Problem definition

All the dimensions are in meters - Figure not to scale

- Incompressible flow.
- Density: 1 kg/m³ (constant).
- Inlet velocity: 1 m/s
- Adjust the viscosity to change the Reynolds number.
- Run the case for Reynolds number values ranging from 10 to 1 000 000.
 - In this range of Reynolds number values, you will encounter steady and unsteady regimes.
 - And laminar and turbulent regimes.
- Sample the lift and drag coefficients.
- Sample velocity on the wake of the cylinder.
- Choose any turbulence model with the appropriate boundary and initial conditions.

Problem definition

Problem definition

This case has plenty of numerical and experimental data for validation

Drag coefficient versus Reynolds Number for Circular Cylinders [1]

Strouhal Number versus Reynolds Number for Circular Cylinders [2]

[1] H. Schlichting, K. Gersten. Boundary Layer Theory. Springer, 2017.

[2] R. Blevins. Flow-Induced Vibration. Krieger Publishing Company, 2001

Some experimental ^(E) and numerical ^(N) results of the flow past a circular cylinder at various Reynolds numbers

Reference	c _d – Re = 20	L _{rb} – Re = 20	c _d – Re = 40	L _{rb} – Re = 40
[1] Tritton ^(E)	2.22	-	1.48	-
[2] Cuntanceau and Bouard ^(E)	_	0.73	-	1.89
[3] Russel and Wang ^(N)	2.13	0.94	1.60	2.29
[4] Calhoun and Wang ^(N)	2.19	0.91	1.62	2.18
[5] Ye et al. ^(N)	2.03	0.92	1.52	2.27
[6] Fornbern ^(N)	2.00	0.92	1.50	2.24
[7] Guerrero ^(N)	2.20	0.92	1.62	2.21

 L_{rb} = length of recirculation bubble, c_d = drag coefficient, **Re** = Reynolds number,

- [1] D. Tritton. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6:547-567, 1959.
- [2] M. Cuntanceau and R. Bouard. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics, 79:257-272, 1973.
- [3] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.
- [4] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.
- [5] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics, 156:209-240, 1999.
- [6] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics, 98:819-855, 1980.
- [7] J. Guerrero. Numerical simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

Some experimental ^(E) and numerical ^(N) results of the flow past a circular cylinder at various Reynolds numbers

Reference	c _d – Re = 100	c _l – Re = 100	c _d – Re = 200	c ₁ – Re = 200
[1] Russel and Wang ^(N)	1.38 ± 0.007	\pm 0.322	1.29 ± 0.022	± 0.50
[2] Calhoun and Wang ^(N)	1.35 ± 0.014	± 0.30	1.17 ± 0.058	± 0.67
[3] Braza et al. ^(N)	$1.386 {\pm}~0.015$	± 0.25	1.40 ± 0.05	± 0.75
[4] Choi et al. ^(N)	1.34 ± 0.011	± 0.315	1.36 ± 0.048	± 0.64
[5] Liu et al. ^(N)	1.35 ± 0.012	± 0.339	1.31 ± 0.049	± 0.69
[6] Guerrero ^(N)	1.38 ± 0.012	± 0.333	1.408 ± 0.048	± 0.725

 c_{l} = lift coefficient, c_{d} = drag coefficient, **Re** = Reynolds number

^[1] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

^[2] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.

^[3] M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79-130, 1986.

^[4] J. Choi, R. Oberoi, J. Edwards, an J. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224:757-784, 2007.

^[5] C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:33-57, 1998.

^[6] J. Guerrero. Numerical Simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

Domain mesh – 2D mesh and inflation layer around the cylinder

Time = 0.50 s

In all cases the Reynolds number in the unsteady and turbulent regime. **Left:** velocity magnitude contours – **Right:** relative pressure contours. www.wolfdynamics.com/training/turbulence/movies1/mov1.avi

Time = 0.50 s

Left: turbulent kinetic energy contours – Right: vorticity Z contours (component normal to the screen).

Time = 0.50 s

Left: velocity magnitude contours – Right: mean velocity magnitude contours www.wolfdynamics.com/training/turbulence/movies1/mov3.avi

Left: velocity magnitude and pressure contours – Right: Components X and Y of pressure force over the cylinder www.wolfdynamics.com/training/turbulence/movies1/mov4.avi

Left: velocity magnitude contours – Right: velocity sampled at a location in the wake of the cylinder

Left: velocity magnitude contours – Right: velocity and pressure sample in a vertical line in the wake of the cylinder

Quantitative results – Residuals – Lift and drag time series

Unsteady solver – Comparison of iterative convergence and iterative Qol Lift coefficient and drag coefficient signals

Quantitative results – Lift and drag time series

Unsteady solver Qol – Drag coefficient Top image: in function of iterations

Bottom image: in function of time

Unsteady solver Qol – Lift coefficient

Top image: in function of iterations Bottom image: in function of time

Quantitative results – Lift and drag time series

Unsteady solver and steady solver comparison

Comparison of the drag coefficient outcome

Unsteady solver and steady solver comparison

Comparison of the lift coefficient outcome

- First of all, what is the **CFL number** or **Courant number**?
- In one dimension, the **CFL number** is defined as,

$$CFL = \frac{u \,\Delta t}{\Delta x}$$

• The **CFL number** is a measure of how much information (u) traverses a computational grid cell (Δx) in a given time-step (Δt).

- Similarly, we can define the CFL number condition, which is related to the CFL number.
- For the N dimensional case, the CFL number condition becomes,

 \boldsymbol{n} u_i $CFL = \Delta t \sum_{i=1}^{\infty} \frac{\omega_i}{\Delta x_i}$ CFL_{max}

Maximum CFL number allowed by the numerical method

- The **CFL number** is a necessary condition to guarantee the stability of the numerical scheme.
- But not all numerical schemes have the same stability requirements or CFL_{max} requirement (maximum allowable CFL number).
- We are going to use implicit numerical methods which are **unconditionally stable**.
- In other words, they are not constrained to the CFL number condition or maximum allowable CFL number.
- However, the fact that we are going to use a numerical method that is unconditionally stable, does not mean that we can use a time step of any size.
- <u>The time-step must be chosen in such a way that it resolves the time-dependent features, and it maintains the solver stability.</u>

 When running unsteady simulations, the time-step must be chosen in such a way that it resolves the timedependent features and maintains solver stability.

• I like to see the CFL number as follows,

$$CFL = \frac{u \ \Delta t}{\Delta x} = \frac{u}{\Delta x / \Delta t} = \frac{\text{speed of the PDE}}{\text{speed of the mesh}}$$

• It is an indication of the amount of information that propagates through one cell (or many cells), in one time-step.

- The **CFL condition** is a necessary condition for stability (and hence convergence).
- But it is not always sufficient to guarantee stability.
- Other properties of the discretization schemes that you should observe are: conservationess, boundedness, transportiveness, and accuracy.
- The **CFL number** is not a magical number.

