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The paper reviews the problem of making numerical predictions of turbulent flow. It advocates that computatio- 
nal economy, range of appii~b~ity and physical realism are best served at present by turbulence models in which 
the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate e, are calculated 
from transport equations solved simultaneously with those governing the mean flow behaviour. The width of appli- 
cabihty of the model is demonstrated by reference to numerical computations of nine substantially different kinds 
of turbulent flow. 

Nomenclature 

Van Driest’s constant 
Curte t number defined by (3.1 - 1) 
Coefficients in approximated turbulent transport equations 
Specific heat at constant pressure 
Diffusion coefficient for quantity (p 
Rate of diffusive transport of Reynolds stress 
Constant in near-wall description of velocity profile (- 9) 
Functional defined by (2.2 - 6) 
Turbulence kinetic energy uiuj/2 
Length of energy containing eddies 
Fluctuating component of static pressure 
Heat flux 
Radius 
Reynolds number in pipe flow based on bulk velocity and pipe diameter 
Rate of redistribution of Reynolds stress through pressure fluctuations 
Turbulent Reynolds number k2/ve 

Temperature 
Fluctuating component of velocity in direction xi 
Mean component of velocity in direction Xi 

Streamwise velocity nondimen~onalized by T,JP 
Mean streamwise velocity on axis 
Change in mean velocity across shear flow 
‘Vorticity’ fluctuations squared 
Cartesian space coordinate 
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Y 

3: 

Radial width of mixing region 
Coordinate normal to wall 

Greek Symbols 
E Rate of dissipation of turbulence energy 
K von Karman’s constant appearing in (2.1 - 11) 

p Molecular viscosity 

& Turbulent viscosity 
V Kinematic viscosity 

4 A generalized dependent variable 

P Density 

0, Effective turbulent Prandtl number 

Oti Effective turbulent Prandtl number for transport of Q, 

‘h Molecular Prandtl number 
7 Shear stress 

Subscripts 
ijk Subscripts denoting Cartesian coordinate directions 
i Inner surface 
0 Outer surface 

P Value at a node adjacent to the wall 
W Wall value 

Superscript 
+ Denotes quantity non-dimensionalized by means of v, r,, and p 

1. Introduction 

1.1. The Problem 

Turbulent flows, which are of great practical importance, are threedimensional and time-depen- 
dent. Computer methods of solving the differenti~ equations of fluid dynast are well advanced 
even for three-dimensional time-dependent flows. Then why is it that there are no computer 
models of turbulent flow which do full justice to the fluid dynamics and which can be applied to 
practical problems? 

The answer is that the necessary computer storage exceeds by many orders of magnitude what 
is currently available, to say nothing of the computer time, for important constituents of the tur- 
bulence phenomenon take place in eddies of the order of a millimeter in size, while the whole flow 
domain may extend over meters or kilometers. A grid fine enough to allow accurate description 
of a turbulent flow would therefore require an immense and totally impractical number of nodes. 

Yet the practical need for computation of turbulent flows is pressing; to meet it, “turbulence 
models” have been invented. These consist of sets of differential equations, and associated alge- 
braic equations and constants, the solutions of which, in conjunction with those of the Navier- 
Stokes equations, closely simulate the behaviour of real turbulent fluids. 
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A good turbulence model has extensive universality, and is not too complex to develop or use. 
Universality implies that a single set of empirical constants or functions, inserted into the equa- 
tions, provides close simulation of a large variety of types of flow. Complexity is measured by the 
number of differential equations which the model contains, and the number of the empirical con- 
stants and functions which are required to complete them; increase in the first complicates the 
task of using the model, increase in the second that of developing it. 

Satisfactory calculation procedures and computers are now available for solving differentiai 
equations, on the scale of the mean motion, for quite large numbers (e.g. 20) of simultaneous 
equations. The main obstacles to model development are therefore the difficulty of selecting 
which set of differential equations is most capable of providing universality, and the difficulty of 
then providing, from experimental knowledge, the required constants and functions. 

In the present paper, the authors describe recent work on the development of a particular tur- 
bulence model, that in which two differential equations are solved, the dependent variables of 
which are the turbulence energy k and the dissipation rate of turbulence energy E. Emphasis is 
given to aspects of the model having importance for flows adjacent to solid walls. 

This is of course not the only available turbulence model. Others have been reviewed in recent 
works by the authors [ 1,2] and others (Harlow [3] and Mellor and Herring (41). 

Among such models are :- 
Prandtl’s [ 51 mixing-length model; the one-differential-equation models of Prandtl [6], Bradshaw, 
Ferriss and Atwell [7 ] and Nee and Kovasznay [8 ] ; the two-differential-equation models of 
Kolmogorov [ 91, Harlow and Nakayama f 10 1, Spalding [ 111, and Jones and Launder [ 12 I; and 
the more complex models of Chou [ 131, Rotta [ 141, Davidov [ 15 I, Kolovandin and Vatutin [ 161, 
HanjaliC [ 17 1 and Hanjalid and Launder [ 18 I. 

Recently, a conference was devoted to comparison of the predictions of various models, with 
each other and with experiment, for certain turbulent-flow phenomena remote from walls. The 
k - E model was there shown, by Launder, Morse, Rodi and Spalding [ 191, to be surpassed only 
by admittedly more complex “Reynolds-stress” models, which are,still not completely developed. 
It therefore seems appropriate to present a more detailed description of the k - t: model than has 
been available hitherto, and to review recent predictions which have been made with its aid. 

The paper will concentrate attention on the differential equations and auxiliary relations which 
define the model, and on their solutions. The solution procedures will not be described here, 
because they are standard ones, published by Patankar and Spalding 1201 and Gosman, Pun, 
Runchal, Spalding and Wolfshtein [ 2 1 I. 

2. The k - f model 

2.1. The reason for its choice 

The authors and their colleagues have had experience with three different kinds of two-equation 
turbulence model: k - kl, k - W, and k - E. Here k stands for the turbulence energy: 
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k-$j&iI&; (2.1-l) 

1 is a length representing the macroscale of turbulence, which we may define in terms of k, E, and 
a constant C, through: 

1= C,,k312,k ; (2.1-2.) 

W is a quantity having the dimensions of (time)-2, which has been interpreted (Spalding [22]; 
Saffmann [23]) as representing the time-average square of the vorticity fluctuations and which 
can also be defined in terms of k, E, and C, through: 

W = e2/(CD k)' ; (2.1-3) 

and e is defined by: 

aui aui 
E=V 

ax, ax, ; 
(2.1-4) 

where v is the kinematic viscosity of the fluid. 
Papers describing the k - kl model and its application to a large number of turbulent flows, 

both with and without the presence of solid walls, are those of Rodi and Spalding 1241, and Ng 
and Spalding [25,26]. The k - W model has been described in papers by Spalding (11,22,27 f 

and Gibson and Spalding [28]; a similar model was proposed independently by Saffmann [23]. 
A form of k - E model was first proposed by Harlow and Nakayama [lo], and has appeared also 
in the papers of Jones and Launder [ 12,291 and Launder et al. [ 19 1. 

The definitions (2.1-2) and (2.1-3) above imply: 

dkl 5 dk de -=- _--a 
kl 2k E’ 

dW=_2dk-++E. 
W k E’ 

(2.1-5) 

(2.1-6) 

With the aid of these equations, it is easily possible to turn a pair of equations for k and kl say, 
into a pair of equations for k and W, or another pair for k and c. Therefore, one might regard the 
various two-equation models as differing merely in mathematical form, and not in content. De- 
spite this, there are cogent reasons for preferring the k - E model, as foflows. 

First, in the absence of superior knowledge, all third-order correlations which appear in the 
transport equations must be represented by way of gradients of the dependent variable of the 
relevant equation. Thus, for example, 

a -- ui_ 
aXi [ 

('j uj + PI 
2 P 1 
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is represented by : 

where D, is an effective diffusion coefficient for the turbulence energy k. Now it is not possible 
to transform an expression such as 

into a similar expression involving E as dependent variable, without introducing gradients of k 

into the equation. Thus, if physical realism demands that the only second-order differential 
coefficient in the kl equation should be that involving kl itself, there must be two such coeffi- 
cients in the equation for E; and vice versa. 

Secondly, there is no knowledge, at present, of whether the transport of kl, W or E is the more 
correctly represented by a single second-order term; and one reason for this lack of knowledge is 
that, in the free turbulent flows (jets, wakes, etc.) that have been most widely studied, the length 
scale is found to be nearly uniform across the flow. As further manipulation of (2.1-5) and 
(2.14) easily reveals, if dl is nearly zero, there follows: 

dkl dk -~_.-- 
kl k 

dW dk --- 
w k 

de 3 dk -.aj-_... 
E 2 k 

(2.1-7) 

(2.1-8) 

(2.1-9) 

so that error-free transformation of one model into another is nearly possible, 
Thirdly however, it is known that, in the region close to a wall where the shear stress r is uni- 

form, the length scale increases linearly with distance from the wall. Now, in such a region the 
differential equation governing the variable km/Z” (adopted for the moment as a generalization of 
k, W (= k/t2) and E (= k3’2/l)> typically reduces to: 

0 a =- - 
[ 

Ut a(kmp) 
ax, u, ax, 1 + c, & km--’ 2 - c, Pkmi’ ( ) ;; 

En 2 I n+1 
(2.1-10) 

the convection terms having vanished and ot introduced now to represent the Prandtl number for 
the turbulent transport of km/t”. Further, because the energy is uniform and the length scale I is 
proportional to the distance from the wall x2, this differential equation reduces to an algebraic 
relation between the constants, namely: 
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n2 c Cl’2 
~_ + _‘._!- - 

c, c;j2 
-- = 0 

(It K2 K2 

where K is von Karman‘s constant, appearing in the “logarithmic law of the wall”: 

(2.1-l 1) 

(2.1-12) 

In developing (2.1-l l), equation (2.1--12) has been substituted into (2.1-lo), as has also the 
relation defining the effective turbulent viscosity ~.r,, namely: 

(2.1 --I 3) 

where p is the fluid density. 
It is now possible to explain the main reason for preferring the k - E model (for which n = t I ) 

to the k - W model (for which IZ = +2) and to the k - kf model (for which n = -1): when the 
proper values of CP, C,, C, * and K are inserted into the equation (2. l-l 1), the resulting value of 
ut is -0.8 for the k - kl model, 2.9 for the k - W model and 1.3 for the k - E model; and only 
the latter value is of a magnitude which will jit the experimental data for the spread of the various 
entities at locations jiu from walls. Because of this, the developers of the k - kl and k - W models 
have to propose that one or more of the “constants”, perhaps Go itself, should vary with the non- 
dimensio~~al ratio x,/l; only for the k h E model is this adjustment, which is hard to base securely 

on experimental data, rendered unnecessary. 
Of course, it may be that some of the “constants” should depend upon x,/I; and perhaps also 

the true behdviour of turbulence requires that gradients of more than one turbulence property 
drive diffusional effects. However, until theoretical or experimental evidence of this is forthcom- 
ing, it seems better to stand by the simplest formulations. 

2.2. Recommended Constants and Functions 

At high Reynolds numbers, the transport equation for E may be expressed: 

(2.2-l) 

a form which was first developed and used in the imperial College group by Hanjalic [ 17 I. Equa- 
tion (2.2-l > together with a similar one for the turbulence energy, k: 

(2.2-2) 

enabIes the turbulent viscosity pLt to be found from equation (-. 3 l-13) or its equivalent in terms 

* The values of Cl and Cz depend on the choices for m and n. 
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of E (rather than I); thus: 

(2.2-3) 

According to the recommendations of Launder et al. [ 193, made after extensive examination of 
free turbulent flows, the constants appearing in equations (2.2-l) -(2.2-3) take the values 
given in table 2. I : 

Table 2.1 
The values of the constants in the k - E model 

% 

0.09 

Cl 

1.44 

c2 Ok 

1.92 1.0 

oe 

1.3 

The above constants have been found appropriate to plane jets and mixing layers. Slightly dif- 
ferent values from those quoted have hitherto been adopted in the calculation of flows near walls; 
but there is reason to suppose that, for these flows also, the values in table 2.1 would lead to as 
satisfactory preditions as obtained with those originally employed. 

For axisym~netric jets it is, regrettably, necessary to modify two of the constants; continued 
efforts have failed to devise any single set of constants that will predict their behaviour as well as 
that of the plane free shear flows and the plane or axisymmetric wall flows. The following recom- 
mendation has therefore been made by Launder et al. [ 191 based on the work of Rodi [30]. 

CP = 0.09 - 0.04f (2.2-4) 

C, = 1.92 - 0.0667 f (2.2-5) 

where 

(2.2-6) 

Here reference is made to UC., the velocity at, and in the direction of, the symmetry axis of the 
flow; Y is the radial width of the mixing region, and AU is the axial-direction velocity difference 
across the width of this region. 

This recommendation is especially tailored to fit the experimental data for axisymmetrical jets * 
and little universality can trully be claimed for it. (For example, if a thin wire lay along the axis 
of the jet, U,, would be made zero thereby; yet it seems unlikely that the spread of the jet would 
be signi~~ntly altered). However, it is the best available at the present time. Rodi 1301 has found 
that a further modification of the constants is required in turbulent flows where velocity gradients 
are so weak that the rate of turbulence-energy generation is appreciably less than the energydissi- 
pation rate. Examples of such flows are wakes at very large distances behind the wake generators 
and the decaying flow behind a self-propelled body. In these cases C, assumes higher values than 

* For wakes the form of (2.2-4) renders Izero. 



216 B.6 Launder, D.B. Spalding, The numerical computation of turbulent flows 

the standard one; Rodi ]301 has correlated the required magnitude of Ccl as a function of the 
average level of /~,(a Uj/8~,)2jpe across the wake. 

Although the weak shear flows mentioned above are not without their practical importance, it 
needs to be emphasized that the great majority of flows of interest to the mechanical engineer are 
ones adjacent to, and often enclosed by, rigid surfaces. The presence of a wall enforces steep 
velocity gradients; consequently the level of turbulence~nergy production is always large; the 
values of the constants given in table 2. I are therefore nearly always applicable. 

2.3. The irlfluence of a nearby wall 

The form of the model which has been presented above is valid only for futly turbulent flows. 
Close to solid walls, and some other interfaces, there are inevitably regions where the local 
Reynolds number of turbulence (E ki’21/v, where I = k3’2/e) is so small that viscous effects pre- 
dominate over turbulent ones. There are two methods of accounting for these regions in numeri- 
cal methods for computing turbulent flow: the wall-function-method; and the low-Reynolds- 
number-modeling method. We shall now discuss these in turn. 

2.3-I. The wall-function method 
This method is the one which has been most widely used, and which is indeed still to be pre- 

ferred for many practical purposes. Its merits are two: it economizes computer time and storage; 
and its allows the introduction of additional empirical information in special cases, as when the 
wall is rough. 

Wall functions have been proposed and used by many authors including Spaiding ]3 1 I, 
Wolfshtein [32] and Patankar and Spalding [201. The ones proposed here represent the best 
practice of the Imperial College group; but it must be admitted that further systematic research 
must be conducted before they can be regarded as having been tested adequately. They will first 
be described, and then their rationale will be explained. 

Fig. 2.1. The near-wail nodes. 

Consider the adjacent grid points W and P of a finitedifference grid on which the flow is to be 
computed (fig. 2.1). The first feature to make sure of, when using the wall-function method, is 
that the point P is sufficiently remote from W, which lies on the wall, for (k”2r/v), to be much 
greater than unity; so much greater in fact that the viscous effects are entirely overwhelmed there 
by the t~bulent ones. 

The fluxes of momentum and heat to the wall are then supposed to obey the relations: 



d!‘_ Cl/-+ k’/2 =; En 

(T/P), Ir p 

(c;‘2kp)1’2 
v I (2.3-l) 

Here Up, T,, Tp, T,, $, and y, are respectively the time-average velocity of the fluid at point P 
along the wall, the shear stress on the wall in the direction of the velocity Up, the time-average 
temperatures of the fluid at points P and W respectively, the heat flux to the wall, and the distance 
of the point P from the wall. 

Other symbols appearing in the equation have the following meanings: 

E a function of the wall roughness, appro~mately equal to 9.0 for a smooth wall; 

Cp the constant-pressure specific heat of the fluid; 

Oh the effective Prandtl number of the fully turbulent fluid (usually taken as being of the order 
of 1); 

oh,, the Prandtl number of the wholly laminar fluid; 

A Van Driest’s constant, equal to 26.0 for a smooth wall. 

The quantity kp, the value of k for the grid point, is supposed to be known. It should be calcu 
lated from the regular balance equation of the finite-difference grid, diffusion of energy to the 
wall being set equal to zero (in the absence of better information). When ~lculating kp, it is of 
course necessary to assign a value for the average energy-dissipation rate over the control volume; 
this is to be deduced from the assumption that: 

YP 

s k3’2 

edy ‘Cc, ---f-- In 
Ey,(v/C:‘2 ,$I2 

V 
0 

(2.3-3) 

The rationale of these recommendations comprises the following main points: 
(a) The wall functions reproduce identically the full implications of the “logarithmic velocity 

profile” when uniform shear stress prevails in the layer WP, and generation and dissipation of 
energy are in balance there; for then, as is easily shown, r/p = Ci’2k = constant. 

(b) The second term on the right of equation (2.3-Z) has its origin in an analysis of experimen- 
tal data conducted by Jayatillaka [33]. Further information is to be found in [ 11. 

(c) The appearance of the logarithmic function in (2.3-3) results from the necessity to pre- 
sume E to be proportional to k3’2/y, coupled with a further modelling of the wall function on the 
constant-shear-stress situation. 

The extra empirical information which can be inserted by way of wall functions is expressed by 
way of the constants or functions E and A. Not only can roughness be accounted for, but also such 
phenomena as pressure gradient and mass transfer through the wall. When the “wall” is slightly 
flexible, as is true of the interface between two immiscible liquids, further influences are present 
which can, perhaps, be expressed by way of the formulae. However, there is much research to do 
in this branch of turbulence-model theory, 
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2.3-2. The low-Reynolds-rzurnber modelling method 
Several authors have sought to devise t~buience-model equations which are valid t~ou~hout 

the laminar, semi-laminar, and fully turbulent regions. They include Glushko [34] and Wolfshtein 
1321, both of whom worked with one-equation turbulence modeIs. We here summarize the re- 
commendations of Jones and Launder 112,291, who extended the k - E model to low-Reynolds- 
number flows. 

In this version of the model h- and e are determined from the following pair of equations: 

(2.3-5) 

The turbulent viscosity is then obtained from equation (2.2-3). In the above equation C,, ok and 
CT, retain the values assigned to them for high Reynolds numbers, while C, and C, are held to vary 
with turbulence Reynolds number according to the formulae: 

CP = CP_ exp t-2.N1+R,/50)] ) (2.3-6) 

C, =C,_[l.O-0.3 exp-R;] , (2.3-7) 

where R,‘denotes the turbulence Reynolds number and C,_ and C,_ are the values assumed by 
CM and C, in the fully turbulent region, i.e. the values given in table 2.1 *. 

It is seen from (2.3-4) and (2.3-S) that viscosity now exerts influence on the levels of k and e 
in two further ways: firstly laminar diffusive transport becomes of increasing importance as the 
wall is approached and, secondly, extra destruction terms have been included which are of some 
significance in the viscous and transitional regions. One of these terms, 

has been included in 
wall. 

the E equation to produce satisfactory variation of k with distance from the 

The extra term in the k equation, - 2v(dk1’2/dxi)2, has been introduced for computational 
rather than physical reasons. Measurements. indicate that the level of the turbulence energy dissi- 
pation rate is constant in the immediate neighbourhood of a wall (i.e. for x,(~/p)“~/v< 5). We 
could, in principle, thus apply a zero-gradient boundary condition to the E equation at the surface. 
In practice, however, Jones and Launder [ 121 did not find this a tractable route; with this 

* The values of Cl and C2 adopted by Jones and Launder [ 12 ] (1.55 and 2.0 respectively) differ slightly from those given in 
table 2.1. As mentioned above, however, in wall flows generation and decay rates of turbulence energy are nearly in balance 
and then it is mainly the difference between these constants that is influentiat; and the difference is very nearly the same as for 
the standard constants. So predictions obtained with the constants of table 2.1 would differ only slightly from those obtained 
for the same flow using the values given by Jones and Launder. 



boundary condition they were unable to devise a compatible set of Reynolds-number functions. 
Instead the practice adopted was to assign the quantity E to zero at the wall and to introduce to 
the k equation the extra term mentioned above which is exactly equal to the energy dissipation 
rate in the neighbourhood of the wall. 

The form of the k - E model presented so far has by implication adopted the notion of a 
scalar turbulent viscosity. 

- $d$k . (2.4-I) 

This supposition has proved prefectly adequate in two-dimensional flows without swirl, where 
only one stress component exerts much influence on the flow development. In flows with swirl, 
however, and indeed in three-dimensional flows generally, evidence is accumulating (e.g. Roberts 
[35]) to indicate that the measured flow dist~bution can be predicted in detail only by choosing 
a different level of viscosity for each active stress component. None of the workers who has sought 
to extend (2.4-l) to include non-isotropic effects has succeeded in devising rules for calculating 
the relevant viscosity components that cover even the limited range of flows in their enquiries. 

In this section we mention an extension of the k - E model which, though of recent origin and 
not yet thoroughly tested, evidently provides a more generally valid formula connecting the stress 
and strain fields than the effective viscosity hypothesis above. The approach is described in detail 
by Launder 1361 and Rodi (301; applications of the procedure have been reported by Launder 
and Ying 137,381 to the flows in square-sectioned ducts, by Rodi (301 to obtain the normal- 
stress profiles in some free-shear flows, and by KooSinLin and Lockwood [39] to the calculation 
of flows near rotating cones and discs. The main steps are outlined below. 

The starting point in deriving the relevant stress-strain formulae is the exact equation for the 
transport of Reynolds stress which may be written: 

a uj _ au. 
-i U.1.l -2 
axk 1 k ax, I -f-D, + fii +l$ (2.4-2) 

where the first group of terms on the right of (2.4-2) represents the generation of the stress com- 
ponent z+ui by the working of this and other stress components against mean velocity gradients 
and where D,, fij) and R, stand for turbulence correlations whose values are not directly know- 
able but whose effects are, respectively, diffusive, dissipative and redistributive. The current 
practice in approximating these terms is to assume that: 

(i) diffusional transport is proportional to the spatial gradient of the stress component in 
question; 

(ii) dissipation takes place isotropically in each of the three normal-stress components and is 
zero in the shear-stress equations; 

(iii) the redisttibutive action of pressure fluctuations can be represented by two groups of 
terms, one involving products of Reynolds stress and (e/k); the other containing products of the 
stresses and mean velocity gradients. 



Further details on precise forms of the above approximations are given by Launder, Reece and 
Rodi [40]. What is especially important in the present context is that the approximation of 
neither “ij nor R, contain g~~~~~~~~ of stress co~n~nents. The essence of “algebraic” stress -- 
mod~lli~lg then resides in the recognition that if the terms ~~jz~j/~~ and D, are eliminated from 
(2.4--2) the equation is thereby reduced from a differential to an algebraic set of equations 
among the Reynolds stresses, the turbule~l~~ energy, the energy dissipation rate and mean velocity 
gradients. Thus expressed symbolically: 

(2.4-3) 

Research has not yet revealed the optimum form that the function in (2.4-3) should take. Its ap- 
pearance will depend on the approximated form of R, and eii and on how the convective and 
diff~lsive transport terms are eIiminat~d from (2.4-2). Launder [34] neglected the latter terms 
entirely while Rodi [ 301 assumed that convective transport of uiuj was proportional to Dk/Dt .- 
times uiz+/ll’, with an equivalent assumption for the diffusion term. In complicated velocity fields 
these terms are rarely the most in~uenti~l ones; so in practice only small differences result from 
adopting one of the above proposals rather than the other. 

What is certainly the case is that the algebraic form of (2.4-3) is always more complex than the 
isotropic viscosity formula (2.4-l ); but, for boundary-layer flows, the additional complexity in- 
creases only slightly the cost of computation. The turbulence energy and dissipation rate appear- 
ing in (2.4-3) may be found from the pair of differential equations presented in section 2.2; this 
is the simpler practice. Alternatively one may use the values of tli~lj obtained from (2.4-3) to re- 
pIace pu,(a Ui/axj + a ~j/~~~) which appears in the generation terms of these equations; this would 
be a more consistent practice and probably a more accurate one too. 

3. Some Applications of the k N e model 

An example of the predictions generated by the k w E model in a free shear flow is presented 
in fig. 3.1 from the work of Launder et al. [ 191. It relates to the decay of a plane jet in a moving 
stream, the experimental data being those of Bradbury [41]. Predictions are shown for the k - E 
model and for two simpler treatments; one based on Prandtl’s [ 51 mixing”length hypothesis and 
another similar to his later proposal [6] in which a differential equation was provided for k (but 
not for I). 

Predictions obtained with the k - e model are in satisfactory agreement with experiment 
t~oughout the region of measurement. The simpler models, however, fail to predict correctly the 
development of the shear flow much beyond the end of the potential core. Of course, the con- 
stants in these models could have been adjusted to give better downstr~m agreement; but only 
by sacrificing the good agreement in the mixing-layer region near the jet exit. The two~equatiun 
level is the simplest at which universality is secured for both jet and mixing layer. 
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kE 

l Experiments Bradbury(l972~ - 

0 
i 

100 200 300 

Fig. 3.1. Decay of centre line velocity in jet in moving stream. 

3.2. Wall jets on cones 

In the above example the solution of the mean momentum and turbulence transport equations 
was accomplished by means of the Patankar-Spalding [20] finite-difference procedure. Sharma 
1421 has employed the same method to obtain predictions of the development of a wall jet over 
cones of various apex angles. In addition to equations for mean momentum, turbulence energy 
and dissipation rate, the conservation equation for chemical species was also solved to calculate 
the dispersion of a tracer of foreign gas in the injectant stream. Fig. 3.2 shows the variation with 
distance along the cone surface of the maximum velocity in the wall jet, U, normalized by the 
velocity at the exit slot, UC. For both 11” and 90” half-cone angles, the predicted rate of decay of 
U,,, corresponds closely with the measured variation. This behaviour is quite in contrast with the 
mixing-length predictions: use of the mixing-length distribution required to give correct prediction 
on a plane surface leads to a serious underestimate of the diminution rate of U, on the conical 
surfaces. 

3.3. Flow in a pipe 

Predictions are shown in figs. 3.3 and 3.4 of two further boundary-layer flows. In these exam- 
ples, the wall functions presented in (2.3-l) do not provide appropriate boundary conditions, 
The finite-difference computations have therefore been carried right to the surface, with the use 
of the low-Reynolds-number form of the model presented in sec. 2.3-2. Again the Patankar- 
Spalding procedure has been used to solve the equations but the incursion into the viscous and 
transitional regions requires the use of nearly 100 cross-stream grid points for computational 
accuracy within 1% (about four times as many as when the wall-function method is used). 
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x 1’Yc 

Fig. 3.2. Decay of wall jet on conical surfaces, Sharma (1972). 

KUDVA & SESONSKE (1972) 

Fig. 3.3a. Pipe-flow velocity profile: Re = 6000. 
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Fig. 3.3b. Friction factor in pipe flow at low Re. 
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Fully-developed flow in a pipe is considered in fig. 3.3; the low-Reynolds-number end of the 
turbulent-flow regime is the region here under consideration. Fig. 3.3a shows the mean velocity 
profile across the pipe plotted semi-logarithmically in so-called ‘universal’ coordinates. The straight 
line passing diagonally across the figure represents the ‘law of the wall’ formula, equation (2.1- 12); 
at high Reynolds numbers (Re > 2 X 104) the measured and predicted profiles coincide with this 
line in the fully turbulent region near the wall. It is in such conditions that it is appropriate to 
adopt the wall-function formula provided by (2.3-l). The Reynolds number of the experimental 
data shown in the figure is only 6000 however; we see that the profile lies well above the high- 
Reynolds-number line. The predictions of Jones and Launder [291 reproduce satisfactorily this 
departure from the universal behaviour. 

Previous predictions of flow in pipes and channels have employed formulae which imply the 
near-wall region to be independent of the Reynolds number of the flow. If these models are tuned 
to give correct predictions for Re > 20,000 the friction factor at low Reynolds numbers is invari- 
ably predicted too high. The reason is, as seen above, that the space-average value of Ut is larger 
than it would have been had the prediction been tried to equation (2.3-l); the friction coefficient 
is simpiy the square of the reciprocal of this average value. Fig. 3.3b shows the low-Re version of 
the k - E model to give excellent predictions right down to the Reynolds number at which the 
turbulent flow becomes intermittent (characterized by a level of Cf which falls as Re is decreased). 

3.4. The b~~~ndary layer OFZ a turbine blade 

The example shown in fig. 3.4 considers the prediction of heat-transfer around the pressure 
surface of a turbine blade. Detailed measurements of heat-transfer coefficients were obtained by 
Turner (431 for three different levels of turbulence energy upstream of the blade. In this example 
the computer solutions were started very near the stagnation point with a Zuminar initial boundary 
layer. The turbulence present in the free stream is able to exert appreciable effect on the 
boundary-layer development: at the highest Ievel of free-stream t~lrbulence the boLlndary layer 

2Qci 
1 I / I 

Turner (1971) Prlddrn (1972) Turbulence 
eXpertme” predacl,on 
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Fig. 3.4. Heat transfer coefficient on pressure surface of gas turbine blade. 
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has nearly completed the transition to turbulent flow by the end of the blade. At the intermediate 
turbulence level, the high level of acceleration over the forward portion of the blade inhibits any 
trend towards an organized turbulent flow until 40% chord; and, for the lowest level of free- 
stream turbulence, the boundary layer remains laminar throughout. For all three Cases the predic- 
tions made by Priddin [44] are in extremely close agreement with experiment. It should be em- 
phasized that there has been no explicit specification of when transition will begin in this set of 
calculations; indeed it may be said that the low-Reynolds-number form of the k - E model has its 
own built-in ‘transition criterion’. 

3.5. Film cooling 

In the wall-jet flows considered earlier, the lip of the injection slot was thin and the flow was 
directed smoothly along the wall; consequently the parabolic form of the transport equations 
could be employed since there were no regions of flow recirculation present. When film-cooling 
devices are incorporated into combustion chambers, however, they often possess features akin to 
the wall jets examined theoreti~lly and experimentalIy by Matthews and Whitelaw 145 I : the slot 
lip is thick and there is an appreciable step in the surface causing a region of reversed flow. An 
example of the predictions obtained by these workers is provided in fig. 3.5; the ordinate is the 
adiabatic-wall “effectiveness” and the abscissa is the distance downstream from the injection slot. 

These solutions were obtained by means of the elliptic flow finite-difference procedure of 
Gosman et al. [2 1 I. The use of this numerical solution procedure is common to all the recirculat- 
ing flow examples presented in this section as is also the employment of the wall-function method 
for treating the flow adjacent to the wall. In this particular example, however, a modification was 
found necessary to the practice proposed in sec. 2.3-l. On the downstream face of the step and 
of the lip (but not elsewhere) the level of E given by equation (2.3-3) was reduced by a factor of 
20. The probable cause of the exceptionally low level of dissipation rate there is suggested by 

Fig. 3.5a. Wall jet with thick lip and step, character of flow. 
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Fig. 3Sb. Decay of wall jet. 
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fig. 3.5a. By virtue of the recirculating zones, downstream turbulent fluid with large length scale 
is caused to impinge on the surfaces in question. Because of the very low level of shear stress 
along these surfaces, the convected fluid is much more i~~uent~al in determining the local dissipa- 
tion rate than is the distance from the wall. What is evident from fig. 3Sb is that with this modi- 
fication, agreement between experiment and prediction is excellent. We should mention that this 
level of agreement is representative of that obtained for the whole range of flow conditions 
examined by Matthews and ~itelaw, covering large variations in the ratio of injectant: main 
stream velocities and densities. 

3.6. Coaxial jets 

As a further example of an elliptic flow, we consider the devlopment of confined coaxial jets 
depicted in fig. 3.6a; the velocity ratios are large enough for there to be a recirculating zone 
present at some position downstream from the jet exit. Fig. 3.6b compares some calculated 
properties of the recirculating zone with the experimental data of Barchilon and Curtet [46]; the 
predictions have been obtained by Elghobashi 1471. To conform with the experimental data, the 
results are presented in terms of the Craya-Curtet parameter defined as: 

c, = 
G 

[(Ui”- u,2)(Ti/Yo,2+~(u~-u~)]1’2 
(3.1-l) 

where Uj and U, are respectively the velocities of the central and annular jets; ri and rO are the 
radii of the jet and the duct; and U, is defined by: 

UC = ( Ui-U*)(rjlr*)2 ~ uj . (3.1-2) 

It can be seen from fig. 3.6b that the ~umeri~l solutions, obtained by means of the procedure of 
Gosman et al. 1211, predict quite well the measured position and magnitude of the recirculating 
zone over the whole range of C, covered by the experiments. 

Centre 
Separation of Reattachment 

Fig, 3&a. Character of flow for coaxial ducted jets. 

- PredictIons (Elghoboshi 1972 I 

Exper!mentol Pornts IBarchilon 8 Curt& I 

0 reattachment 
0 eddy center 

0 1 2 3”,/rO L 5 6 7 

Fig. 3&b. Properties of re~~c~a~o~ zone in ducted coaxial 
jets. 
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- Predictions INletsen 19721 
- - - Experiment 

Fig. 3.7. Velocity contours in model auditorium 

3. 7. A cavity flow 

Fig. 3.7 shows some predictions obtained recently by Nielsen [48] of flow in a rectangular 
sectioned room; fluid enters the room through a narrow slit in the top right hand corner and 
leaves at bottom left. Nielsen’s particular interest here concerned the problem of ventilating 
auditoria. To be effective, the ventilating equipment must provide a steady replenishment of air 
but most not induce velocities so high that the audience feels a draft. There is thus a fairly narrow 
tolerance on the permissible air velocities near the auditorium floor. It is seen that the velocity 
contours in this model room are indeed in close agreement with experiment. The result suggests 
that it would now be fruitful to use the method for extensive design explorations with flows of 
this type. The cost of such a study would be but a small fraction of that of constructing and in- 
strumenting a model auditorium. 

3.8. Flow along a twisted tape 

Another flow of great industrial importance is that through tubes with twisted-tape inserts. The 
purpose of the tape is to impart a swirling motion to the fluid, thereby increasing the surface 
heat-transfer coefficient. Date [49] has obtained numerical predictions of this flow again by em- 
bodying the k - E model into an adaptation of the procedure of Gosman et al. 1211. An example 
of his predictions is provided by fig. 3.8 which shows the variation of friction factor with 
Reynolds number for a twist ratio (i.e. the number of pipe diameters for the tape to complete one 
revolution) of 3.14. In this case agreement with experiment is not so good as in previous examples. 
Part of the discrepancy may be due to the use of the standard ‘equi~brium’ wall logarithmic law 
rather than that given by equation (2.3-l). Probably, however, the main source of disagreement 
stems from the turbulent viscosity becoming strongly non-isotropic in the complicated strain field 
of this flow. 

3.9. Flow through square-sectioned ducts 

In the above example the most promising route for improving predictions seems to be by the 
use of the algebraic-stress method discussed briefly in sec. 2.4. Certainly this approach has 
successfully been brought to bear on the problem of flow in ducts of square cross section, where 
the axial velocity U, varies over the cross section in both coordinate directions x2 and x3. This 
strain field gives rise to a turbulent stress field in the plane of the cross section which in turn 
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Fig. 3.8. Flow in tubes containing twisted tapes. 

Secondary f I ow_ 

Fig. 3.9. Prediction of fully-developed flow in square-sectioned 
duct (Tatchell, 1972). 

generates a secondary velocity field in this plane. The predictions of Tatchell [SO] shown in 
fig. 3.9 are based on the algebraic stress model and predict very closely the measured secondary 
flow pattern and its effect on the axial velocity contours. In contrast the k - E model employed 
with the standard isotropic viscosity relation, equation (2.4-l), leads to the result that there are 
no motions in the plane of the cross section. 

4. Conchding remarks 

The examples considered in the preceding section convey a representative impression of the 
capabilities of the k - E model. It is the simplest kind of model that permits prediction of both 
near-wall and free-shear-flow phenomena without adjustments to constants or functions; it 
su~~ssfully accounts for many low Remolds-number features of t~bulence; and its use has led 
to accurate predictions of flows with recirculation as well as those of the boundary-layer kind. 

nevertheless the model can still geatly benefit from further improvement and extension. The 
wall functions used at present are based on the notion that the length scale is a universal function 
of distance from the wall. Yet the superior predictions given by the low~Reynolds-number version 
of the model rest squarely on the model’s ability to account for the way that accelerations or 
surface mass transfer alter the near-wall length scale. Sometimes, as in the wall jets examined by 
Matthews and Whitelaw [45], turbulence generated remote from a wall can cause abnormally 
high levels of length scale near a surface. Urgently needed therefore is a set of wall functions con- 
taining the full implications of the low-Reynolds-number form of the model. Indeed there remain 
many important research tasks concerned with documenting this near-wall region: effects of steep 
property variation, high Mach numbers, foreign-gas injection, buoyancy and combustion have 
received little attention in the context of the k - e model. 

An equally important research task is that of replacing the isotropic viscosity formula by more 
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general expressions connecting the stress and strain fields in turbulent flow. As remarked above, 
there have already been a few successful applications of this approach to flows with more than 
one significant shear-stress component; in most cases, however, these algebraic-stress formulae 
give rise to very complicated non-linear equations for the stress components and, for recirculating 
flows, may seriously complicate the task of solution. There are thus two areas of research implied 
here. Firstly in the field of numerical analysis, new iteration schemes are needed to promote rapid 
convergence for even highly non-linear sets of equations. Second, there needs to be a searching 
set of tests applied to the approximated forms of R, and eij appearing in equation (2.462); for 
no one wants to spend extra money and effort using a more elaborate procedure unless he can be 
sure his predictions will possess greater physical realism than those generated by simpler models. 
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