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Near wall treatment

Turbulence near the wall — Boundary layer

Note: The scales are
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+ Walls are the main source of turbulence generation in flows.

* The presence of walls imply the existence of boundary layers.
* In the boundary layer, large gradients exist (velocity, temperature, and so on).
» To properly resolve these gradients, we need to use very fine meshes.

» These gradients are larger if we are dealing with turbulent flows.



Near wall treatment

« The easiest way to resolve the steep gradients near the walls is by resolving the
viscous sublayer.

« To resolve the viscous sublayer, we need to cluster a lot of cells in the region
where y* is less than 5.

« This can significantly increase the cell count.

* And in the case of unsteady simulation, it can have a significant impact in the

time-step, where very small time-steps are required for stability and accuracy
reasons.

Wall modeling mesh Wall resolving mesh
Average y* approximately 60 Average y* approximately 7
Wall modeling mesh Wall resolving mesh

Number of cells 57 853 037 111 137 673



Near wall treatment

« A way around wall resolving simulations, is the use of wall functions.

« By using wall functions, we can use empirical correlations to bridge wall conditions to
the log-law layer.

« The correlations provide a link between U and U, (or 7).
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Near wall treatment

« The questions now are,

 How do we transfer information from the empirical correlations to the walls and
to the flow?

 How do we compute the wall shear stresses?

» To answer these questions, let us summarize all the non-dimensional variables near

the wall.
Wall shear stresses Velocity tangential to the wall Distance normal to the wall
U, = ’U,+ :@ + @
T U Y
T 14
Shear velocity Non-dlmenS|onaI. near . Non-dimensional
the wall velocity distance from the wall

* Close to the walls we only know the wall shear stress, viscosity, and distance,

U= f(Tw,p, 14,Y)

« Therefore, we use these quantities to create the non-dimensional groups.



Near wall treatment

» The velocity profile near the wall can be represented by using the previous non-dimensional
quantities and correlations.

* By using non-dimensional quantities, the flow behavior near the wall is independent of the
Reynolds number, geometry, or relevant physics (to some extent).

« The correlations take a very predictable behavior close to the walls for a wide variety of flows.

« The outer or mean flow, depends of the geometry, boundary conditions, physics, and so on.
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4000 and 3600000 [1]. Re =18 x 10° [2].

[1] F. Nieuwstadt, B. Boersma, J. Westerweel. Turbulence. Introduction to Theory and Applications of Turbulent Flows. Springer, 2016.
[2] B. McKeon, J. Li, W. Jiang, J. Morrison, A. Smits. Further observations on the mean velocity distribution in fully developed pipe flow. 2004



Near wall treatment

If we are dealing with globally laminar flows, or if we have a mesh fine enough to
resolve the viscous sublayer, we can compute the wall shear stress as follows,

In the viscous sublayer or with laminar flows we use the molecular viscosity

\8U U,—0 U, .t

Oy Yp Yp

Note: the subscript p indicates values at the cell center and the
subscripts w indicates values at the walls

However, if we are dealing with turbulent flows and if we are using a coarse mesh
such that y* > 30 (let us use this limit for the moment), this approach is not accurate
anymore.

We are missing a lot of gradient information if we use this approach.

By the way, some solvers use cell-centered quantities and some solvers use node-
centered quantities.

Sometimes in this approach, damping functions are added to gain robustness.



Near wall treatment

Wall resolving meshes allow for the accurate computation of steep gradients near the walls.

The only drawback is that you will require a lot of cells close to the walls.
The main idea behind wall functions, is to use coarser meshes without losing accuracy.

In the cells next to the walls, the field quantities and wall shear stresses are approximated
using correlations (e.g., log-law layer).

_——— PP hbho

Wall resolving mesh Wall modeling mesh
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Near wall treatment

Comparison of laminar and turbulent velocity profiles in a pipe.

As it can be observed, close to the walls the velocity gradient is larger in the
turbulent case.

Therefore, fine meshes are required in order to properly resolve the steep gradients
(velocity, temperature, etc.) close to the walls.
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Near wall treatment

[1]1 B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974.

If the first cell center is in log-law layer, we cannot use the previous approach
because it is too inaccurate.

Therefore, we need to use wall functions.

That is, we bridge the wall conditions and cell centered values with the empirical
correlations.

The wall functions reduce the computational effort significantly because we do not
need to resolve the viscous sublayer.

Let us explain the standard wall functions using the method proposed by Launder
and Spalding [1], which is probably the most widely used method.

In this approach,

*

. Y In the viscous sublayer

o 1 *
~In (Ey*) In the log-law layer
Notice that we are using u* and y™ instead of u" and y+.

Also, the log-law layer correlation is slightly different from what we have seen so far.
Let us address these two issues.



Near wall treatment

« The idea of introducing the new quantity ™, is to avoid the singularity that occurs
when the wall shear stress is equal to zero in u™ (i.e., in a separation point).

- The new quantities u* are y™ defined as follows,

1/4,1/2 1
% 1/471.1/2 . Ok * = Zln (Ey*
U* = Cu/ kp/ = Vp Yp U Hln( y™*)

« Itis worth noting that y+ is equal to 4™ in equilibrium conditions.
 Recall the concept of equilibrium from the derivation of the C, coefficient.
» Also recall the equation of the ratio of Reynolds stress to turbulent kinetic energy.

T2 2 Tw

Cn= T2 p
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Near wall treatment

» In the standard wall functions formulation of Launder and Spalding [1], the correlation
for the log-law layer is given as follows,

1
v = —In(Ey*
—ln (Ey7)
 Whereas the traditional correlation is given as follows,

ut = %111 (y"’) +CT

40

« These two correlations are I i
approximately the same, as shown || taunderspotang - Loga - - ey
in the figure.

* Any difference is due to the values -,
of the constants used. -
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[1]1 B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974.



Near wall treatment

« All the relations of the standard wall functions formulation of Launder and Spalding
[1], can be summarized as follows,

Note: the subscript p indicates values at the cell center and

* Upcli/4k119/2
U pr— < The only unknown quantity is the wall shear stress
1'-w/tO
u 3/4,3/2
Pk%Tw%:T 1;w1/2 c :C'u/ kp/
Y kpCl Y Y KYp
« The boundary condition for TKE at the walls is,
ok
=0
on
 And recall that,
1/4,1/2
R g = PG ko Yy k = 0.4187 E =9.793
B " \ v J

These are the values used in Fluent

» These relations apply only to the cells adjacent to the walls.

[1]1 B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974.



Near wall treatment

You can have an automatic wall treatment just by simply adding a conditional clause,

. y* y* < 11.225
o —
1ln (Ey*) y* > 11.225

The value of 11.225 (which is the one used in Fluent), comes from the intersection of
the two correlations.

This value might change depending on the constant used.

If you recall, we found a value of approximately 10.8, of course, we used different
values for the constants.

In this approach, we should avoid to place the first cell center in the buffer layer, as
errors are large in this region.

Remember, is very difficult (if not impossible) to have a uniform y* value.
Therefore, you should monitor the average y* value at the walls.

It is also recommended to monitor the maximum and minimum values of y* and verify

that they do not cover more that 10% of the surface or are located in critical areas.
16



Near wall treatment

« We just presented the wall functions for the momentum and turbulence variables.
« Similar wall functions can be derived for temperature, species, and so on.
* There are many wall functions implementations.

« Standard wall functions (the approach we just presented).

« Scalable wall functions.

* Non-equilibrium wall functions.

« Enhanced wall treatment.

« Two-layer approach.

* y*insensitive wall treatment.

* In the literature, you can find viscosity-based approaches, and so on.
« The approach presented, is also known as a log-law based approach.

* In Fluent, the wall boundary conditions for the field variables are all taken care of by
the wall functions.

* You do not need to be concerned about the boundary conditions at the walls.

17



Near wall treatment

« ltis also possible to formulate y* insensitive wall functions.
« That s, formulations that cover viscous sublayer, buffer region, and log-law region.

« This can be achieved by using a blending function between the viscous sublayer and
the log-law layer [1].

« To use this approach you need to use turbulence models able to deal with wall
resolving meshes and wall modeling meshes.

« The k — w family of turbulence models are y* insensitive.
« Kader [1] proposed the following blending function to obtain a y* insensitive

formulation,
’U,+ T eFulam + el/F tu'rb
4
a(y")
I'=— — (.01 =
T+ by + a=0.0 b=2>5

This formula guarantees the correct asymptotic behavior for large and small values of
y* and reasonable representation of velocity profiles in the cases where y* falls inside

the buffer region.

[1] B. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. 1981. 18
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Near wall treatment

Plot of Kader’s [1] blending function.

In the plot, the Spalding function [2] is also represented.

The Spalding function is another alternative to obtain a y* insensitive treatment.

It is essentially a fit of the laminar, buffer and logarithmic regions of the boundary

layer.

—— Viscous sublayer-U* =y*+
Log-law - U * =%fny+ +C*

—— Blending function - Kader[1]
—— Spalding Law of the Wall
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[1] B. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. 1981.
[2] D. Spalding. A single formula for the law of the wall. J. of Applied Mechanics. 1961.
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Near wall treatment

Final remarks

If you want good accuracy, use a wall resolving approach.
This approach is relatively affordable if you are running steady simulations.

If you have massive separation, have in mind that wall functions are not very
accurate.

Heat transfer and non-equilibrium applications requires high accuracy (wall resolving
treatment). This requirement is not compulsory; however, it is strongly recommended.

Using wall functions is not about putting one single cell in the log-law layer. You need
to put enough cells in the log-law region to resolve the velocity, temperature, and
turbulence variables profiles.

In the wall resolving approach, try to get an average y* value close to 1 or lower.
Values of y* lower that 0.1 will not give you large improvement.

And as a matter of fact, pushing the mesh to values of y* below 0.1 can results in low
quality meshes for industrial applications.
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Near wall treatment

Final remarks

As for the wall modeling approach, in the wall resolving treatment you need to cluster
enough cells to resolve the viscous sublayer profiles (velocity, temperature,
turbulence quantities, and so on).

It is recommended to use at least 15 boundary layer cells with a low expansion ratio
(1.15 or less) to properly resolve the profiles.

No need to mention it, but hexahedral cells are preferred over any other type of cells
in the boundary layer region.

Do not use mesh refinement with standard wall functions as the solution tends to
deteriorate.

The use of wall functions limits the grid resolution of the boundary layer for low to
moderate Reynolds number.

The absolute minimum of boundary layer cells when using wall functions is five.

Avoid as much as possible to put your first cell center in the buffer layer.
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Near wall treatment

2D Zero pressure gradient flat plate

Sampling line

Top — Outlet

Outlet

No-slip wall

Inlet

Slip wall
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Near wall treatment

2D Zero pressure gradient flat plate

0.05

—— Fluent - Velocity profile - LowRE - CC data
Fluent - Velocity profile - HighRE - CC data
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» Velocity profile at the sampling location.
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Near wall treatment

2D Zero pressure gradient flat plate

1000
—— Fluent - Velocity profile - LowRE - CC data

Fluent - Velocity profile - HighRE - CC data
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» Velocity profile at the sampling location — Detailed view.
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Near wall treatment

2D Zero pressure gradient flat plate

0.0030

Normal distance from the wall at sampling location y

—o— Wall resolving - Delta y - CC data
Wall modeling - Delta v - CC data
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* Cell center clustering toward the walls.
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Near wall treatment

2D Zero pressure gradient flat plate

The extension of the log-law region depends on the Reynolds number.

40 » If this region is too short, wall functions are inaccurate.
Viscous sublayer - U + _ y + Remember, you should also resolve the profiles of the field quantities in the log-law region.
351 Log-law - U * =%lny+ +C*
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* Non-dimensional velocity profiles.
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Near wall treatment

2D Zero pressure gradient flat plate
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P, and E, profiles.
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Near wall treatment

2D Zero pressure gradient flat plate

* Mesh comparison — Wall resolving mesh vs. Wall modeling mesh.
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Near wall treatment

2D Zero pressure gradient flat plate

Velocity magnitude (m/s
0.00 0.25 o 0%0 (mis) 0.75 1.00

Wall resolving mesh.

* Plot of velocity magnitude contours.
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Wall modeling mesh.

1.00
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Near wall treatment

2D Zero pressure gradient flat plate

: . ok
Wall resolving mesh — k& = 0 at the wall Wall modeling mesh — — = 0 at the wall

on

* Plot of turbulent kinetic energy contours.
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Incomplete list of turbulence models

The following is an incomplete list of RANS/URANS/RSM turbulence models.

Have in mind that some of the models have many variants.

Cebeci-Smith.
Baldwin-Lomax.
Johnson-King.
Bradshaw-Ferris-Atwell.
L-VEL.

Prandtl mixing length.

Van-driest mixing length.

Prandtl one equation.
Nee-Kovasznay.
Baldwin-Barth.
Spalart-Alimaras.
Secundov Nut-92.
Wolfshtein.
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Incomplete list of turbulence models

The following is an incomplete list of RANS/URANS/RSM turbulence models.
Have in mind that some of the models have many variants.

Norris-Reynolds.
Wray-Agarwal.

Rotta k-kl.

Standard K-Epsilon.
RNG K-Epsilon.
Realizable K-Epsilon.
Myong-Kasagi K-Epsilon.

Launder-Sharme K-Epsilon.

Lam-Bremhorst K-Epsilon.
Jones-Launder K-Epsilon.
Chien K-Epsilon.
Lien-Leschziner K-Epsilon.
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Incomplete list of turbulence models

The following is an incomplete list of RANS/URANS/RSM turbulence models.
Have in mind that some of the models have many variants.

Speziale K-Epsilon.
Rubinstein-Barton.
Gatski-Speziale.
Lien-Chien-Leschziner.
Apsley-Leschziner.

Saffman-Spalding k-Omega.
Kolmogorov 1942 K-Omega.

Wilcox 1988 K-Omega.
Wilcox 1998 K-Omega.
Wilcox 2006 K-Omega.

Menter 2003 K-Omega SST.

Langtry-Menter K-Omega.
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Incomplete list of turbulence models

The following is an incomplete list of RANS/URANS/RSM turbulence models.
Have in mind that some of the models have many variants.

K-e-Rt.

K-e-zeta-F.

Q-Zeta.

Pope EARSM.
Walin-Johansson EARSM.
Mishra-Girimaiji.

Wilcox RSM.

LRR RSM.

SSG RSM.

GLVY RSM.

Craft cubic model.
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Incomplete list of turbulence models

» The following is an incomplete list of RANS/URANS/RSM turbulence models.
« Have in mind that some of the models have many variants.

« Gibson-Launder.

« Craft-Launder.

* Shima.

o V2-f

«  Gamma-Re-Theta.

« LCTM.

+ K-KI-Omega.

* Transition SST.

 GEKO.
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