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Vorticity based models

So far, we have used the Boussinesq hypothesis to model the Reynolds stress tensor.
However, we must be aware that different approaches do exist.

For example, an entirely different approach toward handling RANS was originally considered by
Taylor [1] and subsequent authors [2,3,4].

To avoid the appearance of the Reynolds stress tensor, they proposed the use of the following
identity,
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Using this identity, we can write the momentum equation of the RANS equations in the vorticity
transport form,
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In this approach, a model must be sought for the vorticity flux term u;wyg .

Closures schemes based on this approach remain largely undeveloped.
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Third-order and higher order moment closure methods.

 We have seen that in order to derive the Reynolds stress transport equations, we need to
multiply the Navier-Stokes operator N (u;), by the velocity fluctuations, as follows,
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« Basically, we are multiplying the exact momentum equations by the velocity fluctuations in order
to obtain governing equations for 7;; = —uju’ .

* In doing so, we are increasing the order of closure of the equations, from first-order moment
closure to second-order moment closure (in analogy to statistical moments).

* In theory, we can continue increasing the order of the moment closure up to infinite.

* S0, we can derive third-order moment closure equations and so on.



Third-order and higher order moment closure methods.

However, as we keep increasing the moment, higher order correlations will keep appearing in
the equations.

For example, in the exact Reynolds stress transport equations, which are second-order
moment closure equations, a triple correlation appears, namely,
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We could derive a set of governing equations for this triple correlation, but the resulting
equations will contain quadruple correlations.

Therefore, it is easier to model this term.

In the third-order moment closure equations, the quadruple correlation is expressed as follows,
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It is worth noting that third-order moment closure models do exist, but they are not widely
diffused, and they do not guarantee better results.



Third-order and higher order moment closure methods.

* For example, the equations for the third order moments, read as,
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* For the interested reader, works related to third-order moment closure turbulence models can
be found in references [1,2,3,4].
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Non-linear eddy viscosity models

* One approach to achieving a more appropriate description of the Reynolds-stress tensor without
introducing any additional transport equations (as in the RSM models) is to add extra high order
terms to the Boussinesq approximation.
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*  Where f(S;;,€;) is a nonlinear function dependent on the mean strain rate Sij tensor
and spin tensor (rotation) £2;;.

* Recall that the mean strain rate tensor and spin tensor are defined as follows,

o 1 8’(1@ 8Uj o 1 8’2,&@ &u,j
SZJ B 5 (8383 * 82131) Qw N 5 (8333 B 83.’7@)

* These models are known as nonlinear eddy viscosity models (NLEVM).

« This idea was originally proposed by Lumley [1,2], and many NLEVM has been proposed since
then.
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Non-linear eddy viscosity models

« The NLEVM approach can be seen as a remedy to the deficiencies of the EVM.,

*  Where the main deficiencies of the EVM are:

Inability to proper describe the anisotropic behavior in shear layers. In the EVM the normal
stresses are isotropic, u'? = v2 = w'? = (2/3)k.

Flow in ducts with secondary motions.
Overpredicting production of turbulent kinetic energy in stagnation points.

Failure to reproduce the asymmetric behavior of the velocity profiles in the presence of
streamlined geometries (strong curvature).

Underpredicting turbulent viscosity in the presence of system rotation (strong vortices).

* In comparison to the EVM, the NLEVM models are more computational expensive (as they need
to solve more terms and are wall resolving).

* They are also harder to convergence.

« However, they do offer improved prediction capabilities for certain complex turbulent flows.

« Despite the many apparent advantages of NLEVM, they are not widely used.

 EVM still are the workhorse of turbulence modeling.
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Non-linear eddy viscosity models

« The NLEVM are usually quadratic or cubic.
* Let us briefly discussed the NLEVM by Shih et al [1], which is cubic.

* In this model, the Reynolds stresses are computed as follows,
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« Where I, S,fj , and Sfj are given by the following relationships,
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Non-linear eddy viscosity models

« The NLEVM model by Shih et al [1], is particularly suited for swirling flows.

» It was developed to deal with aircraft engine combustors that generally involve turbulent swirling
flows in order to enhance fuel-air mixing and flame stabilization.

« The model includes third order terms, so it offers extra accuracy.
« The method also satisfy the constraints of rapid distortion theory (RDT) and realizability.

« All the coefficients appearing in the nonlinear constitutive equation are calibrated using DNS and
experimental data.

* The coefficient C;u IS not constant, it depends on the strain rate tensor.

« The value of the turbulent kinetic energy £ and the dissipation rate ¢ are obtained from
low-RE k — € turbulence models (wall resolving).

* Also, the value of the turbulent eddy viscosity is computed using the relations from
low-RE k£ — € turbulence models.
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Non-linear eddy viscosity models

The mathematical framework to derive NLEVM is quite complex.

Another way to derive non-linear models is by using algebraic stress models (ASM) or Explicit
algebraic Reynolds stress model (EARSM).

As for NLEVM, the mathematical formalism behind ASM and EARSM models is quite complex
and will not address it here.

In the cubic formulations of NLEVM, the quadratic terms allow for anisotropic effects to be
modelled and the cubic terms allow modeling of the consequences of streamline curvature.

These models also involve variable C}u coefficient formulations based on S and 2 , which
helps avoid excessive turbulence prediction at stagnation points.

In these models, the realizability conditions are always enforced.

These models are wall resolving.
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