

- This a validation case of the automotive industry.
- However, we will run the simulation as a demonstration case.
- At this point, it is up to you to setup the case and compute the drag coefficient.

- Working fluid: air, incompressible, isothermal, default properties.
- Inlet velocity: 40 m/s
- Reference area to compute the force coefficients: 0.11503 m² (frontal area)
- Use any turbulence model.
- Do the standard post-processing and identify/compute: vortical structures, integral length scales, ratio of integral length scale to grid length scale, cut-planes with velocity contours, oil lines, separation points, and so on.
- Assess the goodness of the mesh.
- Sample at any location on the body surface (preferably where the flow attached) and plot the normalized velocity profile.
- Run in steady and unsteady mode and compute the flow statistics.

Ahmed body

Quantity of interest	Minimum c _d	Maximum c _d
Drag coefficient	0.26	0.38

- There is plenty of validation data for this case.
- However, we are not interested in conducting an exhaustive validation.
- Therefore, we are given you a lot of margin of error.
- I only want to check if you are able to setup a case from scratch.
- The computed drag coefficient should be contained within the indicated error band.
- You can use the mesh provided
- By the way, I do not recall if it is wall resolving or wall modeling, that is up to you to find out.
- You also have the geometry, so you can do your own mesh.

Ahmed body

• A few references:

- Working fluid: air, incompressible, isothermal, default properties.
- S.R. Ahmed, G. Ramm. Some Salient Features of the Time-Averaged Ground Vehicle Wake. SAE-Paper 840300, 1984.
- H. Lienhart, S. Becker. Flow and Turbulence Structure in the Wake of a Simplified Car Model. SAE 2003 World Congress, SAE Paper 2003-01-0656, Detroit, Michigan, USA, 2003.
- R. Pagliarella, S. Watkins, A. Tempia. Aerodynamic Performance of Vehicles in Platoons: The Influence of Backlight Angles. SAE Technical Paper 2007-01-1547, 2007.
- On the Aerodynamic Performance of Automotive Vehicle Platoons Featuring Pre and Post-Critical Leading Forms. R. Pagliarella, PhD Thesis. RMIT University.
- http://cfd.mace.manchester.ac.uk/ercoftac/doku.php?id=cases:case082&s[]=ahmed
- http://www.wolfdynamics.com/tutorials.html?id=146
- http://www.wolfdynamics.com/tutorials.html?id=147

Ahmed body

- Finally, before choosing the turbulence model and potential corrections, look at the geometry and try to answer the following questions:
 - Are there large stagnation points?
 - Are there sharp angles that can generate concentrated vortices?
 - Is there strong system rotation (swirling)?
 - Are there regions that can onset periodic vortex shedding (strong unsteadiness).
 - Do we expect large flow separation?
 - Is there surface roughness?
 - Is the steady hypothesis acceptable?

Pressure contours This figure shows the stagnation points **Iso-surfaces of Q-criterion** This figure shows the concentrated vortices

0 5 10 15 20 25 30 35 40 45 50 1

Velocity contours

This figure shows the presence of wakes. However, we still need to determine if the wakes are strongly unsteady.

Velocity contours

This figure shows the presence of wakes. However, we still need to determine if the wakes are strongly unsteady.

Contours of integral length scales

This figure shows the location of the largest coherent structures

Contours of integral length scales

This figure shows the location of the largest coherent structures

Contours of gird refinement ratio GR

This figure shows the regions where we need to increase cell count according to the grid refinement ratio (GR > 5)

Contours of gird refinement ratio GR

This figure shows the regions where we need to increase cell count according to the grid refinement ratio (GR > 5)

Contours of gird refinement ratio GR

This figure shows the regions where we need to increase cell count according to the grid refinement ratio (GR > 5)

Contours of gird refinement ratio GR

This figure shows the regions where we need to increase cell count according to the grid refinement ratio (GR > 5)