Chapter 8: Flow in Pipes
Objectives

1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow

2. Calculate the major and minor losses associated with pipe flow in piping networks and determine the pumping power requirements
Average velocity in a pipe

- Recall - because of the no-slip condition, the velocity at the walls of a pipe or duct flow is zero.
- We are often interested only in V_{avg}, which we usually call just V (drop the subscript for convenience).
- Keep in mind that the no-slip condition causes shear stress and friction along the pipe walls.
For pipes of constant diameter and incompressible flow

- V_{avg} stays the same down the pipe, even if the velocity profile changes

 Why? Conservation of Mass

 $\dot{m} = \rho V_{avg} A = constant$

 same
 same
For pipes with variable diameter, \dot{m} is still the same due to conservation of mass, but $V_1 \neq V_2$
Laminar and Turbulent Flows

Laminar Flow
Can be steady or unsteady.
(Steady means that the flow field at any instant in time is the same as at any other instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, *predictable* behavior.

Analytical solutions are possible (see Chapter 9).

Occurs at *low* Reynolds numbers.

\[Re = \frac{\text{Inertial forces}}{\text{Viscous forces}} \]

Turbulent Flow
Is always *unsteady*.

Why? There are always random, swirling motions (vortices or eddies) in a turbulent flow.

Note: However, a turbulent flow can be steady *in the mean*. We call this a stationary turbulent flow.

Is always *three-dimensional*.

Why? Again because of the random swirling eddies, which are in all directions.

Note: However, a turbulent flow can be 1-D or 2-D *in the mean*.

Has irregular or *chaotic* behavior (cannot predict exactly — there is some randomness associated with any turbulent flow.

No analytical solutions exist! (It is too complicated, again because of the 3-D, unsteady, chaotic swirling eddies.)

Occurs at *high* Reynolds numbers.
Laminar and Turbulent Flows

Definition of Reynolds number

\[\text{Re} = \frac{\text{Inertial forces}}{\text{Viscous forces}} = \frac{\rho V_{\text{avg}}^2 L^2}{\mu V_{\text{avg}} L} = \frac{\rho V_{\text{avg}} L}{\mu} = \frac{V_{\text{avg}} L}{\nu} \]

- Critical Reynolds number \((Re_{cr}) \) for flow in a round pipe
 - \(Re < 2300 \Rightarrow \text{laminar} \)
 - \(2300 \leq Re \leq 4000 \Rightarrow \text{transitional} \)
 - \(Re > 4000 \Rightarrow \text{turbulent} \)

- Note that these values are approximate.

- For a given application, \(Re_{cr} \) depends upon
 - Pipe roughness
 - Vibrations
 - Upstream fluctuations and disturbances (valves, elbows, etc. that may perturb the flow)
Osborne Reynolds (1842-1912)

“An experimental investigation of the circumstances which determine whether motion of water shall be direct or sinuous and of the law of resistance in parallel channels”, Royal Society, Phil. Trans. 1883
Osborne Reynolds 1880 Experiments

`the colour band would all at once mix up with the surrounding water, and fill the rest of the tube with a mass of coloured water ... On viewing the tube by the light of an electric spark, the mass of colour resolved itself into a mass of more or less distinct curls, showing eddies.`

\[Re_{cr} \approx 13000 \quad (?) \]
Laminar and Turbulent Flows

For non-round pipes, define the hydraulic diameter

\[D_h = \frac{4A_c}{P} \]

- \(A_c = \) cross-section area
- \(P = \) wetted perimeter

Example: open channel

\[A_c = 0.15 \times 0.4 = 0.06 \text{m}^2 \]
\[P = 0.15 + 0.15 + 0.4 = 0.7 \text{m} \]

Don’t count free surface, since it does not contribute to friction along pipe walls!

\[D_h = \frac{4A_c}{P} = 4 \times 0.06 / 0.7 = 0.343 \text{m} \]

What does it mean? This channel flow is equivalent to a round pipe of diameter 0.343m (approximately).
Consider a round pipe of diameter D. The flow can be laminar or turbulent. In either case, the profile develops downstream over several diameters called the *entry length* L_h. L_h/D is a function of Re.
Fully Developed Pipe Flow

Comparison of laminar and turbulent flow

There are some major differences between laminar and turbulent fully developed pipe flows

Laminar

- Can solve exactly (Chapter 9)
- Flow is steady
- Velocity profile is parabolic
- Pipe roughness not important

It turns out that $V_{avg} = \frac{1}{2} u_{max}$ and $u(r) = 2V_{avg}(1 - r^2/R^2)$
Fully Developed Pipe Flow

Laminar

![Diagram of laminar flow in pipes]

Ring-shaped differential volume element

\[
\frac{\mu}{r} \left(\frac{du}{dr} \right) \left(r \frac{du}{dr} \right) = \frac{dP}{dx} = \text{constant}
\]

\[u(r) = \ldots, \quad P_1 - P_2 = 32 \mu L V_{avg}/D^2\]

Force balance:
\[\pi R^2 P - \pi R^2(P + dP) - 2\pi R \ dx \ \tau_w = 0\]

Simplifying:
\[
\frac{dP}{dx} = -\frac{2\tau_w}{R} = \text{constant}
\]
Example

Oil at 20°C (ρ = 888 kg/m³ and μ = 0.800 kg/m·s) flows steadily through a 5-cm-diameter 40-m-long pipe. The pressure at the pipe inlet and outlet are measured to be 745 and 97 kPa, respectively.

1) Determine the average velocity and the flow rate through the pipe;
2) Verify that the flow through the pipe is laminar;
3) Determine the value of the Darcy friction factor \(f \);
4) Determine the pumping power required to overcome the pressure drop.

Definition:

\[
\Delta P_L = f \frac{L}{D} \frac{\rho V_{avg}^2}{2}
\]

\(f \): Darcy friction factor

(this definition applies to both laminar and turbulent flows)
Turbulent

- *Cannot* solve exactly (too complex)
- Flow is unsteady (3D swirling eddies), but it is steady *in the mean*
- Mean velocity profile is fuller (shape more like a top-hat profile, with very sharp slope at the wall)
- Pipe roughness is very important

\[
V_{\text{avg}} \approx 85\% \text{ of } u_{\text{max}} \quad (\text{depends on } Re \text{ a bit})
\]

- No analytical solution, but there are some good semi-empirical expressions that approximate the velocity profile shape. See text
 - Logarithmic law (Eq. 8-46)
 - Power law (Eq. 8-49)
Recall, for simple shear flows $u = u(y)$, we had
\[\tau = \mu \frac{du}{dy} \]

In fully developed pipe flow, it turns out that
\[\tau = -\mu \frac{du}{dr} \]

\(\tau_w \) = shear stress at the wall, acting on the fluid

\(\tau_{w,\text{turb}} > \tau_{w,\text{lam}} \)
There is a direct connection between the pressure drop in a pipe and the shear stress at the wall.

Consider a horizontal pipe, fully developed, and incompressible flow.

Let’s apply conservation of mass, momentum, and energy to this CV.
Fully Developed Pipe Flow
Pressure drop

- Conservation of Mass

\[m_1 = m_2 = \dot{m} \]
\[\rho \dot{V}_1 = \rho \dot{V}_2 \rightarrow \dot{V} = \text{const} \]
\[V_1 \frac{\pi D^2}{4} = V_2 \frac{\pi D^2}{4} \rightarrow V_1 = V_2 \]

- Conservation of x-momentum

\[\sum F_x = \sum F_{x, \text{grav}} + \sum F_{x, \text{press}} + \sum F_{x, \text{visc}} + \sum F_{x, \text{other}} = \sum_{\text{out}} \beta \dot{m} V - \sum_{\text{in}} \beta \dot{m} V \]
\[P_1 \frac{\pi D^2}{4} - P_2 \frac{\pi D^2}{4} - \tau_w \pi D L = \beta_2 \dot{m} V_2 - \beta_1 \dot{m} V_1 \]

Terms cancel since \(\beta_1 = \beta_2 \)
and \(V_1 = V_2 \)
Fully Developed Pipe Flow

Pressure drop

Thus, x-momentum reduces to

$$(P_1 - P_2) \frac{\pi D^2}{4} = \tau_w \pi D L$$

or

$$P_1 - P_2 = 4\tau_w \frac{L}{D}$$

Energy equation (in head form)

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 + h_{pump,u} = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_{turbine,e} + h_L$$

cancel (horizontal pipe)

Velocity terms cancel again because $V_1 = V_2$

$$P_1 - P_2 = \rho gh_L$$

h_L = irreversible head loss; it is felt as a pressure drop in the pipe
Fully Developed Pipe Flow
Head Loss

- From momentum CV analysis
 \[P_1 - P_2 = 4\tau_w \frac{L}{D} \]

- From energy CV analysis
 \[P_1 - P_2 = \rho g h_L \]

- Equating the two gives
 \[4\tau_w \frac{L}{D} = \rho g h_L \]
 \[h_L = \frac{4\tau_w L}{\rho g D} \]

- To predict head loss, we need to be able to calculate \(\tau_w \). How?
 - Laminar flow: solve exactly
 - Turbulent flow: rely on empirical data (experiments)
 - In either case, we can benefit from dimensional analysis!
Fully Developed Pipe Flow
Darcy Friction Factor

- \(\tau_w = \text{func}(\rho, \ V, \ D, \ \mu, \ \varepsilon) \)
 \(\varepsilon = \) average roughness of the inside wall of the pipe

- \(\Pi \)-analysis gives

 \[
 \begin{align*}
 \Pi_1 &= f \\
 \Pi_2 &= Re \\
 \Pi_3 &= \frac{\epsilon}{D}
 \end{align*}
 \]

 \[f = \frac{8\tau_w}{\rho V^2} \quad Re = \frac{\rho V D}{\mu} \]

 \(\epsilon/D = \) roughness factor

 \[f = \text{func}(Re, \ \epsilon/D) \]
Fully Developed Pipe Flow
Friction Factor

Now go back to equation for h_L and substitute f for τ_w

$$h_L = \frac{4\tau_w}{\rho g} \frac{L}{D} \quad f = \frac{8\tau_w}{\rho V^2} \quad \tau_w = f \frac{\rho V^2}{8}$$

Our problem is now reduced to solving for Darcy friction factor f

- Recall $f = func(Re, \varepsilon/D)$
- Therefore
 - Laminar flow: $f = 64/Re$ (exact)
 - Turbulent flow: Use charts or empirical equations (Moody Chart, a famous plot of f vs. Re and ε/D)

But for laminar flow, roughness does not affect the flow unless it is huge
The Moody Chart

Reynolds number, Re

Darcy friction factor, f

Relative roughness, e/D

Material	ft	mm
Glass, plastic | 0 | 0
Concrete | 0.003-0.03 | 0.029-0.29
Wood stave | 0.0016 | 0.006
Rubber, smoothed | 0.000033 | 0.0013
Copper or brass tubing | 0.000005 | 0.00015
Cast iron | 0.00085 | 0.046
Galvanized iron | 0.0005 | 0.02
Wrought iron | 0.00015 | 0.0046
Stainless steel | 0.000007 | 0.0002
Commercial steel | 0.00015 | 0.045

Laminar flow, f = 64/Re
Transitional flow, f = f_Re
Turbulent flow, f = 1/Re

Fully rough turbulent flow (f levels off)

Smooth pipes: e/D = 0

Roughness, ε

Chapter 8: Flow in Pipes
Fully Developed Pipe Flow

Friction Factor

- Moody chart was developed for circular pipes, but can be used for non-circular pipes using hydraulic diameter.

- Colebrook equation is a curve-fit of the data which is convenient for computations.

\[
\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}} \right)
\]

Implicit equation for \(f \) which can be solved with an iterative numerical method.

- Both Moody chart and Colebrook equation are accurate to ±15% due to roughness size, experimental error, curve fitting of data, etc.
Types of Fluid Flow Problems

In design and analysis of piping systems, 3 problem types are encountered:

1. Determine Δp (or h_L) given L, D, V (or flow rate)
 Can be solved directly using Moody chart and Colebrook equation

2. Determine V, given L, D, Δp

3. Determine D, given L, Δp, V (or flow rate)

Types 2 and 3 are common engineering design problems, i.e., selection of pipe diameters to minimize construction and pumping costs. However, iterative approach required since both V and D are in the Reynolds number.
Example

Heated air at 1 atm and 35°C is to be transported in a 150-m–long circular plastic duct at a rate of 0.35 m³/s. If the head loss in the pipe is not to exceed 20 m, determine the maximum required pumping power, the minimum diameter of the duct, average velocity, the Reynolds number and the Darcy friction factor.

\[\rho = 1.145 \text{ kg/m}^3, \quad \nu = 1.655 \times 10^{-5} \text{ m}^2/\text{s} \]

\[D = 0.66 \left[\epsilon^{1.25} \left(\frac{L \dot{V}^2}{gh_L} \right)^{4.75} + \nu \dot{V}^{9.4} \left(\frac{L}{gh_L} \right)^{5.2} \right]^{0.04} \]

\[10^{-6} < \epsilon/D < 10^{-2} \]

\[5000 < Re < 3 \times 10^8 \]
Minor Losses

- Piping systems include fittings, valves, bends, elbows, tees, inlets, exits, enlargements, and contractions.
- These components interrupt the smooth flow of fluid and cause additional losses because of flow separation and mixing.
- We introduce a relation for the minor losses associated with these components:

\[h_L = K_L \frac{V^2}{2g} \]

- \(K_L \) is the loss coefficient.
- It is different for each component.
- It is assumed to be independent of \(Re \).
- Typically provided by manufacturer or generic table (e.g., Table 8-4 in text).
Minor Losses

The loss coefficient K_L is determined by measuring the additional pressure loss the component causes, and dividing it by the dynamic pressure in the pipe.

\[\Delta P_L = (P_1 - P_2)_{\text{valve}} - (P_1 - P_2)_{\text{pipe}} \]

The head loss at the inlet of a pipe is almost negligible for well rounded inlets.
Minor Losses

Total head loss in a system is comprised of major losses (in the pipe sections) and the minor losses (in the components)

\[h_L = h_{L,major} + h_{L,minor} \]

\[h_L = \sum_i f_i \frac{L_i}{D_i} \frac{V_i^2}{2g} + \sum_j K_{L,j} \frac{V_j^2}{2g} \]

- If the piping system has constant diameter

\[h_L = \left(f \frac{L}{D} + \sum K_L \right) \frac{V^2}{2g} \]
Minor Losses

Here are some sample loss coefficients for various minor loss components. More values are listed in Table 8-4, page 350 of the Çengel-Cimbala textbook:

Pipe Inlet

- Reentrant: $K_L = 0.80$ ($t \ll D$ and $l \approx 0.1D$)
- Sharp-edged: $K_L = 0.50$
- Well-rounded ($r/D > 0.2$): $K_L = 0.03$
- Slightly rounded ($r/D = 0.1$): $K_L = 0.12$

Pipe Exit

- Reentrant: $K_L = \alpha$
- Sharp-edged: $K_L = \alpha$
- Rounded: $K_L = \alpha$

\[\alpha = 2 \text{ for fully developed laminar flow} \]
\[\alpha \approx 1 \text{ for fully developed turbulent flow} \]

Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

\[K_L = \left(1 - \frac{d^2}{D^2}\right)^2 \]

Note that the larger velocity (the velocity associated with the smaller pipe section) is used by convention in the equation for minor head loss, i.e.,

\[h_{L, \text{minor}} = K_L \frac{V^2}{2g} \]
Chapter 8: Flow in Pipes

Sudden contraction: See chart.

Note: These are backwards. The K_L values listed for Expansion should be those for Contraction, and vice-versa.

Note again that the larger velocity (the velocity associated with the smaller pipe section) is used by convention in the equation for minor head loss, i.e., $h_{minor} = K_L \frac{V^2}{2g}$.

Gradual Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Expansion:
- $K_L = 0.02$ for $\theta = 20^\circ$
- $K_L = 0.04$ for $\theta = 45^\circ$
- $K_L = 0.07$ for $\theta = 60^\circ$

Contraction (for $\theta = 20^\circ$):
- $K_L = 0.30$ for $\frac{dV}{dD} = 0.2$
- $K_L = 0.25$ for $\frac{dV}{dD} = 0.4$
- $K_L = 0.15$ for $\frac{dV}{dD} = 0.6$
- $K_L = 0.10$ for $\frac{dV}{dD} = 0.8$

Bends and Branches

- **90° smooth bend:**
 - Flanged: $K_L = 0.3$
 - Threaded: $K_L = 0.9$

- **90° miter bend (without vanes):** $K_L = 1.1$
- **90° miter bend (with vanes):** $K_L = 0.2$

- **45° threaded elbow:** $K_L = 0.4$

- **180° return bend:**
 - Flanged: $K_L = 0.2$
 - Threaded: $K_L = 1.5$

- **Tee (branch flow):**
 - Flanged: $K_L = 1.0$
 - Threaded: $K_L = 2.0$

- **Tee (line flow):**
 - Flanged: $K_L = 0.2$
 - Threaded: $K_L = 0.9$

- **Threaded union:** $K_L = 0.08$

For tees, there are two values of K_L, one for branch flow and one for line flow.
Head Loss at a Sharp-Edge Inlet

- Pressure head converted to velocity head
- Total head
- Lost velocity head
- Remaining velocity head
- Remaining pressure head

Vena contracta

Separated flow
Example

A 9-cm-diameter horizontal water pipe contracts gradually to a 6-cm-diameter pipe. The walls of the contraction section are angled 30° from the horizontal. The average velocity and pressure of water at the exit of the contraction section are 7 m/s and 150 kPa, respectively. Determine the head loss in the contraction section and the pressure in the larger-diameter pipe. In the case of plastic pipes, determine also the friction factor for both pipes in series.

Turbulent fully developed flow at sections 1 and 2 (?), \(\rho = 998 \text{ kg/m}^3 \), \(\mu = 1.002 \times 10^{-3} \text{ kg/(m s)} \), \(K_L \) ?
Two general types of networks

- Pipes in series
 - Volume flow rate is constant
 - Head loss is the summation of parts

- Pipes in parallel
 - Volume flow rate is the sum of the components
 - Pressure loss across all branches is the same
For parallel pipes, perform CV analysis between points A and B

\[V_A = V_B \]

\[\frac{P_A}{\rho g} + \frac{V_A^2}{2g} + z_A = \frac{P_B}{\rho g} + \frac{V_B^2}{2g} + z_B + h_L \]

\[h_L = \frac{\Delta P}{\rho g} \]

Since \(\Delta P \) is the same for all branches, head loss in all branches is the same

\[h_{L,1} = h_{L,2} \]

\[f_1 \frac{L_1}{D_1} \frac{V_1^2}{2g} = f_2 \frac{L_2}{D_2} \frac{V_2^2}{2g} \]
Piping Networks and Pump Selection

- Head loss relationship between branches allows the following ratios to be developed

\[
\frac{V_1}{V_2} = \left(\frac{f_2 L_2 D_1}{f_1 L_1 D_2} \right)^{\frac{1}{2}}
\]

\[
\frac{\dot{V}_1}{\dot{V}_2} = \frac{D_1^2}{D_2^2} \left(\frac{f_2 L_2 D_1}{f_1 L_1 D_2} \right)^{\frac{1}{2}}
\]

so that the relative flow rates in parallel pipes are established from the requirements that the head loss in each pipe is the same.

- Real pipe systems result in a system of non-linear equations.

- Note: the analogy with electrical circuits should be obvious
 - Flow rate (\dot{V}): current (I)
 - Pressure gradient (Δp): electrical potential (V)
 - Head loss (h_L): resistance (R), however h_L is very nonlinear
When a piping system involves pumps and/or turbines, pump and turbine head must be included in the energy equation

\[
\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 + h_{\text{pump},u} = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_{\text{turbine},e} + h_L
\]

The useful head of the pump \((h_{\text{pump},u})\) or the head extracted by the turbine \((h_{\text{turbine},e})\), are functions of volume flow rate, i.e., they are not constants.

Operating point of system is where the system is in balance, e.g., where pump head is equal to the head loss (plus elevation difference, velocity head difference, etc.)
Pump and systems curves

- Supply curve for $h_{pump,u}$ determined experimentally by manufacturer. It is possible to build a functional relationship for $h_{pump,u}$.
- System curve determined from analysis of fluid dynamics equations.
- Operating point is the intersection of supply and demand curves.
- If peak efficiency is far from operating point, pump is wrong for that application.