Problem definition

- Air
- Incompressible
- Isothermal
- Density = 1.0 kg/m³
- Viscosity = 2 × 10⁻⁷ kg/m.s
- Bottom wall length:
 - 2 m
- Reynolds number based in bottom wall length:
 - 10 000 000
- Use any turbulence model.
- Sampling line location:
 - 1.90334 m (in the x direction)
- Plot in the sampling line: velocity profile, turbulence production and dissipation terms, turbulent kinetic energy, fluid viscous stresses, fluid turbulent stresses, fluid total stresses, normalized velocity profile.
- Compare the solutions using a lowRE and a highRE approach.
- Compute friction coefficient at the bottom wall.

Problem definition

- This is another classical validation case in turbulence modeling.
- There is plenty of experimental and numerical data available.
- A few references:
 - https://turbmodels.larc.nasa.gov/flatplate_val.html
 - https://turbmodels.larc.nasa.gov/ZPGflatplateSS_val.html

Problem definition

Geometry and mesh

- Comparison of a wall resolving and a wall modeling mesh.
- For scale resolving simulation of transition modeling, the streamwise spacing is also important.
- In this case, the mesh is not very fine in the streamwise direction.

Zero Pressure Gradient Flat Plate – Re = 10 000 000

0.0000	0.0010	T 0.0020	urbulent_k 0.0030	Kineti <mark>c_En</mark> 0.0 <mark>040</mark>	ergy [m²/s² 0.0050] 0.0060	0.0070	0.0080
, , ,					6×			

Contours of TKE Left image: wall modeling mesh. Right image: wall resolving mesh. Mesh resolution close to the wall Left image: wall modeling. Right image: wall resolving

Zero Pressure Gradient Flat Plate – Re = 10 000 000

Contours of specific dissipation rate Left image: wall modeling. Right image: wall resolving Mesh resolution close to the wall Left image: wall modeling. Right image: wall resolving

Zero Pressure Gradient Flat Plate – Re = 10 000 000

0.00e+00	T 2.00e-05	urbulent_Vis 4.00	cosity [kg/ms] e-05	6.00e-05	8.00e-05
1.00e-	05 3.	00e-05	5.00e-05	7.00e-05	
۸ محب ×			×		

Contours of turbulent viscosity Left image: wall modeling. Right image: wall resolving Mesh resolution close to the wall Left image: wall modeling. Right image: wall resolving

Left image: wall modeling mesh. Right image: wall resolving mesh. Bottom surface: contour of y⁺. Back surface: contours of velocity.

Zero Pressure Gradient Flat Plate – Re = 10 000 000

Plot of the velocity profile in function of the distance normal to the wall

Plot of the velocity profile in function of y⁺

Zero Pressure Gradient Flat Plate – Re = 10 000 000

Plot of turbulent quantities profiles in function of y⁺

Zero Pressure Gradient Flat Plate – Re = 10 000 000

Plot of non-dimensional velocity profile in function of y⁺

Zero Pressure Gradient Flat Plate – Re = 10 000 000

Plot of shear stresses in function of the distance normal to the wall

Zero Pressure Gradient Flat Plate – Re = 10 000 000

