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Abstract
Issues in practical use of turbulence models include large strain limiters, wall
functions and roughness corrections. Motivations for studying these topics
are provided and various recent developments in modeling are reviewed.
Inequalities and consistency between wall and outer region models are
discussed. New elliptic relaxation models are also surveyed. These include
elliptic blending and changes of the dependent variable in scalar eddy viscosity
models.

1. Introduction

Turbulence models existed prior to the advent of digital electronic computers. With the
availability of increasingly powerful computers, they have come into their own as powerful
tools for practical engineering analysis. To meet the needs of complex geometries, early
algebraic formulae have given way to transport equations and constitutive formulae.
Constraints of coordinate independence, Galilean invariance and geometry independence have
guided their development. These are fundamental requirements, applicable to any model.

As much as one might prefer to limit constraints on model formulations to such
fundamental principles, the demands of accurate prediction have required researchers to
propose additional conditions. These may be based on empirical evidence or on mathematical
inequalities. Often they are implemented as bounds on variables. Section 2 of this paper
reviews some of the ideas on constraints for practical turbulence modeling. The bounds
that have been devised prevent spurious production of turbulent kinetic energy and impose
realizability constraints. These two turn out to be closely related.

The second topic of this review is the wall function. Analysis of flow in complex
geometries can impose severe demands on mesh resolution. Wall functions are a firmly
established method to reduce the demands on meshing. The idea of a wall function dates
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back to the early days of turbulence modeling. Recent developments have been directed to
making them more flexible. Although they are primarily a pragmatic device, wall functions
have a solid theoretical foundation in turbulence theory. They stem from notions about
universality of the law of the wall. As such, they are based on a high Reynolds number
assumption. At finite Reynolds number, the conditions for universality can be violated by
pressure gradients, surface curvature or other departures from the ideal. Various revisions to
wall function methodology have attempted to accommodate such effects. Even within the
scope of the formal theory, the classical wall function is further limited to large y+. A good
deal of recent work has been on permitting the grid to begin at low y+.

However, a more pragmatic difficulty is the tendency for wall function computations to
be grid-dependent. In asymptotic theory, the law of the wall is an inner region which matches
to an outer region within an overlap layer. The wall function provides a representation of the
inner region and the turbulence model represents the outer region. In classical wall functions,
the transition between these two representations is assumed to occur in the overlap layer—
that is, in the logarithmic layer. However, any pre-set grid might produce a transition point
that does not lie in the overlap layer—if such a layer even exists. Then the two representations
are being patched rather than matched: the solution depends on the patching point because it
does not occur in a region that is common to the inner and outer solutions. By making the wall
function consistent with the outer model throughout the wall layer, sensitivity to the patching
point can be reduced. The holy grail is a grid-independent formulation.

As an operational matter, that goal can be elusive. The wall function is meant to permit
a relatively coarse near-wall grid. Even if the formulation is consistent, grid dependence may
be inevitable. Grid dependence is caused by coarseness of the grid. In principle, one might
place a fine grid just above the top of the wall function layer. While this approach can be used
to prove the consistency of how the two layers are patched (Kalitzin et al 2005), that is not
how wall functions are used in practice. For example, in a standard finite-volume mesh, if
the first cell center is at y+ = 20, the second is at y+ = 60. Even if the wall function provides
an accurate match to the model, the computation will be grid-dependent owing to the coarse
mesh.

The final section of the present paper describes some developments of the elliptic
relaxation method. Elliptic relaxation is a method to introduce non-local wall effects on
the turbulence field near a boundary. Consistent with the theme of modeling for complex
geometries, the objective is to solve an elliptic equation that will produce the wall effect
through the application of boundary conditions. The turbulence scale controls the extent of
interaction.

This paper admittedly is limited in its perspective. It is not meant to cite the many
developments that have occurred in Reynolds averaged modeling during recent years, but
simply to cite a few that have been of concern to the present author.

2. Inequalities to avoid anomalies

Constraints on model coefficients have become an indispensable component of closure
modeling. They may derive either from empirical evidence or from mathematical conditions.
A notable example of the former is the shear stress limit devised by Menter (1992). He
noted that the stress-intensity ratio predicted by two-equation models scales with the ratio
of production to dissipation as

−uv

k
=

√
P
ε

√
Cµ. (1)
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Two-equation models evaluate an eddy viscosity from predictions of k and of the correlation
timescale T :

νT = CµkT, (2)

where Cµ is a coefficient of proportionality. Equation (1) derives from the formula for
production in parallel shear flow,P = −uv∂yU , with the eddy viscosity model −uv = νT ∂yU ,
after substituting the eddy viscosity formula (2) with T = k/ε.

Experiments show that the stress-intensity ratio is about 0.3 in shear layers. While there
is variation about this value, the stress-intensity ratio certainly does not grow with P/ε in
the manner of equation (1). If it is required that −uv/k 6 0.3, then the eddy viscosity is
constrained by

νT 6
0.3k

|∂yU |
.

Denoting the rate of strain tensor by Si j =
1
2 (∂ jUi + ∂iU j ) and its magnitude by |S|

2
= Si j S j i ,

this constraint can be generalized to

νT 6
0.3k

√
2|S|

, (3)

because ∂yU 2
= 2|S|

2. Menter devised his SST modification of the k–ω model from this
starting point. It serves as an informative example of an empirically based constraint. The
constraint was implemented as the limiter

νT = min
[

k

ω
,

0.3k
√

2|S|F2(y)

]
,

where F2 is a blending function that tends to zero outside the boundary layer (Menter used
the vorticity |ω| instead of the rate of strain |S| in his SST model).

A constraint that derives wholly from mathematical considerations has received a good
deal of attention recently. The most common, general purpose, scalar eddy viscosity models,
k–ε and k–ω, are subject to a spurious overproduction of turbulent kinetic energy in highly
strained flows. Although this goes by the name ‘stagnation point anomaly’, it arises generally
under high rates of strain and can be seen in turbine and compressor passages. It is manifested
by turbulent intensities growing to highly unphysical levels. Anomalous turbulent kinetic
energy levels are illustrated by the panel at the right of figure 1. When is the rate of strain
‘high’? An objective definition is: when the rate of strain is large enough for the model to
violate a physical bound on energy production.

The full formula for production is

P = −ui u j Si j . (4)

In principal axes of the rate of strain tensor is

P = −u1u1S11 − u2u2S22 − u3u3S33.

In incompressible flow, Si i = 0, so at least one Sαα is negative. But for any β, −Sββ 6
− minα Sαα , where the function minα refers to the minimum of the three eigenvalues of the
rate of strain tensor. Also u1u1 + u2u2 + u3u3 = 2k. It follows that

P 6 2k max
α

(−Sαα). (5)

3



Fluid Dyn. Res. 41 (2009) 012203 P A Durbin

  250.0

  125.0

    0.0

  1000.

  500.0

    0.0

Figure 1. Contours of k with and without limiter. Scale is arbitrary, but the same in both views.
The behavior to the right is anomalous.

It can be shown that

|Sαα|6
√

2|S|2/3

in three dimensions (Durbin 1996). This is derived by minimizing

|S|
2
= S2

11 + S2
22 + (S11 + S22)

2.

(In two dimensions |Sαα| =
√

|S|2/2.) Hence, on purely mathematical grounds,

P 6 2k
√

2|S|2/3. (6)

In particular, production should increase linearly with |S| at large rates of strain. However,
with the eddy viscosity constitutive model

− ui u j = 2νT Si j + 2
3δi j k, (7)

equation (4) becomes

P = 2νt |S|
2. (8)

Production appears to increase quadratically with rate of strain.
Alternatively, inserting equation (8) into equation (6) gives the bound

νt 6

√
2

3

k

|S|
. (9)

Note the similarity of equations (3) and (9); both limit νT by a factor times k/|S|. However,
the former is more stringent, and is confined inside of the boundary layer by the blending
function. Constraint (9) is needed outside boundary layers, in highly strained flow. Instead of
phrasing (9) as a bound on eddy viscosity, it can be stated as the timescale bound

T 6
2

√
6Cµ|S|

.

This result, with a different numerical factor, can also be derived as a realizability
condition (Durbin 1996). The Schwartz inequality requires that 06 e.v.(ui u j )6 2k, or that
the eigenvalues of the Reynolds stress be less than twice the turbulent kinetic energy, and
be non-negative. That is a constraint on the constitutive model. The linear, eddy viscosity

4
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formula (7) can be subjected to this condition. Analysis then leads to the stronger constraint

T 6
1

√
6Cµ|S|

. (10)

It can be met in various ways; perhaps the simplest is via a limiter. For instance, condition (10)
can be implemented for the k–ω model by

CµT = min
[

1

ω
,

α
√

6|S|

]
. (11)

The form (2) with T = 1/(Cµω) was assumed for νT. In equation (11), α is an adjustable
constant. The bound (10) is satisfied for any α 6 1: in Medic and Durbin (2002), α = 0.6 was
selected for all models. The constraint is derived as a matter of principle, not restricted to a
particular class of flow. Hence, it can come into effect in shear layers, where it usually is not
needed. The constant of 0.6 was selected, in part, to make the constraint inoperative within
shear layers.

Many investigators have proposed to make model constants functions of the rate of strain.
Zhu and Shih (1993) invoke a strain-dependent formula for Cµ based on realizability of the
constitutive formula (7) in two dimensions. Equation (9) can alternatively be phrased as

Cµ 6

√
2

3

ε

|S|k
.

Rather than a limit per se, Zhu and Shih (1993) propose the formula

Cµ =
2/3

5.5 + |S|k/ε

to effect a bound.
Realizability of the Reynolds stresses is not a compelling argument. The mean flow is

computed from the eddy viscosity. The Reynolds stress tensor, per se, is not used. The real
issue is to avoid excessive production of turbulent energy. Equation (6) is the essential bound.
Even when implemented as a timescale bound, Sveningsson and Davidson (2004) show that
the primary effect is on production of turbulent energy. Their paper contains recommendations
on limiters for the v2– f model. They recommend not applying the bound (10) to the timescale
that appears in the source of the f -equation—that is, T in equations (28) and (29). An early
method to constrain production of turbulent kinetic energy production is that of Launder and
Kato (1993). They replaced the formula P = νT |S|

2 by P = νT |S ‖ �|. This is not consistent
with equation (6); rather it is designed to make production vanish in pure straining flow.

Figure 2, based on Seo (2004), shows how various limiters affect turbulent intensity on
the stagnation line of a blunt body. The geometry is a flat strip, with a filled wake, designed to
avoid separation (Bearman 1972) as is shown in the upper portion of this figure. The data were
measured for various inlet turbulence levels and are normalized by the initial k. Figure 2(a)
shows how k is produced excessively by the standard k–ε model: the same is seen with k–ω.
The various methods in figure 2 of constraining production to grow no more rapidly than |S|

at large rates of strain bring k closer to data, but the computed k/k0 is still above the data in
all cases. The limiters leave room for empiricism; benchmark data are needed to settle model
constants. However, data on k are not ideal for that purpose. Eddy viscosity models are meant
for mean flow prediction, so mean flow data should be the basis for calibration.

An example of the effect of timescale limiting on mean heat transfer is provided in
figure 3, from Medic and Durbin (2002). This figure shows heat transfer to a blade in a

5
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Figure 2. Kinetic energy on the stagnation line of a bluff body. (a) Baseline k–ε model; (b) k–ε

with timescale limit; (c) k–ε with strain-dependent Cµ; (d) v2– f with timescale limit. Symbols
are data from Bearman (1972).
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Figure 3. Heat transfer coefficient (a) and turbulent intensity
√

2k/3/U in percentage (b and c).
In (a), - - - is the native k–ω model and — is k–ω with the bound (11).
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linear turbine cascade. The development of turbulent intensity in the blade passage is shown
by the lower panels. Turbulent intensity is defined locally as

√
k/U (x). Both numerator and

denominator increase in strongly accelerated flow, but it is known from experiment and theory
that the ratio decreases. Without limiting the rate of energy production, the k–ω model predicts
a substantial increase of the ratio; hence it is in error. When the timescale is bounded as in
equation (11), a qualitatively correct behavior is obtained. The uppermost panel of figure 3
illustrates the effect on heat transfer. Excessive energy production leads to excessive heat
transfer. With the timescale bound imposed, agreement with data is improved.

3. Wall functions revisited

The wall function is a time-honored, pragmatic device. Its virtues are to reduce the number
of grid points in a computational analysis and to avoid the need to solve stiff, discretized
equations in the near-wall region. At high Reynolds number, the viscous wall layer is
extremely thin. A very fine mesh is needed to resolve it.

A wall function should not be understood as a separate formulation that is patched onto
the turbulence model. The wall function and the solution to the turbulent transport model
should merge seamlessly. In practice, the wall function is a boundary condition rather than an
overlap law, but its concept is of an overlap. In that conception, the wall function represents
the inner region and the turbulence model represents the outer region. They have a common
region of validity. The switch from wall function to turbulence model can occur anywhere
within that overlap region.

To accomplish the aim of smooth mitering, the wall function can be formulated as an
equilibrium solution to the full transport model. Sufficiently close to the wall the equilibrium
simplifications will be accurate. Near-wall equilibration provides a basis for a consistent
formulation.

Although wall functions have a reputation for being a frequently inaccurate patch, in
fact they are based on classical notions that underlie our understanding of turbulent boundary
layers. In theory, two regions can be delimited in the turbulent boundary layer, the ‘law of the
wall’ and the ‘law of the wake’. The former is of universal character; the latter is geometry-
dependent. The law of the wall applies in a thin layer next to the surface. Universality of the
wall layer implies that variables scaled on ‘+’ units will collapse, independently of geometry
or pressure gradient.

Thus, the mean velocity, tangential to the surface, is written as

U = u∗F(y+), (12)

where y+ = yu∗/ν. Dependence on the particulars of the flow enter implicitly through the
friction velocity, u∗ ≡

√
τw/ρ, where τw is the surface shear stress.

The wall layer can be characterized as a turbulent Couette layer—that is, as a layer of
constant stress: τ = τw = ρu2

∗
. If an eddy viscosity is invoked for the Reynolds shear stress,

then the constant total stress is obtained from the sum of molecular and eddy viscosity:

−uv + ν∂yU = (νT + ν)∂yU.

The universal function in equation (12) is found by equating this to u2
∗
:

U+ =

∫ y+

0

dy+

1 + ν+
T

. (13)

Given eddy viscosity distribution, ν+
T (y+), equation (13) provides the mean velocity.

7
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From time to time, it has been proposed to treat the wall layer as a Couette–Poiseulle
flow—that is, as a linear stress layer (Craft et al 2002; Knopp et al 2006; Popovac and Hanjalic
2007). For instance, if the right side of the thin-layer momentum equation

∂τ

∂y
=

DU

Dt
−

dP

dx

is treated as a constant, Ca , then τ = τw + Ca y. With this, equation (13) becomes

U+ =

∫ y+

0

(1 + αy+)dy+

1 + ν+
T

, (14)

where α is a non-dimensional acceleration parameter. Stratford’s half-power law is recovered
when α is large and non-dimensional variables are rescaled on α (Townsend 1976). An
aside: it can be shown that the k–ε model does not have a solution for the half-power law
U ∼ (Ca y)1/2.

Commonly, wall functions are restricted to large y+ within the law of the wall layer
(and α = 0). If y+ & 40, then further theoretical reasoning shows that the velocity assumes
a logarithmic form

U+ =
1

κ
log(y+) + B, (15)

where κ = 0.41 is von Karman’s constant, and the additive constant B is about 5.1. In practice,
this is rearranged as a friction law

u∗ = κU (1)/[log(y(1)u∗/ν) + κ B] (16)

in terms of computational data at the wall adjacent node, y(1). In a finite-volume formulation,
τw = ρu2

∗
provides the momentum flux on the wall face; in a finite difference approach, u∗

determines the normal derivative of velocity, as in ∂yU = u∗/κy(1).
To avoid ill-posedness as u∗ changes sign, the boundary conditions on turbulence

variables are usually expressed in terms of the velocity scale, uk ≡ (k
√

Cµ)1/2. They assume
the form (Launder and Spalding 1974)

∂U

∂y
=

τw

ρκuk y(1)
, ε =

u3
k

κy(1)
,

∂k

∂y
= 0. (17)

But it is not necessary to apply the wall function in the log layer. Equation (16) can be
cast generally as

u∗ = U (1)/[F(y+(1)]

for any point within the wall layer, via equation (12).
Various methods have been proposed to extend the validity of wall functions to y+ . 40

in the interest of more flexible meshing. Perhaps the simplest proposal is the scalable wall
function of Vieser et al (2002). They replace y+ by max(y+, 11) and apply a conventional wall
function at this point. This constrains the lowest grid point to lie above the wall. It implies
that the geometry is distorted such that the mesh lies above the viscous layer.

Other approaches accept that the mesh is defined by the true geometry and modify the
wall function to accommodate low values of y+. For instance, Launder and Spalding (1974)
proposed the interpolation formula

y+ = U+ + e−κ B

(
eκU+ − 1 − κU+ −

1

2
(κU+)

2
−

1

6
(κU+)

3

)
(18)

8
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valid from the wall to the top of the log layer. Equation (18) can be solved, in place of the log
law, for u∗.

Conditions (17) for the turbulence variables might be extended to low y+ as follows.
Given that the near-wall region is a constant stress layer, the total non-dimensional stress is
(1 + νT +)∂y+U+ = 1. From this

νT + = ∂y+/∂U+ − 1 = κe−κ B

(
eκU+ − 1 − κU+ −

1

2
(κU+)

2

)
, (19)

where νT + = νT /ν. Formula (19) provides a boundary condition on CµkT = νT . For instance,
if k is known, it gives the boundary value of ω = k/(ννT +) or of ε = Cµk2/(ννT +) in the k–ω

and k–ε models. Commonly, the condition ∂yk = 0 on k is retained—even though it is not
valid below y+ = 40. If the k found with this (incorrect) boundary condition on k is combined
with equation (19) to provide a boundary condition on ω (or ε) in the viscous wall layer, they
would ensure a suitable eddy viscosity, albeit both k and ε would differ from their observed
near-wall behavior.

Formula (15) avoids the need to specify ν+
T ; however, it places a severe constraint on

computational grids. In the wall function method, the first computational node is above the
wall, say at y+(1). Between the wall and y+(1), the universal law of the wall is invoked. For
the log law (15) to be obtained, the first grid point must be sufficiently far from the wall. In
general, a grid will not meet this; indeed, the condition that the first node be far enough from
the wall is a constraint that the near-wall mesh should be sufficiently coarse—for instance, if
y+(1) = 40 is a cell center, then y+(2) = 3y+(1) = 120. Such a coarse grid is contrary to the
conditions for numerical accuracy.

The general notion of a wall function does not imply coarseness of the grid. The first
grid point can lie at any y+(1) within the universal wall layer. It can be quite near the surface.
Specifications of F(y+) that are valid at any y+ in the wall layer have been available for
several decades. They are in the form either of interpolations, such as 18, between the log
law and the linear, viscous sublayer profile: U+ = y+, y+ → 0; or of a switch between log and
linear profiles at y+ ≈ 11. However, turbulence variables have been treated in an inconsistent
manner. For instance, the log-layer condition ∂yk = 0 has been applied below the log layer,
where it is erroneous.

The mean velocity is provided by equation (13). For the turbulence variables, Vieser
et al (2002) and Popovac and Hanjalic (2007) propose interpolation functions between the
viscous, v, and outer, o regions of the wall layer. Vieser et al (2002) construct the universal
function as

φ =

√
φ2

v + φ2
o .

Popovac and Hanjalic (2007) use

φ = e−0φv + e−1/0φo, 0 =
0.01y4

+

1 + 5y+
,

where φ is the variable being interpolated. For the ε boundary condition,

εv = 2νk/y2 and εo = C3/4
µ k3/2/κy.

Knopp et al (2006) follow the same approach for interpolating the ω boundary condition.
They use

ω = 0(ωv + ωo) + (1 − 0)(ω1.2
v + ω1.2

o )1/1.2, 0 = tanh[y4
+/104]

9
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Figure 4. Velocity, eddy-viscosity profiles; profiles of k and ω in a flat plate boundary layer.
Legend cites the y+ matching point.

with

ωv = 6ν/βω y2 and ωo = u∗/
√

βkκy.

The βs are model constants.
The interpolation function provides values at the first computational node next to the wall.

If an interpolation function is invoked for ε or ω, equation (19) provides a condition for k that
is consistent with the mean velocity interpolation. Again, as noted below (19), the resulting
values of k and ε will not agree with data, but the eddy viscosity will be acceptable.

A properly formulated wall function should match smoothly all variables of the outer
model. Then there is hope for grid insensitivity. Kalitzin et al (2005) advocate a method based
on a look-up table. It is assumed that the turbulence model can be integrated with the wall on
a fine grid, and the desire is to develop a technique to use coarse near-wall grids. It is also
assumed that the Reynolds number is high enough for a law of the wall function (12) to be
valid.

First, the turbulence model is solved on a fine grid in a boundary layer. Then the portion
lying within the universal layer is saved to create a table that can be interpolated to provide a
boundary value at y+(1). For instance, a solution to the k–ω model is normalized as

k = u2
∗

g(y+), ω = u2
∗
/ν h(y+)

with g and h stored in tabular form. This approach provides consistency: a solution to the
model is being used both above and below y+(1). One can hope that the match will be nearly
seamless. Another way of looking at the notion that the formulation should be insensitive to
the matching point is to view a properly posed wall function as providing an approximation
to a full solution that would be obtained by accurately integrating with the wall.

That idea is tested in figure 4 for the k–ω model. The various curves are for the various
y+(1) values indicated in the legend. The solid curve is an accurate integration with the wall.
Ideally, the curves should lie atop one another. The curves are in close proximity. However,
as y+(1) increases, the grid becomes coarser, and the discretization error increases. With
that qualification, the wall function methodology appears to be successful. More elaborate
testing (Kalitzin et al 2005) confirms the insensitivity to the matching point.

10
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Figure 5. Skin friction: ZPG (upper) boundary layer and separation bubble (lower). The legend
cites y+ at the matching point.

Strong non-equilibrium violates the conditions for near-wall universality. In principle,
wall functions are not justified for separated boundary layers. In practice, they can be used,
and are. Figure 5 shows skin friction coefficients for two cases; the upper one is a flat plate and
the lower one is a plate with pressure gradient-driven separation and reattachment. Curiously,
the latter shows better insensitivity to the location of y+(1) than the former. In the recirculation
region, y+ ≡ yu∗/ν is reduced because u∗ is small. That might be part of the reason for a better
result; but the case with y+(1) = 111 upstream still has y+(1) ≈ 50 in the separated region.

A method termed analytical wall functions is proposed in Craft et al (2002). Rather
than specifying a condition for k in the wall adjacent cell, they solve its transport
equation. They divide the wall adjacent cell into two layers: the viscous region and the log-
law region. Formulae for P and ε are integrated over this cell to provide source terms in
the k-equation. The mean flow is obtained from equation (14) where α is found from the
momentum equation in the wall adjacent cell. The eddy viscosity is assumed to vanish below
yv
∗

= 10.8 and to increase linearly above that. Instead of standard + variables, these authors
use yv

∗
≡

√
k(1)y/ν.

4. Surface roughness

Surface roughness can substantially affect transfer of momentum or heat between the fluid and
wall. The viscous sublayer adjacent to a smooth wall presents a high impedance to transport
to and from the surface; protrusions that penetrate the viscous layer increase transfer rates
between the surface and the fluid. They do so by generating irregular, turbulent motion and
by extending the surface into the flow.

11
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Again, the emphasis of recent work has been on formulations of roughness effects that are
useable on any mesh, irrespective of refinement, or coarseness, near the surface. The starting
point is usually the log law for rough walls.

Intuitively, asperities on the surface will increase the drag force exerted by the wall on
the flow. In a channel flow with a fixed pressure drop, the increased drag would decrease
the mass flux and the centerline velocity. The additive constant, B, in equation (15) should
decrease correspondingly. Let r be a scale for the size of the roughness. Assume that it is of
the random, sandgrain, variety. The log law can be rewritten with y normalized by r and with
r+ defined as ru∗/ν:

U = u∗

(
1

κ
log[y/r ] +

1

κ
log(r+) + Br (r+)

)
= u∗

(
1

κ
log[y/r ] +B

)
. (20)

The function Br (r+) represents the alteration of the additive constant by roughness.
The new additive term B ≡ κ−1 log(r+) + Br (r+) has been measured experimentally.

Ligrani and Moffat (1986) fit the curve

Br = B, r+ < 2.25

Br = ξ(8.5 − log(r+)/κ − B) + B, 2.256 r+ 6 90

Br = 8.5 −
1

κ
log(r+), r+ > 90

 (21)

through data for sandgrain roughness. This formula is broken into three regions: effectively
smooth, transitionally rough and fully rough. The interpolation function ξ in the second line
of (21) is

ξ = sin
(

(π/2) log[r+/2.25]

log[90/2.25]

)
,

which increases from 0 to 1 through the transitionally rough range 2.256 r+ 6 90. The
particular functional form for Br (r+) depends on the nature of the roughness. The changes
are primarily in the intermediate range of r+ (Ligrani and Moffat 1986).

In the analytical wall function approach, νT = 0 within the viscous wall layer y < yν
∗
.

Craft et al (2002) set yν
∗

= 10.8 above smooth walls. Suga et al (2006) extended this to rough
walls by moving the start of the viscous wall layer below 10.8 to

yν
∗

= max[10.8(1 − (h∗/70)m), 0], (22)

where h∗ is the non-dimensional roughness height and

m = max
[
(0.5 − 0.4(h∗/70)0.7), (1 − 0.79(h∗/70)−0.28] .

Variables with subscript * are normalized by
√

k/ν: in the log layer, y+ = y∗/
√

3.3.
Formula (22) causes the viscous sublayer to vanish over a fully rough wall, h∗ = 70.

However, Apsley (2007) found that yν
+ must be allowed to go negative, and proposed the

formula

yν
+ =


B −

1

κ
log κ, if B −

1

κ
log κ > 0,

1

κ
(1 − eκ(B−(log κ)/κ), if B −

1

κ
log κ 6 0.

(23)

This is in connection with a wall function method.

12
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Figure 6. Calibration of the rough wall k–ω model (24).

Durbin et al (2001) and Seo (2004) propose a method that is applicable to models that
are integrated to the wall, without wall functions. Consider the k–ω model. The boundary
condition on a smooth wall is

k = 0, ω =
6ν

βy2
1

.

When the wall is fully rough, the log layer is considered to extend to the surface, with no
viscous sublayer (cf equations (22) and (21)). In the log layer, the solution to the k–ω model
varies as

k =
u2

∗√
Cµ

, ω =
u∗

κy
√

Cµ

.

The k–ω wall roughness model interpolates between these. The following functions were
used in the model of Seo (2004):

k =
u2

+√
Cµ

min
[

1,
( r+

90

)2
]

, ω =
6ν

β(y1 + yw)2
(24)

in which

yw =
ν

u+

[
6κ

√
Cµ

β
z+

0

]1/2

.

The eddy viscosity is now

νT = k/ω.

r+ is the geometric roughness and z0 is a hydrodynamic roughness length. The latter is
regarded as a property of the model. It is calibrated so as to reproduce the log-layer
displacement B. Figure 6 shows the curve of z0 versus r+ that was obtained by reproducing
the log-law displacement (21).

Wilcox (1993) proposed the simple roughness boundary condition

ω =
u2

∗

ν
Sr (25)

13
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Figure 7. Eddy viscosity near a rough wall: — (Seo 2004); - - - (Wilcox 1993), r+ = 47;
•, r+ = 265; . . . , r+ = 0.

with

Sr =


(

50

r+

)2

, 56 r+ 6 25,

100

r+
, r+ > 25.

The boundary condition for k remains k = 0. Hence, the eddy viscosity k/ω vanishes, even
at a rough wall. That is contrary to other models, such as formulae (22) and (23), for which
the eddy viscosity is not zero under fully rough conditions. Figure 7 compares eddy viscosity
profiles from Seo and Wilcox’s rough wall k–ω models. For r+ = 47, they differ only near the
wall. However, for r+ = 265 they differ considerably. Despite this large difference, Seo (2004)
obtained very similar predictions for a number of test cases. Figure 8 contains velocity profiles
at various locations along a ramp covered by sandpaper—a test case presented in Durbin
et al (2001). The predictions of all models are virtually indistinguishable. In this experiment,
the inlet roughness height is r+ = 360, although it decreases to zero as the flow separates.

5. Elliptic relaxation method

The elliptic relaxation method was motivated by a desire to incorporate the suppression
of mixing in consequence of wall blocking. The extent of the wall effect is determined
by the turbulence length scale and by the wall geometry. The general form of the elliptic
equation is

L2
∇

2 f − f = − fh, (26)

where L is the turbulence scale and fh is a source which depends on the particular type
of model. The origin of equation (26) is discussed in Durbin and Pettersson-Reif (2001).
It is shown there how correct near-wall behavior is obtained through this method, even
when the homogeneous redistribution model, fh , would be quite wrong. Proposals that
modify the elliptic operator are discussed by Manceau et al (2001). They are motivated mostly
by the behavior of f within the logarithmic layer. If fh is a good model in the log layer, then

14
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Figure 8. Velocity profiles in flow over a rough ramp. — (Seo 2004); - - - (Wilcox 1993);
. . . (Durbin et al 2001); •, experiment.

the elliptic term L2
∇

2 f should vanish there. Despite the modifications described in Manceau
et al (2001), most applications of elliptic relaxation invoke the Helmholtz operator, as in
equation (26).

Although elliptic relaxation can be applied to tensoral, Reynolds stress transport models,
that would require f to be a tensor, with components fi j . Recent applications have been
restricted to scalar formulations. These include elliptic blending (Manceau 2005; Manceau
and Hanjalic 2002), the ζ– f (Hanjalic et al 2005), φ– f (Laurence et al 2004) and v2

−

f/k − ω (Jones and Acharya 2005) models.
Elliptic blending invokes the f -equation

L2
∇

2 f − f = −1. (27)

Manceau and Hanjalic (2002) proposed to use f 2 as a blending function for Reynolds stress
transport models. It functions as an interpolation of Reynolds stress source terms between the
wall and the main flow. The boundary conditions are f = 0 at the wall and f → 1 at infinity.
For instance, the pressure strain is written as

5i j = f 25h
i j + (1 − f 2)5w

i j .

This is a source term in Reynolds stress transport equations. A unit vector n̂ = ∇ f/|∇ f |

replaces the wall normal, which appears in earlier formulations of 5w
i j . A full model can be

found in Thielen et al (2004). Choi and Kim (2006) developed an elliptic blending model for
heat transfer.

15
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The same equation (27) was invoked with f playing the role of damping function for
the k–ε model (Rahman and Siikonen 2007). Similar use of this equation has been made by
others (Langer et al 2005). Note that a change of dependent variable to f̃ = f − 1 will convert
equation (27) to a homogeneous equation, with correspondingly altered boundary conditions.
The equation is sometimes used in this alternative form.

However, in scalar models the f -equation is used differently from elliptic blending.
The role of f is based on the physical notion that wall blocking is an elliptic effect. The
wall per se enters via boundary conditions. The source term for the f -equation (26) is formed
as an analogy to pressure–strain models: that is, it is a sum of slow and rapid parts:

f h
= 5slow + 5rapid.

The simplest form, based on the isotropization of production (IP) Reynolds stress closure
model (Durbin and Pettersson-Reif 2001), is

5slow = C1(2/3 − ζ )/T , 5rapid = C2 P/k (28)

in which ζ = v2/k. Hanjalic et al (2005) invoke the Speziale, Sarkhar and Gatski (SSG)
model, and prescribe

5slow = (C1 + C2P/ε)(2/3 − ζ )/T , 5rapid = 0 (29)

with C1 = 0.4 and C2 = 0.65.
If one accepts that second moment closures contain more physics than scalar models, then

this provides a link to increased physics in the model. Alternatively, one can argue that v2/k
(or ζ ) provides a measure of anisotropy. Near a boundary that anisotropy is critical to turbulent
transport. Thus the eddy viscosity νT = Cµv2T is rewritten as νT = CµζkT , where T is the
turbulence timescale—T = k/ε far from boundaries. In this sense, transport is suppressed by
anisotropy (ζ < 2/3); physically, the normal component of intensity is blocked by walls.

The f -equation was originally used as a source term in the v2 equation of the v2– f
model. Laurence et al (2004) and Hanjalic et al (2005) proposed that the dependent variable
be changed to v2/k, denoting it as φ and ζ , respectively. Their transport equation is

Dζ

Dt
= f −

ζ

k
P + ∇ ·

[(
ν +

νt

σζ

)
∇ζ

]
. (30)

On a smooth wall v2 = 0 = ζ = φ. Laurence et al (2004) invoke this same equation with the
dependent variable renamed as φ and the additional source term

−
2

k

νT

σk
∇φ · ∇k

on the right side. Their f -equation contains the negative of this on its left side. The motive
for replacing v2 by φ or ζ is to make the boundary condition on f less stiff than in the v2– f
model. For the φ– f model, at walls f = 0; for the ζ– f model,

f → −2νζ/y2, y → 0.

These compare with the v2– f condition

f → −20ν2v2/εy4,
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although the v2– f model can be altered to make f = 0 the correct boundary condition (Wu
and Durbin 2000). The 1/y4 coefficient causes numerical stiffness when v2 and f -equations
are solved as a segregated pair; the stiffness is ameliorated by coupling them. The robustness
of the φ– f and ζ– f models is demonstrated in Laurence et al (2004) and Hanjalic et al (2005).

The eddy viscosity is νT = Cµv2T = CµζkT with Cµ = 0.22. The argument leading to
formula (11) now implies

T̃ = min

[
k

ε
,

α
√

6Cµζ |S|

]
. (31)

Returning to the theme of section 2, a physical bound is imposed near walls. T is a correlation
timescale. Although turbulent stresses vanish at a no-slip boundary, the correlation time does
not. Theory and data show that it becomes proportional to the Kolmogoroff scale (ν/ε)1/2,
which is finite at walls. Hence, equation (31) is further bounded as

T = max[T̃ , CT (ν/ε)1/2],

where CT = 6 is an empirical value.
These models are solved in conjunction with the standard k–ε transport equations. k and

ε provide velocity, time and length scales that are needed in the f , v2, φ and ζ formulations.
Jones and Acharya (2005) developed a version of the v2– f model in which these scales are
determined by the k–ω transport equations. They commented on the robustness of their model
and demonstrated good predictions of the flow and surface heat transfer produced by film
cooling jets.
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