Chapter 10: Approximate Solutions of
the Navier-Stokes Equation



1. Appreciate why approximations are
necessary, and know when and where to

use.

2. Understand effects of lack of inertial
terms in the creeping flow approximation.

3. Understand superposition as a method
for solving potential flow.

4. Predict boundary layer thickness and
other boundary layer properties.

Fondamenti di Meccanica dei Continui 2 Chapter 10: Approximate Solutions




Introduction

m In Chap. 9, we derived the NSE and developed several
exact solutions.

m In this Chapter, we will study several methods for simplifying
the NSE, which permit use of mathematical analysis and
solution

B These approximations often hold for certain regions of the flow field.
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Nondimensionalization of the NSE

B Purpose: Order-of-magnitude analysis of the terms in
the NSE, which is necessary for simplification and
approximate solutions.

m We begin with the incompressible NSE

D‘? 817 — — N 2% 7
PE—P E—i—(V-V)V = —Vp+ pg +puvVyv

B Each term is dimensional, and each variable or property
(o, V,t, u, etc.) is also dimensional.

B \What are the primary dimensions of each term in the

NSE equation?
Ans _ m
nswer . {m}
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Nondimensionalization of the NSE

m To nondimensionalize, we choose scaling
parameters as follows

TABLE 10-1

Scaling parameters used to nondimensionalize the continuity and momentum
equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions
L Characteristic length {L}

V Characteristic speed {Lt-1}

f Characteristic frequency {t-1}

P, — P, Reference pressure difference {mL~1t=?}

g Gravitational acceleration {Lt~2}
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Nondimensionalization of the NSE

B Next, we define nondimensional variables, using the
scaling parameters in Table 10-1

T LV
P_P —
P* — o0 -~ 9 * _
B—Pn =, V* =LV

B To plug the nondimensional variables into the NSE, we
need to first rearrange the equations in terms of the

dimensional variables
1 . — — 1
t:?t* r = LI* V=VV* V:ZV*

P =P+ (Py—Px)P* §=gg~
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Nondimensionalization of the NSE

B Now we substitute into the NSE to obtain

oV * pV2 Py — P wV _ .o
* p* —k A v *
8t* 7 7 VvV + pgg” + 72 V™V

oV f (V* v*) Vr = —

W Every additive term has primary dimensions
{miL-t2}. To nondimensionalize, we multiply
every term by L/(pV?), which has primary
dimensions {m-1L4t}, so that the dimensions
cancel. After rearrangement,

e ) v [ v [+ ] o
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Nondimensionalization of the NSE

Terms In [ ] are nondimensional parameters

fL 8‘7* Tk *\ 17 Py — Peo * T* gL ok 2! *2 1 7%
V.V VT =— P c —
[V o+ ) v |V v vV Y
Strouhal number Euler number || Inverse of Froude || Inverse of Reynolds
number squared || number
ov: /. . 1 1 )
St —|—(V*-V*)V*:—EUV*P*—|— g || v
1] Ot* B Fr? g Re

Navier-Stokes equation in nondimensional form
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Nondimensionalization of the NSE

B Nondimensionalization vs. Normalization

B NSE are now nondimensional, but not necessarily normalized.
What is the difference?

B Nondimensionalization concerns only the dimensions of the
equation - we can use any value of scaling parameters L, V, etc.

B Normalization is more restrictive than nondimensionalization.
To normalize the equation, we must choose scaling parameters
L,V, etc. that are appropriate for the flow being analyzed, such
that all nondimensional variables are of order of magnitude
unity, i.e., their minimum and maximum values are close to 1.0.

t*~1 F~1 V*~1 P'~l F~1 Vn~l

If we have properly normalized the NSE, we can compare the relative
Importance of the terms in the equation by comparing the relative magnitudes of
the nondimensional parameters St, Eu, Fr, and Re.
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Creeping Flow

m Also known as “Stokes Flow” or “Low
Reynolds number flow”

B Occurs when Re << 1

W p V, orlL are very small, e.g., micro-
organisms, MEMS, nano-tech, particles,
bubbles

W /IS very large, e.g., honey, lava
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Creeping Flow

mTo simplify NSE, assume St~ 1, Fr~1

- 1 — .\
Eu|V*P* = | — | V**V*
—Re-
Pressure Viscous
forces forces

mSince P*~1, V*~1

o PO — POO 1 !
- pV2 Re pVL

Fu
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Creeping Flow

4

B This is important |0~ fe

B Very different from inertia dominated flows where
PO — Poo ~ pV2

B Density has completely dropped out of NSE. To
demonstrate this, convert back to dimensional form.

VP = Mv%?

B Thisis now a LINEAR EQUATION which can be
solved for simple geometries.
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Creeping Flow

m Solution of Stokes flow Is beyond the scope of
this course.

m Analytical solution for flow over a sphere gives a
drag coefficient which is a linear function of
velocity V and viscosity s

= (N M; Fp =3muV D
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Inviscid Regions of Flow

m Definition: Regions where net viscous forces
are negligible compared to pressure and/or
Inertia forces

| 1 | ~0if Re large

ov* o . 1 1 .
SRS PR 117

Euler Equation Euler equation valid
M
E
.—-'""-_'"N.._.__-___ N

- ~—F—
\Y et

Euler equation not valid
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Inviscid Regions of Flow

m Euler equation often used in aerodynamics

® Elimination of viscous term changes PDE from mixed
elliptic-hyperbolic to hyperbolic. This affects the type of
analytical and computational tools used to solve the
equations.

B Must “relax” wall boundary condition from no-slip to slip
For example for the case of a fixed wall:

No-slip BC Slip BC
u=v=w=0| (7,=0,v,=0

v, = normal velocity
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Irrotational Flow Approximation

H Irrotational
approximation: vorticity Is

Irrotational flow region ﬂeg|lglb|y small
— —
—— (=VXxV =0
m ® In general, inviscid
T regions are also
— ! % irrotational, but there are
- o — . . . . !
\/ = situations where inviscid
Rotational flow region flow are rotational, e.qg.,
solid body rotation (Ex.
10-3)
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Irrotational Flow Approximation

m\What are the implications of irrotational
approximation. Look at continuity and
momentum equations.

m Continuity eqguation
B Use the vector identity V X Vo =0
W Since the flow is irrotational V x V = 0

V =V

¢ IS a scalar potential function
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Irrotational Flow Approximation

B Therefore, regions of irrotational flow are also
called regions of potential flow.

B From the definition of the gradient operator V

. 09 _ 0¢ 09

Cartesian U = 8_133 V = —ay, W —= _8:5
— 0o 1 0¢ 0o
I T or’ O 09 ° 0z

B Substituting into the continuity equation gives

—

V- V=V-Vo=|V%=0

Fondamenti di Meccanica dei Continui 18 Chapter 10: Approximate Solutions




Irrotational Flow Approximation

B This means we only need to solve 1 linear
scalar equation to determine all 3 components
of velocity!

V% =0 Laplace Equation

B Luckily, the Laplace equation appears in
numerous fields of science, engineering, and
mathematics. This means that there are well
developed tools for solving this equation.
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Irrotational Flow Approximation

m Momentum equation

B If we can compute ¢ from the Laplace
equation (which came from continuity) and
velocity from the definition V = V¢, why do
we need the NSE? = To compute Pressure.

B To begin analysis, apply irrotational
approximation to viscous term of the NSE

uV2V = pV?(V¢) = pV(V3¢) = 0

=0
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Irrotational Flow Approximation

B Therefore, the NSE reduces to the Euler
eqguation for irrotational flow

o) Vas

ot*

nondimensional [St]

+(17*.v*) ﬁ*:—[Eu]v*P*Jr[ 1 }g’*

) Fr2
%‘i‘\(ﬁ'V)v

dimensional 0

~~
—
- I S S IS S B EaE B e Ea B e .

m Instead of integrating to find P, use vector !
identity to derive Bernoulli equation

(ﬁ-V)ﬁ:V(VTz)—Vx(Vxﬁ);V(%z)—V’xfi

Fondamenti di Meccanica dei Continui 21 Chapter 10: Approximate Solutions



Irrotational Flow Approximation

m This allows the steady Euler equation to be written as

= —gk =-V (g2)
2 - -
V(VT)—VXC——%VP—HE_:‘)
P V? o o
Vv | gz | =V x (¢
0 2

m This form of Bernoulli equation is valid for inviscid and
irrotational flow since we’ve shown that NSE reduces to
the Euler equation.
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Irrotational Flow Approximation

m However,
P V? .
Inviscid ; + > + gz = (C along a streamline
- P V?
Irrotational (€ = 0) ; + o + gz = C everywhere

Chapter 10: Approximate Solutions
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Irrotational Flow Approximation

B Therefore, the process for irrotational flow
1. Calculate ¢ from Laplace equation (from continuity)
2. Calculate velocity from definition V = V¢

3. Calculate pressure from Bernoulli equation (derived
from momentum equation)

'V2_V2
002 - g (20 — 2)

P=P, +p

Valid for 3D or 2D
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Irrotational Flow Approximation
2D Flows

m For 2D flows, we can also use the streamfunction
B Recall the definition of streamfunction for planar (x-y)

flows O o
U=la,] V=%,
m Since vorticity is zerol . 4
C, = oV B ou
0z Oy
0? 0%
Y n (VN 0
Oy?  0x?

B This proves that the Laplace equation holds for the
streamfunction and the velocity potential
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Irrotational Flow Approximation

2D Flows

B Constant values of v
streamlines

m Constant values of ¢:
equipotential lines

B v and ¢ are mutually
orthogonal

m  and ¢ are harmonic functions
m yis defined by continuity;
V2 results from irrotationality

B ¢is defined by irrotationality;
! V24 results from continuity

Streamlines

Flow solution can be achieved by solving either V24 or V2y,
however, BC are easier to formulate for .
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Irrotational Flow Approximation

2D Flows

m Similar derivation can be performed for cylindrical
coordinates (except for V2 for axisymmetric flow)
B Planar, cylindrical coordinates : flow is in (r,8) plane
B Axisymmetric, cylindrical coordinates : flow is in (r,z) plane

A

CAUTION!

LAPLACE EQUATION
NOT AVAILABLEFOR
STREAM FUNCTION IN
AXISYMMETRIC FLOW

Rotational
symmetry

Axisymmetric
body

I
I
i
I

o J

Planar Axisymmetric
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Irrotational Flow Approximation

2D Flows

TABLE 10-2

Velocity components for steady, incompressible, irrotational, two-dimensional
regions of flow in terms of velocity potential function and stream function in
various coordinate systems

Description and

Coordinate System Velocity Component 1 Velocity Component 2
F’Ianalr; Cartesian ab ai adb au
coordinates U=—=— p=—=——

dx  ay ay ax
F’Ianalr; cylindrical ab 1o { ad s
coordinates U, =—=—— Uy =——=———

ar r atl roatl ar
ﬂmlsymlmetrm; | ad | s adb 1 a
cylindrical coordinates U, =—= ——— U, =—=——

ar r oz Y4 rar
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Irrotational Flow Approximation

2D Flows

B Method of Superposition

1. Since v2¢=0is linear, a linear combination of
two or more solutions is also a solution, e.g.,
If ¢, and ¢, are solutions, then (Ag¢,), (¢,+4.),
(Ag,+Bg,) are also solutions

2. Also true for in 2D flows (V2y =0)
3. Velocity components are also additive

00 _0(iton) _ 06 | 06
- Oz Ox - Oz Ox
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Irrotational Flow Approximation

2D Flows

m Given the principal of superposition, there
are several elementary planar irrotational
flows which can be combined to create
more complex flows.

B Uniform stream
B Line vortex

B Line source/sink
B Doublet
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Elementary Planar Irrotational Flows

Uniform Stream

H In Cartesian coordinates

| | yA [ | L L
3 ——— : > (;b T Vm? w T Vy
) i > i i "‘i
e e . m Conversion to cylindrical
i | i | coordinates can be
P : — T+  achieved using the
) ——— | B transformation
Ay — ] : L r = rcosf, y = rsinf

¢ = Vrcos, 1= Vrsind
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Elementary Planar Irrotational Flows

Line Vortex

m Vortex at the origin. First
look at irrotationality
condition which leads to
the following velocity
components

\ g, =0 100

or  rof

\
¥
Y

Equations are for a vortex - . .
centered on the origin ["_is the circulation

Chapter 10: Approximate Solutions
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Elementary Planar Irrotational Flows
Line Vortex

" Uy UQ:;%:_(‘?T:ZWT
. M Integrating:
=l
r o I I
* o= —0 = ——lnr
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Elementary Planar Irrotational Flows

Line Vortex

m If vortex Is moved to

) (xy) = (ab)
v Cb:%@l:%tan_l(z:Z)
0, T r
A AN R L e o N Car TR,
2O
Y4 W S
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Elementary Planar Irrotational Flows

Line Source/Sink

B Potential and stream-

Rl _f function are derived by
\ """" ) "“"‘*-Jf . observing that volume
\ L ,,/ flow rate across any circle
in the x-y planeis V/L
- * v m See also continuity
¥ equation
“ m This gives velocity
A Ay components
4 T h v, = 2Ly, =
27T
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Elementary Planar Irrotational Flows

Line Source/Sink

B Using definition of (U,,U,)
09 18y V/L

———————— U= — = =
\,x" Z I N or rdo 2ur
R77cenl B SN YN 7 10 0
,f i U9 = ——(;b = ——w — O
A r 00 or
iyt .. W These can be integrated to
172 " X .
Y p give ¢ and y
: \ A !
\ 3 d b3 . .
"X > V/L V/L
\ ‘,bﬁ S _ - lflg d — —l o
/\“w T!!;‘ g ¢ o ¥ 2T 0

Equations are for a source/sink
at the origin. Result is different in 3D.

Chapter 10: Approximate Solutions
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Elementary Planar Irrotational Flows

Line Source/Sink

m If source/sink Is
moved to (x,y) = (a,b)

o= Mlmfrl = M111\/(:L:—a)2—|—(y—b)2

2T 2T
p YLy VL (y—b)
2T 2T Tr—a

=Y
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Elementary Planar Irrotational Flows

Doublet

Fondamenti di Meccanica dei Continui

m A doubletis a
combination of a line
sink and source of
equal magnitude

B Source

L
1/)—V/ 61 6’1:tan_l( J )
T+ a

H Sink
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Elementary Planar Irrotational Flows

Doublet

B Adding y; and v,

N\, together, performing
)
—~y, some algebra, and
s N SR S, . taking a — O gives

Col TN // IR 1ER sind
VLt 7 AN Y =-K
\ —(b AN 4 ’/// \\“‘-.. / ; / f]"
_¢3 2 . /15 %\ /(552 qb;

R £ e e i U cost

-1 1 -~ =K
T
-,
=3 K is the doublet strength

Chapter 10: Approximate Solutions
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Examples of Irrotational Flows Formed

by Superposition

B Superposition of sink and
vortex : bathtub vortex

V/L T
Y = QLQ 5 Inr
J_/ N ﬂ-Y Y,
Sink Vortex
_ 10y _V/L
Ur = rdfd  2mr
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Examples of Irrotational Flows Formed

by Superposition

i ) m Flow over a circular
v o it s cylinder: Free stream

— NN + doublet
— ;()K oo cos 6
IV X o =Vrcosl+ K .
—_—
—_— 1

) w:VrsiHQ—KSIZQ

m Assume bodyis =0
(r=a) > K=Va’

Y =Vsin6 (r —a®/r)

=¥
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Examples of Irrotational Flows Formed

by Superposition

m Velocity field can be found by

2 —;/ \‘:: differentiating streamfunction
//—_\
e 5
y*o_ _ 1 ng—g—f:—VsiHQ(l—i—az/rz)
a ‘%% m On the cylinder surface (r = a)
e
P S —————— 0, Up=-—-2Vsinb
) —1 0 | 2

Normal velocity (U,) is zero, Tangential
velocity (U,) is non-zero =slip condition.
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Examples of Irrotational Flows Formed

by Superposition

Front SP Rear SP

B Compute pressure

e

: using Bernoulli
. Free-stream . .
] pressure equation and velocity
°7 e ~o90e® on cylinder surface
] OOO o separation P V2 B Poo i Vo2o
C _1__ ¥ oooooooo c?o 000 P 2 P 2
p Laminar
| o separatiof P—P V2
i ° = — =1-—
e . o° Cp 1/2 pV'2 V2
] NE "
Top \ rotadon V2 =U2+ U2 = 0% + (2Vio sin6)? = 4V2 sin? ¢
—3 1 | 1 I | I I | | 1 | I I | I |

1 A2 1 A ain2
0 30 60 90 120 150 180 Cp=1—4sin"0=1-—4sin"
B3, degrees B=r—0
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Examples of Irrotational Flows Formed

by Superposition

B Integration of surface pressure (which Is
symmetric in X), reveals that the DRAG is ZERO.
This is known as D’Alembert’'s Paradox

B For the irrotational flow approximation, the drag force
on any non-lifting body of any shape immersed in a
uniform stream is ZERO

H \Why?
¢ Viscous effects have been neglected. Viscosity and the no-
slip condition are responsible for
+ Flow separation (which contributes to pressure drag)
+ Wall-shear stress (which contributes to friction drag)
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Boundary Layer (BL) Approximation

B BL approximation
bridges the gap
t between the Euler

ﬁjm“ﬂ“” I and NS equations,
o U and between the slip
A and no-slip BC at the
y | wall.
U, (x) 4" Outer flow (inviscid and/or
— irrotational region of flow) [ ] Prandtl (1904)
Introduced the BL
approximation

— Boundary layer (rotational with
— non-negligible viscous forces)
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Boundary Layer (BL) Approximation

4y | Not to scale

Laminar

Re, = 10°
¥4 | To scale
| - Ogg(X) |
—| <+ Laminar |
b R | |
o P !
e Ue(X) = l«— Turbulent—»
1 = Transitional -
1 / :
O T | | 1 I | | | | | I | | | | | I ] | 1 I | | | | I ] | Il I I ] I | I I | ] | ;
0 5 10 15 20 25 30 35 40
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Boundary Layer (BL) Approximation

> U,(x)

Boundary layer

m BL Equations: we
restrict attention to
steady, 2D, laminar

= flow (although method

== Is fully applicable to
unsteady, 3D,
turbulent flow)

W BL coordinate system
B X : tangential direction
B y : normal direction

N
|
|
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Boundary Layer (BL) Approximation

m To derive the equations, start with the steady
nondimensional NS equations
7% *\ Y x *x Dk i *x 21 7%
(V v )V — _[Eu] V*P* + [RJV Vv

— Py — P U L
m Recall definitions Fu = — —, Re= P Ve
p U, 7

m Since pPUS~ P — Py > Eu-~1

B Re >> 1, should we neglect viscous terms? No (1),
because we would end up with the Euler equation along
with deficiencies already discussed.

B Can we neglect some of the viscous terms?
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Boundary Layer (BL) Approximation

B To answer this question, we need to do a
normalization
B Use L as length scale in streamwise direction

and for derivatives of velocity and pressure
with respect to x.

B Use J(x) (a quantity proportional to the
boundary layer thickness 6,,) for distances
and derivatives in y.

B Use local outer (or edge) velocity U..
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Boundary Layer (BL) Approximation

m Orders of Magnitude (OM)
0 1 0 1

— ~J 2 —_— N — — N —
Unle Ploamplles 5.~ 5975
m\\What about V? Use cqntinuity
g_U+%_V:0 - VMULCS
T I
~Q/L ~V/[é

mSince /LK1 -V K
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Boundary Layer (BL) Approximation

m Now, define new nondimensional variables

* Yy * U * VL * P_Poo
YT U’ U.0’ U2

mAll are order unity, therefore normalized
mApply to x- and y-components of NSE
o
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Boundary Layer (BL) Approximation

m Incompressible Laminar Boundary Layer

Equations
onini 8U oV _ 0
ontinui
g c% By
oU oU oU, 0*U
X-momentum - . €
Uor TVay =V ar TVap
y-momentum 8_P —0
0y
(from now on use to denote dependent variables)
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Boundary Layer Procedure

4.
.

Solve for outer flow, ignoring the N st e

) ) ) y conditions on
BL. Use potential flow (irrotational  downstream edge of flow domain
approximation) or Euler equation w = U0

Assume JL << 1 (thin BL)
Solve BLE

m y=0= no-slip, u=0, v=0

B y=0,=U=UyX)

B X=Xy = U= Uguning(Xo:Y)
Calculate ¢, 6, ¢, 7, Drag
Verify dL <<1

If J/L Is not << 1, use J* as body,
go to step 1 and repeat

xstarting

HES “starting(y)
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Boundary Layer Procedure

B Possible Limitations

1. Reis notlarge enough = BL
may be too thick for thin BL
assumption.

2. pldy =0 due to wall curvature
d99~ R

3. Retoo large = transitional
flow starts at Re ~10°. BL
approximation still valid, but
new terms required.

4. Flow separation
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Boundary Layer Procedure

m Before defining and & and 4, are there
analytical solutions to the BL equations?
B Unfortunately, NO

W Blasius Similarity Solution boundary layer on a
flat plate, constant edge velocity, zero external
pressure gradient (U, = const.)

S |
_ Boundary
— P U= Ue —
layer
—> —
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Blasius Similarity Solution

B Blasius introduced similarity

6 ,
’ variables
5 —k===c==g==c¥===F== u Ue
n == =Y\
4 99% boundary | Ue vx
- - S CRIGES i B This reduces the BLE to
3 : 7, 1
: | 2f7+ =0
I
N /
2 | JO)=F0)=0, f(0)=1
_ I
: B Slope at E m This ODE can be solved using
. the wall | Runge-Kutta technique
A RN RRRN AR LN AR B Resultis a BL profile which holds at

0 02 04 06 08 1 every station along the flat plate
J'=u/g,

Fondamenti di Meccanica dei Continui Chapter 10: Approximate Solutions




Blasius Similarity Solution

TABLE 10-3

Solution of the Blasius laminar flat plate boundary layer in similarity variables®
7 Fr f f n F" f f
0.0 0.33206 0.00000 0.00000 2.4 0.22809 0.72898 0.92229
0.1 0.33205 0.03321 0.00166 2.6 0.20645 0.77245 1.07250
0.2 0.33198 0.06641 0.00664 2.8 0.18401 0.81151 1.23098
0.3 0.33181 0.09960 0.01494 3.0 0.16136 0.84604 1.39681
0.4 0.33147 0.13276 0.02656 3.5 0.10777 0.91304 1.83770
0.5 0.33091 0.16589 0.04149 4.0 0.06423 0.95552 2.30574
0.6 0.33008 0.19894 0.05973 4.5 0.03398 0.97951 2.79013
0.8 0.32739 0.26471 0.10611 5.0 0.01591 0.99154 3.28327
1.0 0.32301 0.32978 0.16557 5.5 0.00658 0.99688 3.78057
1.2 0.31659 0.39378 0.23795 6.0 0.00240 0.99897 4.27962
1.4 0.30787 0.45626 0.32298 6.5 0.00077 0.99970 4.77932
1.6 0.29666 0.51676 0.42032 7.0 0.00022 0.99992 5.27923
1.8 0.28293 0.57476 0.52952 8.0 0.00001 1.00000 6.27921
2.0 0.26675 0.62977 0.65002 9.0 0.00000 1.00000 7.27921
29 0.24835 068131 0.78119 10.0 0.00000 1.00000 8.27921

* 4 is the similarity variable defined in Eq. 4 above, and function fiv) is solved using the Runge—Kutta numerical technique. Mote that ™ is proportional to the
shear stress «, £ is proportional to the xcomponent of velocity in the boundary layver (7 = w/l), and 7 itself is proportional to the stream function. 7 is plotted
as a function of « in Fig. 10-99,
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Blasius Similarity Solution

B Boundary layer thickness can be computed by
assuming that 6,, corresponds to point where
u/U, =0.990. At this point, n =4.91, therefore

U. 599 4.91 Recall

n =491 =14/ —0,—> — = _
yr % T Rem Re,=U,Xx/v

m Wall shear stress 7, and friction coefficient C;,
can be directly related to Blasius solution

oU s pU2 pU? Tuw 0.664
w = — = 0 - —=0.332 ¢ Crp= =
" s Y |,—o I )\/Rem v Reg f %pUg Re,
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Displacement Thickness

Displacement thickness o* Is the

Imaginary increase in thickness of the ) = Ui 5*(x)
wall (or body), as seen by an ideal y %e(X) >
inviscid flow of same flow rate, and is _— o
due to the effect of a growing BL. ﬁi B T,

B EXxpression for 6* is based upon control

volume analysis of conservation of mass Boundary layer

o0 Apparent u(x,y)
5*_/ (l—i)dy ) 5)\
o % Ogo(X .
0 Ue Y i} ’’’’’’’ ‘ ol
m Blasius profile for laminar BL can be pr E
Integrated to give 7 »

\
Boundary layer Actual wall
O 1.72 dad

— (=1/3 of &) Apparent wall

x v Re,
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Momentum Thickness

B Momentum thickness & is another
measure of boundary layer thickness.

"~ streamline

Outer flow l

B Defined as the loss of momentum flux y:

per unit width divided by pU.* due to

the presence of the growing BL.

B Derived using CV analysis (Karman
Integral equation).

Free-stream— %(x)

Cx} - CTTEAT] " . — — — — —

u u F D.x mass flow T Mass flow

— — | 1—— | dy= — [ | deficit due
0 Ue Ue pU 82 w T > to boundary

Q — 0.664 6 for Blasius solution,
T /Reaz identical to C;,
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Turbulent Boundary Layer

ik 1.2
S 1
Black lines: instantaneous i
Pink line: time-averaged 0.8—:
b :
8y 0.6 —
i Laminar
0.4 -
. _
: 0.2
: ; N Turbulent
0 Ue O_III|III|III|III|III
0O 02 04 06 08 1
lllustration of unsteadiness of a ull,
turbulent BL Comparison of laminar and

turbulent BL profiles
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Turbulent Boundary Layer

mAll BL variables [U(x,y), 04, J*, 8] are
determined empirically.

B One common empirical approximation for
the time-averaged velocity profile is the
one-seventh-power law

u_ vy y<s
U (599) Y =%
u

1 Y > O
Ue

12
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Turbulent Boundary Layer

TABLE 10-4

summary of expressions for laminar and turbulent boundary layers on a smooth
flat plate aligned parallel to a uniform stream*®

(a) (b)
Property Laminar Turbulent™™ Turbulent®®
0, 4.91 ) 0.16 ) 0.38
Boundary layer thickness P — = -~ CE
X \/Re, X  (Re)™ ¥  (Rey)™
oF 1.72 0%

b
L4

3
4

Displacement thickness — =

0.020 o¥  0.048
X

X \/Re, X (RepyV” (Re )"

: g 0.664 fl 0.016 f 0.037

Momentum thickness -—=— — = — Je T
X /R, ¥ (Re) x (Rey”

. . . 0.664 0.027 0.059

Local skin friction coefficient C,,=—— C;,= = Cpe= T
' VRe, (Re, )™ (Re, )™

* Laminar values are exact and are listed to three significant digits, but turbulent values are listed to only
two significant digits due to the large uncertainty affiliated with all turbulent flow fields.

T Obtained from one-seventh-powear [aw.

T Obtained from one-seventh-power [aw combined with empirical data for turbulent flow through smooth
pipes.
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Turbulent Boundary Layer

B Flat plate zero-pressure-gradient TBL can be plotted in
a universal form if a new velocity scale, called the
friction velocity U _, is used. Sometimes referred to as

the “Law of the V\!Oa”” Velocity Profile in Wall Coordinates
u_|_ _ E : Experimental data
Ur
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Turbulent Boundary Layer

m Despite its simplicity, the Law of the Wall
IS the basis for many CFD turbulence
models.

m Spalding (1961) developed a formula
which is valid over most of the boundary
layer

2 3
y+ _ u—l— 1 e—raB emqu —1 - !‘i}‘u,—l_ o (ﬁu—l_) (ﬁu+)

2 6

B «, B are constants
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Pressure Gradients

m Shape of the BL Is strongly
Influenced by external pressure
gradient
(a) favorable (dp/dx < 0)

(b) zero
(c) mild adverse (dp/dx > 0)

= (d) critical adverse (z, = 0)
— (e) large adverse with reverse (or
. <,_?—’i/f separated) flow
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Pressure Gradients

H The BL approximation is

not valid downstream of a REWERiOVEEEIEIEERE]
separation point because —
of reverse flow in the _
SeparatiOn pubble. Turbulent flow does not separate

m Turbulent BL is more
resistant to flow separation
than laminar BL exposed
to the same adverse
pressure gradient
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