value of u’/uτ increases by 20% between 
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Re0 = 14914 and Re0 =39582. These and other Reynolds number effects are discussed by 
Wei and Willmarth (1989) and Antonia et al. (1992). 
 

 
Fig. 2.18 – Profiles of r.m.s. velocity measured in channel flow at various Reynolds 

numbers by Wei and Willmart (1989). Open symbols u’/uτ , solid symbols v’/uτ at different 
Reynolds number. 

 
 

2.7 Lenghtscales and the mixing length 
 
Three fundamental properties of the log-law region are the form of the mean velocity 
gradient: 
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the fact that production and dissipation are almost in balance: 
 
                                                                        1≈εP                                                    (2.58) 
 
and the near constancy of the normalized Reynolds shear stress: 
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                                                                  3.0≈− kuv                                               (2.59) 

 
A fourth property, that follows from these three, is the near constancy of the turbulence-to-
mean-shear timescale ratio: 
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From these relations, it is a matter of algebra to deduce that the turbulence lengthscale L =  
= k3/2/ϵ varies as 
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At high Reynolds number, in the overlap region (50δν < y < 0.1δ), the Reynolds stress is 
essentially constant, so that then L varies linearly with y: 
 
                                                                    yCL L=                                                       (2.62) 
 
with  
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Notice that S, P, and ϵ vary inversely with y, whereas L and τ = k/ϵ vary linearly with y. 
However, at the moderate Reynolds number accessible in DNS, there is no overlap region, 
and the shear stress changes appreciably over the log-law region. This, together with 
imperfections in the approximations equations (2.57), (2.58) and (2.59), results in equation 
(2.62) providing a poor approximation to L obtained from DNS. 
The turbulent viscosity νT(y) is defined so that the Reynolds shear stress is given by 
 

                                                           
dy

Ud
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It can be expressed as the product of a velocity scale u* and a lengthscale lm: 
 
                                                               mT lu ⋅= *ν                                                        (2.65) 

 
One of these scales can be specified at will, and then the other determines νT. A propitious 
(implicit) specification is  
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By substituting equation (2.65) and (2.66) into (2.64) and taking the absolute value we 
obtain the explicit relation 

                                                           
dy

Ud
lu m ⋅=*                                                     (2.67) 

 
Note that in the upper half of the channel (δ < y < 2δ) the velocity gradient d<U>/dy is 
negative and the Reynolds stress <uv> is positive. The absolute value in equation (2.66) 
and (2.67) ensure that u* is non-negative for all y. 
In the overlap region (50δν < y < 0.1δ) that occurs at high Reynolds number, the shear 
stress -<uv> differs little from uτ

2, and the mean velocity gradient is uτ/(ky). Consequently, 
u* equals uτ, and then equation (2.89) determines lm  to be 
 
                                                                kylm =                                                             (2.68) 

 
Like L =  = k3/2/ϵ, the lengthscale lm varies linearly with y. 
The above relations constitute Prandtl’s mixing-length hypothesis (Prandtl 1925). In 
summary, the turbulent viscosity is given by  
 

                                                     
dy

Ud
llu mmT ⋅=⋅= 2*ν                                             (2.69) 

 
where lm  is the mixing length. In the overlap region, lm  varies linear with y, the constant pf 
proportionality being the Kàrmàn constant, k. 
In order to use the mixing-length hypothesis as a model of turbulence, it is necessary to 
specify lm outside the overlap region, like in the viscous wall region and in the core. 
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3. Effect of Roughness 
 
Turbulent flows over rough walls have been studied since the early works of Hagen (1854) 
and Darcy (1857), who were concerned with pressure losses in water conduits. They have 
been important in the history of turbulence. Had those conduits not been fully rough, 
turbulence theory would probably have developed more slowly. The pressure loss in pipes 
only becomes independent of viscosity in the fully rough limit, and this independence was 
the original indication that something was amiss with laminar theory. Flows over smooth 
walls never become fully turbulent, and their theory is correspondingly harder. 
However, during the last century of basic turbulence research, boundary layer over a rough 
wall has received far less attention than turbulent layer over a smooth wall with zero 
pressure gradient (see, for example, the review by Kovasznay (1970), Willmarth (1975), 
Cantwell (1981), Kline (1978), Sreenivasan (1989), and Kline and Robinson (1990)). 
That  situation at first sight appears justifiable on the grounds that one should try to 
understand wall-bounded flow with the simplest possible boundary condition before 
introducing complexities such as roughness, pressure gradients, curvature, and so on. 
However, this comparative neglect may obscure the potential contribution of rough-wall 
boundary layer studies to some continuing problems of boundary-layer research in general. 
Over either a smooth or a rough wall, the turbulent boundary layer consists (in the simplest 
view) of an outer region where the length scale is the boundary-layer thickness δ, and a 
wall or inner region where the length scale is v/uτ in the case of a smooth wall, as explained 
profusely in chapter 2. Kline (1978) has suggested that neither the dominant-inner-layer 
view (in which the outer layer is regarded as a collection of "tired turbulence diffused 
outward from events" near the smooth wall) nor the dominant-outer-layer view (in which 
the inner region is driven by the outer layer) is tenable. It is much more likely that the inner 
and outer regions interact, a notion which can be evaluated (Kline and Robinson 1990) not 
only with data from the canonical smooth-wall boundary layer, but also from boundary 
layers subjected to perturbations such as roughness transitions, pressure gradient changes, 
or wall suction. 
Much of the literature before 1990 regarding roughness concerns itself with the universal 
aspects of flows over rough walls; more recent research has emphasized the differences 
between different types of roughness. It has been suggested that the details of the wall may 
influence the flow across the whole boundary layer, and part of this review is dedicated to 
sorting those claims and their significance in understanding wall turbulence. Because of 
space limitations we restrict ourselves to the fluid dynamics of fully turbulent flows over 
rough walls, neglecting other important topics. One of them is transition, which can be 
promoted (Schlichting 1968, pp. 509–15) or delayed by roughness (Wassermann & Kloker 
2002). Another one is the role of roughness in enhancing heat transfer, recently reviewed 
by Kalinin & Dreitser (1998), which is a field by itself. 
In this chapter, a study of turbulence in rough-wall boundary layers is carried out for 
understanding degree and nature of the interaction between the inner and outer layers. One 
way of posing the problem is this: smooth-wall and rough-wall boundary layers have (as 
will be shown) essentially the same turbulence structure in the outer layer, a region of 
weak shear and therefore not the site of the dominant instability mechanisms which 
generate the turbulence, nor of the strongest production of turbulent kinetic energy. Yet 
close to the wall, where the shear is large and turbulence generation is strong, the two 
kinds of boundary layer have quite different structures and are controlled by quite different 
length scales. How do such different processes in the energetic inner layer lead to 
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essentially identical results in the more passive outer layer? In addition to these basic 
considerations, there are a host of practical engineering and meteorological motivations for 
research on rough-wall boundary layers. In the atmosphere the underlying surface is almost 
always rough, leading micrometeorologists to study the flow above and within vegetation 
canopies (certainly rough walls in the fluid mechanical sense), both in field experiments 
and in wind tunnel models. By contrast, mainstream or engineering fluid mechanics has 
almost always relegated the roughness to a property of the wall which is not of direct 
concern other than through its influence on the boundary layer well above the surface. The 
usual laboratory realizations of roughness, such as sand-roughened walls, do not admit 
measurements within the roughness envelope or canopy. In this respect, studies of real or 
model vegetation canopies make a unique contribution. One reason for slower progress in 
rough-wall than in smooth-wall boundary layer studies is that there are two intrinsic 
difficulties for both measurements and theory in the vicinity of the roughness. The high 
turbulence intensities encountered near the roughness cause many standard measurement 
techniques (X-wire anemometry in particular) to suffer from substantial errors that have 
often proved difficult to diagnose and correct. Second, because the flow near the roughness 
is spatially heterogeneous at the length scales of individual roughness elements, spatial 
averaging is required in both theory and experiment to eliminate the resulting "noise." 
In this chapter, our aim is to place laboratory and atmospheric rough-wall studies within a 
single framework and summarize the existing studies about the effect of roughness. 
Sections 3.1 and 3.2 consider, respectively, the mean velocity profile and turbulence 
statistics in a rough-wall boundary layer well above the roughness, while section 3.3 
discusses the mean and turbulent velocity fields close to and within the roughness layer. 
Section 3.4 considers organized motion. 
 
 
3.1 Mean Velocity above the roughness sublayer 
 

3.1.1 Dimensional considerations and the logarithmic profile 
 
The bulk properties of the mean velocity distribution U(y) in both smooth-wall and rough-
wall boundary layers are derivable by a classical asymptotic matching process (Millikan 
1938, Wooding et al 1973, Yaglom 1979). Suppose that the flow is in the state called 
"moving equilibrium" by Yaglom (1979), in which δ and uτ vary sufficiently slowly with x 
that their variation with x can be disregarded; then both δ and uτ  can be considered as local 
scales at any particular x. The asymptotic matching analysis postulates that the boundary 
layer consists of two overlapping regions: an outer layer scaling with uτ and δ, and an inner 
layer scaling with uτ and a set S of length scales characterizing the surface. For a smooth 
surface, as we saw in chapter 2, S consists only of the viscous length scale ν/uτ, whereas, 
for a rough surface, S consists of ν/uτ together with the roughness height h and all 
additional lengths Li, needed to completely characterize the roughness. Typically, Li 
includes at least the roughness element dimensions in the x and y directions, and the mean 
element separation distance. Other lengths may also be relevant in some circumstances. Of 
course, U(y) also depends on y itself. However, care is necessary in defining the origin of y 
for a rough surface, since the roughness itself displaces the entire flow upwards. To 
account for this, we define the displaced height Y = y - d, where d is the fluid-dynamic 
height origin or zero-plane displacement, dependent on both the flow and the roughness, as 
Jiménez (2004) did. Thorn (1971) proposed, and Jackson (1981) verified theoretically, that 
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d is the mean height of momentum absorption by the surface; in the absence of an external 
horizontal pressure gradient, the mean stress experienced by the base of the wall layer must 
equal the average horizontal foce per unit plan area, τo, acting on the surface. If the average 
moment per unit plan area exerted by these forces is M, then the level of action of τo is a 
distance M/τo above any arbitrary origin for the vertical axis. In this context, we can define 
d = M/τo. It follows that d automatically satisfies the constraints 0 < d < h and d = 0 for a 
smooth surface. Also, the definition yields a method for the measurement of d, by 
calculating the geometrical centre of the drag profile in the roughness (Thorn 1971). 
Digressing briefly, it is noteworthy that several other techniques for defining or measuring 
d have been proposed. Monin and Yaglom (1971, p 293) pointed out how d can be defined 
in principle by requiring that first-order departures from the logarithmic velocity profile 
over a rough surface should vanish; however, this does not lead to a practical way of 
measuring d. Furuya et al (1976) and Bandyopadhyay (1987) described a method for 
determining d in laboratory rough-wall boundary layers, by fitting measured profiles to an 
assumed form for U(y) across the entire boundary layer. In micrometeorology, the standard 
method (choosing d so that measurements of U(y) above the canopy conform to a 
logarithmic law) is well known to be inaccurate (Thom 1975, Raupach et al 1980). Molion 
and Moore (1983) and de Bruin and Moore (1985) suggested that d can be calculated for 
tall vegetation from the assumption of mass conservation imposed on a logarithmic wind 
profile, but there is no theoretical basis for this. The asymptotic matching analysis for U(Y) 
now proceeds thus: in the outer layer, U(Y) depends only on uτ, δ, and the (displaced) 
height Y, leading to the velocity-defect law: 
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Where U∞ is the free-stream velocity and η = Y/δ. In the inner layer, on the other hand, 
U(Y) depends only on Y, uτ, and the set S of surface length scales, leading to the law of the 
wall 
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where + subscripts denote lengths normalized with ν/uτ.. The viscous length scale is chosen 
from the set S as the normalizing length scale in (3.2) to preserve generality over both 
smooth and rough walls. In the overlap region between the inner and outer layers, (3.1) and 
(3.2) must be valid simultaneously. Because the dimensionless laws (3.1) and (3.2) have no 
independent variables in common, matching is possible only if 
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where K is the von Kannan constant, here taken as 0.40 (though experimental values vary 
between 0.35 and 0.42). Integrating (3.3) gives the familiar logarithmic law  
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where C is a function of the roughness. For a smooth surface, C takes a constant value C0, 
here taken as 5 (though experimental values between 5 and 5.5 are common). The overlap 
layer, in which (3.3) and (3.4) are valid, can be called the inertial sublayer (Tennekes and 
Lumley 1972). In this layer the flow is independent of all lengths except Y, whereas in the 
roughness sublayer immediately below, the flow depends explicitly on the surface scales h 
and +iL . A crucial condition for the existence of an inertial sublayer is δ » (ν/uτ, h, +iL ), to 

ensure that the outer-layer length scale δ is confined to (3.1) and the inner-layer length 
scales to (3.2). The logarithmic law is usually reformulated from (3.4) in one of two 
equivalent ways. The engineering approach (eg, Perry et al 1969) emphasizes the departure 
of a rough-wall flow from that over a smooth wall, by writing (3.4) as 
 

                                             
),(

ln)(
0 ++

+







∆−+= iLh
u

U
C

k

Y

u

YU

ττ     
                              (3.5) 

 
where ∆U/uτ, is the roughness function, equal to zero for a smooth wall and increasing 
with wall roughness; it is the increment between (parallel) smooth-wall and rough-wall 
velocity profiles on a Clauser plot. The relationship between ∆U/uτ , and h+ has been 
obtained experimentally for a wide variety of rough surfaces; see Fig. 3.1, which shows 
both laboratory data and atmospheric data from several vegetation surfaces. The 
atmospheric data extend the h+ range by about 2 orders of magnitude. When h+ is 
sufficiently large (more than about 70 for sand roughness), ∆U/uτ, varies logarithmically 
with h+; the reason becomes clear from the following. The meteorological approach to 
(3.4) (eg, Wooding et al 1973) is to note that at high Reynolds numbers, flow over a rough 
wall approaches Reynolds number similarity and viscosity becomes irrelevant. In these 
circumstances, usual in the atmosphere, it is not sensible to nondimensionalize (3.2) with 
the length scale ν/uτ;  a better choice is h leading to the law of the wall in the form 
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where σi = Li/h are the aspect ratios necessary to characterize the roughness, and ζ = Y/h.  
Combining the form (3.6) for the law of the wall with the outer-layer law (3.1) in the 
inertial sublayer, we can obtain the logarithmic law in the form 
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It is convenient to reexpress the constant c in terms of a roughness length y0, writing 
 

                                          

( )
00

ln
1ln1)(

y

dy

ky

Y

ku

YU −⋅=⋅=
τ

                                             (3.8) 

 



 32

where y0 is related to the other integration constants in (3.4), (3.5), and (3.7) by 
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so that C, ∆U/uτ, c and y0/h are all equivalent measures of the capacity of the surface to 

absorb momentum. The functional form of the logarithmic law becomes simpler in the 

high and low Reynolds number limits. When h+ → ∞, the flow is dynamically fully rough, 

and Reynolds number similarity ensures that 

 
Fig. 3.1 - The relationship between ∆U/uτ  and the roughness Reynolds number h+. 

Laboratory data from survey by Bandyopadhyay (1987). 
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Where c∞(σi) is the limit of c as h+ → ∞. In this limit ),( ihc σ+ and y0 become independent 

of h+, depending only on roughness geometry through σi, and ∆U/uτ  varies logarithmically 
with h+ (see Fig. 3.1). When h+ → 0 (but with uτ  remaining nonzero), the flow is 
dynamically smooth and approaches that over a smooth wall, so that C → C0, ∆U/uτ → 0 
and 
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Therefore, y0 remains defined for dynamically smooth flow but is flow-dependent, unlike 
the fully rough limit where y0 depends on roughness geometry alone. For the  omogeneous 
sand roughness studied by Nikuradse (1933), dynamically smooth flow is observed for 0 < 
h+ < 5 and dynamically fully rough flow for h+ > 70. At intermediate values of h+, the low 
is called transitional. In the fully rough state, the data for sand roughness show that c∞ = 
8.5, giving y0 ~ h/30 from (3.10). It is also useful to define a Reynolds number based on y0 
by writing (consistent with previous notation) y0+ = y0uτ/v. (This is sometimes called the 
roughness Reynolds number, but we reserve that term for h+.) From (3.11), the minimum 
value of y0+ is 0.14, on a smooth wall. The relation between the roughness function ∆U/uτ 
and the roughness length y0 is most easily expressed in terms of y0+: 
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which permits simple conversion between the engineering and meteorological measures of 
roughness.  
From the previous equations we can say that the most important effect of roughness is the 
change of the mean velocity profile near the wall, with the consequent modification of the 
friction coefficient. 
Before leaving the dimensional analysis, it is necessary to consider the zero-plane 
displacement d, which is required to fix the origin of Y in (3.4)-(3.8). From the definition 
of d as the mean level of momentum absorption by the (rough) surface, it follows that d is 
a fluid-dynamic property of the surface which obeys dimensional constraints similar to 
those on y0. Hence, when δ » (v/uτ, h, Li), the normalized displacement d/h is a function 
only of the surface properties h+ and σi , independent of h+ as h+ → ∞, like y0/h from (3.9) 
and (3.10). 
Virtually all surfaces of geophysical or meteorological interest are rough. The 
characteristic height of the roughness elements in natural terrains ranges from a few 
microns in the case of snow and fresh mud, to several centimeters in open rural terrain, and 
to tens of meters over forests and cities (Monin 1970). The thickness of the atmospheric 
boundary layer is δ ≈ 500 m (Counihan 1975), so that the ratio δ/h is large in open rural 
areas, but not necessarily so over cities or forests (Chen & Castro 2002). 
Besides the obvious effects of roughness just discussed there are subtler possibilities. 
Researchers have known for some time that structures with outer length scales penetrate 
into the buffer region (Hites 1997, Del Alamo & Jiménez 2003), and it has also been 
suggested that those outer-layer structures growfrom “hairpin” eddies generated near the 
wall (Head&Bandyopadhyay 1981, Adrian et al. 2000). It is therefore possible that at least 
some rough walls may influence the whole layer by modifying the form of the hairpins 
(Bandyopadhyay & Watson 1988), and the behavior of the roughness layer in other cases 
may be directly modified by events coming from the outside. Both mechanisms have been 
proposed. 
 
3.1.2 Fully rough flow 
 
At Reynolds numbers large enough for the flow to obey Reynolds number similarity, the 
problem of determining the mean velocity profile in the logarithmic region devolves to 



 34

finding the functional dependence of y0/h (or ∆U/uτ) and d/h upon the roughness geometry 
as specified by σi . The question of whether there are kinds of roughness which do not 
achieve a fully rough state (even at very high Reynolds numbers) is considered here. The 
earliest approach to the problem of characterizing y0/h or ∆U/uτ  was to define roughness 
by analogy with particular, well-studied forms such as the sand roughness of Nikuradse 
(1933), for which c∞ = 8.5 and y0 ~ h/30. It is still common in engineering to define 
roughness in terms of the "equivalent sandgrain roughness height" hs = 32.6y0 introduced 
by Schlichting (1936). The three quantities hs

+ , ∆U+, and y0
+ characterize roughness 

interchangeably. The first one is most often used in engineering applications, the second 
one in wind-tunnel research, and the last one in geophysics. 
Note that, even if in Nikuradse’s case hs is the grain size of the sand, it is in general only a 
convenient way of characterizing the drag increment due to the roughness. Consider the 
skin friction generated by two boundary layers, one rough and the other one smooth, with 
identical mean velocities U at a given location y within the logarithmic layer. In the smooth 
and rough cases the logarithmic velocity distribution for the mean velocity profile can be 
written as 
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where R = Uy/ν, and the subindices l and r refer to smooth and rough values. These two 
equations have to be solved for U+ = U/uτ , and higher values of U+ imply lower skin 
frictions. They both have the same form with different right-hand sides B. It is easy to 
check that U+ is a monotonically increasing function of B, so that the difference in wall 
drag between smooth and rough walls is controlled by the difference 
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For hs

+ ≤ 4 the skin friction of the rough wall would be less than that of the smooth one. 
There is no obvious reason why this should not be the case, but the opposite is usually true. 
Roughness elements seem to be more efficient generators of skin friction than smooth 
walls, presumably because they generate more turbulent dissipation than the relatively 
delicate viscous cycle. This is not an absolute rule, and some moderately rough surfaces 
reduce drag (Tani 1988, Sirovich & Karlsson 1997, Bechert et al. 2000). A well-
documented example is the flow over riblets, which are narrow grooves aligned with the 
mean flow. They decrease drag by up to 10% (Walsh 1990), and are discussed below. In 
most cases hs

+ ≈ 4 is however a lower limit below which the drag is the same as over a 
smooth wall. 
In the limit Bl » Br the viscous component of the skin friction is negligible compared with 
the drag of the roughness elements, and the flow becomes asymptotically independent of 
viscosity. In this limit 
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so that to have a skin friction larger than twice that of a smooth wall we need Br ≤ Bl /√2. 
Because Bl is approximately 20–30 in the logarithmic layer, this implies Bl – Br ≥ 7.5 and 
hs

+ ≥ 80. In practice hs/h becomes independent of hs
+ around that threshold, beyond which 

the flow is considered fully rough. 
We stress that the previous argument deals with the drag properties of the flow, and that 
the equivalent sand roughness is a hydrodynamic concept that needs to be related to the 
surface geometry before it can be used. 
Rather than, in micrometeorology surveys of early data by Tanner and Pelton (1960) and 
Stanhill (1969) gave y0/h = 0.13 (c∞ = 5.10) and d/h = 0.64 for field crops and grass 
canopies, which have proved to be good rules-of-thumb in many cases and are still in 
widespread use. For forests, measurements reviewed by Jarvis et al (1976) suggested the 
rather different typical values y0/h ~ 0.06, d/h ~ 0.8. 
The large differences between sandgrain, crop, and forest values of y0/h and d/h reinforces 
the need for understanding the influence of geometry. To do this, it is necessary to identify 
and study experimentally the particular aspect ratios σi, which dominate the behavior of the 
roughness as a momentum absorber. The main ones studied are the element aspect ratios σx 
= l x/h, σz = lz/h, and the roughness density λ, defined as the total roughness frontal area per 
unit ground area, or (frontal area per element)/(ground area per element) (Koloseus and 
Davidian 1966, Wooding et al 1973, Raupach et al 1980). For three-dimensional roughness 
λ = hlz/D

2, whereas for transverse two-dimensional roughness such as ribs or grooves σz → 
∞ and λ = h/D. Data on the influence of these aspect ratios on y0/h are available for several 
broad classes of roughness. 
 
Three-dimensioned laboratory roughness: An early and extensive study of the effect of 
roughness density λ on y0/h was made by Koloseus and Davidian (1966); some of their 
data for three-dimensional roughness are shown in Fig. 3.2a, along with data from 
O'Loughlin (1965) and Raupach et al (1980). Comparable data also appear in Seginer 
(1974). In general, y0/h increases with increasing λ to a maximum value (at λmax, say) 
beyond which declines with further increase in λ. This behavior can be attributed to mutual 
sheltering of roughness elements when λ > λ max (Wooding et al 1973). However, the 
function [y0/h](λ) and the location of λ max depend on the type of roughness, indicating that 
other aspect ratios besides λ are required for a complete specification. 
At low roughness densities (λ < λ max) Fig 3.2a suggests that y0/h varies linearly with λ. 
Lettau (1969), in an early investigation of roughness-geometry effects in the atmosphere, 
concluded from data on flow over bushel baskets on a frozen lake (Kutzbach 1961) that 
y0/h = 0.5λ; however, he imposed no restriction analogous to λ « λ max. There is theoretical 
support for a linear relationship when λ « λ max (Wooding et al 1973), but the coefficient of 
proportionality depends on the drag coefficient of an isolated individual roughness element 
on an otherwise smooth surface. 
Much less is known about the influence of other aspect ratios than λ on y0/h for three-
dimensional roughness. A comparison of data for three- and two-dimensional roughness 
(see below) suggests that the effect of σz is significant, but it seems that a definitive 
experiment on σz has yet to be done. The role of σx was studied by Wooding et al (1973), 
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using the extensive data set of Marshall (1971); they proposed y0/h is proporzional to σx
-0.38 

for λ « λ max. 
 

 
 

Fig. 3.2 - Normalized roughness length y0/h as a function of roughness density λ. 
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Two-dimensional laboratory roughness: For transverse rectangular two-dimensional "bar" 
roughness, the relevant length scales are the streamwise "wavelength" D, the length lx of 
the bars in the x direction, and the gap space D - lx; these give two independent 
dimensionless aspect ratios, λ = h/D and σx = lx/h. The influence of λ on ∆U/uτ or y0/h has 
been extensively studied. In the case of square-bar roughness (σx = 1), Bettermann (1966) 
and Liu et al (1966) showed that ∆U/uτ and therefore y0/h has a maximum for a particular 
spacing between elements approximately corresponding to λ max = 0.2; this is a qualitatively 
similar finding to the three-dimensional case (Fig. 3.2a). Simpson (1973) referred to flow 
visualizations by Liu et al (1966) to explain this behavior, arguing that for λ > 0.2, 
permanent separated vortices occupy the entire cavity between adjacent square bars, 
whereas for λ < 0.2, reattachment occurs some distance before the next bar. Dvorak (1969) 
recommended, using data from various sources (Bettermann 1966, Liu et al 1966, 
Schlichting 1968 and others), the following formulas for square-bar roughness (see also 
Cebeci and Smith 1974, p 131): 
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with the qualification that (3.17b) may require further verification. Later, Kader (1977) 
ombined several data sets on twodimensional transverse roughness of arbitrary aspect ratio 
σx and concluded that 
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where s is a function of the surface geometric length scales. 
In this formulation, c∞ is a function not only of λ but also of σx , the only other aspect ratio. 
Equations (3.17) and (3.18) are compared in Fig. 3.2b with data from Koloseus and 
Davidian (1966). 
 
Vegetation: For natural vegetated surfaces in the atmosphere, the data are scattered not 
only because of roughness element variations but also because of measurement difficulties 
associated with both y0 and (especially) with λ. One fairly widely available surrogate for λ 
is the "leaf area index" (LAI), defined as the (one-sided) cumulative leaf area per unit 
ground area. Stems are sometimes included (depending on the purpose of the 
measurement) to produce a "plant area index" (PAI). If each leaf or stem is regarded as a 
roughness element, and leaves and stems are assumed to be isotropically oriented, then λ = 
PAI/2 (or LAI/2 if only LAI is available). 
Figure 3.3 shows data  on the variation of y0/h and d/h with λ for vegetated surfaces, from 
Jarvis et al (1976) and Garratt (1977), using λ = LAI/2 where appropriate. There is a clear 
increase of d/h with λ, which is intuitively expected and is consistent with the definition of 
d as the mean level of momentum absorption. The y0/h data form a qualitatively similar 
peaked curve against λ to the laboratory data (Fig. 3.2a), but with more scatter. However, 
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y0/h for vegetation does not fall off as rapidly at high λ, and has a higher λ max (« 0.3) than 
for laboratory roughness (for which 0.05 < λ max < 0.2, from Fig. 3.2). This suggests a 
difference in mutual sheltering properties between vegetation and solid laboratory 
roughness elements, which may be associated with the "porosity," or much more scattered 
distribution of roughness elements through space, of vegetation relative to laboratory 
roughness. 
There have been many attempts to model turbulent flow and momentum absorption in 
vegetation canopies, and thence to model y0/h and d/h. As an example, Fig. 3.4 shows 
results on y0/h and d/h from a higher-order closure model by Shaw and Pereira (1982). 
They assumed a triangular distribution of leaf area with height, with a peak at normalized 
height ymax/h. The results suggest a substantial dependence of both y0/h and d/h on ymax/h, 
but for typical values (0.6 < ymax/h < 0.8) the agreement between the model and the field 
data (Fig. 3.3) is reasonable. 
 
 

 
 

Fig. 3.3 - y0/h and d/h as a function of roughness density λ for field vegetation. Surfaces A-
G from Garratt (1977) and H-M from Jarvis et al (1976). 
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Fig. 3.4 - Predictions from a second-order closure model (Shaw and Pereira 1982) of (a) 
normalized roughness length y0/h and (b) zeroplane displacement d/h, for field vegetation. 
 
 
3.1.3.’K’-Roughness 
 
Much consideration has been given to the question of whether there exist roughness 
geometries which (unlike the forms just considered) do not achieve a fully rough state at 
high Reynolds numbers, in the sense of obeying (3.10) as h+ → ∞.  
Dimensional analysis suggests that in the limit in which h+ » 1 and viscosity becomes 
irrelevant, hs should be proportional to the dimensions of the roughness elements. The 
“normal” surfaces for which this is true are called k-rough, to distinguish them from the d-
roughness described below. The ratio hs/h depends on the geometry of the roughness, and 
particularly on its surface density, which was quantified by Schlichting (1936) by the 
solidity λ, which is the total projected frontal roughness area per unit wall-parallel 
projected area. He performed a fairly complete set of experiments designed to test this 
effect, which are still often used to test theories and empirical correlations. They are 
presented, together with a few others, in figure 3.5. There are two regimes: the sparse one 
below λ ≈ 0.15, for which the effect of the roughness increases with the solidity, and the 
dense one for which it decreases because the roughness elements shelter each other. In the 
sparse region it is intuitively clear that the extra roughness drag should be proportional to 
the frontal surface of the roughness elements, and hs/h ≈ λ. Much of the scatter of the 
original experiments in that range can be accounted for by scaling the drag of each surface 
by an appropriate drag coefficient of the individual elements. Following Tillman (1944), 
we use cD ≈ 1.25 for two-dimensional spanwise obstacles, and cD ≈ 0.15–0.3 for three-
dimensional rounded ones. 
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A re-evaluation of Schlichting’s results was published by Coleman et al. (1984), and has 
occasionally been used instead of the original experiments. The differences are only 
significant for very sparse roughness, and they are used in figure 3.5 to compute the error 
bars. 
The solidity has often been used for engineering correlations, but it cannot by itself fully 
characterize a surface. For example, the mutual sheltering of the roughness elements 
depends on other geometric factors, and correlations such as those in Figure 1a apply only 
to particular sets of experiments. There is not even a qualitative theory for the power of λ, 
which should describe the dense regime. Figure 3.5 uses λ−2, which is close to some 
engineering correlations, but powers down to λ

−5 have been proposed (Dvorak 1969). 
There have been many attempts to improve the empirical correlations by choosing better 
parameters to describe the surface (Simpson 1973, Bandyopadhyay 1987). Waigh & 
Kind’s (1998) is a particularly complete compilation. 
Most correlations are restricted to surfaces whose geometry is easily described, and cannot 
easily cope with irregular surfaces that are often only known by their mode of preparation. 
Townsin (1991) attempted to correlate the drag of such surfaces with the moments of the 
spectra of the roughness height while analyzing surfaces of interest in naval construction, 
and Raupauch et al. (1991) gave empirical correlations for plant canopies. Taylor et al. 
(1995) pioneered an approach in which the flow in the layer below the roughness top is 
approximated by a series of two-dimensional wall-parallel slices, computing the drag in 
each of them using a turbulence model. They had some success in the initial determination 
of the drag characteristics of sparse roughness (Scraggs et al. 1988). 
 
 

 
 

Fig. 3.5 - Equivalent sand roughness for various k-surfaces versus the solidity λ, corrected 
with empirical drag coefficients. See Jiménez (2004) for primary references. 
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3.1.4. ‘D’-Roughness 
 
The distinction between d- and k-roughness was first made by Perry et al. (1969), who also 
summarized previous evidence for d-type behavior. They observed that, in several 
boundary layers over plates that had been roughened by narrowspanwise square grooves, 
the effective roughness hs was not proportional to the roughness height (the h), but to the 
boundary-layer thickness (the d), 
 
                                                               hs ≈ 0.02δ                                                         (3.19) 
 
This result has to be taken with care because it was only documented for a single zero-
pressure-gradient case in which the ratio of the boundary layer thickness to the groove 
depth was 10–20, and where asymptotic scaling laws should not be expected. 
This criticism is not valid for their adverse-pressure-gradient boundary layers, which were 
thicker, but the only correlation in those cases was that hs was proportional to the offset ∆y 
of the logarithmic layer’s origin with respect to the top of the grooves, which could not be 
related to other physical lengths. It is nevertheless interesting that the value of ∆y measured 
at the downstream end of some boundary layers was twice larger than either the groove 
width or the depth. 
Figure 3.6 shows a compilation of effective roughness heights for d-surfaces, and only 
partially supports the conclusion that the effective roughness is independent of the 
roughness dimensions. In the individual experiments, represented by open symbols, ks is 
not proportional to h, but neither is the overall picture consistent with a constant value for 
hs/δ. The problem is in part the narrow range of h/δ in each experiment, but also that in 
most cases h/δ is relatively large. Only Bandyopadhyay’s (1987) experiments satisfy the 
criterion set in the introduction that h/δ > 40, and they are also the ones that behave less 
like d-walls. Simpson (1973) studied the effect of h/δ on the drag of a particular k-surface, 
and suggested that 
 
                                                     δhUU ⋅−∆=∆ ++ 250                                             (3.20) 

 
where ∆0U

+ would be an ideal value at h/δ = 0. That correction has been applied to the 
solid symbols in figure 3.6, and the resulting values are in somewhat better agreement with 
d-behavior, but the magnitude of the correction suggests that there is a need for a definitive 
set of experiments with emphasis on sufficiently high values of both δ/h and h+. 
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Fig. 3.6 - Equivalent sand roughness for various d-surfaces versus the solidity h/δ. The 
solid symbols are corrected for the effect of h/δ. See Jiménez (2004) for primary 

references. 
 
 

Even with these uncertainties d-roughness has been studied extensively, both because it is 
difficult to understand how the origin of the logarithmic layer could be offset by more than 
the physical roughness dimensions, and because it promises a way of constructing 
boundary layers with a single length scale. Because much of the complication of wall-
bounded flows is due to the interplay between two independent length scales, the 
proportionality in Equation 3.19 implies that d-type layers have only outer scales and are, 
in a sense, pure core flows. 
The grooves in d-type walls are roughly square, with a solidity λ ≈ 0.5, which is in the limit 
of extreme mutual sheltering in Fig. 3.5. The usual explanation for their behavior is that 
they sustain stable recirculation vortices that isolate the outer flow from the roughness 
(Fig. 3.7). Walls with grooves wider than 3–4h behave like k-type surfaces, and also have 
recirculation bubbles that reattach ahead of the next rib, exposing it to the outer flow. Perry 
et al. (1969) explicitly observed the difference in recirculation lengths, and Djenidi et al. 
(1994) and Liou et al. (1990) confirmed it in flow visualizations of individual grooves. 
Although this model explains how the flow becomes isolated from the interior of the 
grooves, making hs independent of their depth, the role of the boundary-layer thickness is 
harder to understand. In the limit of ideally stable groove vortices, the outer flow sees a 
boundary condition that alternates between no slip at the rib tops and partial slip over the 
cavities, and the relevant length scales would seem to be the groove width and pitch, both 
of which are proportional to h. To get around this difficulty, it has been proposed that 
groups of grooves occasionally eject their vorticity into the wall layer, and that these 
ejections are triggered by large-scale sweeps originating in the outer flow (Townsend 
1976, p. 142). There has been a lot of discussion on whether the outer flow structures 
couple directly with near-wall events, with various investigators finding that the periods 
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between buffer-layer “bursts” over smooth walls scale in outer units (Laufer & Narayanan 
1971), inner units (Luchik&Tiederman 1987), or their geometric mean (Shah&Antonia 
1989).Afull discussion is beyond this review, but it is conceivable that a length scale δ 
could arise from those interactions. 
Djenidi et al. (1994) visualized ejections from individual groove vortices under turbulent 
boundary layers, and Taniguchi & Evans (1993) gave evidence of their modulation by 
passing turbulence. Ghaddar et al. (1986a) analyzed the simpler system of a grooved 
laminar channel and found that the vortices bifurcate spontaneously to an oscillatory state 
at fairly low Reynolds numbers and that the bifurcation eventually leads to subharmonic 
behavior in which several grooves eject collectively. Ghaddar et al. (1986b) later enhanced 
the heat transfer in the channel by pulsating the flow at frequencies resonating with the 
natural instability, supporting the idea that similar resonances could occur naturally over d-
type surfaces. 
 
 

 
 

 
  

Fig. 3.7 - Geometry of (a) d-type and (b) k-type slotted walls. Flow is from left to right. 
 
 
It is likely that the observed behavior of "d-type" roughness is related to the difficulty of 
simultaneously achieving high roughness Reynolds numbers and a large separation 
between δ and roughness length scales in laboratory boundary layers. Several experiments 
have shown that with limited fetch x (from the start of the roughness at x = 0), h - d varies 
linearly with x for "d-type" roughness (Perry et al 1969, Wood and Antonia 1975, Osaka et 
al 1982, Bandyopadhyay 1987). Since δ is also approximately proportional to x, this 
behavior is consistent [through (3.15)] with a roughness scaling on δ, as implied by the "d-
type" nomenclature. However, it is also clear that such scaling can only operate for limited 
x, because h - d cannot increase beyond h whereas δ can increase without limit in principle. 
At some downstream distance, both y0 and h - d must approach a limiting value determined 
by roughness geometry alone; only beyond this distance is the scale separation criterion δ » 
(ν/uτ, h, Li) properly satisfied. 
The wide interest in "d-type" roughness has been motivated partly by the possibility of 
generating an exactly self-preserving boundary layer. Rotta (1962) showed that, for self-
preservation to exist, uτ /U∞ and dδ/dx must be independent of x. These requirements 
cannot be met on a smooth wall with zero pressure gradient, and in the case of a rough 
wall, can only be met if the roughness scale varies linearly with x (see also Townsend 
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1976). The observations described above suggest that "d-type" roughness fulfills the self-
preservation criteria in therange of x where (h - d) is the same order of x. 
 
3.1.5 Transitional Roughness 
 
The flow regime in which h+ is not large enough for a fully rough behavior is, somewhat 
confusingly, called “transitionally” rough. The name has nothing to do with transition to 
turbulence, which is controlled by δ+. 
Transitional roughness functions for several surfaces are collected in gigure 3.8, but it is 
important to realize that the Reynolds number used in the abscissae is not based on the 
equivalent sand roughness hs . We in the previous section that hs

+ is a flow property that 
univocally determines ∆U+. What is done in practice, and what is done in Fig. 3.8, is to 
assign to each surface a single “geometric” sand roughness, which is the fixed value that 
corresponds to its skin friction in the fully rough regime at high Reynolds numbers. This 
geometric roughness hs∞ is a property of the surface, and can be used to characterize the 
Reynolds number of the flow. It guarantees the collapse of all the roughness functions in 
the fully rough regime. Nikuradse (1933) observed that, for graded 
sand, the roughness function vanishes at hs∞

+ ≈ 4, which has often been incorrectly quoted 
as meaning that all surfaces below h+ = 4 are hydrodynamically smooth. 
Colebrook (1939) collected results for several industrial pipes and found more gradual 
transitions, also included in Fig. 3.8. His results depend on the particular surface, but to 
simplify their practical use, he proposed a “universal” interpolation formula 
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which Moody (1944) later used to compute his commonly used skin-friction diagram for 
pipes. The discrepancy between the two results was already noted by Schlichting (1968), 
but became lost in practice. Surfaces below h+ ≈ 4 are still often considered “smooth,” 
whereas engineers use Moody’s more gradual formula. 
Bradshaw (2000) revived the question, noting that a minimum transitional height was 
unlikely for sparse roughness because the drag of the roughness elements in a shear is 
proportional to h2 even in the low Reynolds number limit, and this should be reflected in 
∆U+. In recent years the matter has become topical because some of the experiments 
undertaken to clarify the high Reynolds number behavior of flows over smooth walls have 
surfaces that would be hydrodynamically smooth or rough depending on which criterion is 
used (Barenblatt&Chorin 1998, Perry et al. 2001). Figure 3.8 shows that there is no “true” 
answer, and that each surface has to be treated individually. 
The solid symbols in figure 3.8 correspond to triangular riblets measured by Bechert et al. 
(1997). The drag-reducing property of streamwise-aligned riblets is a transitional 
roughness effect (Tani 1988). When they exceed h+ ≈ 10 they loose effectiveness, and their 
behavior when h+ » 1 is that of regular k-surfaces. Their drag-reducing mechanism is 
reasonably well understood. Luchini, Manzo & Pozzi (1991) showed that, in the limit h+ is 
very much less than 1, the effect of the riblets is to impose an offset for the no-slip 
boundary condition which is further into the flow for the spanwise velocity fluctuations 
than for the streamwise ones. They reasoned that this would move the quasi-streamwise 
vortices away from the wall, thickening the viscous sublayer and lowering the drag. They 
computed the relative offset ∆y/h for several riblet families and estimated that 
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                                                           ++ ∆≈∆ yU 8.0                                                      (3.22) 
 
assuming that the depth of the sublayer increases exactly by ∆y. Jiménez (1994) carried out 
direct numerical simulations of turbulent channels incorporating the offset of the boundary 
conditions, and confirmed that all the transverse velocity fluctuations are shifted by ∆y, 
obtaining a drag law ∆U+ ≈ 0.9∆y+. Actual riblets satisfy a linear law similar to Equation 
13 with somewhat lower experimental slopes, which Bechert et al. (1997) showed to be 
due to the mechanical rounding of their tips. Because ∆y/h is constant for each riblet shape, 
this implies a linear behavior of the roughness function at low h+. This is faster than the 
quadratic one suggested by Bradshaw (2000), showing that there are roughness effects that 
go beyond simple aerodynamic drag. Luchini et al.’s (1991) argument and Jiménez’s 
(1994) simulations are antisymmetric in ∆y when ∆y ≪ 1, and imply that the drag of 
spanwise-mounted riblets should increase linearly with h+. 
 
 

 
 

Fig. 3.8 - Roughness function for several transitionally rough surfaces, as a function of the 
Reynolds number based on the fully rough equivalent sand roughness. 

 
 

Colebrook (1939) suggested that the reason for the gradual buildup of the roughness 
effects in industrial surfaces is that they contain irregularities of different sizes, and that 
each element becomes active when it individually reaches a critical Reynolds number. The 
overall smooth evolution of the drag is the sum of these individual transitions. Colebrook 
& White (1937) provided some support for this model in a series of experiments in which 
they used sand grains of different sizes to roughen the wall. Well-graded sand led to results 
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agreeing with Nikuradse (1933), but as little as 2.5% of larger grains were enough to 
substantially lengthen the transitional regime. The very sharp transition for the uniform 
tightly packed spheres included in Fig. 3.8 also supports this model. 
Bandyopadhyay (1987) showed experimentally that h+ (upper) and h+ (lower) decrease as 
the aspect ratio σy increases, and that curves of ∆U/uτ against h+ for different surfaces 
become similar when normalized by h+ (upper) and the value of ∆U/uτ at h+ (upper). This 
was verified by Ligrani and Moffat (1986). Bandyopadhyay (1987) also correlated h+ 
(upper) and h+ (lower) with the Reynolds number associated with the onset of, and 
development of irregularities in, the vortex street shed from an isolated roughness element 
embedded in a laminar boundary layer. 
For vegetation, viscous drag can still be important despite large values of h+ because the 
drag-inducing roughness elements have Reynolds numbers Ul/v orders of magnitude 
smaller than h+ (where l is an element dimension such as a pine needle diameter or a leaf 
width, and U is the ambient velocity about the element). For pine needles Ul/v is around 
30-200; for wheat leaves, around 500-2000. Thom (1968) estimated the ratio of form to 
viscous drag on a typical bean leaf as 3:1. Thus, viscosity provides significant drag in 
many canopies. 
There is another interesting interpretation of figure 3.8; roughness has two effects in the 
transitional regime. In the first place it creates an extra form drag, which increases skin 
friction, but it also weakens the viscous generation cycle, which decreases it. The 
geometric offset in riblets is an example of the second effect, which is dominant in that 
case because the riblets, aligned with the mean flow, have little form drag. As h+ increases, 
and the viscous cycle is completely destroyed, the savings from that effect saturate, and the 
form drag eventually takes over. Different surfaces in Fig. 3.8 have different balances of 
both effects. In the case of surfaces with sparsely distributed roughness elements, the form 
drag increases before the viscous cycle is modified over most of the wall, and the savings 
are never realized. If this interpretation is correct, uniformly rough surfaces offer the best 
opportunity for drag-reducing roughness, and Fig. 3.8 suggests that it would be interesting 
to extend the experiments on packed spheres to lower h+. 
 
 
3.2 TURBULENCE ABOVE THE ROUGHNESS SUBLAYER 
 
Because dimensional arguments establish many properties of the mean velocity field in a 
rough-wall boundary layer, it is worth examining the extent to which dimensional 
reasoning also determines properties of the turbulence, especially velocity variances and 
turbulence length scales. It turns out that a more physically based form of dimensional 
analysis is needed to understand the turbulence statistics. This section examines three 
complementary hypotheses about length and velocity scales for the turbulence above the 
roughness (or viscous) sublayer: the wall-similarity, equilibrium-layer, and attachededdy 
hypotheses. Together, they lead to a set of predictions for turbulence length scales and 
velocity variances which are comparable with the logarithmic profile law for the mean 
velocity. For this analysis, a sufficiently general turbulence statistic for consideration is the 
two-point velocity covariance 
  

                                    ( ) ( ) ( )ττ νδ uLhrYRurYuYu iijji ,,,,,2=+                                   (3.23) 
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in which the displaced height Y = y - d and the separation r are primary arguments, the 
outer and surface length scales are secondary arguments, and velocity scaling with uτ is 
assumed. However, similar dimensional arguments apply to higher velocity moments as 
well. 
 
3.2.1 Wall similarity 
 
The first hypothesis is one of flow similarity over different surface types: 
Outside the roughness (or viscous) sublayer, the turbulent motions in a boundary layer at 
high Reynolds number are independent of the wall roughness and the viscosity, except for 
the role of the wall in setting the velocity scale uτ , the height Y = y - d and the boundary-
layer thickness δ. 
This "wall similarity" hypothesis (our label) is an extension of the usual postulate of 
Reynolds number similarity, which Townsend (1976) expresses thus: "while geometrically 
similar flows are expected to be dynamically similar if their Reynolds numbers are the 
same, their structures are also very nearly similar for all Reynolds numbers which are large 
enough to allow (fully) turbulent flow." Provided that the Reynolds number is sufficiently 
high, Reynolds number similarity implies that, outside the viscous sublayer, the viscous 
length scale ν/uτ has no influence in (3.23); the wall similarity hypothesis makes the further 
claim that, outside the roughness sublayer, the roughness length scales h and Li are also 
irrelevant. It appears that Perry and Abell (1977) were the first to advance this hypothesis 
in essentially the form stated above; they called it the "Townsend hypothesis," since it is 
implicit in the similarity arguments of Townsend (1961, 1976). They supported the 
hypothesis with an analysis of scaling laws for velocity spectra in several overlapping 
spectral ranges, an idea extended later by Perry et al (1986, 1987). 
For the velocity covariance, the wall similarity hypothesis is 
 

                                          ( ) ( ) ( ),,,2 δτ rYRurYuYu ijji =+                                             (3.24) 

 
for large Reynolds numbers and for both Y and Y + r above the roughness sublayer. An a 
priori motivation for the hypothesis (not a derivation) is that (3.24) is a dimensional 
statement analogous to the outer-layer law (3.1) for the mean velocity U(Y). The foregoing 
discussion of the mean velocity profile shows that both dU/dY and U(Y) itself, apart from a 
heightindependent but roughness-dependent translational velocity, are independent of 
surface length scales (h, Li ,ν/uτ) in the outer layer, including the overlap region with the 
inner layer. Therefore, wall similarity holds for relative mean motion at all heights above 
the roughness sublayer. Since the turbulence maintains and is maintained by the mean 
velocity profile, it is unlikely that surface length scales which are irrelevant for the mean 
velocity profile are important for the dominant turbulent motions. 
There is strong experimental support for the wall similarity hypothesis, of at least three 
kinds. Two of these (stress-to-shear relationships and measurements of single-point 
velocity moments) are reviewed now, while a third (two-point velocity covariance 
measurements) is considered in section 3.5.1. 
 
Stress-to-shear relationships: Strong, though indirect, evidence that the turbulence 
structure is essentially independent of the nature of the wall is provided by the universal 
value of the von Karman constant k (the ratio of the turbulent velocity scale uτ to the 
normalized mean shear YdU/dY in the inertial sublayer). It is found that k is independent of 
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wall roughness to within experimental accuracy in both the laboratory and in the 
atmospheric boundary layer [see Yaglom (1977) for a review of atmospheric 
measurements]. Townsend (1976) pointed out the support that this fact provides for 
Reynolds number similarity, since the data span a Reynolds number range from 104 to 108. 
The support for wall similarity is equally striking, since the data also span surface types 
from smooth walls to natural vegetation. 
 
Single-point measurements of velocity moments: A consequence of (3.24) is that, provided 
that the Reynolds number is sufficiently large, vertical profiles of single-point velocity 

moments ( uvwvu iii ,,, 222 , and higher moments) should collapse to common curves 

independent of wall roughness, when normalized with uτ and δ. Figure 3.9 shows a data set 
from Raupach (1981) which tests this directly. Turbulence measurements were made with 
an X-wire probe in zero-pressure-gradient boundary layers over a smooth surface and five 
fully rough surfaces of different densities λ, all formed over the same splitter plate by 
sequentially adding roughness elements (cylinders with h = 6 mm and lx = lz = 6 mm).  

The normalized profiles of uv (Fig. 3.9a) and the standard deviations σu , σv and σw  (Fig. 
3.9b) all collapse to common curves except in the roughness sublayers close to the 
surfaces. The same collapse is evident in Fig. 3.9c for the normalized third moments or 
generalized skewnesses 
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Fig. 3.9 - Profiles against Y/δ of (a) τuuv ; (b) σu , σv and σw  also normalized with uτ ; (c) 

the normalized third moments. 
 
 

A similar collapse of second and third moments was observed by Andreopoulos and 
Bradshaw (1981), who compared boundary layers over smooth and sand-roughened walls. 
Kageyama et al (1982) presented a comparison between "d-type" roughwall and smooth-
wall boundary layers in which the collapse, although reasonable, was not as complete as in 
Raupach's or Andreopoulos and Bradshaw's data (the main problem being with σu in the 
outer layer).  
Care is required in making comparisons such as those above, because of (a) the influence 
of variations in flow configuration and (b) measurement errors. Regarding (a), 
configurational variations in boundary-layer flows can result from the choice between the 
tunnel wall or a splitter plate as the working surface, and also from the choice of boundary-
layer tripping device, if any. Such variations are expected to influence mainly the largest 
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scales of motion and hence the velocity moments in the outer layer (Y ≈ δ). Regarding (b), 
errors are well known to affect turbulence measurements with X-wire probes close to the 
surface, especially when the surface is rough (Raupach et al 1980, Perry et al 1987); these 

errors are responsible for the apparent decrease in | uv | (and probably in σv also) at low Y/ 
δ in Fig. 3.9, as discussed in more detail later. To minimize difficulties caused by both (a) 
and (b), the best approach is to compare profiles of velocity moments taken over a variety 
of surfaces (both smooth and rough) in the same experimental situation. All the 
experiments cited above are of this kind. Provided that the large-scale flow geometry 
(including the tripping technique) is held constant, problem (a) should be minimized. As 
for (b), constancy of instrumentation and experimental technique is no guarantee that 
measurement errors are minimized, or even independent of roughness or of position in the 
flow (since the errors worsen as turbulence intensity increases), but such constancy does 
remove gross variations from one experiment to another. 
 
3.2.2. Turbulence velocity scales, length scales, and spectra 
 
To obtain velocity and length scales for turbulence in the inner layer, Townsend (1961, 
1976) used a set of arguments that have been very influential, to the extent that they have 
become part of the folklore of boundary-layer research. Therefore, the original argument is 
summarized here as accurately as possible. Townsend (1961) made the following 
"equilibriumlayer hypothesis": 
In the inner layer, the local rates of turbulent kinetic energy production and dissipation 
are so large that aspects of the turbulent motion concerned with these processes are 
independent of conditions elsewhere in the flow. 
He called such a flow region an equilibrium layer; these layers exist not only in zero-
pressure-gradient boundary layers but also in many other wall-bounded flows with 
pressure gradients or wall transpiration. 
For zero-pressure-gradient boundary layers, dynamical constraints ensure that the inner or 
equilibrium layer is one of approximately constant stress. With usual boundary-layer 
approximations and at high Reynolds number (so viscous terms are negligible), the 
streamwise momentum equation in steady conditions is 
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where P is the mean kinematic pressure. Given zero pressure gradient and slow streamwise 
development, this equation approaches yuv ∂∂  = 0 as Y/δ = (y - d)/8→ 0 (but without 
going below the top of the roughness at y = h). Hence there is a "constant-stress" layer near 
the surface in which ( )yuv  ≈ -uτ . In practice, the constant-stress layer is roughly the region 
h — d < y — d = Y < δ /10. Its upper height limit can be regarded as the same as that of the 
inner layer, though both are only vaguely determined.  
Townsend (1976) specified three conditions which must be satisfied in an equilibrium 
layer, the first being (clearly) that the turbulent kinetic energy budget must be in local 
equilibrium. To the same approximation as (3.25), the turbulent kinetic energy budget is 
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Where 2222 wvuq ++= is twice the local turbulent kinetic energy, p is the fluctuating 
kinematic pressure, and ε is the average energy dissipation rate. Local equilibrium occurs 
when the advection terms (on the left-hand side) and transport terms (the second and third 
on the right-hand side) are negligible in comparison with local shear production and 
dissipation (the first and fourth terms on the right-hand side). Then, (3.26) reduces to 
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Local equilibrium is likely in the inner layer (but excluding the viscous or roughness 
sublayer) because the shear production term is proportional to 1/Y and so increases rapidly 
as the surface is approached, but the advection and turbulent transport terms both remain 
small (in the case of transport, this assumption needs a posteriori confirmation). 
The second requirement for an equilibrium layer is that the layer must be thin, with depth 
much less than δ, so that the production and dissipation rates within it are independent of 
large eddies of scale δ, and therefore of the large-scale flow geometry. Third, the shear 
stress variation across the layer must be small, to ensure that length scales associated with 
the height variation of shear stress are unimportant. In a zero-pressure-gradient boundary 
layer, this is satisfied by constancy of stress near the wall and the requirement that the 
layer be thin compared with δ. 
Given these constraints, dimensional analysis of the turbulent kinetic energy balance in an 
equilibrium layer can be based on uτ and Y as the only relevant velocity and length scales, 
since δ has no influence because of the equilibrium-layer hypothesis, and the surface 
length scales(h, Li, v/ uτ) are irrelevant by wall similarity (or Reynolds number similarity 
for a smooth wall). It follows that 
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Hence the argument yields the logarithmic mean velocity profile, recovers constant stress 
in the equilibrium layer, and also gives the additional result that the eddy length scale is 
proportional to Y, since in the last of (3.28) ε can be regarded as the cube of an eddy 
velocity scale divided by an eddy length scale. Townsend (1961) showed that these results 
for a zero-pressuregradient boundary layer have counterparts for equilibrium layers in 
other wall-bounded flows with pressure gradients or wall transpiration, with modifications 
dependent on the stress distribution. 
In the above argument, the restriction to "aspects of the turbulent motion concerned with 
energy production and dissipation" is crucial. If this restriction were not imposed, all 
aspects of the turbulence would scale on uτ and Y in the inner layer, so that the ratios σu/ uτ 
, σv/uτ and σw/uτ would all be universal constants independent of both surface type and 
pressure gradient. However, this is observed not to be true, especially in equilibrium layers 
with a range of pressure gradients (Bradshaw 1967a, 1967b). Observations such as these 
led Bradshaw (1967b) to divide the inner-layer turbulence into two components: a 
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universal, active component, responsible for vertical turbulent transfer and scaling with uτ 
and Y, and a larger-scale, inactive component arising from the effect of the outer-layer 
turbulence upon the inner layer. Bradshaw attributed the inactive component partly to 
irrotational motions due to pressure fluctuations generated in the outer layer, and partly to 
the large-scale vorticity field of the outer-layer turbulence which the inner layer sees as 
unsteadiness in the mean flow, or large-scale horizontal sloshing motions. These contribute 

to σu and σw but not to σv or uv. 
Following Townsend and Bradshaw, Perry and Abell (1977) and Perry et al (1986) 
developed scaling arguments to predict the form of the u, v, and w turbulence spectra 

ϕ uu(k), ϕ vv(k), ϕ ww(k) (where k is the streamwise wavenumber), and thence (by 
integrating the spectra over k) the variances of u, u, and w as functions of height. They 
considered three spectral ranges, corresponding to inactive, active and fine scale eddies (in 
order of increasing A), which respectively obey outer-layer, innerlayer, and Kolmogorov 
scaling: 
 
           A: outer-layer scaling, on uτ , δ — inactive eddies, 
           B: inner-layer scaling, on uτ , Y — active eddies,                                                (3.29)  
           C: Kolmogorov scaling, on ε , ν — fine-scale eddies, 
 
The ranges overlap in two wavenumber intervals AB and BC (where A overlaps B and B 
overlaps C, respectively). In range BC (usually called the inertial subrange) all spectra are 

dimensionally constrained to follow the Kolmogorov law ϕ  α ε2/3k -5/3, whereas in range 
AB, the u and v spectra are proportional to k -1. Ranges A and AB do not exist in the w 
spectrum since the inactive eddies have negligible vertical motion. 
Qualified support for the spectral scaling hypothesis (3.29) is provided by spectral 
measurements in both laboratory boundary layers and the atmospheric surface layer. 
Comprehensive laboratory spectral measurements were obtained by Perry et al (1987) over 
smooth and mesh-roughened walls. Figures 3.10 and 3.11 show their it spectra over both 
wall types, which collapse in the outer (A, AB) and inner (AB, B, BC) spectral ranges 
when normalized with outer-layer and inner-layer scales, respectively. The Reynolds 
number δ+ (sometimes called the von Karman number) in these experiments was between 
about 500 and 7000, not high enough to produce broad spectra with extensive k -1 and k -5/3 
behaviors in spectral ranges AB and BC, respectively, a typical limitation in the laboratory. 
A further 
problem is the spread of convection velocities at low wavenumbers, to which Perry et al 
attributed the less than satisfactory spectral collapse with outer-layer scaling over the rough 
wall (Fig. 3.11b). Considering these difficulties, the spectral data in Figs. 3.10 and 3.11 
offer reasonable support for (3.29). 
Atmospheric surface (inner) layer spectra are much broader than laboratory spectra, as δ+ 
is typically 107 or more. Extensive spectral data have been measured in several major field 
experiments, one of the largest being at Kansas in 1968 (Kaimal et al 1972, Kaimal 1973). 
These data show that u, v, and w spectra conform well to inner-layer and Kolmogorov 
scaling (ranges B and C), and exhibit extensive inertial subranges (BC) with spectra 
proportional to k -5/3. However, the atmospheric u and w spectra do not generally conform 
well to the k -1 spectral slope prediction for range AB (Kaimal et al 1972), although a few 
atmospheric spectra do show both k -1 and k -5/3 regions, such as spectra measured over the 
sea by Pond et al (1966). A possible reason for the general absence of a k -1 region is that 
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outer-layer (range A) scaling is more complicated in the atmosphere than the laboratory, 
because of the effect of buoyancy forces which are almost always important for the largest 
eddies in the atmospheric boundary layer. These introduce an extra length scale, the 
Monin-Obukhov length L, into the scale analysis; the influence of L, or the associated 
dimensionless parameter Y/L, is largest at low wavenumbers, and therefore in ranges A and 
AB. 
 

 

 
Fig. 3.10 - u spectra for varying values of Y/δ in a smooth-wall boundary layer. 
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Fig. 3.11 - u spectra for varying values of Y/δ in a rough-wall boundary layer. 

 
 

The spectral scaling (3.29) has implications for the variances. By integrating over all 
spectral ranges, Perry et al (1986) used (3.29) to derive the following behavior for the 
variances in the inner layer: 
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The constants A1, A2, A3 and E are universal for all inner layers, whereas B1 and B2 depend 
on the large-scale flow geometry (thus, B1 and B2 are different for boundary layers, pipes, 
ducts, and so on). Perry et al (1987) deduced values for all these constants from their 
spectral data, obtaining slightly different values over smooth and rough walls for reasons  
which they attributed to measurement errors. Their rough-wall values were A1 = 1.26, A2 = 
0.63, A3 = 1.78, B1 =2.01, B2 = 1.08, and E = 7.50. They emphasized that, for ν/ uτ « Y « δ 
and h « Y « δ , the scaling laws for smooth and rough surfaces should be indistinguishable; 
this is a requirement of the wall similarity hypothesis. 
The strongest challenge has come from Krogstad et al. (1992) and Krogstad & Antonia 
(1994). They found that the one-point correlation times for all the velocity components are 
about twice shorter for rough than for smooth boundary layers below y/δ < 0.5. Although 
the height of their mesh roughness, δ/h ≈ 50 (∆U+ = 11), is marginal according to the 
criteria developed above, it is a little too large to dismiss the results on those grounds. 
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That observation has attracted a lot of interest, but it has been difficult for other 
investigators to reproduce it. Krogstad et al. (1992) and Krogstad & Antonia (1999) 
published frequency spectra for u and v over the same rough wall used y Krogstad & 
Antonia (1994), and there is little difference in the positions of their smooth and rough 
spectral peaks at y/δ = 0.4–0.5. The correlation time is only indirectly related to the 
spectral peak, but this disagreement suggests that the differences between rough and 
smooth flows are not associated with the most energetic velocity structures. 
Nakagawa & Hanratty (2001) studied a channel over two-dimensional sinusoidal 
roughness (δ/h ≈ 60, ∆U+ = 9), and found correlation lengths, L/δ, which are equal to those 
in smooth channels. Sabot et al. (1977) studied a very rough pipe with spanwise fences (δ/h 
= 15, ∆U+ = 17) and found that the streamwise integral lengths for u and v change little 
with roughness. Comparing correlation lengths with times requires choosing an advection 
velocity, which changes both with the wavelength and with the distance to the wall 
(Krogstad et al. 1998). The question is not trivial, and the ratio between the smooth and 
rough times in Krogstad & Antonia (1994) varies between 1.6 and 2.5 depending on 
whether they are normalized with the friction, free-stream, or local velocities. The 
advection velocity also changes from rough to smooth flows, as a natural consequence of 
modifying the mean velocity profile. For example, Sabot et al. (1977) found that the 
advection velocity of the large scales is 1.3 times faster in their smooth pipe than in the 
rough one. However, none of these corrections is enough to fully account for the observed 
differences in the correlation times. 
Krogstad & Antonia (1994) also measured the inclination angle of the twopoint correlation 
function of u between two y locations. They obtain 38° in the rough case against 10° in the 
smooth one. This disagreement is not as worrying as the one discussed above because it is 
done fairly near the roughness layer and may be a local effect, but Nakagawa & Hanratty 
(2001) found no change in this quantity. Because they used particle image velocimetry 
(PIV), which is a purely spatial procedure, they suggested that their disagreement with 
Krogstad & Antonia (1994) may be due to the previously discussed ambiguity of the 
advection velocity. Using different assumptions on the velocities reduces the angle to 
about 25° which, while still high, is closer to the smooth one. Because of these 
experimental uncertainties, and because of the marginal value of δ/k in all these cases, the 
claim of large changes in the length scales above the roughness layer requires further 
confirmation. 
 
3.2.3 The attached-eddy hypothesis 
 
Earlier, Townsend (1976, pp 152-154) had obtained (3.30) (but without the viscous terms 
in y+

-1/2) from a different argument based on his "attached-eddy hypothesis." according to 
which the turbulent flow field is a superposition of geometrically similar eddies with 
velocity distributions 
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where xa = (xa, ya, za) is the center of a particular eddy and u0 is its velocity scale. The term 
"attached" implies that all eddies are not only geometrically similar but have the same 
geometrical relationship with the wall, scaling with the center height ya. By 
ensembleaveraging an eddy field consisting of a random superposition of eddies of the 
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form (3.31), imposing a continuity condition on f to account for the presence of the wall, 

and requiring uv (z) = uτ
2 = const, Townsend derived the high Reynolds-number limit of 

(3.30) without further specifying fi. 
Perry and Chong (1982) were more specific about fi , invoking flow visualizations of 
hairpin vortices in a smooth-wall boundary layer by Head and Bandyopadhyay (1981) to 
suggest a model attached eddy consisting of a "Λ-vortex" inclined with the shear and with 
legs trailing along the wall. Although this structure leads to the spectral scaling laws 
(3.29), and to (3.30) for the velocity variances, it is apparent that many other choices for fi 
lead to similar results. This suggests that observations of spectra and variances alone are 
insufficient to specify details of the eddy structure beyond those implied by the 
dimensional arguments given above. 
 
3.2.4 Observations of velocity variances 
  
One test of the wall similarity, equilibrium-layer, and attached-eddy hypotheses is a 
comparison of their predictionswith laboratory and atmospheric data on the velocity 

variances 2u  = σu
2, 2v  = σv

2 and 2w  = σw
2. The wind tunnel data usually are at a fixed 

height (for instance Y/δ = 0.1) whereas the field data are generally from various heights in 
the atmospheric surface layer, typically in the height range 5-20 m. 
These data are generally consistent with the wall similarity hypothesis. In laboratory 
boundary layers, the ratios σu/uτ , σv/uτ and σw/uτ take values (at Y/δ = 0.1) of about 2.1 ± 
0.2, 1.4 ± 0.1, and 1.1 ±0.1, respectively. Although there is scatter in the data, attributable 
to measurement errors, there is also a weak Reynolds number dependence consistent with 
that predicted by (3.30). There is some laboratory evidence for a dependence of σu/uτ  and 
σv/uτ on Y/δ, as suggested by (3.30), but the measurement problems are substantial. The 
careful measurements of Perry et al (1987) provide a good example: their X-wire 
turbulence data supported (3.30) quite well for the if component, partially for the u 
component, and rather poorly for the w component. Their work eliminated some of the 
problems with X-wire probes that had afflicted earlier experiments. However, they 
concluded that the remaining measurement difficulties (associated mainly with limited 
acceptance angles, crosstalk between v and v, and finite wire length) were great enough to 
account for the fact that (3.30) was only partly successful in describing their data. Later, 
Perry et al (1988) reported reasonable agreement between slightly modified forms of the 
third relation in (3.30) and carefully selected data for σv/uτ; the data selection ensured that 
spatial resolution and cone angle problems were minimized and that the X-wire probes 

yielded values of uv consistent with Clauser-chart or Preston-tube values. 
In the atmosphere over grassland sites in flat terrain, σu/uτ , σv/uτ and σw/uτ take values of 
about 2.4, 1.25, and 1.9, respectively, slightly higher than the typical laboratory values 
(2.1, 1.1, and 1.4, respectively). This trend is qualitatively consistent with (3.30) because 
the atmospheric data are obtained at lower Y/δ and higher Y+ than the laboratory data, with 
both factors tending to increase the variances according to (3.30). An additional dynamical 
influence on the large-scale, inactive motions in the atmospheric planetary boundary layer 
is the Ekman spiral resulting from the rotation of the earth, which introduces a lateral, 
cross-isobaric shear amounting to a shift in wind direction of typically 20° through the 
depth of the planetary boundary layer (typically of order 1 km). This particularly affects σw 
and contributes to the larger difference in σw/uτ between laboratory and atmosphere relative 
to the other two components. 
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One significant point is the decrease in the values of σu/uτ , σv/uτ and σw/uτ over very rough 
surfaces in the atmosphere (forests, corn crops) relative to grassland atmospheric or wind 
tunnel values. Over very rough atmospheric surfaces, the ratios are approximately 1.9, 1.2, 
and 1.4 at y ≈ 2h and as low as 1.5, 1., and 1.3 at y ≈ h. This is understandable because 
fetch andtower height limitations inevitably restrict measurement heights in these cases to 
the roughness sublayer (y less than about 2h). Hence, comparison with (3.30) and with 
other experiments, those which pertain to the inertial sublayer or equilibrium layer only, is 
not appropriate. However, there is significance in the large decreases in σu/uτ , σv/uτ and 
σw/uτ  in the roughness sublayer over tall vegetation. As argued later, the flow near the top 
of the canopy is dynamically more similar to a plane mixing layer than a boundary layer, 
because of a strong inflection point in the mean velocity profile. The values of σu/uτ , σv/uτ 
and σw/uτ  near y = h reflect this, as they bear little relationship to typical inertial-sublayer 
values and are much closer to typical values from the core of a plane mixing layer 
(Wygnanski and Fiedler 1970). 
 
3.2.5 Wake Intensity 
 
Another indication of the effect of the roughness on the outer part of the boundary layer is 
its effect on the wake parameter Π. The classical result is again that Π changes little 
between rough and smooth boundary layers at the same Reynolds number (Hama 1954, 
Clauser 1956), but later authors reported substantial deviations. One problem is how to 
define & in flows without a well-defined logarithmic layer, such as those with low δ+ or 
δ/k, and the results from different investigatorsare not always comparable. 
Tani (1987) reviewed several data sets using a uniform analysis scheme, and the 
conclusion from his work is that most differences are due to low values of δ/k. Although 
for several k-surfaces he found Π ≈ 0–0.8 when δ/k < 60, they all tend to Π ≈ 0.45 when 
δ/k > 100. This is close to the value Π ≈ 0.52 for smooth walls (Fernholz & Finley 1996). 
D-type surfaces are more interesting in this respect because the claim that their roughness 
length scale is proportional to the boundary-layer thickness suggests that the effect of the 
roughness might be felt throughout the layer. Tani (1987) compiled some of those cases 
and found Π = 0.6–0.7 for all of them, which is higher than the smooth-wall value, 
although only the data from Bandyopadhyay (1987) have δ/k ≥ 100. As with most available 
results for d-roughness, this one is tantalizing but requires confirmation. 
 
3.2.6 Theoretical models 
 
Numerical simulations, which have done so much to clarify other areas of turbulence, have 
still not left their mark on the understanding of rough-walled flows. There are numerous 
modifications to Reynolds-averaged simulation models that include roughness effects 
(Patel 1998, Durbin et al. 2001), but they are a posteriori applications of physical insight 
that are beyond our scope. From the point of view of a priori simulations the problem is 
computational cost. To be reasonably free from direct roughness effects we need δ/h ≥ 50, 
and to have well-developed roughness we should have h+ ≥ 80. To have a well-defined 
rough turbulent flow that is neither transitional in the sense of low h+, nor of insufficient 
boundarylayer thickness, we therefore need δ

+ ≥ 4000. The largest direct simulations of 
wall-bounded flows have at present δ+ ≈ 2000. Large-eddy simulations could help in 
raising the Reynolds number, but they imply modeling the small scales, which is 
dangerous when trying to clarify the effect of small-scale roughness. Direct simulations 
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limited in one of the two parameters just mentioned are beginning to appear, (Bhaganagar 
& Kim 2002, Lee 2002, Leonardi et al. 2002, Nozawa et al. 2002). Direct simulations of 
the flow over riblets, in which the regime of interest is that of transitional h+, have been 
available for some time (Chu & Karniadakis 1993, Choi et al. 1993, Goldstein et al. 1995), 
but they also have low δ/h. In all these cases the emphasis is on the exact representation of 
the flow over the roughness elements, and on the details of the flow within the roughness 
layer. An alternative approach, which has to be applied with care because it involves 
modeling, but which bypasses some of the limitations of strict direct simulations, is to 
substitute the effect of the roughness layer by an “equivalent” wall-boundary condition. 
Low-h+ riblets can be substituted by an offset between the locations of the streamwise and 
spanwise no-slip conditions. If we choose our origin at the no-slip position for u, and 
assume that the instantaneous velocity profile stays linear near the wall, we can write this 
as  
 
                                                    ( ) ( ) 0,0,,0, =∂⋅+ zxwzxw yα                                      (3.32) 

 
where α is an adjustable parameter. Choi et al. (1993) used boundary conditions of this 
type as control devices to manipulate the skin friction in channel flows, obtaining changes 
in the drag coefficient of the order of ±50% (hs

+ ≈ ±60). Jiménez et al. (2001) used mixed 
boundary conditions that can be put in the form of Equation 15 for the wall-normal 
velocity to model the effect of a perforatedwall. There is also in that case a large increase 
in the skin friction, whichwas traced to the appearance of large-scale instabilities of the 
mean velocity profile, in the form of large spanwise structures essentially spanning the full 
boundary-layer thickness. They originate from a lightly damped linear mode of the mean 
velocity profile over an impermeable wall, and connect to the Kelvin-Helmholtz instability 
of inflectional profiles in the limit of infinite permeability. Finnigan (2000) invoked similar 
inflectional instabilities to explain the properties of the roughness layer above plant 
canopies. It is interesting that such models generate effects similar to those of roughness 
without considering the details of the individual roughness elements, and that they produce 
length scales which are only linked to averaged properties of the wall. This brings to mind 
d-rough behavior, where the scale of the structures is determined by the boundary-layer 
properties instead of by the surface geometry. Although the details are beyond the space 
available in this chapter it is possible to devise artificial boundary conditions of the type of 
Equation 3.32 for v that arise naturally as approximations of the flow along the grooves of 
a d-wall under the effect of spanwise pressure gradients. Their stability has not been 
studied in detail but, in simple inviscid cases, they lead to instabilities of the mean flow for 
which the most unstable eigenmodes are large streamwise velocity streaks. 
The flow over rough walls is generally too complicated to sustain streaks like the ones 
found over smooth walls, but Liu et al. (1966) and Djenidi et al. (1999) observed 
longitudinal streaks over d-surfaces. No direct simulations exist of fully turbulent flows 
with averaged boundary conditions designed to mimic high-h+ directional wall roughness, 
but considerations such as the ones above suggest that they could help to clarify the 
dynamics of rough-wall turbulence in general, and of d-roughness in particular. 
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3.3 FLOW CLOSE TO AND WITHIN THE ROUGHNESS 
 
Here the focus shifts from the overlying boundary layer to the flow in the roughness 
sublayer, where the roughness has an explicit dynamical influence and wall similarity does 
not apply. In this layer, especially in the region y < h, available mean and turbulent 
velocity data are mainly from field vegetation canopies or wind tunnel models of canopies. 
This bias occurs because (as already mentioned) most of the more traditional types of 
"engineering" rough surface, such as sandgrain roughness, do not admit measurements 
within the roughness, exceptions being flow visualization results from the region within 
the cavities of two-dimensional roughness (Liu et al 1966, Perry et al 1969). Therefore, 
most of the present section is drawn from field and wind-tunnel work on vegetation, 
though references to other types of roughness will be made wherever possible. 
 
3.3.1 Mean velocity 
 
Above the roughness: As height decreases, the mean velocity profile begins to depart from 
the logarithmic profile law in the layer h < y < yw , where yw (dependent on geometric 
details of the roughness) is the upper height limit of the roughness sublayer. Laboratory 
studies over three-dimensional roughness (O'Loughlin 1965, O'Loughlin and Annambhotla 
1969, Mulhearn and Finnigan 1978, Raupach et al 1980, 1986) agree that yw is between 2h 
and 5h, and that in the layer h < y < yw the shear dU/dy is less than the one obtained from 
the inertial-sublayer value. Because the momentum flux in the roughness sublayer is 
(nearly) constant with height for y > h, from (3.25) et seq, the reduced shear implies an 
enhanced turbulent diffusivity K for momentum in the roughness sublayer, relative to the 
inertial-sublayer form K = kuτ(Y - d). An approximate form for K is K = kuτ(yw - d), 
independent of height for h < y < yw (Raupach et al 1980). 
Field work on the mean velocity profile close to rough surfaces has been prolific in the 
area of forest meteorology (Thorn et al 1975, Garratt 1978, 1980, Raupach 1979, Cellier 
1984, 1986, Chen and Schwerdtfeger 1989, Shuttleworth 1989). The findings are similar to 
those from laboratory work, although the scatter is greater. The roughness-sublayer depth 
yw has been found to be as great as 5h for some rough, scrublike vegetated surfaces (Garratt 
1980), but for closely spaced canopies with D « h such as wheat canopies, yw is a little 
above h, and the near-surface enhancement of K above its inertialsublayer value is 
negligible (Thom 1971). To explain the variation in yw Raupach et al (1980) suggested that 
yw increases with roughness-element lateral dimenson lz; Garratt (1980), on the other hand, 
suggested that yw increases as the mean spacing D between plants increases. 
It is worth noting the extension of these findings to the transfer of scalars, especially heat 
and water vapor. Just above the canopy, the eddy diffusivities KH (for heat) and KE (for 
water vapor) are found to exceed the momentum diffusivity K by factors between 2 and 4 
(Thom et al 1975, Raupach 1979, Garratt 1980, Shuttleworth 1989). This contrasts with the 
inertial-sublayer situation where all diffusivities are nearly equal in thermally neutral 
conditions. 
Several physical mechanisms contribute to the behavior of K, KH and KE just above the 
roughness. First, the vertica velocity eddy length scale Lv is proportiona to (y - d) in the 
inertial sublayer but scales with h (or with h - d) in the roughness sublayer, taking values 
there which are larger than the extrapolated inertial-sublayer prediction. This is sufficient 
to account for the enhanced eddy diffusivities in the roughness sublayer, since the eddy 
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diffusivity is of order σvLv . A second, closely related factor is the dynamica resemblance 
of the flow near y = h to a plane mixing layer rather than a boundary layer, which provides 
a reason for the difference between the momentum and scalar diffusivities, as the turbulent 
Prandtl number K/KH is known to be substantially less than 1 in a mixing layer (Townsend 
1976). Third, large eddies (inactive motions) make the flow nonstationary on the time 
scales of the active eddies responsible for vertical transfer; Townsend (1976, p 156) 
showed that this leads to an increase in the eddy diffusivity by a factor [1 + (σu

2 + 
σw

2)/(2U2)]. Finally, working in the opposite direction, persistence of the turbulent motion 
on time scales of order Lv/σv leads to a reduction in effective vertical eddy diffusivities 
within heights of order Lv of sources or sinks of scalars and momentum (Deardorff 1978, 
Raupach 1987, 1989b). The profiles of eddy diffusivity just above (and within) the 
roughness are the result of all of these mechanisms. 
 
Within the roughness: The mean wind profile within the roughness or canopy is 
exemplified in Fig. 3.12a by several profiles from field vegetation canopies and wind-
tunnel models of vegetation. In general, U(y) is strongly sheared near y = h, with both U 
itself and the shear dU/dy attenuating within the canopy at a rate depending on the 
roughness density A and other geometrical properties. The upper part of the within-canopy 
U(y) profile is fairly well approximated by the empirical "exponential wind profile": 
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where the coefficient α tends overall to increase with λ, but with considerable scatter. 
In the lower part of the canopy, some workers have reported "bulges" in the profile of 
U(y); see, for example, the data for Uriarra Forest in Fig 12a. Such a bulge, if real, implies 
countercountergradient momentum transfer in the region where dU/dy < 0 (Shaw 1977). 
However, most of these data were gathered with cup anemometers which are prone to 
substantial overspeeding in the highly turbulent flow within the canopy, so that 
observations of bulges in U(y) within the canopy provide no proof of countergradient 
momentum transfer. By contrast, there is direct experimental evidence for countergradient 
scalar (heat, water vapor, and CO2) transfer, from measurements in Uriarra forest reported 
by Denmead and Bradley (1985, 1987). For a theoretical explanation, see Raupach (1987, 
1989b). 
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Fig. 3.12 - Profiles of y/h versus different functions, for different experiments. WT denotes 

wind tunnel. See Raupach (1988) for primary references. 
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3.3.2 Basic properties of the turbulence 
 
Because the turbulence within the roughness sublayer has a very high intensity σu/U 
(typically between 0.5 and 5), its measurement is difficult, both in field canopies and in 
windtunnel models. Appropriate instrumentation includes sonic anemometers (Coppin and 
Taylor 1983) or servo-driven splitfilm anemometers (Shaw et al 1973) in the field, or 
coplanar triple-wire probes in wind-tunnel models (Kawall et al 1983, Legg et al 1984). 
This type of instrumentation has been developed only in the last 15 years or so. The 
earliest turbulence measurements in vegetation canopies were restricted to fluctuations in 
the horizontal wind component or the total wind speed (Uchijima and Wright 1964, Allen 
1968, Meroney 1968, 1970, Sadeh et al 1971), and hence provided no direct information 
on the vertical eddy fluxes or vertical turbulent transfer. Only fairly recently, beginning 
with the turbulence measurements of Shaw et al (1974) in corn, has a substantial body of 
data been assembled on all three components of the turbulent wind field in canopies. Here 
we draw on a collation of seven comprehensive experiments on canopy turbulence: two in 
field crops, two in forests, and three in windtunnel model canopies. Figure 3.12 shows, for 
all seven canopies, roughness-sublayer profiles of velocity statistics, plotted against 
normalized height y/h. The mean velocity U(y) is normalized with U(h) and the turbulence 
statistics with uτ. Despite the wide range of canopy types represented, these measurements 
have some well-defined features in common. Properties of the mean velocity U(y) (Fig. 
3.12a), especially its inflectional form, have already been noted. The normalized standard 
deviations σu/uτ and σv/uτ (Figs. 3.12c and 3.12d) approach typical surface-layer values (2.4 
and 1.25, respectively) only well above the canopy; both ratios fall with decreasing y, so 
that at y = h, σu/uτ is between 1.5 and 2.0 and σv/uτ between 1.0 and 1.1. Within the canopy, 

σu/uτ and σv/uτ fall more strongly as y decreases. The profile of shear stress -uv (Fig. 3.12b) 
exhibits a constant-stress layer above the canopy and rapid attenuation as y decreases 

within the canopy. The correlation coefficient ruv = uv/(σuσv), which is about -0.33 in the 
surface layer well above the canopy, increases with decreasing y to a maximum magnitude 
of about -0.5 at y = h; with further decrease in y, ruv attenuates rapidly within the canopy. 
Hence, the turbulence at the top of the canopy is very efficient at downward momentum 
transfer, but deep within the canopy, the turbulence loses its ability to transfer momentum 
as well as its overall strength. 
Figures 3.12e and 3.12f show the skewnesses of u and v, Sku and Skv (in notation used in 
other sections Sku = M30 and Skv = M03). Despite variations due to morphological 
differences, the clear overall trend is for Sku to be strongly positive and Skv strongly 
negative within and just above the canopy, indicating that the strongest turbulent events 
there are downward-moving gusts. This indication can be made precise by quadrant 
analysis. Kurtoses for u and v, not shown here, reveal the same trend towards very high 
intermittency in the canopy (Maitani 1979). 
The single-point Eulerian length scales Lu and Lv can be estimated from the single-point u 
and v integral time scales by applying Taylor's frozen-turbulence hypothesis: 
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and similarly for Lu. Near y = h, Lu is of order h and Lv of order h/3 (Figs. 3.12g and 
3.12h), so that the turbulence length scales are comparable with h. It follows that the gusts 
inferred from the skewness profiles are large structures, coherent over streamwise and 
vertical distances of order h. The existence of such motions can be verified visually by 
watching "honami," the traveling wind waves seen on fields of grass, wheat, or barley on 
windy days (Inoue 1955, Finnigan 1979a, b). 
Figure 3.12 suggests that the dominant velocity and length scales for the turbulence in the 
canopy are uτ and h (or the closely related length scale h - d). These scales provide an 
approximate collapse of turbulence data from experiments in which h ranges over a factor 
of 400 and uτ over a factor of 10 or more. The scatter in the data indicates the influence on 
the canopy turbulence of other length and velocity scales related to canopy morphology, 
the fluttering of leaves and the waving of whole plants, and viscous (Reynolds number) 
effects which influence the drag on individual leaves (Thom 1968, 1971). In the field, an 
additional important complication is buoyancy, though its effects are absent from the data 
in Figure 3.12 which pertain only to thermally neutral or slightly unstable daytime 
conditions. 
 
3.3.3 Measurement problems 
 
We have referred several times to measurement problems in the high-intensity turbulence 
near and within the roughness. These have proved troublesome and (at times) confusing, 
especially in laboratory situations where X-wire probes have been the main turbulence 

sensors. The most obvious symptom is a decrease in the measured shear stress -uv just 
above y = h, seen in most laboratory measurements over rough walls with X-wire probes. 
Examples are the X-wire TTvP profiles measured by Antonia and Luxton (1971a, b, 1972), 
Mulhearn and Finnigan (1978), and Raupach et al (1980) (see Fig. 3.9). Such a decrease, if 
real, would violate momentum conservation in the constant-stress layer close to the 
surface, unless an extra momentum transfer mechanism exists in the roughness sublayer. 
There has been speculation that such a mechanism could be a systematic, time-averaged 
spatial variation in the mean velocity field imposed by the horizontal heterogeneity of the 
canopy, leading to a horizontally averaged momentum flux ‹U"V"›. Here, angle brackets 
denote a horizontal plane average and double primes a departure of a time-averaged 
quantity from its horizontal average. Fluxes of the type ‹U"V"› were identified by Wilson 
and Shaw (1977) for vegetation canopies, and labeled "dispersive fluxes." An early 
estimate by Antonia (1969) indicated that this type of momentum flux is unlikely to 
account for observations with X-wire probes of apparent stress decreases near transverse 
bar roughness. Later, detailed measurements by Mulhearn (1978) (bar roughness), 
Raupach et al (1980) (cylinder roughness), Raupach et al (1986) (model plant canopy), and 
Perry et al (1987) (mesh roughness) demonstrated that the magnitude of ‹U"V"› is less than 
a few percent of uτ

2 at most. This leaves no possible explanation for the apparent stress 
decrease just above the roughness, other than the measurement errors of X-wire probes. 

Further evidence that measurement error is the problem is provided by the uv data in Fig. 
3.12b, which show convincingly that no apparent stress decrease is found in field data 
measured with omnidirectional sonic anemometers, and in laboratory data obtained with 
coplanar triple-wire probes, which have far better directional response than X-wire probes 
(Kawall et al 1983, Legg et al 1984). All of these sensors indicate a layer of constant stress 

-uw within the expected limits of the constantstress layer. 
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Theoretical and empirical error analyses on X-wire probes were made by Tutu and 
Chevray (1975), Raupach et al (1980), Legg et al (1984), and Perry et al (1987). All these 
studies agree that the main problem is the limited velocity-vector acceptance angle of ±45° 
in a conventional X-wire probe, with secondary problems being contamination of 
streamwise and vertical velocity signals by the lateral velocity component, and finite wire 

length (in order of decreasing significance). Recent measurements of uv have addressed 
some of these problems, and are of better quality than the earlier data. Perry et al (1987) 
showed that, by increasing the acceptance angle from the usual ±45° to ±60° and/or 
"flying" the probe in the streamwise direction to reduce the turbulence intensity σu/U, 
acceptable measurements can be made with X-wire probes. Acharya and Escudier (1987) 
confirmed the improvement in measurements resulting from ±60° X-wire probes. Li and 
Perry's (1989) measurements of mv over a rough-wall boundary layer, obtained with either 
a ±60° stationary or a ±45° flying X-wire probe, were in close agreement with an analytical 

expression of uv obtained by integrating the mean streamwise momentum equation, using 
a logarithmic profile law and Coles wake function to specify U(y). 
 
3.3.4 Second-moment budgets 
 
The mechanisms maintaining the turbulence in the roughness sublayer, both above and 
within the roughness, are partly elucidated by the turbulent kinetic energy and shear stress 
budgets. The budgets must be considered in a spatially (in practice, horizontally) averaged 
form because a significant dynamical role is played by processes associated with spatial 
heterogeneity at the length scales of individual roughness elements. 
 
Turbulent kinetic energy budget: For a steady flow over a horizontal, immobile rough 
surface at high Reynolds number (so that molecular transport terms are negligible), and 
with negligible advection, thermal forcing, and mean pressure gradient, the horizontally 
average turbulent kinetic energy budget is 
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The terms denote shear production (Ps), wake production (Pw), turbulent, dispersive and 
pressure transport (Tt, Td, Tp, respectively), and dissipation -‹ε›. It is convenient to write the 
wake production term in tensor notation, with xi = (x, y, y), Ui = (U, V, W), ui = (u, v, w), 
and the summation convention effective. Of these terms, Ps, Tt, Tp and ‹ε› are familiar as 
spatial averages of the corresponding terms in the single-point turbulent kinetic energy 
equation, whereas the less familiar terms Pw and Td arise from spatial heterogeneity at 
roughnesselement length scales. The dispersive transport term Td is the vertical gradient of 
a dispersive turbulent kinetic energy flux, directly analogous to the dispersive momentum 
flux ‹U"V"›. Since the dispersive momentum flux is negligible relative to the turbulent 
momentum flux, it is likely that the dispersive turbulent kinetic energy flux is likewise 
negligible, so that Td is negligible relative to Tt. 
The wake production term Pw is far from negligible (Wilson and Shaw 1977). It is the 
production rate of turbulent kinetic energy in the wakes of roughness elements by the 
interaction of local turbulent stresses and time-averaged strains. Like Ps , Pw represents a 
conversion of mean to turbulent kinetic energy, but the two terms operate at different 
scales: Ps creates "shear turbulence" with a length scale of order h within and just above 
the canopy, whereas Pw creates "wake turbulence" with a length scale of the order of a 
typical roughness-element wake width. In vegetation canopies, wake turbulence is usually 
much smaller-scale than shear turbulence. It can be shown (Raupach and Shaw 1982) that 
Pw is approximately equal to the rate of working of the mean flow against drag: 
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where fx is the horizontally-averaged total force exerted by the elements on the flow, a 
negative quantity. Figure 3.13a shows measurements, from Raupach et al (1986), of the 
terms Ps , Pw [using (3.37)] and Tt in the "WT strips" wind-tunnel model plant canopy. The 
curve D is the residual - Ps - Pw - Tt, equal to Tp - ‹ε› if Td is negligible as argued above. 
The main features are the peak in shear production Ps near y = h, the large wake production 
Pw  in the upper part of the canopy, and the major role of turbulent transport Tt in carrying 
turbulent kinetic energy from the regions of strong production near y = h to lower levels in 
the canopy. In the lower part of the canopy, the turbulent kinetic energy budget reduces to 
an approximate balance between transport and dissipation. The importance of Tt is related 
to the dominant role of sweep motions, or gusts, in momentum transfer (section 3.4.2). 
Two aspects of the turbulent kinetic energy budget do not emerge from Fig. 3.13a. First, Tp 
(which could not be measured) is probably significant. Maitani and Seo (1985) estimated it 
in a cereal canopy in the field from surface pressure measurements, concluding that Tp is 
comparable with Tt and likewise acts as a gain term in the budget deep in the canopy. 
Second, Pw converts not only mean kinetic energy but also large-scale (shear) turbulent 
kinetic energy into wake-scale turbulent kinetic energy. This conversion is not evident in 
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(3.37), which is spectrally integrated over all turbulence scales. However, since the small-
scale wake turbulence is much more quickly dissipated than the larger-scale shear 
turbulence, the effect is that the dissipation rate of the shear turbulence within the canopy 
is much greater than would occur for free turbulence with similar velocity and length 
scales. The rapid dissipation rate of the wake turbulence also accounts (Raupach and Shaw 
1982) for the fact that, in velocity spectra measured within canopies, little extra energy is 
seen at wavenumbers characteristic of element length scales, despite Pw being as large as 
or greater than Ps in the upper part of the canopy as in Fig. 3.13a. 
 

 
 

Fig. 3.13 - Terms in the second moment budgets in the “WT strips” canopy. 
 
 
Shear stress budget: Under the same conditions as (3.35), the horizontally averaged shear 
stress budget is 
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with 
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The terms in (3.38), distinguished by primes, correspond in name and mnemonic to the 
terms in (3.35) except for the pressure-strain term Φ', which is the main destruction term 
for shear stress. The dispersive transport term Tt

’ is usually negligible in practice, just as 
for Td in (3.36). However, in contrast to Pw, which plays a very important part in (3.35), the 
wake production term Pw

’ in (3.38) is also usually negligible. 
Figure 3.13b shows direct measurements of the terms Ps

’ and Tt
’ in the shear stress budget 

(Raupach et al 1986). As for the turbulent kinetic energy budget, shear production peaks 
strongly near y = h, while turbulent transport  is a loss near y = h and a gain lower down 

(noting that, because uw is negative whereas 22q  is positive, gain terms are on the right 
of Fig. 3.13a but the left of Fig. 3.13b). The role of transport in the shear stress budget is 
relatively much smaller than in the turbulent kinetic energy budget, because the transport 
term ratio Tt

’/ Tt  is of order only about 0.2 in the canopy, whereas the two production 
terms are comparable near y = h. 
The main features of Figs. 3.13a and 3.13b are confirmed by a growing number of 
measurements from both wind-tunnel models and field canopies. However, the discussion 
has been restricted to vegetationlike roughness, for observational reasons already outlined. 
The conceptual framework of (3.35), (3.37), and (3.38) is valid for any roughness type, but 
the quantitative behavior of the budgets is another matter; although the main features of 
Fig. 3.13 probably carry over at least to threedimensional roughness such as sandgrain 
roughness, separate investigation is required for two-dimensional bar roughness, either 
widely-spaced ("k-type") or narrow-cavity ("d-type"). 
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3.4 ORGANIZED MOTION IN ROUGH-WALL BOUNDARY LAYERS 
 
It is now generally recognized that turbulent flows universally exhibit various forms of 
organized motion, sometimes referred to as coherent structures. The literature on these 
motions is vast: see, for example, the reviews of Cantwell (1981), Hussain (1986), and 
Fiedler (1987). Smooth-wall boundary layers are well represented in this extensive body of 
work; rough-wall boundary layers far less so. 
 
3.4.1 Two-point velocity correlation functions 
 
A traditional but useful starting point for an examination of organized motion is the two-
point, time-delayed velocity correlation function 
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where yR is the height of a reference sensor at (x, z) = (0, 0). The correlation function 
depends explicitly on both the heights y and yR because of vertical inhomogeneity, but 
depends only on the horizontal separation (x, z) and the time interval τ because horizontal 
homogeneity and steady flow are assumed. The small-scale horizontal variability in the 
roughness sublayer is ignored in (3.40); this is justifiable for many vegetation canopies, 
including those discussed below, but may not be justifiable for two-dimensional laboratory 
roughness, for example. 
 
Above the roughness sublayer: In the inertial sublayer and outer layer, data on r ij over both 
rough and smooth walls generally show that r ij is independent of the nature of the wall, 
thus providing direct support for the wall similarity hypothesis (section 3.2.1). For smooth-
wall boundary layers, there are many measurements of r ij; see Townsend (1976) for 
primary references. Brown and Thomas (1977) crosscorrelated signals from a wall probe 
with u signals in a smoothwall boundary layer, finding that the maximum correlation 
occurred along a line in the xy plane sloping obliquely with the flow at an angle of about 
18° to the horizontal. Comparable rough-wall data have been obtained by Bessem and 
Stevens (1984) and Osaka et al (1984), over "k-type" and "d-type" walls, respectively; in 
both cases, the locus of maximum u correlation was similar to that found by Brown and 
Thomas. 
 
Within the roughness sublayer: Two-point correlations close to and within the roughness 
are available from work on vegetation canopies. Figure 3.14 shows contours, in the xy and 
yz planes, of the spatial u correlation at zero time delay, r11(x, y, z, 0, yR), from the "WT 
wheat" canopy. The reference height was yR = h. There is good correlation (r11 ≥ 0.3) 
within the region (-2h ≤ x ≤ 2h, 0 ≤ y ≤ 2h, -h ≤ z ≤ h,), a result which is consistent with the 
rough estimates of eddy length scales made in section 3.3.2 from single-point data. In the 
xy plane, the contours are roughly elliptical and slope obliquely with the flow; the slope is 
about 18° above the canopy and less within the canopy. 



 69

 
Fig. 3.14 - Contours of r11(x, z, z, 0, yR) in and above the “WT wheat” canopy. 

 
 

A slightly different view is offered by space-time correlations with vertical separation, 
r ii(0, y, 0, τ, yR). Figure 3.15 shows these correlations for u and v, from "WT wheat," while 
Fig. 3.12 shows similar correlations for u, v, w and also for temperature θ, from the 
"Moga" forest micrometeorology experiment (New South Wales, Australia). The field data 
in Fig. 3.16 are typical of several recent forest turbulence experiments (Gao et al 1989, 
Shaw et al 1989). The agreement between wind tunnel and field results underlines one of 
the themes of this review, that experiments on natural vegetation and laboratory roughness 
can provide complementary insights: field measurements with sonic anemometers offer an 
unambiguous resolution of all three velocity components which is not achievable in 
laboratory roughness sublayers, whereas laboratory measurements (Fig. 3.15) offer higher 
measurement density and reproducibility than the field. 
A striking feature of Figs. 3.15 and 3.16 is the difference in the correlation functions for u, 
v, w, and θ. For v and θ, and to a lesser extent for u, the maximum correlation occurs at a 
time delay τ which increases as the height separation increases, consistent with Fig. 3.14 
and the Brown and Thomas (1977) result. It follows that the motions dominating the u, w, 
and θ correlations are inclined structures leaning with the shear. For v, however, the 
maximum correlation occurs with zero time delay, so that organized fluctuations in v are 
aligned vertically, both within and above the roughness. The region of strong v correlation 
is also more localized than for u, w, or θ. As with other features of r ij these results agree 
well with smooth-wall data: Antonia et al (1988) found that the maximum v correlation 
over a smooth wall occurs at τ = 0 for a wide range of both yR and y, again implying a 
vertical alignment of organized v fluctuations. 
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Fig. 3.15 - Vertically separated space-time correlations ru(0, y, 0, τ, yR) in and above the 
“WT wheat” canopy. 

 
 

 
 

Fig. 3.16 - Vertically separated space-time correlations ru(0, y, 0, τ, yR) in and above the 
Moga forest canopy. 

 
 

In summary, two-point correlation functions confirm wall similarity above the roughness 
sublayer, and yield eddy length scales, orientations, and convection velocities both above 
and within the roughness sublayer. However, they are only weak indicators of the flow 
fields associated with organized motions; other type of analysis are required to elucidate 
these. 
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3.4.2 Manifestations of organized motion 
 
Organized motion is manifested in a variety of quasicoherent features or structures; for 
example, Kline and Robinson (1990) identified eight types of structure in smoothwall 
boundary layers. Here we focus on four manifestations of organized motion: (a) low-speed 
streaks (mainly a smooth-wall phenomenon); (b) ejections and sweeps; (c) ramp-jump 
(sawtooth) structures in velocity and temperature signals; and (d) large-scale, outer-layer 
motions. Of these, (b) and (c) have received most attention in rough-wall work. 
 
(a) Low-speed streaks: Kline et al (1967), Kim et al (1971) and many succeeding workers 
recognized low-speed streaks associated with streamwise vortical motion in the smooth-
wall inner layer (y+ ≤ 100). This body of work has also identified a "bursting process" in 
which the streaks are cyclically formed near the wall and ejected into the overlying flow. 
The whole phenomenon is often presumed to be the essential condition of the smooth-wall 
turbulent boundary layer. 
The existence of low-speed streaks in rough-wall boundary layers is much more 
problematical. They are observed over certain rough walls: The flow visualizations of Liu 
et al (1966) and Osaka and Mochizuki (1987) have revealed low-speed streaks on narrow-
cavity bar ("d-type") roughness, with the streaks forming and bursting continuously at a 
pseudowall defined by the tops of the bars. With increase in the gap space (D - lx)/h, the 
streaky pattern disappeared, to reappear at high (D - lx)/h in the reattached flow region 
between the bars. It is probable that these low-speed streaks are formed when the 
barroughened surface (or some part of it) acts dynamically like a smooth wall. In contrast, 
the near-wall flow over most rough surfaces is so disturbed by the roughness elements that 
longitudinal low-speed streaks are eradicated, as stressed by Liu et al (1966). However, 
there is still a possible rough-wall counterpart for at least some aspects of the smooth-wall 
"bursting process," as the following observations show. 
 
(b) Ejections and sweeps: Grass (1971) used hydrogen bubble flow tracers and high-speed 
motion photography to obtain both a visual and a quantitative description of a free surface 
channel flow for three types of surface condition: smooth, transitional, and fully rough. 
The roughness was made of close-packed rounded pebbles of diameter 9 mm. The 
visualizations of the rough-wall flow clearly showed the fluid ejection and inrush (sweep) 
previously identified in the "bursting process" for a smooth wall. Grass concluded that the 
inrush and ejection events were present irrespective of the surface condition, but noted 
differences in these events between smooth-wall and rough-wall flows. For smooth-wall 
flows the ejection sequence draws on viscous sublayer fluid with an embedded structure of 
low-speed streaks, whereas for rough walls the source for ejected fluid is the low-
momentum fluid trapped between the roughness elements. Grass noted that over a rough 
wall the ejections could be relatively violent, with ejected fluid "rising almost vertically 
from the interstices between the roughness elements." He also observed that the ejections 
were often coherent and identifiable through much of the flow; in contrast, coherent inrush 
or sweep motions were confined to the region close to the wall. 
A quantitative measure of the relative importance of ejections and sweeps is provided by 
quadrant analysis, introduced for smooth-wall flows (Wallace et al 1972, Lu and Willmarth 
1973, Brodkey et al 1974) and later applied to rough-wall flows by Nakagawa and Nezu 
(1977) and Raupach (1981) in the laboratory, Antonia (1977) and others in the atmospheric 
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inertial sublayer, and Finnigan (1979a) and Shaw et al (1983) in the atmospheric roughness 
sublayer over field vegetation. In this technique, instantaneous events are defined by 
quadrant in the uv plane, as outward interactions, ejections, inward interactions, and 
sweeps (the first, second, third, and fourth quadrants, respectively), with the total stress 
equal to the sum of the conditionally averaged contributions (denoted by double angle 
brackets) from each quadrant: 
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Nakagawa and Nezu (1977), using an open-channel water flow over glass-bead roughness, 
made several significant findings: (1) Sweep events are more important than ejection 
events for momentum transfer close to a rough wall, with the sweep-toejection ratio 
‹‹uv››4/‹‹uv››2 increasing with decreasing height and increasing roughness; (2) the events 
dominating momentum transfer are highly intermittent and occupy a small fraction of the 
time, with the fraction decreasing with decreasing height and increasing roughness; (3) a 
cumulant-discard analysis, using a third-order Gram-Charlier joint probability distribution 

for u and v, can account for the relationship between the quadrant decomposition of uv 
and the normalized third moments of u and v. This last result provides a link between the 
organized motion of the flow (as quantified by quadrant analysis) and the turbulent energy 
budget (3.35), through the turbulent transport term which involves vertical gradients of the 
third moments. Raupach (1981), with wind-tunnel data from a smooth surface and five 
cylinder-roughened surfaces of progressively increasing roughness density, confirmed the 
importance of sweeps near rough walls and used Nakagawa and Nezu's cumulant discard 
analysis to relate the normalized third velocity moments to the difference between sweep 
and ejection contributions to stress: 
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where Mij are the normalized third moments or skewnesses. The constants in (3.42) are 
experimental, derived from measurements throughout the smooth-wall and rough-wall 
flows including the region within the roughness, but very similar values emerge from the 
cumulant-discard theory. Later measurements have confirmed that (3.42) also applies in a 
smooth-wall boundary layer, but only if the Reynolds number is sufficiently large. For 
vegetation, the early work of Finnigan (1979a) (with a small data set) was followed by 
Shaw et al (1983), who applied quadrant analysis to turbulence data from a corn canopy, 
finding ‹‹uv››4/‹‹uv››2 values of about 2 near y = h and higher within the canopy, thus 
confirming that sweeps dominate the momentum transfer close to and within field 
canopies. 
One dramatic visualization of the spatial structure of sweeps in a rough-wall boundary 
layer is the phenomenon of "honami," or traveling wind waves in cereal (wheat, barley, 
rice, grass) canopies. For one engaged in research on boundarylayer turbulence, watching 
these waves is time well spent. The phenomenon of honami was named and first studied by 
Inoue (1955), and has since been investigated in detail by Finnigan (1979a, b). He found 
that the waves are initiated by gust fronts, or sweeps, moving across the canopy at 
convection speeds substantially greater than the local mean wind speed. Each gust, as it 
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advances, bends over a patch of stalks which undergoes damped oscillation (typically for 
about two cycles) after the gust has passed, thus creating the impression of a wave moving 
through the canopy. By studying motion pictures of waving canopies and by analyzing 
short-time, vertically separated, space-time correlations, Finnigan found that the 
streamwise separation between gusts was about 5h-8h, close to the value 8h; inferred by 
several spectral and correlation methods for the typical streamwise separation between 
quasicoherent eddies. 
 
(c) Ramp-jump structures in signals: Chen and Blackwelder (1978) observed correlated 
ramp-jump (sawtooth) patterns in temperature signals throughout a smooth-wall boundary 
layer, which they suggested to be a direct link between the wall region and the outer layer. 
This suggestion should be equally true in a rough-wall boundary layer. Indeed, such 
patterns were first observed in the (definitely rough-wall) atmospheric surface layer by 
Taylor (1958) and Priestley (1959), though the temperature structure in many of these early 
observations was largely determined by free convection rather than thermally near-neutral 
shear turbulence. Nevertheless, for moderately unstable conditions in the atmosphere, 
Antonia et al (1979) concluded that the observed similarity between laboratory and 
atmospheric ramp-jump temperature structures should be interpreted as the signature of an 
organized large-scale sheardriven motion, rather than as a consequence of the buoyancy 
field (which, of course, also produces large-scale organized motion). Wyngard (1988) 
reinforced the dominance of shear turbulence close to the surface, even in strongly unstable 
atmospheric boundary layers. 
Many subsequent observations have confirmed that rampjump structures are universally 
observed in both rough-wall and smooth-wall boundary layers, in both the atmosphere 
(over land and sea) and the laboratory, and also for velocity components as well as 
temperature (for example, Antonia and Chambers 1978, Antonia et al 1979, Phong-Anant 
et al 1980, Antonia et al 1982). The velocity and temperature signals yielding the two-point 
correlation functions in Figs. 3.14-3.16 all exhibited these structures, to the extent that they 
substantially determine the shape of the correlation functions; Figs. 3.14-3.16 therefore 
indicate that the ramp-jump structures extend into the roughness itself. Further unpublished 
wind-tunnel measurements by us, over a slightly heated gravel roughness, have confirmed 
that temperature ramp-jumps are observed coherently throughout the whole (rough-wall) 
boundary layer, from y < h to y = δ. 
Direct observations from vegetation canopies indicate a close association between ramps 
and jumps in velocity components or temperature, and the sweeps which dominate 
momentum transfer within and close to the canopy (Finnigan 1979a, b, Denmead and 
Bradley 1985, 1987). A good example appears in Fig. 3.17, from a forest experiment at 
Camp Borden, Ontario, Canada (Gao et al 1989, Shaw et al 1989). This shows the 
ensemble-averaged potential temperature field for 10 temperature ramp-jump events 
during a 30-min run in slightly unstable conditions, the selection criterion being the 
presence of correlated temperature jumps at several levels within and above the canopy. 
Temperature contours are plotted in the (-t, y) plane (so that the horizontal axis 
corresponds to a +x axis with the frozen-field approximation), together with instantaneous 
wind fluctuation vectors (u,v) (shown as arrows) from sonic anemometers. The 
temperature jumps form a sharp, inclined microfront in space, dividing warmer, slower, 
ascending air ahead of the microfront from a well-defined region of cooler, descending, 
faster-moving air immediately behind. There is an intense sweep motion just behind the 
microfront near y = h; in contrast, the strongest motion at higher levels (y ≈ 2h) is an 
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ejection just ahead of the microfront. This is consistent with the quadrant-analysis results 
discussed above. The microfront itself, involving a temperature fall of about 1.2° in 3 s, is 
somewhat smeared by the ensembleaveraging process and was even sharper in individual 
realizations. During the analyzed 30-min run, the 10 ensembleveraged events occupied 
33% of the time but accounted for over 75% of the heat and momentum transfer, indicating 
strongly that ramp-jump events coincide with the organized motions which dominate the 
transfer. 
Although these results demonstrate that sweeps, ejections, and ramp-jump structures (or 
microfronts) are closely associated, the spatial relationship suggested by Fig. 3.17 must be 
interpreted with caution: The relationship is based on a ensemble-averaged result and may 
not apply instantaneously, largely because the ensemble average is taken over a set of 
twodimensional streamwise slices through structures at random lateral displacements and 
stages of evolution. Some of the threedimensional picture is indicated by the work of 
Robinson et al (1989), who found that, in a numerically simulated smoothwall boundary 
layer, ejections and sweeps occur alongside quasi-streamwise "legs" of A-vortices (see 
next section), with sweeps most prevalent on the outward side of the necks of vortical 
arches and ejections most common just upstream and below vortical arches. 

 
 

Fig. 3.17 - Vertical cross section of ensemble-averaged temperature and fluctuating 
velocity fields in Camp Borden forest. 

 
(d) Large-scale outer-layer motions: The wall similarity hypothesis implies that organized 
motions should be the same in the outer parts of smooth-wall and rough-wall boundary 
layers, a contention supported by the available data. The turbulent-nonturbulent interface 
was first studied by Corrsin and Kistler (1955) in a boundary layer developing over a 
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corrugated rough wall. The properties of large-scale bulges in the boundary layer, inferred 
from ensemble-averaged velocity distributions conditioned with respect to the interface, 
are similar over a smooth wall (Kovasznay et al 1970) and widely spaced bar roughness 
(Antonia 1972). The latter paper showed that the outer-layer similarity between these two 
flows is also evident from profiles of mean velocity and a wide range of velocity moments, 
further supporting the wall similarity discussion in section 3.2.1. 
 
3.4.3 Inferred structure of the organized motion 
 
The above manifestations of organized motion are directly evident in flow visualizations or 
turbulence signals with minimal conditioning. In contrast, the complete structure of the 
organized motion near a rough wall, as for any turbulent flow, is not immediately evident 
in either point measurements or flow visualizations and must be inferred from all the above 
information (and more) by a variety of methods. Such inferences are difficult and 
contentious at present; the form of the organized motion near both rough and smooth walls 
is widely regarded as an unsolved problem. Nevertheless, we conclude the discussion of 
organized motion by mentioning a few current viewpoints. 
A widely used, though not universally accepted, model for the dominant form of organized 
motion in a boundary' layer is the inclined horseshoe, hairpin or A-vortex, sometimes 
identified with the inclined double-roller eddy of Townsend (1976); we will refer to this 
structure as a A-vortex. Such a structure was theoretically deduced long ago by 
Theodorsen (1952) and Hama (1963), inferred from two-point velocity correlations by 
Townsend (1976), and identified in smooth-wall flow visualizations by Falco (1977) and 
particularly Head and Bandyopadhyay (1981). Numerical support came from the direct 
numerical simulations of smooth-wall fully developed channel flow by Moin and Kim 
(1985). In a review of rapiddistortion theory, Savill (1987) concluded that the total 
turbulent kinetic energy in a boundary layer is partitioned in the ratio 60:20:20 between A-
vortices, transverse vortices (possibly identifiable with the loops joining the "legs" of the 
A-vortices at the top), and fine-scale turbulence (present as a result of the stretching, spin-
up and decay of the A-vortices). Perry and Chong (1982) used a hierarchy of A-vortices to 
construct a detailed theoretical model of a smooth-wall boundary layer, which predicts 
realistic mean velocity profiles, second velocity moments and spectra. 
Despite the popularity of the A-vortex model, it is almost certainly an oversimplification. 
Direct numerical simulations of smooth-wall boundary-layer and channel flows (Robinson 
1989, Moin and Spalart 1987) indicate that many other types of vortical structures are also 
present besides A-vortices. The near-wall region (y+ < 100) is dominated by 
quasistreamwise vortices with an outward tilt, whereas spanwise and 45° vortices are more 
likely to occur in the outer region. Robinson (1989) found that evidence for the dominance 
of particular forms such as horseshoes, hairpins, and so on is not yet conclusive. Despite 
these caveats, the A-vortex model is a simple picture with a degree of theoretical support, 
experimental verification, and predictive power not available from other models, so we 
shall continue to base the present discussion around it. 
Almost all of the above evidence on vortical structures conies from smooth-wall boundary 
layers. However, the wall similarity hypothesis implies that the dominant organized 
vortical motions in smooth-wall and rough-wall boundary layers must be similar, except in 
the viscous or roughness sublayers. On this basis, the A-vortex model should describe 
organized motion in the bulk of the rough-wall boundary layer (in and above the inertial 
sublayer), with similar caveats as for a smooth-wall boundary layer. One direct piece of 



 76

supporting evidence, from a rough-wall channel flow, is the threedimensional velocity and 
vorticity fields constructed by Grass (1983) from digitized marked-particle tracks: the 
constructed vorticity field contained evidence of A-vortices, though their importance, both 
in terms of frequency of occurrence and contribution to the transfer process, could not be 
established. 
Finally, we return to a sharper form of the question posed in the introduction of this 
section: how are vortical structures in the bulk of the boundary layer (possibly A-vortices) 
coupled to the nearwall motion in the roughness sublayer (for a rough wall) or the viscous 
sublayer (for a smooth wall)? 
Near the roughness, one expects to find organized vortical structures in roughness-element 
wakes which are absent in smooth-wall flow. For two-dimensional bar roughness, several 
vortical structures have been observed in the cavities between elements, as reviewed by 
Wood and Antonia (1975). For threedimensional roughness, Bandyopadhyay and Watson 
(1988) proposed "necklace" vortices straddling the roughness elements near their bases. 
However, such proposals (especially in the three-dimensional case) are necessarily rather 
specific about roughness type, as the element shape determines the nature of the wake. In 
contrast, there is attraction in a mechanism for organized motion in the roughness sublayer 
which is largely independent of roughness type and individual element wakes, in part 
because the wakes are often not the most energetic features of the flow (for vegetated 
surfaces it is almost impossible to detect them as discrete vortices), but also because of 
the simplifying property of such a mechanism. The following "wake-independent" 
suggestion centers on vegetation and similar types of roughness but may have wider 
applicability. 
Raupach et al (1989) postulated that the flow near the top of the canopy is dominated by 
the intense shear layer centered on the inflection point in U(y) near y = h (see Fig. 3.16a). 
The length scale for the depth of this layer is h - d, d being zeroplane displacement. 
Associated with the inflection point is an intense, inviscid (Rayleigh) instability leading to 
rapidly growing, transverse vorticity perturbations with a streamwise wavelength 
determined by h - d (typically, the wavelength is about 30(h - d) or 8h). These motions, 
together with subsequent, three-dimensional secondary instabilities, are the fastest-growing 
perturbations near y = h; and are therefore likely progenitors for the fully developed, highly 
energetic turbulence field near y = h. This field retains as its length scale "signature" that of 
the original, inviscid, inflection-point instability. The secondary instabilities lead to A-
vortex structures (Pierrehumbert and Widnall 1982, Bayly et al 1988) within the roughness 
sublayer, just as in the overlying boundary layer; this is consistent with the observations of 
microfronts and lines of maximum twopoint u, w, and θ correlation within and just above 
the canopy, similar to those in the inertial sublayer and above (Figs. 3.14-3.17). A similar 
inflectional instability process occurs in a plane mixing layer, leading likewise to a 
turbulent length scale proportional to the local layer depth (Wygnanski and Fiedler 1970). 
This explains one attribute already noted in section 3.4 and elsewhere: near the top of a 
vegetation canopy, basic turbulence properties (such as the ratios σu/uτ and σv/uτ, the 
skewness profiles, and the turbulent energy budget, especially the role of turbulent 
transport) tend to be more reminiscent of a mixing layer than a boundary layer. 
This proposed mechanism is fairly easy to visualize for vegetation and similar roughness 
where the element (leaf) length scales are small compared with h and horizontal 
heterogeneity is relatively unimportant. For laboratory threedimensional and two-
dimensional roughness with element dimensions comparable with h, individual roughness 
elements can generate strong wakes (for example, streamwise vortices in the case of 
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discrete three-dimensional roughness elements) which may play a role in the transfer 
process. However, there is almost always a strong vertical shear just above the elements, so 
the effects of individual element wakes may well be considered as superposed upon some 
more general process such as that just described. 
 
In conclusion, in order to understand the meaning of the work done and explained in the 
next chapters, here we have attempted to place within a single framework two bodies of 
research which, till now, have been largely separate: laboratory and theoretical work on 
rough-wall turbulent boundary layers, and micrometeorological studies in the atmospheric 
surface layer. By combining insights from both fields, a fairly complete picture of the 
rough-wall turbulent boundary layer emerges. The hypothesis of wall similarity, that 
rough-wall and smooth-wall boundary layers at sufficiently high Reynolds numbers are 
structurally similar outside the roughness (or viscous) sublayer, is well supported by many 
kinds of observation. The flow in the roughness sublayer is more difficult to measure than 
that in the overlying boundary layer, not only because of spatial heterogeneity but also 
because of high turbulence intensities, which introduce unacceptable errors with many 
laboratory velocity sensors, including X-wire probes. However, careful measurement 
techniques in the laboratory, using flying X-wire probes or coplanar triple-wire probes, 
have eliminated some of these difficulties. For field vegetation, threedimensional sonic 
anemometers provide an unambiguous measure of all three velocity components superior 
to anything obtainable with current laboratory sensors. Together, these techniques have 
facilitated the exploration of the main properties of the roughness sublayer, including its 
spatial heterogeneity, its turbulence structure in terms of velocity moments and second-
moment budgets, and the organized motion within it. To a surprising extent, these 
properties are common across a wide variety of roughness types. 
An important fundamental role for the study of rough-wall boundary layers is in tackling 
the general problem of boundary layer turbulence and its dominant forms of organized 
motion. It is clear that conditions at the wall can be drastically altered by roughness 
without changing the main boundary-layer structure (outside the roughness or viscous 
sublayer) in any fundamental way. This provides a strong clue about the selforganizing 
properties of boundary-layer turbulence, which, when properly understood, will offer much 
to the study of turbulence in general. 
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4. Problem Formulation 
 
 
In this chapter, we introduce the problem formulation. First we present the governing 
equation, then numerical method and the boundary conditions used are discussed. We 
conclude by describing in deail the immersed boundary method used to simulate the 
roughness. 
 
 
4.1 Governing equations 
 
The equations of conservation of momentum and mass for incompressible flow are 
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The large-eddy simulation equations are derived from (4.1) and (4.2) by applying a 
filtering operation (Leonard, 1974), defined as 
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where G is a filter function with a characteristic length, ∆ . Applying filtering to both sides 
of (4.1) and (4.2), one obtains 
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Here the overbar denotes the filtered quantities. Defining the residual-stress tensor τ
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the anisotropic residual-stress tensor 
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and including the isotropic potion of the residual stress into the modified filtered pressure 
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This equation, together with (4.5), will be solved in this study. 
 
 
4.2 Sub-grid scale model  
 
A linear eddy-viscosity model is used to link the residual stress tensor to the filtered rate of 
strain, 
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where νT is the eddy viscosity, and the filtered rate of strain is 
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Thus the momentum equation becomes 
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The eddy viscosity is modeled as 
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where lS is the subgrid-scale length scale, which is taken to be proportional to the grid filter 

width, ( ) 31zyx ∆∆∆=∆ , and S is the grid-filtered strain-rate 
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In the current study, c is modeled by the Lagrangian Dynamic Eddy-Viscosity model 
(Meneveau et al., 1996). 
 

                                                                MM

MLc
ζ
ζ

⋅−=
2

1

                                                 
(4.15) 



 80

 
where ζ LM and ζ MM represent the averages <Mij Lij> and <Mij Mij> along particle paths, and 
are calculated as follows. First Lij and Mij are obtained from: 
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denotes filtering by the test filter, and 
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width to the grid filter width. Then, PLM and PMM are calculated as 
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The new numerator and denominator of (4.15) at the (n+1)th time step are obtained from: 
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where ( )nnnn Ttt +∆∆= /ε , ∆t is the time step, T is a time constant defined as  
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4.3 Time-advancement and discretization 
 
The fractional time-step method (Chorin, 1968; Kim & Moin, 1985) is used to solve the 
governing equation (4.9) and (4.5). First the predicted value of the velocity field is solved 
from the momentum equation without the pressure term. Second-order Crank-Nicolson 
time advancement is applied on the wall-normal viscous and wall-normal subgrid-scale 
viscosity terms. The explicit Adams-Bashforth time-advancement is applied for all other 
terms. For the u-momentum equation, 
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In analogy, for  v-momentum 
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and for w-momentum 
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where  
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After the prediction step, the Poisson equation is solved 
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where Φ satisfies 
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in which  
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The velocity is then corrected to obtain a divergence-free velocity field 
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Second-order central differencing is used for all terms. For the convective term, a 
reverseweighting (or volume-weighting) (Ham et al., 2002) technique is used to interpolate 
the velocity field to evaluate derivatives at a staggered location. Define the averaging 
operators: 
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where Φ is a staggered variable, and the x superscript denotes interpolation in the x 
direction. Taking the convection terms in the u-momentum equation for an example, the 
convection term in the discretized u-momentum equation is obtained as 
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in which summation is applied for repeating subscript, and δ denotes discrete differencing. 
 
 
4.4 Boundary conditions 
 
Periodic boundary conditions are applied in the spanwise direction and for the outflow. At 
the inflow, the recycling method is used. At the free stream the same setup used in 
previous studies of this flow (Piomelli et al., 2000; De Prisco et al., 2007; Piomelli & 
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Scalo, 2010) is applied here: a profile of the streamwise timeaveraged velocity is assigned, 
and the mean free-stream wall-normal velocity component, V∞(x) , is derived from mass 
conservation (Lund et al., 1998) 
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and the irrotational condition 
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where δ* is the local displacement thickness and h the domain height. 
 
 
4.5 Immersed boundary method 
 
Immersed boundary methods (IBM) are widely used to handle moving or deforming bodies 
with complex surface geometries embedded in a flow. They do not require the Eulerian 
grid to be body-conforming, since the no-slip boundary condition is imposed on the 
boundary surface by spreading boundary forces to the Eulerian cells. The IBM was first 
introduced by Peskin (1972), who calculated the boundary force on the Lagrangian grid 
points as a singular function using Hooke’s law, and spread it on to the neighbouring 
Eulerian cells with regularized delta functions. With a similar approach, Goldstein et al. 
(1993) obtained the forcing function from a feed-back mechanism. These approaches, 
however, require some empirical parameters, and pose strict constraints on the time step or 
the deformation from immersed boundary. Direct formulations of the forcing function were 
introduced by Fadlun (2000), who modified the discretized momentum equation so that the 
interpolated velocity at the interface equals the required value, giving sharp interfaces. 
However, the interpolation is easy to carry out only for simple and regular interface 
geometries. Balaras (2004) extended the approach to complex geometries. In this study, to 
represent the random roughness elements while maintaining the simplicity of the Cartesian 
approach, we use an IBM based on the volume-of-fluid approach. This technique was first 
applied by Scotti (2006) to the study of roughness with DNS. 
The volume-of-fluid (VOF) IBM method was first introduced by Hirt & Nichols (1981) to 
study the interface between different types of fluid. In this method, the volume fractions Φ 
in surface cells are calculated (for incompressible fluids) from a conservation equation, 
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then, the amount of fluid transferred from the upstream cell to the downstream one is 
calculated from the product of Φ and the flux boundary area. This method is simple and 
effective. It describes immersed interfaces in a piecewise-linear sense, and ensures 
conservation of mass for each type of fluid (with conservation of total Φ). 
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 In this study, the interface is between steady surface roughness and a fluid; thus both the 
time-derivative term and the convection term in (4.37) equal zero. Instead, the volume 
fraction of each cell occupied by fluid, Φ, is calculated in pre-processing. Note that, due to 
the staggered grid arrangement, different volume fractions are used for the three velocity 
components and the subgrid-scale viscosity. A force is imposed on the right-hand side of 
the momentum equation to reduce the velocity proportionally to the solid volume in each 
cell. This method is less accurate than, for instance, direct forcing (Fadlun et al., 2000); it 
is, however, adequate for the present application, since the description of the rough surface 
is only an approximation to real sandpaper. The IBM is imposed by calculating the forcing 
term 
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after the prediction step. Afterwards, the prediction step is carried out for a second time 
with the forcing term as the source term, and the modified intermediate filtered velocity is 
obtained (taking the filtered u-momentum equation as an example), 
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where 
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and, to accommodate the change of filter length in cells cut by the immersed boundaries, 
the eddy viscosity in these cells is also reduced proportionally to the volume of fluid. 
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5. Model Validation 
 
 
This chapter describes the validation of the model, with particular stress on the 
implementation of the IBM, whose spatial and temporal accuracy are analyzed. This is 
done in two cases. First, a two-dimensional channel flow is studied, in which the channel is 
tilted with respect to the wall, to investigate the behaviour of the IBM on immersed 
boundaries that are not aligned to the cell boundaries, in a case for which the analytical 
solution is known. Then, the flow over a stationary cylinder is studied to investigate the 
average effect of random cutting of grid cells by the immersed boundary, and the accuracy 
of the method in an unsteady flow. Finally, an open-channel flows with a varying 
roughness surface is studied to validate the roughness modeling within the LES 
framework, and the grid resolution required for adequate resolution of the roughness. The 
results are compared to those obtained by Scotti (2006). 
 
 
5.1 Tilted plane-channel flow 
 
First, a two-dimensional, laminar flow in a channel tilted with respect to the grid lines is 
studied. A velocity profile is given at the inlet, and convective outflow boundary condition 
directions respectively, where l is the channel width. Three progressively refined meshes 
are used to study the spatial accuracy of the current scheme compared to the analytical 
result. The channel is tilted by 45° . Here the reference length is the channel height l = 1, 
and the reference velocity is the maximum velocity magnitude Vmax = 1 (where V = (u2 + 
v2)1/2). The Reynolds number, based on l and Vmax, is equal to 1. A uniform mesh is used 
throughout the domain; immersed boundaries are applied to model the no-slip condition on 
both walls of the channel. 
The contours of the volume-of-fluid Φ and the velocity-magnitude contours are presented 
in figure 5.1. The velocity is zero outside the channel boundaries, and within the channel a 
parabolic profile is obtained. The magnified plot of Φ shows the non-zero values of Φ at 
the cells that are either cut by the immersed boundary, or are outside the immersed object. 
The magnified plot of velocity magnitude shows that velocity is non-zero at the cells that 
are partly occupied by the immersed object. 
To determine the spatial accuracy of the method, three different resolutions are studied 
with a fixed time-step size ∆t* = 3 x 10−4 (where ∆t* = ∆tVmax/l ). The number of grid points 
(in x and y) is 96 x 125, 192 x 250, and 384 x500. The number of grid points used to 
describe the channel-flow profile (perpendicular to the center-line) is 12, 24, 48, 
respectively. 
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Fig. 5.1 - Contours of volume of fluid Φ (top) and velocity magnitude (bottom) in the tilted 
channel. Magnified plots of a region near the top wall are shown on the right. 96 x 125 grid 

points are used in x and y. The white lines mark the exact locations of the channel walls. 
 
 

The resulting velocity profiles are compared with the analytical profile in Fig. 5.2. We 
observe two types of error: near the wall, the no-slip condition is not verified on the grid 
cell intersected by the boundary; furthermore, the centreline velocity tends to be higher 
than the analytical solution. The combination of these errors yields first-order accuracy, as 
shown in figure 5.3, in which the L2 and L∞ norms are shown for various grid resolutions. 
The error norms here are averaged over the streamwise direction. 
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Fig. 5.2 - Profiles of velocity magnitude for the flow in a tilted channel at x = 2.5l (top) 

and its magnified plot (bottom). 
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Fig. 5.3 - Spatial accuracy for the flow in a tilted channel. The lines correspond to first and 

second-order accuracy, respectively. 
 
 
The first-order accuracy of the IBM is due to the fact that the VOF yields a diffused 
interface, whose exact location can be determined only to the order of the grid size. With 
reference to figure 5.2, one notices that extrapolating the velocity profile from the last two 
inner points to zero gives a virtual position of the wall that corresponds to a narrower 
channel than the nominal one. This naturally yields (since mass is conserved) a higher 
centerline velocity. 
To clarify this issue, at each x-location we computed the parabola that best fits (in a least-
squares sense) the velocity profile (Fig. 5.4). We then use the zero crossings of the 
parabola to determine the “real” location of the wall (indicated with a triangle in the 
figure). If we compare the numerical solution with the best-fit parabola, we obtain second 
order accuracy (Fig. 5.3); however, if we compare the difference between the “real” and 
nominal location of the walls (Fig. 5.5), we observe that the difference decreases with first-
order accuracy only. 
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Fig. 5.4 - Comparison of the numerical solution with the best-fit parabola (left) and the 

magnified plot (right). 
 

 
Fig. 5.5 - Difference between the “nominal” and the “real” wall locations. The lines 

correspond to first- and second-order accuracy, respectively. 
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The conclusion of this test is that the main limitation of the VOF-based IBM method 
comes from the difficulty in determining the exact location of the interface. For problems 
in which the geometry of the immersed boundary can be described with high accuracy, this 
limitation may be significant. In the application studied here, the flow over a rough wall, 
on the other hand, the description of the boundary is only approximate, and this error is not 
expected to affect the results significantly. 
Altough this problem is steady state, we demonstrate in figure 5.6 that the solution depends 
weakly on time-step size. This might be due to the time-dependence of the forcing defined 
for the IBM. As ∆t* reduces asymptotically to zero, the error approaches an asymptotic 
non-zero value, with the “real” location of the wall approaches the one corresponding to 
zero - ∆t*. 
 

 
 

Fig. 5.6 - Dependence of the error on the time step in a tilted channel. The error is 
defined as the difference from the case with smallest time-step size. 

 
 
5.2 Flow over a two-dimensional circular cylinder 
 
To study the flow over a general shape described by the immersed boundary, we 
investigate the use of IBM in simulating a stationary two-dimensional cylinder. Uniform 
free-steam velocity in the x-direction is assigned at the inflow. At the outflow the 
convective boundary condition is applied. Free-slip boundary conditions are used for both 
the top and bottom boundaries. The reference length and velocity are the cylinder diameter 
d and the uniform inlet velocity U∞, both of which are set to a unit value. The domain is [0, 
49d] and [0, 60d] in x and y, with the cylinder at [9d, 30d]. The Reynolds number based on 
d and U∞ is 20. 
To carry out the grid refinement study, two resolutions are used (Table 5.1). Grids are 
stretched in both x and y directions. Close to the cylinder (8.4 < x/d < 10, and 29 < y/d < 
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31) the mesh is uniform and takes the smallest value across the domain: ∆x = ∆y = ∆min. 
The grid starts to be stretched outside of this region, with a stretching rate less than 3% for 
23 < y/d < 37 and 5.5 < x/d < 16.5. A constant time-step ∆t* = ∆t U∞/d = 1 x 10−4 is used in 
all cases. In Table 5.2, the present results are compared to those in the study by Taira & 
Colonius (2007), where a direct-forcing immersed boundary method was used, with 
domain size [−30d, 30d] x [−30d, 30d], and the cylinder at [0, 0]. Also the experimental 
studies by Tritton (1959) and Coutanceau & Bouard (1977) are listed. The size and shape 
of the wake is characterized by lengths l, a, b, and θ, which are illustrated in figure 5.7. 
 
 

 
Table 4.1 - Grid resolutions used in cylinder flow simulation 
compared to previous simulations (Taira & Colonius, 2007). 

 
 
 

 
 

Fig. 5.7 - Definition of the characteristic dimensions of the wake structure. 
 
 

The drag coefficient is defined as 
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where the reference area A is taken to be d x 1 in the current two-dimensional flow, and Fx 

is the total drag force summed within the two-dimensional domain with unit depth, 
 



 92

                                                              ∫=
V

xx dvfF                                                          (5.2) 

 
where V is the whole domain area and fx is the local forcing imposed by the IBM, 
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In general, the results match each other very well. The grid resolution slightly influences 
the characteristic lengths of the cylinder wake. b/d is the least sensitive to resolution, while 
there is a 2% increase for a/d and a 2% decrease for l/d from the coarsest case to the finest 
case. Both simulations give higher values of a/d and l/d than the experimental results. Cd in 
this study is systematically higher than the reference numerical and experimental results by 
about 10%, probably because of the error due to the smearing effect of the virtual 
boundary. This error slowly decreases as the mesh is refined. 
 

 
Table 5.2 - Grid convergence study on the flow over a stationary cylinder. ∆t* = 0.0001. 

Here, “C.B. expt.”, and “T. expt.” Indicates experimental studies by Coutanceau & Bouard 
(1977) and Tritton (1959). 

 
 

It is shown again here that the steady solution depends on the time step. Calculations were 
carried out for the grid of Case D, with ∆t* = 0.0012, 0.0003, and 0.0001. The results 
reported in Table 5.3 show some effect of time-step, which changes the flow-field length 
scales by approximately 2% over the range of ∆t* considered. For steady-state problems, 
this dependence is built into the formulation of the VOF-based IBM. As ∆t* goes to zero, in 
any cell with Φ < 1 the velocity eventually goes to zero too. In this case, the virtual 
boundary is no longer smooth, but becomes pixellated, with a scale proportional to the grid 
size; this increases local forcing, and consequently leads to higher values of Cd. Such 
effective roughness may exert a visible influence in laminar flows. In turbulent flows, 
however, in which local grid size is supposed to be smaller than the viscous sublayer 
thickness, it will still result in a hydrodynamically smooth surface. Besides, the drag force 
from the rough wall in the study of turbulent boundary layers in the next chapter is 
calculated from global momentum balance for each vertical slice of the domain; this 
approach decreases the influence of local error brought by the IBM. Therefore, the error in 
Cd as is found in the current testcase could be considered negligible in the discussion in 
chapter 6. 
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Table 5.3 - Influence of ∆t on cylinder wake and drag coefficient with the resolution in 

Case A. 
 
 
 
 
 
 

 
 
 

Fig. 5.8 - Iso-surface of Φ (coloured by y/h) showing a section of the rough wall used in 
the open-channel testcase, with h = 0.04. Here Φ = 0.9. 
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5.3 Rough-wall channel flow 
 
To validate the roughness simulated by the IBM, and to carry out a grid-resolution study, 
we perform LES of channel flow with roughness. Here an open channel is chosen in order 
to reduce the domain size required. Periodic boundary conditions are applied in the 
spanwise and streamwise directions; and the streamwise pressure gradient is constant 
through out the domain; a free-slip boundary condition is used for the top boundary. At the 
bottom, roughness elements are modeled using the IBM. 
We use the virtual sand-paper roughness model proposed by Scotti (2006): the sandgrains 
are represented by uniformly distributed but randomly oriented ellipsoids of the same size 
(larger than the cell size) and shape. Only one parameter, the equivalent sandroughness 
height hs, is needed to describe the roughness geometry and distribution, with the semi-
axes of the ellipsoids set to hs, 1.4 hs, and 2 hs, and a separation of 2 hs between centers of 
neighboring ellipsoids in streamwise and spanwise directions, (i.e., the bottom wall is 
discretized into tiles of the size 2 hs x 2 hs, and each of them contains a roughness element). 
The roughness height hs is chosen to be 0.025l, 0.05l, where l = 1 is the half-channel 
height. Since hs alone can describe the roughness surface, from here on we call it 
“roughness height” for simplicity and denote it by h. The iso-surface of the volume 
fractions Φ, defined in section 4.5, in particular Φ = 0.9, with h = 0.04l on a section of the 
bottom wall is presented in figure 5.8, which shows the shape and distribution of roughness 
elements. 
Scotti’s model of roughness is very useful, since satisfies the following requirements: 

− It is characterized by a small set of parameters; 
− It is easy to implement numerically; 
− the effects on the bulk properties of the flow (velocity defect, friction 

coefficient,…) is known a priori;  
− the boundary layer has properties that match observations.  

  
We want to remark that in Scotti’s model of roughness the volume fraction is calculated 
once for a given cartesian grid and roughness height h; Φ is then used to include the effect 
of the rough boundary at each time step based on the following procedure: 
1) compute the intermediate velocity field which includes the effects of advection and 
diffusion; 
2) multiply the intermediate field by Φ to include the effect of roughness; 
3) calculate the pressure field necessary to project the corrected intermediate field onto the 
space of divergenceless fields; 
4) apply the pressure correction to obtain the velocity field at the end of the time step. 
 
The appeal of this method is that it is extremely simple to implement numerically. Of 
course, it is possible to use an immersed boundary method to achieve the same result with 
higher accuracy (sand grains, trees, etc.) whose surface is not known if not 
approximatively. However, the computational cost would be higher, without a clear 
benefit, since we are interested in boundaries (sand grains, trees, etc.) whose surface is not 
known if not approximatively.   
The domain size we used in our open channe is 6l x l x 3l in x, y, and z directions; the 
reference velocity and length scales are uτ and l. The Reynolds number Reτ , based on uτ 
and l, is 800, which gives h+ = 20 and 40 respectively for hs = 0.025l and 0.05l. A uniform 
mesh, with constant step, is used in the streamwise and spanwise directions. 
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The situation is different for the y domain: here we want to focus on the rough wall, hence 
this region must be solved carefully: we used a y-mesh which is uniform (∆y+ < 1) within 
the region y < 1.5h (which includes the highest point of roughness elements). For y > 1.5h, 
∆y+ increases with a stretching rate of less than 2% through out the boundary layer with a 
hyperbolic tangent behaviour.  
Two progressively refined grid resolutions are compared, together with the one used in the 
DNS in open-channel flows in Scotti (2006). 
Table 5.4 lists the number of grid points (in x, y and z direction), grid size in wall unit, as 
well as the number of grid points per roughness element, Ni and Nk, in the streamwise and 
spanwise directions; they are defined, respectively, as 2h/∆x and 2h/∆z. 
 
 

Mesh A B Scotti (2006) 

Grid size 96 x 152 x 96 192 x 152 x 192 386 x 256 x 386 

N (h=0.025l) 0.8 x 1.6 1.6 x 3.2 2.57 x 7.72 

N (h=0.05l) 1.6 x 3.2 3.2 x 6.4 5.14 x 15.44 

∆x+ 50 25 15.2 

∆z+ 25 12.5 5.2 

 
Table 5.4: Grid size and grid resolution for each mesh, compared to Scotti (2006) 

 
 

∆y+ (1) is less than 1 for all cases. Also, focus is not given on Nj , since the roughness 
elements are much better resolved vertically than they are horizontally.  
For smooth-wall flows, to resolve the spanwise streaks in LES , ∆x+  ≈< 60 and ∆z+  ≈< 25. 
In the transitionally rough regime, the roughness elements interfere with the buffer-layer 
production cycle, but do not completely destroy it; thus, the influence of roughness on the 
forming of streaks is limited: the characteristics of the near-wall structures are still 
comparable to those over a smooth wall. Therefore, we expect that this near-wall flow-
structure constraint also applies to rough walls. Meshes A and B both satisfy this 
requirement. Another constraint is imposed by a reasonable description of the shape of the 
roughness elements: it has been widely presented in the literature that the effects of 
roughness vary with the element shape (as widely described in chapter 3). Table 5.4 shows 
that the lower resolution, which marginally resolves the near-wall structures from the point 
of view of the smooth-wall criteria, also describes the shape of roughness elements, at least 
marginally (e.g., Ni = 0.8 and 1.6 in Mesh A). 
The grid-refinement study is carried out considering first- and second-order turbulent 
statistics. For the mean flow, the roughness effect is represented by the roughness function 
∆U+(y+), which is plotted against h+ in figure 5.9 for each resolution. It is clear that both 
mash A and mash B resolve well the mean momentum absorpition by roughness, and the 
results obtained fit very well with Scotti’s. 
From now on to compare the two meshes we consider only the lowest roughness height h+ 
= 20, for which the shape description is the most critical (the size of the roughness is 
smaller). 
 
 



 96

 
 

Fig. 5.9 – Grid refinement study: roughness function. LES and DNS results compared to 
experiment results in Colebrook (1939). 

 
 
Fig. 5.10 shows that, when the zero-plane displacement d is added to the y-axis, curves of 
both the meshes collapse well with the DNS and smooth-wall experimental results. 
Thus Meshes A and B adequately resolve the mean flow; d could be either calculated as 
the centroid of drag profile exerted by the roughness elements (Jackson, 1981), or obtained 
by fitting measured mean velocity profiles to assumed forms (Bandyopadhyay, 1987). 
Here d is calculated from the first method based on the temporal- and spatial-averaged u-
momentum equation (refer to Scotti (2006) for details) and is found very close to 0.8h for 
both Case A and Case B, consistent with the value obtained in Scotti (2006). This indicates 
that the general effect of drag force on the mean flow outside of the roughness sublayer is 
well resolved and our model is validated with Scotti’s one. 
In figure 5.11, the three components of turbulent fluctuation are compared to the smooth- 
and rough-wall DNS results and the smooth-wall experimental results from Wei & 
Willmarth (1991). For 100 < y+ < 500, both results obtained with Mesh A and Mesh B 
collapse very well with the reference data in the spanwise and vertical directions, while for 
the streamwise direction the LES results is slightly lower than the DNS and experimental 
results. 
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Fig. 5.10 – Mean velocity profiles for h+ = 20; comparison between grids. 
 
 

 
 

Fig. 5.11 – Influence of grid resolution on the velocity fluctuations for LES of open 
channel flow over a rough wall. 
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Overall, the results satisfy the wall similarity hypothesis proposed by Raupach et al. 
(1991). The results also show that Mesh A resolves the flow statistics well for the rough-
wall open-channel flow even with a lower resolution than Mesh B. Thus, one concludes 
that for this given roughness model and conditions, at least one and two grid points per 
roughness element in the streamwise and spanwise directions, respectively, are required to 
resolve the roughness effect on the first- and second-order statistics. 
As the grid resolution increase, the change in resolved roughness effects on the mean flow 
and turbulent fluctuations is not apparent, probably due to the nature of randomness for 
this roughness model: a range of element shapes would produce the same effect outside of 
the roughness sublayer. An accurate description of element shape is not necessary to 
resolve the time- and space-averaged roughness effects on low-order flow statistics for this 
roughness model. 
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6. Results 
 
 
In this chapter we present the results of the study of open channel flows over smooth and 
rough walls, where the dimension and geometry of the patches, together with the 
roughness height, are the parameters we vary. First, a summary of all the cases is 
presented, with an introduction of the problem setup and explanations regarding the 
choices made; then, we describe and show the geometry of the smooth-rough patches; after 
that, the calculations of the zero-plane displacement for developing flows and the wall 
shear stress are described. 
Finally, plots and figures of mean velocity, Reynolds stresses and turbulent structure are 
shown and described, in order to understand completely the behavior of the flow. 
 
 
6.1 Case setup 
 
Here we present a summary of all the cases generated. They are summarized in Table 6.1, 
together with some important parameters.  
Our goal was to maintain for all the cases Reτ around the value 800, with an error less than 
5%, over the rough patches, in order to be able to do a reasonable comparison. So, where 
the Reynolds number is lower, for instance in the 2P4 case, the value indicated is the 
global Reτ, evaluated through all the domain; we verified that only in the rough region Reτ 
satisfies our requirement. Moreover, the Reb is constant for every case with the same h+, 
which implies that the conditions over the rough patches should not be very different from 
the completly rough case, where Reτ is actually very close to 800. 
From Table 6.1 one can see that the domain size along the spanwise direction isn’t constant 
for every case. In fact we used a bigger domain for the h+ = 40 cases, in order to obtain a 
better sampling of the roughness: in fact, when we obtain the 2d statistics, which means 
that all the quantities are averaged in time and in the spanwise direction, we have a worse 
sampling of the roughness for the cases in which h is higher, and that leads to higher 
fluctuations of our variables, in particular the wall shear stress. To avoid this problem, and 
to have the same number of roughness elements in the z direction, we used a double wide 
domain when h+ = 40 (double than h+ = 20, so the number of roughness elements is 
costant). 
Cases R2B, R4B and R4S were used to analyze the effect of the spanwise domain on the 
results: case R2B was run with the same conditions of case R2, but with double wide 
domain, and double number of point in z direction, in order to maintain the same 
resolution. The same for cases R4S, R4 and R4B, in which the z domain and nk are 
increased by a factor of 2 every time.  
For all the cases we respected the conclusion of the grid size presented in section 5.3, in 
order to resolve the roughness effect on the first- and second-order statistics. 
All the cases were run for more than 400 time units, defined as l/Ub, to achieve steady state 
and to accumulate statistics. We started from the smooth case, then the final field was used 
as an initial condition for h+ = 20, and so on for the h+ = 40 cases. Statistical convergenge 
is gauged by measuring the deviation of the total stress (turbulent and viscous) from a 
linear profile; convergenge is deemed satisfactory when the discrepancy is less than 0.5%. 
The output sampling frequency was taken equal to 10 time units. 
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Case number of patches h+ Reb Reτ domain ni x nj x nk 

S 0 0 16000 839 6l x l x 3l 96x152x192 

R2 1 19 – 21 12400 792 6l x l x 3l 96x152x192 

R2B 1 19 – 21 12400 801 6l x l x 6l 96x152x384 

R4 1 38 – 42 10100 789 6l x l x 6l 96x152x192 

R4B 1 38 – 42 10100 772 6l x l x 12l 96x152x384 

R4S 1 38 – 42 10100 792 6l x l x 3l 96x152x96 

2P2 2 19 – 21 12400 754 6l x l x 3l 96x152x192 

2P4 2 38 – 42 10100 744 6l x l x 6l 96x152x192 

4P2 4 19 – 21 12400 776 6l x l x 3l 96x152x192 

4P4 4 38 – 42 10100 765 6l x l x 6l 96x152x192 

8P2 8 19 – 21 12400 798 6l x l x 3l 96x152x192 

8P4 8 38 – 42 10100 825 6l x l x 6l 96x152x192 

 
Table 6.1 - Case summary with parameters. 

 
 

6.2 Patches generation 
 
In this section we described the geometry and the proceeding we used to obtain the rough 
patches, which were used in the 2P2, 2P4, 4P2, 4P4, 8P2 and 8P4 cases. 
At first we generated the roughness with Scotti’s method, as explained in section 5.3: the 
saind grains are represented by uniformly distributed but randomly oriented ellipsoids of 
the same size and shape. In this way we obtained the completly rough cases (R2, R2B, R4, 
R4B and R4S). In this section, for simplicity, we will focus on the h+ = 20 cases, since the 
method used for the h+ = 40 cases is exactly the same. Figure 6.1 shows the iso-surface of 
Φ (Φ = 0.9) for the R2 case; we can see that all the channel is completely rough. 
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Fig. 6.1 - Iso-surface of Φ (Φ = 0.9 ) coloured by u/U∞ for case R2. 

 
 
After that, without generating new randomly oriented ellipsoids but keeping the same, we 
mulitply the volume of fluid Φ obtained for the completly rough case by a function f(x), 
plotted in Figs. 6.2, 6.4 and 6.6 for, respectively, cases 2P2, 4P2 and 8P2. Figs 6.3, 6.5 and 
6.7 show the iso-surface of Φ (Φ = 0.9) for the same cases. 
Where f = 1 Φ is not modified in any way and the surface is the same as the completely 
rough case. Where f = 0, instead, the roughness is removed and we have a smooth wall. 
The transition between patches is realized with a hyperbolic tangent behavior, and the 
slope is maintened the same for every case. Since we are using periodic boundary 
condition in the streamwise direction, the position of the rough and smooth patches is not 
important; thus the rough patches are placed in the middle of the domain. 
For every patch-case, the section of the channel which is rough is exactly the same as the 
smooth section; that implies that half the domain is smooth and half is rough. 
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Fig 6.2 - Function f as a function of x for the case 2P2. 

 

 
 

Fig. 6.3 - Iso-surface of Φ (Φ = 0.9 ) coloured by u/U∞ for case 2P2. 
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Fig. 6.4 - Function f as a function of x for the case 4P2. 

 

 
 

Fig. 6.5 - Iso-surface of Φ (Φ = 0.9 ) coloured by u/U∞ for case 4P2. 
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Fig. 6.6 - Function f as a function of x for the case 8P2. 

 

 
 

Fig. 6.7 - Iso-surface of Φ (Φ = 0.9 ) coloured by u/U∞ for case 8P2. 
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6.3 Preliminary calculation 
 
6.3.1 Calculation of zero-plane displacement d 
 
The approach described in Scotti (2006) is used to calculate d, except that the streamwise 
flow development is also considered. First the instantaneous local drag fi is calculated from 
the governing equation: 
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Then, its streamwise component fx is averaged in both time and the spanwise direction, and 
is used to calculated d from 
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The result for case R2B is plotted in figure 6.8, which shows that d/l remains around 0.8, 
which is the same result obtained by Scotti (2006). Again, this result validates our model 
and our results. 
However d/l is found to be very sensitive to insufficient statistical sampling, as shown by 
the scatter of the data. From here on we will set d/l = 0.8 through out the domain for 
simplicity. 
Note that, if we take for instance case R2B, the one plotted in Fig. 6.8, and we average d/l  
also in streamwise direction (which is exactly Scotti’s method to obtain d/l), we obtain as a 
result d/l = 0.8168, very close to his value. 
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Fig. 6.8 – Streamwise distribution of d/l in case R2B. The two red lines show d/l =  0.7 and 
0.9. 

 
 

6.3.2 Calculation of τw 
 
In the present simulation, the drag force exerted on the rough wall is due to the sum of 
viscous and form drags. Integrating the streamwise momentum equation from y = 0 to the 
top of the domain, y = l, gives 
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where fx represents the drag force in the streamwise direction due to roughness. Note that 
this integration includes the solid part of the domain (beneath the top of the roughness 
elements), where the right-hand side is zero trivially. The left-hand side of (6.3) represents 
the (local and instantaneous) stress on the rough wall, τw(x,z,t). Note that, the second term 
on the left-hand side of (6.3) contains most of the form drag and the viscous drag; the first 
term is nearly zero, since, under such roughness model, the argument of the integral at the 
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bottom boundary is nearly zero due to the roughness blockage. The instantaneous τw can 
then be averaged in both the spanwise direction and time to get <τw>. The friction 
coefficient Cf  can then be obtained from  
 

                                                         
22
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C w

f ρ
τ

                                                        (6.4) 

 
as profusely described in chapter 2 (equation 2.14). 
 
 
6.4 Description of the flow 
 
In this section, we give a description of the flow and show the boundary layer quantities. 
The goal is to describe, at first, the flow behaviour for a turbulent boundary layer over a 
smooth wall and a rough wall. Then, the patch cases are introduced and compared with the 
previous cases, to show the influence of the geometry. The roughness height h+ is the other 
parameter which has been varied and its effects on the flow are shown. To help us in the 
explanation of the flow behaviour we show local streamwise velocity u and contour of the 
different terms that come out the momentum equation. 

 
6.4.1 Streamwise development of τw and Cf  - smooth and rough cases  

 
The streamwise development of Cf , obtained as defined in (6.4), is plotted  in figure 6.9 
for cases S and R2. The smooth case was obtained using the vof method, as for the rough 
cases, but setting Φ = 0 everywhere in the domain, in order not to have roughness. The 
result obtained is in accord with the classic smooth turbulent open channel flow, at the 
same Reynolds number, obtained without using the immerse boundary method; thus our 
technique to obtain the wall shear stress from momentum equation (section 6.3.2) is 
validated. 
When roughness is introduced, the fluctuations of Cf  (which are due to fluctuations of τw) 
are quite large in magnitude and high in frequency (red line). We investigated the nature of 
those fluctuations, and we saw that they are due to a problem of sampling the roughness: 
even if the ellipsoids, generated with Scotti’s method, are randomly oriented, there are 
some favored structures and locations, and the roughness, averaged in z, is not 
homogeneous. 
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Fig. 6.9 - Streamwise development of Cf  for case S (black line) and for case R2 (red line). 
 
 
In figure 6.10 the wall shear stress τw and contour of volume of fluid Φ for case R4 are 
shown. In this figure, and in all the following plots, τw is nondimensionalized with the 
density ρ and the square of the bulk velocity Ub, as defined in chapter 2. Φ, which is a local 
variable and a function of x, y, z, has been averaged in the spanwise direction. It is possible 
to see the strong relation between τw and Φ: since the roughness is not perfectly random 
and there are peaks and valleys, those same peaks and valleys are found also in the τw 
streamwise development. 
This phenomenon is more relevant for cases in which h+ = 40, because the roughness 
height is double and so there are also fewer ellipsoids per spanwise unit. That’s why, in 
order to reduce the fluctuations and improve the sampling of the roughness, the main rough 
cases with h+ = 40 were computed using a bigger spanwise domain, with lz = 6l, as 
described in table 6.1. 
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Fig. 6.10 - Streamwise development of τw/ρUb

2 and contour of Φ (Φ = 0.8) averaged in 
spanwise direction for case R4. 

 
 
The effect of the spanwise domain is shown in Tab. 6.2, where domain, mean wall shear 
stress and its standard deviation are shown for cases  R4S, R4 and R4B. We define the 
standard deviation σ as 
 

                                                    ( )∑
=

−=
N

i
ix

N 1

21 µσ                                                     (6.5) 

 
where the mean value is defined as 
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One can see that the standard deviation decreases with the increase of the domain, but the 
decrease is not linear. 
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Case domain σ <τw> 

R4S     6l x l x 3l 0.03 0.0062 

R4 6l x l x 6l 0.02 0.0061 

R4B 6l x l x 12l 0.015 0.0059 

 
Table 6.2 – Effect of the spanwise domain in the roughness sampling. 

 
 
To better show the global effect of roughness, we filter τw with wavelet transform. 
Wavelets are mathematical functions that cut up data into different frequency components, 
and then study each component with a resolution matched to its scale. They have 
advantages over traditional Fourier methods in analyzing physical situations where the 
signal contains discontinuities and sharp spikes. The fundamental idea behind wavelets is 
to analyze according to scale. 
Wavelet, exactly as Fourier transform, are linear operations that generate a data structure 
that contains log2 n segments of various lengths, usually filling and transforming it into a 
different data vector of length 2n.  
The mathematical properties of the matrices involved in the transforms are similar as well. 
The inverse transform matrix for both of them is the transpose of the original. As a result, 
both transforms can be viewed as a rotation in function space to a different domain. For the 
Fourier transform, this new domain contains basis functions that are sines and cosines. For 
the wavelet transform, this new domain contains more complicated basis functions called 
wavelets, mother wavelets, or analyzing wavelets.  
Both transforms have another similarity: the basis functions are localized in frequency, 
making mathematical tools such as power spectra (how much power is contained in a 
frequency interval) and scalegrams useful at picking out frequencies and calculating power 
distributions.  
Neverthless, the most interesting dissimilarity between these two kinds of transforms is 
that individual wavelet functions are localized in space: Fourier sine and cosine functions 
are not. This localization feature, along with wavelets localization of frequency, makes 
many functions and operators using wavelets "sparse" when transformed into the wavelet 
domain. This sparseness, in turn, results in a number of useful applications such as data 
compression, detecting features in images, and removing noise from time series. 
Figure 6.11 shows the wall shear stress for case R4 before and after the filtering process: 
the magnitude of the fluctuations has been reduced; to quantify this reduction the standard 
deviation is indicated in the legend: σ decreases by half after the filtering process; 
however, the local behavior of  τw, due to roughness, is maintained and only the highest 
wavenumbers are removed. 
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Fig. 6.11 - τw/ρUb

2 for case R4 before and after the filtering process.  
 
 

In figure 6.12 the filtered τw for cases S, R2 and R4, together with the free-stream velocity 
U∞ and the friction coefficient Cf  are compared. τw increases passing from the smooth case, 
to the h+ = 20 case and again to the h+ = 40 case, in accord to the fact that the higher is the 
roughness, the bigger is the effect of viscosity on the computation of the wall shear stress. 
U∞ increases as well with the increase of the roughness height due to an upward shift of the 
flow: the roughness creates a blockage for the flow, which moves upward in order to 
preserve the mass flux. 
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Fig. 6.12 - Streamwise development of the nondimensionalized wall shear stress τw/ρUb
2, 

free-stream velocity U∞ and friction coefficient Cf for cases S, R2, R4 after filtering. 
 
 

From now on we will apply always our filtering process and we will use the filtered wall 
shear stress by default; in fact, the filtering signal is preferable because, as we will see in 
the next section, it is closer to τw obtained from the log law assumption, in which the local 
fluctuations are very small. 
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6.4.2 τw from the log law assumption  
 
At this point we compare the wall shear stress obtained from momentum equation and 
filtered with wavelets, the one shown in Fig. 6.12, with τw obtained from the assumption of 
the log law: in fact, the standard approach to calculate the wall stress in boundary layers 
over rough surfaces is to assume that in the overlap region  
 

                                         ( ) ( ) ( )+++++ ∆−+−⋅= hUBdy
k

yU ln
1

                                  (6.7) 

 
where k is the Von-Karman constant (typically the value 0.41 is used), 5 < B < 5.5 a 
universal constant, ∆U+ the roughness-dependent velocity defect (Fig. 6.13), and d the 
location of the virtual wall. Usually, experimental data points are fitted to equation 6.7 to 
determine appropriate values of B, d, ∆U+, and uτ  in an iterative method. And that is the 
procedure we adopted to obtain a new streamwise development of τw, fitting the log law in 
the region 200 < (y – d)+ < 230. The two different functions are plotted in Figs. 6.14 and 
6.15 for two different cases. We can see that τw obtained from log law is more stable, but it 
can not capture the large fluctuations due to the roughness. However, the interesting result 
is that the mean value of τw within all the domain is the same for the two methods, with an 
error less than 5%. This result allows us to say that, for the completely rough cases, the log 
law is valid through all the domain, our model of roughness agrees with existing data, from 
which the roughness function has been built, and the procedure we used to obtain τw from 
momentum gives reasonable result. 
 
 

 

Fig. 6.13 - Roughness functions ∆U+  versus h+. 
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Fig. 6.14 - Streamwise development of τw/ρUb
2 obtained by fitting the log law (red line) 

and by the momentum equation (black line) for case R2. 

 
Fig. 6.15 - Streamwise development of τw/ρUb

2 obtained by fitting the log law (red line) 
and by the momentum equation (black line) for case R4. 
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6.4.3 Streamwise development of τw and Cf  - patch cases  
 
In this section we analyze the streamwise development of τw and Cf  for the patches cases, 
which are the cases were the domain is partly smooth and partly rough; the geometry of 
this patches varies from one case to another as longly explained in section 6.2. 
The wall shear stress τw for case 2P2 is plotted in figure 6.16, obtained with the two 
different methods explained. The interesting result is that this time there is a discrepancy 
between τw  obtained from momentum and from the log law: even if the mean values of the 
two functions are the same, τw from log law is built from an a priori assumption (the 
existing of the log law through all the x domain). τw from momentum, instead, is obtained 
from the balance of the momentum equation, thus it is sensitive to the local variation of 
such quantities as the pressure gradient, the convective term, the viscous term and the 
reynolds stress term. From this τw we can see that there is a huge peak just at the beginning 
of the rough patch, for x = 1.5l. Note that the transition between patches is not abrupt, but 
smoothed with an hyperbolic tangent function, as explained in section 6.2. This peak is 
physical, as we can see from the momentum equation terms plotted in Figs. 6.17 - 6.19. 

 
Fig. 6.16 - Streamwise development of the nondimensionalized wall shear stress τw/ρUb

2 
obtained by fitting the log law (red line) and by the momentum equation (black line) for 

case 2P2.  
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Fig. 6.17 - Pressure term and convective term in the momentum equation for case 2P2. 

 

 
Fig. 6.18 - Reynolds stress term and viscous term in the momentum equation for case 2P2. 
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Fig. 6.19 - Forcing term in the momentum equation for case 2P2. 
 
 

From Figs 6.17 - 6.19 we can see that at x = 1.5l the momentum equation terms increase 
suddenly (in absolute value) due to presence of roughness, which introduces a drag force 
against the flow; thus the wall shear stress increases at the same location, with a local 
behaviour that can not be seen from the log law assumption. 
A similar situation occurs at the end of the rough patch, at x = 4.5l: here the flow comes 
across an adverse pressure gradient (APG) and, due to the relatively low Reynolds number 
and high roughness height, it separates creating a recirculation region, which leads to very 
low value of τw. In fact, our τw is averaged in the spanwise direction, but locally, at some z 
locations, τw assumes negative value just at the the end of the rough patch, as we can see 
from Fig. 6.20: it shows the streamlises and the contour of the streamline velocity U2 at 4 < 
x/l < 6 and z = l for the case 2P2, together with the volume of fluids Φ for the same case in 
the same streamwise location. The recirculation region is clearly visible at the end of the 
roughness, with negative value of U which leads to local negative value of τw. 
In figure 6.21 and 6.22 comparisons between the smooth case, the completely rough case 
and the 2 patch case are shown. In Fig. 6.21 h+= 20, while in Fig. 6.22 h+= 40 for the 
rough cases. We can notice that the 2 patch case behaves close to the smooth case in the 
smooth region and close to the rough case in the rough region. The only two irregularities 
are in the transition regions smoot-rough patch and rough-smooth patch, as observed 
before. 
In Fig. 6.23 - 6.25 friction coefficient Cf  and the free-stream velocity U∞ are plotted, 
respectively for the 2 patch cases, 4 patch cases and 8 patch cases; cases with different 
roughness height are plotted together, to show the effect of this parameter. When the 
roughness height is higher, τw and U∞ increase, as we’ve already noticed in the completely 
rough cases. 
From these plots we notice that the patch cases behave in a pretty similar way: the peak 
exists always at the beginning of a rough patch and its magnitude remains almost constant 
in the differen patch cases; the same for the valleys at the end of rough patches. Hence the 
influence of the geometry is little. 
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Fig. 6.20 - Streamlines and the contour of the streamline velocity U2 at 4 < x/l < 6 and z = l 

for case 2P2, together with the volume of fluids Φ for the same case and at the same 
streamwise location. 
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Fig. 6.21 - Streamwise development of the friction coefficient Cf  and the free-stream 

velocity U∞ for cases S, R2, 2P2. Blue lines show locations of roughness for 2P2 case. 
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Fig. 6.22 - Streamwise development of the friction coefficient Cf  and the free-stream 

velocity U∞ for cases S, R4, 2P4. Blue lines show locations of roughness for 2P4 case. 
 

 
Note that for the 4 patch cases and 8 patch cases we avoid the problem of sampling the 
roughness using a phase space average along the streamwise direction: all the quantities, 
which are already averaged in time and spanwise direction, are also averaged along the x 
domain, with a space shift depending on the number of rough patches. For instance, the 
streamwise velocity u for the 4 patches cases becomes: 
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where ni is the number of point in the x direction, indicated in Table 6.1 for every case. The 
8 patches cases allow us to average even more, since there are more patches: 
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Thanks to the phase average we can average the domain, in particular the rough domain, 
the one which gives problem with the sampling, in more point, still maintaining the main 
behavior of the flow above rough or smooth patches. 
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Fig. 6.23 - Streamwise development of the friction coefficient Cf  and the free-stream 
velocity U∞ for cases for cases 2P2 and 2P4. Blue lines show locations of roughness. 
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Fig. 6.24 - Streamwise development of the friction coefficient Cf  and the free-stream 
velocity U∞ for cases for cases 4P2 and 4P4. Blue lines show locations of roughness. 
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Fig. 6.25 - Streamwise development of the friction coefficient Cf  and the free-stream 
velocity U∞ for cases for cases 8P2 and 8P4. Blue lines show locations of roughness. 

 
 

We can notice the similarities between the 2 patch case and 8 patch case also comparing 
the momentum equation terms from Figs. 6.18 and 6.19 (case 2P2) with following Figs. 
6.26 and 6.27 (case 8P2). The influence and magnitude of the different terms above the 
patches are the same.  
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Fig. 6.26 - Pressure term and convective term in the momentum equation for case 8P2. 

 

 
Fig. 6.27 - Reynolds stress term and viscous term in the momentum equation for case 8P2. 
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6.5 Mean velocity 
 
In this section we show the mean velocity of the patch cases in different x locations, and 
we compare them with the rough cases, with the same roughness heigth h+, and the smooth 
case, in order to study the effect of local roughness on the flow. For rough cases, the 
vertical location is shifted by the zero-plane displacement d, as defined in (6.2), while d = 
0 for smooth case. Both inner and outer scalings are used, although the inner scaling is 
more interesting since we maintained Reτ  constant for every case. 
Figs. 6.28 shows the mean velocity plots for the smooth case and the two completely rough 
cases; we can notice that, under inner scaling, profiles are similar in the outer layer, except 
for an offset depending on the roughness height. Furthermore, the log law, represented by a 
thin black line, is respected in all the cases.  
Note that the x location is not indicated, since it doesn’t affect the plots; Thus only one 
position is sufficient to show the mean velocity for these cases. 
 

 
 

Fig. 6.28 - Profiles of streamwise mean velocity for cases S, R2, R4 with inner (left) and 
outer (right) scalings. Thin black lines in the inner scaling represent the log law. 
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Now we focus on the patch cases: Fig. 6.29 shows the inner scaling for case 2P2, 
compared with the completely rough case R2 and the smooth case S. In all the following 
plots we decided not to consider the zero-plane displacement d, since the value of d is not 
well determined in the transition region, where it is neither 0 (smooth patches) nor 0.08 
(rough patches) and it could bring to unphysical and misunderstood results. 
The x location of the plots are chosen through all the domain, with a step equal to x/δ = 0.5,  
in order to study the effect of local roughness. We can notice that over the smooth patch, 
x/δ = 0.5 and 1, the patch case fits well the smooth case; then the transition to roughness 
begins and, at x/δ = 1.5, the mean velocity of the patch case is approaching the one of the 
rough case; this transition ends quickly, and at x/δ = 2 the surface is completely rough and 
the patch case collapses with the rough case. This superposition between case R2 and 2P2 
is evident over all the rough domain, since x/δ = 4; then transition to smoothness begins, 
and at x/δ = 4.5, the patch case departes from the rough case.  At x/δ = 5 the patch case 
collapses again with the smooth one. We can notice that the plots at x/δ = 6 and x/δ =0.5 
are very close, since periodic boundary conditions are imposed and this process is repeated 
every time. 
A similar analysis can be done for cases S, R4 and 2P4 (Fig. 6.30), where this time the 
roughness height is h+ = 40. 
Figure 6.31 shows a comparison of mean velocities for cases S, R4, 2P4, the same of Fig. 
6.30, with outer scalings, which give the advantage that the wall shear stress doesn’t affect 
the results: we can see that in the outer layer the three curves collapse perfectly, at every x 
location. Instead in the inner layer we can notice a streamwise development of the patch 
case, similar to the one observed under the inner scalings. 
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Fig. 6.29 - Profiles of streamwise mean velocity for cases S, R2, 2P2 with inner scalings. 

Thin black lines represent the log law. 
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Fig. 6.30 - Profiles of streamwise mean velocity for cases S, R4, 2P4 with inner scalings. 
Thin black lines represent the log law. 
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Fig. 6.31 - Profiles of streamwise mean velocity for cases S, R4, 2P4 with outer scalings. 

 
 

Finally, we focus on the number of patches, the other parameter we are studying: in figure 
6.33 - 6.35 patch cases are compared. To make a reasonable comparison the x location of 
the plots are different, since the position of the patches changed between cases. We defined 
4 stations, with the same step, but shifted, in order to study the smooth-rough and rough-
smooth transitions. The positions of the stations are summarized in fig. 6.32, where the 
transition functions f are plotted for different cases. The precise positions of the stations are 
summarized in Table 6.3. Note that in the 4 and 8 patch cases, the phase average has been 
applied (equations (6.8) and (6.9)); hence, the behavior of the flow is the same over every 
patches.  
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Fig. 6.32 – Transition functions f for cases 2P2, 2P4 (above), 4P2,4P4 (middle) and 8P2, 
8P4 (below) with indicated the positions of the stations. 

 
 
 

Case Station A 
x/δ 

Station B 
x/δ 

Station C 
x/δ 

Station D 
x/δ 

2P2, 2P4     1.125 1.875 4.125 4.875 

4P2, 4P4 3.375 4.125 4.875 5.625 

8P2, 8P4 1.5 2.25 2.25 3 

 
Table 6.3 – Positions of the stations used in the mean velocity compare plots. 
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From figure 6.33 we notice that the h+ = 20 cases are not influenced by the number of 
patches: when the roughness is low, the three curves agree very well over the smooth, 
rough and transition domain. The situation is different for the h+ = 40 cases (Fig. 6.34): 
here we notice that the 8 patch case doesn’t fit the 2 and 4 patch cases at the station A, at 
the end of a smooth region, where we notice that in the buffer layer the green line is lower 
than the others, closer to the situation we have over a rough patch instead of a smooth one. 
We can say that the influence of rough patch frequency more significantly affects the 
ability of the flow to adapt from rough to smooth than from smooth to rough, since the 
agreement with the other cases is respected at station F. Hence, under the present 
conditions that we used for these simulations, the critical number of patches is between 4 
and 8, since for 8 patches the smooth and rough regions change too frequently for the flow 
to reach the smooth equilibrium status. 
 

  
 

Fig. 6.33 - Profiles of streamwise mean velocity for cases 2P2, 4P2 and 8P2 with inner 
scalings. 
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Fig. 6.34 - Profiles of streamwise mean velocity for cases 2P4, 4P4 and 8P4 with inner 
scalings. 
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Fig. 6.35 - Profiles of streamwise mean velocity for cases 2P4, 4P4 and 8P4 with outer 
scalings. 

 
 

6.6 Reynolds stresses 
 
In this section Reynolds stresses are shown and presented, plotted againt both the normal 
wall direction and the streamwise one. 
At first a comparison between the smooth and the completely rough cases is shown in 
figure 6.36. Reynolds stresses are normalized with local uτ. The x/δ parameter is not 
indicated since it doesn’t affect the completely smooth and rough cases. A single large 
peak is observed for the smooth case, and the magnitude of the components are in 
agreement with the smooth turbulent channel flow theory (section 2.6); for the completely 
rough cases the peak is shifted and localized in a thinner region inside the outer layer; This 
indicates that for high h the turbulence generation mechanism is noticeably altered by the 
roughness, and the near-wall roughness-induced active turbulence motions meet the 
inactive motions farther away from the wall. 
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Fig. 6.36 - Components of Reynolds stress tensor for cases S, R2 and R4 plotted 

against y/δ. The profiles are shifted for clarity. 
 

 
For case 2P2 (plotted in Figs. 6.37 and 6.38 at different x locations), we observe that, over 
a rough patch (x/δ = A and x/δ = F), the rough case collapses very well with the 
corresponding completely rough one, and the Reynolds stresses are very close; instead, 
over a smooth patch (x/δ = C and x/δ = D), the situation is more complicated: <uu> 
component of Reynolds stress is lower than the smooth case and extend in the same region; 
other components, in particular <ww>, have got higher stresses than the smooth one: they 
extend in a wide region (both in the inner and outer layer), like the smooth case, but the 
magnitude is higher. This indicates that the flow is affected by the presence of the 
roughness, which increases the stresses also over the smooth region. 
Similar results occur in case 2P4, plotted in figure 6.39 - 6.40. 
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Fig. 6.37 - Components of Reynolds stress tensor for cases S, R2 and 2P2 plotted 

against y/δ. The profiles are shifted for clarity. 
 

 
 

Fig. 6.38 - Components of Reynolds stress tensor for cases S, R2 and 2P2 plotted 
against y/δ. The profiles are shifted for clarity. 
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Fig. 6.39 - Components of Reynolds stress tensor for cases S, R4 and 2P4 plotted 

against y/δ. The profiles are shifted for clarity. 
 
 

 
Fig. 6.40 - Components of Reynolds stress tensor for cases S, R4 and 2P4 plotted 

against y/δ. The profiles are shifted for clarity. 
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In the next figures we show contours of Reynolds stresses, normalized with U∞, through 
the x and y domain for the patch cases. Also a streamline starting from y/d = 0.2 is plotted 
in every components. At first the three h+ = 20 cases are plotted in Figs. 6.41 - 6.43 with 
the same scale in the legend in order to compare the results. Then the h+ = 40 case are 
shown, whit a higher scale, since Reynolds stresses are, in general, higher through all the 
domain. 
We can see a high increase of <uu> component above the rough patches; this component is 
the most affected by local roughness. Also the <uv> component has a very interesting 
behavior: it suddenly decreases just before a rough patch, assuming also negative values, 
and, in a similar way, it increases very rapidly at the end of the patches. This increase is 
due to recirculation regions and possibly separation of the flow, as shown in Fig. 6.21. The 
phenomenon is emphatized for the h+ = 40 cases, plotted in Figs. 6.44 - 6.46.  
We can also notice that the streamiles, starting at y/d = 0.2, are deflected, since the flow 
shifts upwards over the rough patches due to their blockage effect.  
 
 

 
Fig. 6.41 - Contours of Reynolds stress tensor components for case 2P2. Black lines are 

streamlines at y/d = 0.2. 
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Fig. 6.42 - Contours of Reynolds stress tensor components for case 4P2. Black lines are 

streamlines at y/d = 0.2. 
 

 
Fig. 6.43 - Contours of Reynolds stress tensor components for case 8P2. Black lines are 

streamlines at y/d = 0.2. 
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Fig. 6.44 - Contours of Reynolds stress tensor components for case 2P4. Black lines are 

streamlines at y/d = 0.2. 
 

 
 

Fig. 6.45 - Contours of Reynolds stress tensor components for case 4P4. Black lines are 
streamlines at y/d = 0.2. 
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Fig. 6.46 - Contours of Reynolds stress tensor components for case 8P4. Black lines are 

streamlines at y/d = 0.2. 
 
 

6.7 Turbulent structures 
 
The roughness effects on flow reversion in the near-wall region can be illustrated by 
instantaneous contours of the velocity fluctuations u’ in a plane near the wall. Figures 6.47 
- 6.48 compare u’ contours in the smooth case (S) and the completely rough cases (R2 and 
R4). The wall-distance of the planes are chosen at the same location (in wall units) in the 
buffer layer, which extends in the region 5 < y+ < 30; in the rough cases the zero-
dispacement d is taken in account for the for the y location. In the smooth case, we observe 
the well-known establishment of very elongated streaks of high-low streamwise velocity, 
an indication of the stabilization of the inner layer and the reduction of the burst cycle. 
When the roughness is present, the elongated streaky structures are barely established and 
are not so clear; they are significantly disrupted by local disturbance an the generation of a 
turbulent spot is observed in Fig. 6.48. In the highest rough case (h+ = 40) the structures 
are difficult to see and the velocity fluctuations appears more disuniform. 
The patch cases are shown in Figs. 6.49 - 6.51; we observe the local disturbance induced 
by the roughness over the rough patches; there are region where the flow is more turbulent, 
the velocity fluctuations are higher in absolute value; these regions are easily visible when 
the roughness is higher. Only when the frequency of the patches is too high (8 patch cases) 
the separation between smooth and rough regions is not any more easy to observe. Note 
that one should take in account the change in the length scale: the viscous length scale, 
ν/uτ, increases as a result of the decrease of uτ over the smooth patches. Also the zero-plane 
displacement d is actually varying from 0 over the smooth patches to 0.08l over the rough 
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ones. In figures 6.49 – 6.51 we consider d/l = 0.08 (as in the completely rough case), but 
we have to remember that, in the smooth patches, we are visualizing the velocity in a lower 
level of the buffer layer, since d = 0. That can bring to a lower velocity in these  regions. 
The significance of the roughness disruption is determined by the importance of the 
roughness-induced burst cycle, which depends on the extension of the roughness sublayer 
into the buffer layer. 
 

 
Fig. 6.47 - Contours of streamwise velocity fluctuations u’for case S (in the plane y+ = 

 10 – 20). 
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Fig. 6.48 - Contours of streamwise velocity fluctuations u’ for (a) case R2 and (b) case R4 

in the plane (y - d)+ = 10 – 20. 
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Fig. 6.49 - Contours of streamwise velocity fluctuations u’ for (a) case 2P2 and (b) case 
2P4 in the plane (y - d)+ = 10 – 20. 
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Fig. 6.50 - Contours of streamwise velocity fluctuations u’ for (a) case 4P2 and (b) case 
4P4 in the plane (y - d)+ = 10 – 20. 
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Fig. 6.51 - Contours of streamwise velocity fluctuations u’ for (a) case 8P2 and (b) case 
8P4 in the plane (y - d)+ = 10 – 20. 

 
 

6.7.1 The Q-criterion 
 
Turbulent structures can be visualized with the so called Q criterion. The easier way to 
visualize turbulent structures is looking for high vorticity modulus ω: it’s a possible 
candidate for coherent-vortex identification, especially in free shear flows. For instance, 
Comte et al. (1998) extensively discussed the dynamics of streamwise vortices in a mixing 
layer on the basis of ω-isosurfaces. In the presence of a wall, however, like our study, the 
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mean shear created by the no-slip condition is usually significantly higher than the typical 
vortical intensity of the near-wall vortices. A more sophisticated criterion is therefore 
required to distinguish vortices from internal shear layers in those types of flow. 
A fluid parcel winding around a vortex needs to be (in a frame moving with the parcel) in 
approximate balance between centrifugal and (static) pressure-gradient effects, according 
to the following Euler equation: 
 

                                                            Pu
t

u ∇−=×+
∂
∂

ρ
ω 1

                                          (6.10) 

 
If, as a condition, coherent vortices should approximately keep their shape during a time Tc 
far enough in front of the local turnover time ω

-1, then, in a frame moving with a coherent 
vortex and supposed locally to be Galilean, the ratio of the second to the first terms on the 
left-hand side of (6.10) is of the order of Tcω. Thus the equation reduces to the 
cyclostrophic balance:  
 

                                                                Pu ∇−=×
ρ

ω 1
                                               (6.11) 

 
Under the assumptions implied by (6.11), the dynamic pressure should decrease inside a 
vortex tube in order to counterbalance the centrifugal effects. Isosurfaces of pressure have 
also been used by Comte et al (1998), and Robinson’s (1991) investigation of coherent 
structures in a turbulent boundary layer suggests the superiority of pressure as a vortex 
eduction criterion rather than the vorticity modulus. However, the threshold to be used for 
proper isopressure surfaces strongly depends on the pressure surrounding the vortical 
structure. In regions of high concentrations of vortices, this criterion may fail to capture the 
details of the vortical organization. 
The criterion which is here presented study shares some properties with both the vorticity 
and the pressure criterion. The Q-criterion was named after the second invariant of velocity 
gradient tensor ∇u by Hunt et al (1998). The second invariant Q is: 
 

                                                            ( )ijijijij SSQ −ΩΩ=
2

1
                                        (6.12) 

 
where Ωij = (ui,j − uj,i)/2 and Sij = (ui,j + uj,i)/2 are respectively the antisymmetric and the 
symmetric components of ∇u. In other words, Q is the balance between the rotation rate Ω2 
= ΩijΩij and the strain rate S2 = SijSij . The implication of the latter observation is fairly 
straightforward: positive Q isosurfaces isolate areas where the strength of rotation 
overcomes the strain, thus making those surfaces eligible as vortex envelopes. Further 
support can be found by recasting (6.12) in a form which relates to the vorticity modulus: 
 

                                                            ( )ijij SSQ 2
4

1 2 −= ω                                             (6.13) 

 
Since vorticity should increase as the centre of the vortex is approached, Q can be expected 
to remain positive in the core of the vortex. This speculation, which arises from good 



 148

sense, can be proven providing a few approximations and subsequently linked to pressure 
lows. One should be reminded that Q is equal to half the Laplacian of pressure: 
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According to the maximum principle, the pressure maximum occurs only on the boundary 
if Q is strictly positive and the pressure minimum occurs only on the boundary if Q < 0. As 
stated by Jeong and Hussain (1995), there is no necessary implication for the pressure to 
reach a minimum within a region of positive Q. Although it has been suggested that a 
minimum of pressure might not be appropriate within an agglomeration of vortices, one 
should check the correspondence of the pressure criterion with the Q criterion for an 
isolated vortex tube which contains a pressure low. However, the Q criterion (Q > 0) is a 
necessary condition for the existence of a thin low-pressure tube. 
The isosurfaces of the second invariant of the velocity tensor Q shown in figures 6.52 - 
6.54 help to explain some of the phenomena observed. While in the smooth case the 
isosurfaces are few, in the rough cases we observe a nearly homogeneous distribution of 
eddies. These eddies are generated by the wakes of the roughness elements, and are 
essentially locked to the roughness element. They may increase flow mixing, and play a 
role in the break-up of the streaks that would otherwise be stabilized in a smooth case. This 
happens because the roughness-generated eddies are large enough to reach the layer where 
the majority of the energy is generated, so they disturb the stabilized structures. 
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Fig. 6.52 - Isosurfaces of Q (Q = 10), coloured by U, in cases S (a), R2 

(b), and R4 (c). 
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Fig. 6.53 - Isosurfaces of Q (Q = 10), coloured by U, in cases 2P2 (a), 4P2 

(b), and 8P2 (c). 
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Fig. 6.54 - Isosurfaces of Q (Q = 10), coloured by U, in cases 2P4 (a), 4P4 

(b), and 8P4 (c). 
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7. Conclusions 
 
 
We carried out large-eddy simulations of open channel flows over smooth and rough walls. 
Parameters studied include the roughness height (h), the dimension and geometry of the 
smooth and rough patches, and the Reynolds number based on the friction velocity (Reτ). 
A sand-grain roughness model (Scotti, 2006) was used, with the no-slip boundary 
conditions on the solid-fluid interface imposed with an immersed boundary method based 
on the volume of fluid. 
First of all, we presented and discussed the theory of turbulent channel flows, at first for a 
regular smooth wall, and then introducing the roughness and analyzing its effects on the 
flow. We summarized the current knowledge on this matter, putting together, within a 
single framework, laboratory and atmospheric rough-wall studies.  
After that, we presented the problem formulation, and explained the numerical method 
used to solve the flow. This model was, then, validated: the spatial and temporal accuracies 
of the immersed boundary method were studied with two test-cases: a two-dimensional 
open channel at an angle with respect to the grid, and flows over a stationary cylinder at Re 
= 20 based on the uniform inflow velocity and the cylinder diameter. Also, simulations on 
equilibrium rough-wall open-channel flows were carried out, giving results that match the 
reference DNS results in the mean flow (in terms of the mean velocity profile, the 
roughness function), and Reynolds normal stresses. The calculation of zero-plane 
displacement d matched Scotti’s results (2006), although d/l was found to be very sensitive 
to insufficient statistical sampling, as shown by the scatter of the data. A requirement on 
the LES grid resolution was given to resolve the forcing exerted by the roughness for 
equilibrium turbulent flows. It was verified that the current method with such grid 
resolution resolves well the flow for the smooth-wall and rough-wall open channel from 
the comparison with previous DNS and experimental results. 
After describing the parameters and the procedure used to obtain the rough patches, results 
of the simulations were presented. From the streamwise development of the wall shear 
stress τw and the friction coefficient Cf we noticed large magnitude fluctuations above the 
roughness, due to a problem of insufficient sampling: even if the ellipsoids, generated with 
Scotti’s method, are randomly oriented, there are some favored structures and locations; 
this phenomenon can be reduced increasing the spanwise domain or filtering the signal 
with wavelet transform, which allows us to analyze according to scale and, thus, to remove 
only the highest wavenumbers. Comparing with τw obtained from the assumption of the log 
law (the standard approach to analyze velocity profiles in boundary layers over rough 
surfaces, based on an a priori assumption) we saw two different results between completely 
rough cases and patch cases: for rough cases even if τw from the log law can’t capture 
fluctuations due to local roughness, the mean value of the two functions is very similar, 
with a difference less than 5%, letting us to say that the log law is valid through all the 
domain and the procedure we used to obtain τw from momentum gives reasonable result. 
For patch cases, instead, in the smooth-rough transition and rough-smooth transition the 
two functions behave quite different: τw from the log law can’t capture the local variation 
of flow quantities close to the wall, where, for example, the pressure gradient increases 
abruptly when the flow runs into roughness, making τw from momentum increase as well. 
Moreover, when a rough patch ends, the flow comes across an adverse pressure gradient 
(APG) and, due to the relatively low Reynolds number and high roughness height, it 
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separates creating a recirculation region (U < 0), which leads also to local negative values 
of τw. 
From smooth and completely rough mean velocity profiles we saw that, under inner 
scaling, profiles are similar in the outer layer, except for an offset depending on the 
roughness height. Furthermore, the log law is respected in all the cases. Also the velocity 
profiles (with outer scaling) shifted by the virtual origin d match well the smooth and 
rough wall profiles in the outer layer under the same equilibrium or non-equilibrium state. 
Studying mean velocity profiles for the patch cases at different x locations, we observed 
the influence of the number of patches: when h+

 = 20 profiles for 2, 4 and 8 patches agree 
very well over the smooth, rough and transition domains; the situation is different for h+

 = 
40 cases: here we noticed that, only above smooth regions, the 8 patch case mean velocity 
profile is lower than the the corresponding 2 and 4 patch cases within the buffer layer; the 
influence of rough patch frequency more significantly affects the ability of the flow to 
adapt from rough to smooth than from smooth to rough, as their agreement is respected 
elsewhere. Hence, under the present conditions and only for high roughness height, the 
critical number of patches is between 4 and 8, since for 8 patches the smooth and rough 
regions change too frequently for the flow to reach the smooth equilibrium status. 
Close to the wall, the presence of roughness increases the Reynolds stresses and creates 
inner peaks in the Reynolds-stress profiles. For higher h, the magnitude of such increase is 
higher, and this peak moves towards the overlap region, until it merges with the outer peak 
of the Reynolds stress profile, indicating that the turbulence generation mechanism is 
noticeably altered by the roughness, and the near-wall roughness-induced active turbulence 
motions meet the inactive motions farther away from the wall. For a low value of h, 
however, the region of increased Reynolds stress due to the roughness is well separated 
from the outer peak. In general, roughness tends to make the Reynolds stresses more 
isotropic, consistent with experimental results obtained in quasi-equilibrium flows (Cal et 
al., 2009). When patch cases are plotted, we noticed that the frequently shift between rough 
and smooth patches tended to increase Reynolds stresses over smooth regions, in particolar 
|<uv>|, probably due to the presence of separation regions already observed in those    
areas.  
The visualizations of isosurfaces of the second invariant of the velocity tensor Q helped to 
explain some of the phenomena observed: while in the smooth case the isosurfaces are 
few, in the rough cases we observe a nearly homogeneous distribution of eddies; these 
eddies are generated by the wakes of the roughness elements, and are essentially locked to 
the roughness element. They may increase flow mixing, and play a role in the break-up of 
the streaks that would otherwise be stabilized in a smooth case. This happens because the 
roughness-generated eddies are large enough to reach the layer where the majority of the 
energy is generated, so they disturb the stabilized structures. 
This study shows that the roughness affects directly only the flow close to the wall: its 
blockage effect extends only to y = d in the mean flow; also, it increases the Reynolds 
stresses and decreases the Reynolds-stress anisotropy within limited region near the wall. 
As a result, the roughness affects significantly the inner-layer quantities like τw and Cf  but 
the outer layer quantities are not sensitive to the variation of the surface condition. 
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