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Chapter 142

Notation and Mathematical43

Preliminaries44

When presenting the fluid flow equations, as well as throughout this manuscript, we make use45

of the following vector/tensor notation and mathematical operators.46

47

From now on we are going to refer to a zero rank tensor as a scalar. A first rank tensor will48

be referred as a vector. And a second rank tensor will associated to a tensor. Vectors will49

be denoted by minuscule bold letters, whereas tensors by majuscule bold letters or bold greek50

symbols. Scalars will be represented by normal letters or normal greek symbols.51

52

Hereafter, the vector is almost always a column vector and a row vector is expressed as a53

transpose of a column vector indicated by the superscript T. Vectors a = a1i + a2j + a3k and54

b = b1i + b2j + b3k are expressed as follows55

a =

a1

a2

a3

 , b =

b1b2
b3

 ,
the transpose of the column vectors a and b are represented as follows56

aT = [a1, a2, a3] , bT = [b1, b2, b3] ,

The magnitude of a vector a is defined as |a| = (a · a)
1
2 = (a1

2 + a2
2 + a3

2)
1
2 .57

58

A tensor is represented as follows59

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , AT =

A11 A21 A31

A12 A22 A32

A13 A23 A33

 .
If A = AT, the tensor is said to be symmetric, that is, its components are symmetric about the60

diagonal.61

62

The dot product of two vectors a and b (also known as scalar product of two vectors), yields to63

a scalar quantity and is given by64

aT · b = a · b =
[
a1, a2, a3

] b1b2
b3

 = a1b1 + a2b2 + a3b3.
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The dot product of two vectors a and b is commutative (a · b = b · a).65

66

The cross product of two vectors a × b (also known as vector product of two vectors), is the67

vector normal to the plane of a and b, and is defined by the determinant68

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 ,
a × b and b × a result in two different vectors, pointing in opposite directions with the same69

magnitude (a× b = −b× a).70

71

The tensor product (also known as dyadic product) of two vectors a⊗b produces a second rank72

tensor and is defined by73

a⊗ b = abT = ab =

a1

a2

a3

 [b1, b2, b3] =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 ,
notice that unlike the dot product, the tensor product of two vectors is non-commutative74

(a⊗ b 6= b⊗ a).75

76

The double dot product (:) of two second rank tensors A and B (also known as scalar product77

of two second rank tensors)78

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
produces a scalar φ = A:B, which can be evaluated as the sum of the 9 products of the tensor79

components80

φ = AijBij =A11B11 +A12B12 +A13B13+

A21B21 +A22B22 +A23B23+

A31B31 +A32B32 +A33B33.

The double dot product of two second rank tensors is commutative (A:B = B:A) .81

82

The dot product of a tensor A and a vector a, produces a vector b = A · a, whose components83

are84

b = bi = Aijaj =

A11a1 +A12a2 +A13a3

A21a1 +A22a2 +A23a3

A31a1 +A32a2 +A33a3

 .
The dot product of a non symmetric tensor A and a vector a is non-commutative (Aijaj 6= aiAij).85

If the tensor A is symmetric then b = a ·A = AT · a.86

87

The dot product of two tensors A and B (also known as single dot product or tensor product of88

two tensors), produces another second rank tensor C = A ·B, whose components are evaluated89

as90

C = Cij = AikBkj
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The dot product of two tensors is non-commutative (A ·B 6= B ·A).91

92

Note that our definitions of the tensor-vector dot product and tensor-tensor dot-product are93

consistent with the ordinary rules of matrix algebra.94

95

The trace of a tensor A is a scalar, evaluated by summing its diagonal components96

tr A = Atr = A11 +A22 +A33.

The gradient operator ∇ (read as nabla) in Cartesian coordinates is defined by97

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T

.

The gradient operator ∇ when applied to a scalar quantity φ(x, y, z) (where x,y, z are the spatial98

coordinates), yields to a vector defined by99

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)T

.

The notation grad for ∇ may be also used as the gradient operator, so that, grad φ ≡ ∇φ. The100

gradient of a vector a produces a second rank tensor101

grada = ∇a =


∂a1

∂x

∂a1

∂y

∂a1

∂z
∂a2

∂x

∂a2

∂y

∂a2

∂z
∂a3

∂x

∂a3

∂y

∂a3

∂z

 .
The gradient can operate on any tensor field to produce a tensor field that is one rank higher.102

103

The dot product of vector a and the operator ∇ is called the divergence (div) of the vector field;104

the output of this operator is a scalar and is defined as105

div a = ∇ · a =
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z
.

The divergence of a tensor A, div A or ∇ ·A, yields to a vector and is defined as106

divA = ∇ ·A =


∂A11

∂x
+
∂A12

∂y
+
∂A13

∂z
∂A21

∂x
+
∂A22

∂y
+
∂A23

∂z
∂A31

∂x
+
∂A32

∂y
+
∂A33

∂z

 .
The divergence can operate on any tensor field of rank 1 and above to produce a tensor that is107

one rank lower.108

109

The curl operator of a vector a produces another vector. This operator is defined by110

curl a = ∇× a =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
a1 a2 a3

∣∣∣∣∣∣∣∣ =

(
∂a3

∂y
− ∂a2

∂z
,
∂a1

∂z
− ∂a3

∂x
,
∂a2

∂x
− ∂a1

∂y

)T

.

The divergence of the gradient is called the Laplacian operator and is denoted by ∆. The111

Laplacian of a scalar φ(x, y, z) yields to another scalar field and is defined as112
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div grad φ = ∇ · ∇φ = ∇2φ = ∆φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.

The Laplacian of a vector field a is defined as the diverge of the gradient just like in the scalar113

case, but in this case it yields to a vector field, such that114

div grada = ∇ · ∇a = ∇2a = ∆a =


∂2a1

∂x2
+
∂2a1

∂y2
+
∂2a1

∂z2

∂2a2

∂x2
+
∂2a2

∂y2
+
∂2a2

∂z2

∂2a3

∂x2
+
∂2a3

∂y2
+
∂2a3

∂z2

 .

The Laplacian transforms a tensor field into another tensor field of the same rank.115

116

As previously discussed, a tensor is said to be symmetric if its components are symmetric about117

the diagonal, i.e., A = AT. A tensor is said to be skew or anti-symmetric if A = −AT which118

intuitively implies that A11 = A22 = A33 = 0. Every second rank tensor can be decomposed119

into symmetric and skew parts by120

A =
1

2

(
A + AT

)
︸ ︷︷ ︸
symmetric

+
1

2

(
A−AT

)
︸ ︷︷ ︸

skew

= symm A + skew A.

The jacobian matrix of a vector field a is given by121 
∂a1

∂x

∂a1

∂y

∂a1

∂z
∂a2

∂x

∂a2

∂y

∂a2

∂z
∂a3

∂x

∂a3

∂y

∂a3

∂z

 .
The identity matrix or unit matrix, is a matrix whose diagonal entries are all 1 and the other122

entries are 0. The 3× 3 identity matrix I is given by123

I =

1 0 0
0 1 0
0 0 1

 .
Hereafter we present some useful vector/tensor identities:124

• ∇ · ∇ × a = 0.125

• ∇ ×∇α = 0.126

• ∇(αβ) = α∇β + β∇α.127

• ∇(αa) = a⊗∇α+ α∇a.128

• (∇a)a = ∇a · a
2
− a×∇× a.129

• a · (∇a)a = a · ∇a · a
2
.130

• (a⊗ b) · ∇a = b · ∇a · a
2
.131

• ∇(a · b) = b · ∇a + a · ∇b + a×∇× b + b×∇× a.132

5



• ∇ · (αa) = α∇ · a + a · ∇α.133

• ∇ · ∇a = ∇(∇ · a)−∇× (∇× a).134

• ∇ · (a× b) = b · ∇ × a− a · ∇ × b.135

• ∇ · (a⊗ b) = b · ∇a + a∇ · b.136

• a · ∇ · (b⊗ c) = (a · b)∇ · c + (a⊗ b) · ∇b.137

• ∇ · (αA) = A∇α+ α∇ ·A.138

• ∇ · (Ab) = (∇ ·AT) · b + AT · ∇b.139

• ∇ × (αa) = α∇× a +∇α× a.140

• ∇ × (a× b) = a∇ · b + b · ∇a− (∇ · a)b− a · ∇b.141

• a · (Ab) = A · (a⊗ b).142

• a · (Ab) = (Aa) · b if A is symmetric.143

• ab:A = a · (b ·A)144

• A:ab = (A · a) · b145

where α and β are scalars; a, b and c are vectors; and A is a tensor.146
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Chapter 2147

Governing Equations of Fluid148

Dynamics149

The starting point of any numerical simulation are the governing equations of the physics of the150

problem to be solved. Hereafter, we present the governing equations of fluid dynamics and their151

simplification for the case of an incompressible viscous flow.152

153

The equations governing the motion of a fluid can be derived from the statements of the conser-154

vation of mass, momentum, and energy [1, 2, 3]. In the most general form, the fluid motion is155

governed by the time-dependent three-dimensional compressible Navier-Stokes system of equa-156

tions. For a viscous Newtonian, isotropic fluid in the absence of external forces, mass diffusion,157

finite-rate chemical reactions, and external heat addition; the conservation form of the Navier-158

Stokes system of equations in compact differential form and in primitive variable formulation159

(ρ, u, v, w, et) can be written as160

∂ρ

∂t
+∇ · (ρu) = 0,

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + Su

∂ (ρet)

∂t
+∇ · (ρetu) = ∇ · q −∇ · (pu) + τ :∇u + Se

(2.0.1)

where τ is the viscous stress tensor and is given by161

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 . (2.0.2)

For the sake of completeness, let us recall that in the conservation form (or divergence form)162

[4], the momentum equation can be written as163

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ , (2.0.3)

where the tensor product of the vectors uu in eq. 2.0.3 is equal to164

uu =

uv
w

 [u v w
]

=

u2 uv uw
vu v2 vw
wu wv w2

 . (2.0.4)

Let us recall the following identity165

7



∇ · (uu) = u · ∇u + u(∇ · u), (2.0.5)

and from the divergence-free constraint (∇ · u = 0) it follows that u(∇ · u) is zero, therefore166

∇ · (uu) = u · ∇u. Henceforth, the conservation form of the momentum equation eq. 2.0.3 is167

equivalent to168

ρ

(
∂ (u)

∂t
+ u · ∇ (u)

)
= −∇p+∇ · τ ,

which is the non-conservation form or advective/convective form of the momentum equation.169

170

The set of equations 2.0.1 can be rewritten in vector form as follows171

∂q

∂t
+
∂ei
∂x

+
∂fi
∂y

+
∂gi

∂z
=
∂ev
∂x

+
∂fv
∂y

+
∂gv

∂z
, (2.0.6)

where q is the vector of the conserved flow variables given by172

q =


ρ
ρu
ρv
ρw
ρet

 , (2.0.7)

and ei, fi and gi are the vectors containing the inviscid fluxes (or convective fluxes) in the x, y173

and z directions and are given by174

ei =


ρu

ρu2 + p
ρuv
ρuw

(ρet + p)u

 , fi =


ρv
ρvu

ρv2 + p
ρvw

(ρet + p) v

 , gi =


ρw
ρwu
ρwv

ρw2 + p
(ρet + p)w

 , (2.0.8)

where u is the velocity vector containing the u, v and w velocity components in the x, y and175

z directions and p, ρ and et are the pressure, density and total energy per unit mass respectively.176

177

The vectors ev, fv and gv contain the viscous fluxes (or diffusive fluxes) in the x, y and z178

directions and are defined as follows179

ev =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx

 ,

fv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz − qy

 ,

gv =


0
τzx
τzy
τzz

uτzx + vτzy + wτzz − qz

 ,

(2.0.9)

8



where the heat fluxes qx, qy and qz are given by the Fourier’s law of heat conduction as follows180

qx = −k ∂T
∂x

,

qy = −k ∂T
∂y

,

qz = −k ∂T
∂z

,

(2.0.10)

and the viscous stresses τxx, τyy, τzz, τxy, τyx, τxz, τzx, τyz and τzy, are given by the following181

relationships182

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

τzz =
2

3
µ

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
,

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
,

(2.0.11)

In equations 2.0.9-2.0.11, T is the temperature, k is the thermal conductivity and µ is the molec-183

ular viscosity. In order to derive the viscous stresses in eq. 2.0.11 the Stokes hypothesis was184

used [5, 1, 6, 7].185

186

Examining closely equations 2.0.6-2.0.11 and counting the number of equations and unknowns,187

we clearly see that we have five equations in terms of seven unknown flow field variables u, v,188

w, ρ, p, T , and et. It is obvious that two additional equations are required to close the system.189

These two additional equations can be obtained by determining relationships that exist between190

the thermodynamic variables (p, ρ, T, ei) through the assumption of thermodynamic equilibrium.191

Relations of this type are known as equations of state, and they provide a mathematical rela-192

tionship between two or more state functions (thermodynamic variables). Choosing the specific193

internal energy ei and the density ρ as the two independent thermodynamic variables, then194

equations of state of the form195

p = p (ei, ρ) , T = T (ei, ρ) , (2.0.12)

are required. For most problems in aerodynamics and gasdynamics, it is generally reasonable196

to assume that the gas behaves as a perfect gas (a perfect gas is defined as a gas whose inter-197

molecular forces are negligible), i.e.,198

p = ρRgT, (2.0.13)

where Rg is the specific gas constant and is equal to 287 m2

s2K
for air. Assuming also that the199

working gas behaves as a calorically perfect gas (a calorically perfect gas is defined as a perfect200

gas with constant specific heats), then the following relations hold201

ei = cvT, h = cpT, γ =
cp
cv
, cv =

Rg
γ − 1

, cp =
γRg
γ − 1

, (2.0.14)

9



where γ is the ratio of specific heats and is equal to 1.4 for air, cv the specific heat at constant202

volume, cp the specific heat at constant pressure and h is the enthalpy. By using eq. 2.0.13 and203

eq. 2.0.14, we obtain the following relations for pressure p and temperature T in the form of eq.204

2.0.12205

p = (γ − 1) ρei, T =
p

ρRg
=

(γ − 1) ei
Rg

, (2.0.15)

where the specific internal energy per unit mass ei = p/(γ − 1)ρ is related to the total energy206

per unit mass et by the following relationship,207

et = ei +
1

2

(
u2 + v2 + w2

)
. (2.0.16)

In our discussion, it is also necessary to relate the transport properties (µ, k) to the thermody-208

namic variables. Then, the molecular viscosity µ is computed using Sutherland’s formula209

µ =
C1T

3
2

(T + C2)
, (2.0.17)

where for the case of the air, the constants are C1 = 1.458× 10−6 kg

ms
√
K

and C2 = 110.4K.210

211

The thermal conductivity, k, of the fluid is determined from the Prandtl number (Pr = 0.72 for air)212

which in general is assumed to be constant and is equal to213

k =
cpµ

Pr
, (2.0.18)

where cp and µ are given by equations eq. 2.0.14 and eq. 2.0.17 respectively.214

215

When dealing with high speed compressible flows, it is also useful to introduce the Mach number.216

The mach number is a non dimensional parameter that measures the speed of the gas motion217

in relation to the speed of sound a,218

a =

[(
∂p

∂ρ

)
S

] 1
2

=

√
γ
p

ρ
=
√
γRgT . (2.0.19)

Then the Mach number M∞ is given by,219

M∞ =
U∞
a

=
U∞√
γ(p/ρ)

=
U∞√
γRgT

(2.0.20)

Another useful non dimensional quantity is the Reynold’s number, this quantity represents the220

ratio of inertia forces to viscous forces and is given by,221

Re =
ρ∞U∞L

µ∞
, (2.0.21)

where the subscript ∞ denotes freestream conditions, L is a reference length (such as the chord222

of an airfoil or the length of a vehicle), and µ∞ is computed using the freestream temperature223

T∞ according to eq 2.0.17.224

225

The first row in eq. 2.0.6 corresponds to the continuity equation. Likewise, the second, third226

and fourth rows are the momentum equations, while the fifth row is the energy equation in terms227

of total energy per unit mass.228

229

The Navier-Stokes system of equations 2.0.6-2.0.9, is a coupled system of nonlinear partial differ-230

ential equations (PDE), and hence is very difficult to solve analytically. In fact, to the date there231
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is no general closed-form solution to this system of equations; hence we look for an approximate232

solution of this system of equation in a given domain D with prescribed boundary conditions233

∂D and given initial conditions Dq̊.234

235

If in eq. 2.0.6 we set the viscous fluxes ev = 0, fv = 0 and gv = 0, we get the Euler system of236

equations, which governs inviscid fluid flow. The Euler system of equations is a set of hyperbolic237

equations while the Navier-Stokes system of equations is a mixed set of hyperbolic (in the inviscid238

region) and parabolic (in the viscous region) equations. Therefore, time marching algorithms239

are used to advance the solution in time using discrete time steps.240

2.1 Simplification of the Navier-Stokes System of Equations: In-241

compressible Viscous Flow Case242

Equations 2.0.6-2.0.9, with an appropriate equation of state and boundary and initial conditions,243

governs the unsteady three-dimensional motion of a viscous Newtonian, compressible fluid. In244

many applications the fluid density may be assumed to be constant. This is true not only for245

liquids, whose compressibility may be neglected, but also for gases if the Mach number is below246

0.3 [2, 8]; such flows are said to be incompressible. If the flow is also isothermal, the viscosity is247

also constant. In this case, the governing equations written in compact conservation differential248

form and in primitive variable formulation (u, v, w, p) reduce to the following set249

∇ · (u) = 0,

∂u

∂t
+∇ · (uu) =

−∇p
ρ

+ ν∇2u,
(2.1.1)

where ν is the kinematic viscosity and is equal ν = µ/ρ. The previous set of equations in250

expanded three-dimensional Cartesian coordinates is written as follows251

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
,

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
.

(2.1.2)

Equation 2.1.2 governs the unsteady three-dimensional motion of a viscous, incompressible and252

isothermal flow. This simplification is generally not of a great value, as the equations are253

hardly any simpler to solve. However, the computing effort may be much smaller than for the254

full equations (due to the reduction of the unknowns and the fact that the energy equation is255

decoupled from the system of equation), which is a justification for such a simplification. The256

set of equations 2.1.1 can be rewritten in vector form as follow257

∂q

∂t
+
∂ei
∂x

+
∂fi
∂y

+
∂gi

∂z
=
∂ev
∂x

+
∂fv
∂y

+
∂gv

∂z
, (2.1.3)

where q is the vector containing the primitive variables and is given by258
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q =


0
u
v
w

 , (2.1.4)

and ei, fi and gi are the vectors containing the inviscid fluxes (or convective fluxes) in the x, y259

and z directions and are given by260

ei =


u

u2 + p
uv
uw

 , fi =


v
vu

v2 + p
vw

 , gi =


w
wu
wv

w2 + p

 . (2.1.5)

The viscous fluxes (or diffusive fluxes) in the x, y and z directions, ev, fv and gv respectively,261

are defined as follows262

ev =


0
τxx
τxy
τxz

 , fv =


0
τyx
τyy
τyz

 , gv =


0
τzx
τzy
τzz

 . (2.1.6)

Since we made the assumptions of an incompressible flow, appropriate expressions for shear263

stresses must be used, these expressions are given as follows264

τxx = 2µ
∂u

∂x
,

τyy = 2µ
∂v

∂y
,

τzz = 2µ
∂w

∂z
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)
,

τyz = τzy = µ

(
∂w

∂y
+
∂v

∂z

)
,

(2.1.7)

where we used Stokes hypothesis [5, 1, 6, 7] in order to derive the viscous stresses in eq. 2.1.7.265

266

Equation 2.1.7 can be written in compact vector form as τ = 2µD, where D = 1
2

[
∇u +∇uT

]
267

is the symmetric tensor of the velocity gradient tensor ∇u = [D + S], and where D represents268

the strain-rate tensor and S represents the spin tensor (vorticity). The skew or anti-symmetric269

part of the velocity gradient tensor is given by S = 1
2

[
∇u−∇uT

]
.270

271

Equations 2.1.3-2.1.6, are the governing equations of an incompressible, isothermal, viscous flow272

written in conservation form. Hence, we look for an approximate solution of this set of equations273

in a given domain D with prescribed boundary conditions ∂D and given initial conditions Dq̊.274

12



Chapter 3275

Turbulence Modeling276

All flows encountered in engineering applications, from simple ones to complex three-dimensional277

ones, become unstable above a certain Reynolds number (Re = UL/ν where U and L are char-278

acteristic velocity and length scales of the mean flow and ν is the kinematic viscosity). At low279

Reynolds numbers flows are laminar, but as we increase the Reynolds number, flows are observed280

to become turbulent. Turbulent flows are characterize by a chaotic and random state of motion281

in which the velocity and pressure change continuously on a broad range of time and length282

scales (from the smallest turbulent eddies characterized by Kolmogorov micro-scales, to the flow283

features comparable with the size of the geometry).284

285

There are several possible approaches for the numerical simulation of turbulent flows. The first286

and most intuitive one, is by directly numerically solving the governing equations over the whole287

range of turbulent scales (temporal and spatial). This deterministic approach is referred as Di-288

rect Numerical Simulation (DNS) [9, 10, 11, 12, 13, 14]. In DNS, a fine enough mesh and small289

enough time-step size must be used so that all of the turbulent scales are resolved. Although290

some simple problems have been solved using DNS, it is not possible to tackle industrial prob-291

lems due to the prohibitive computer cost imposed by the mesh and time-step requirements.292

Hence, this approach is mainly used for benchmarking, research and academic applications.293

294

Another approach used to model turbulent flows is Large Eddy Simulation (LES) [15, 16, 9, 13,295

14]. Here, large scale turbulent structures are directly simulated whereas the small turbulent296

scales are filtered out and modeled by turbulence models called subgrid scale models. According297

to turbulence theory, small scale eddies are more uniform and have more or less common char-298

acteristics; therefore, modeling small scale turbulence appears more appropriate, rather than299

resolving it. The computational cost of LES is less than that of DNS, since the small scale300

turbulence is now modeled, hence the grid spacing is much larger than the Kolmogorov length301

scale. In LES, as the mesh gets finer, the number of scales that require modeling becomes302

smaller, thus approaching DNS. Thanks to the advances in computing hardware and parallel303

algorithms, the use of LES for industrial problems is becoming practical.304

305

Today’s workhorse for industrial and research turbulence modeling applications is the Reynolds306

Averaged Navier-Stokes (RANS) approach [17, 18, 13, 12, 19, 14]. In this approach, the RANS307

equations are derived by decomposing the flow variables of the governing equations into time-308

mean (obtained over an appropriate time interval) and fluctuating part, and then time averaging309

the entire equations. Time averaging the governing equations gives rise to new terms, these new310

quantities must be related to the mean flow variables through turbulence models. This pro-311

cess introduces further assumptions and approximations. The turbulence models are primarily312

developed based on experimental data obtained from relatively simple flows under controlled313

conditions. This in turn limits the range of applicability of the turbulence models. That is, no314
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single RANS turbulence model is capable of providing accurate solutions over a wide range of315

flow conditions and geometries.316

317

Two types of averaging are presently used, the classical Reynolds averaging which gives rise318

to the RANS equations and the mass-weighted averaging or Favre averaging which is used to319

derive the Favre-Averaged Navier-Stokes equations (FANS) for compressible flows applications.320

In both statistical approaches, all the turbulent scales are modeled, hence mesh and time-step321

requirements are not as restrictive as in LES or DNS. Hereafter, we limit our discussion to322

Reynolds averaging.323

324

3.1 Reynolds Averaging325

The starting point for deriving the RANS equations is the Reynolds decomposition [17, 3, 13,326

12, 19, 14] of the flow variables of the governing equations. This decomposition is accomplished327

by representing the instantaneous flow quantity φ by the sum of a mean value part (denoted by328

a bar over the variable, as in φ̄) and a time-dependent fluctuating part (denoted by a prime, as329

in φ′). This concept is illustrated in figure 3.1 and is mathematically expressed as follows,330

φ(x, t) = φ̄(x)︸︷︷︸
mean value

+ φ′(x, t)︸ ︷︷ ︸
fluctuating part

. (3.1.1)

Figure 3.1: Time averaging for a statistically steady turbulent flow (left) and time averaging for an
unsteady turbulent flow (right).

Hereafter, x is the vector containing the Cartesian coordinates x, y, and z in N = 3 (where331

N is equal to the number of spatial dimensions). A key observation in eq. 3.1.1 is that φ̄ is332

independent of time, implying that any equation deriving for computing this quantity must be333

steady state.334

335

In eq. 3.1.1, the mean value φ̄ is obtained by an averaging procedure. There are three different336

forms of the Reynolds averaging:337

1. Time averaging: appropriate for stationary turbulence, i.e., statically steady turbulence338

or a turbulent flow that, on average, does not vary with time.339

φ̄(x) = lim
T→+∞

1

T

∫ t+T

t
φ(x, t) dt, (3.1.2)
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here t is the time and T is the averaging interval. This interval must be large compared340

to the typical time scales of the fluctuations; thus, we are interested in the limit T →∞.341

As a consequence, φ̄ does not vary in time, but only in space.342

2. Spatial averaging: appropriate for homogeneous turbulence.343

φ̄(t) = lim
CV→∞

1

CV

∫
CV
φ(x, t) dCV, (3.1.3)

with CV being a control volume. In this case, φ̄ is uniform in space, but it is allowed to344

vary in time.345

3. Ensemble averaging: appropriate for unsteady turbulence.346

φ̄(x, t) = lim
N→∞

1

N

N∑
i=1

φ̄(x, t), (3.1.4)

where N , is the number of experiments of the ensemble and must be large enough to347

eliminate the effects of fluctuations. This type of averaging can be applied to any flow348

(steady or unsteady). Here, the mean value φ̄ is a function of both time and space (as349

illustrated in figure 3.1).350

We use the term Reynolds averaging to refer to any of these averaging processes, applying any of351

them to the governing equations yields to the Reynolds-Averaged Navier-Stokes (RANS) equa-352

tions. In cases where the turbulent flow is both stationary and homogeneous, all three averaging353

are equivalent. This is called the ergodic hypothesis.354

355

If the mean flow φ̄ varies slowly in time, we should use an unsteady approach (URANS); then,356

equations eq. 3.1.1 and eq. 3.1.2 can be modified as357

φ(x, t) = φ̄(x, t) + φ′(x, t), (3.1.5)

and358

φ̄(x, t) =
1

T

∫ t+T

t
φ(x, t)dt, T1 << T << T2, (3.1.6)

where T1 and T2 are the characteristics time scales of the fluctuations and the slow variations359

in the flow, respectively (as illustrated in figure 3.1). In eq. 3.1.6 the time scales should differ360

by several order of magnitude, but in engineering applications very few unsteady flows satisfy361

this condition. In general, the mean and fluctuating components are correlated, i.e., the time362

average of their product is non-vanishing. For such problems, ensemble averaging is necessary.363

An alternative approach to URANS is LES, which is out of the scope of this discussion but the364

interested reader should refer to references [15, 16, 9, 13, 14].365

366

Before deriving the RANS equations, we recall the following averaging rules,367
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φ̄′ = 0,

¯̄φ = φ̄,

φ̄ = φ̄+ φ′ = φ̄,

φ+ ϕ = φ̄+ ϕ̄ ,

φ̄ϕ = φ̄ϕ̄ = φ̄ϕ̄,

φ̄ϕ′ = φ̄ϕ̄′ = 0,

φϕ = (φ̄+ φ′)(ϕ̄+ ϕ′)

= φ̄ϕ̄+ φ̄ϕ′ + ϕ̄φ′ + φ′ϕ′

= φ̄ϕ̄+ φ̄ϕ′ + ϕ̄φ′ + φ′ϕ′

= φ̄ϕ̄+ φ′ϕ′,

φ′2 6= 0,

φ′ϕ′ 6= 0,

∂φ

∂x
=
∂φ̄

∂x
,∫

φds =

∫
φ̄ds

(3.1.7)

3.2 Incompressible Reynolds Averaged Navier-Stokes Equations368

Let us recall the Reynolds decomposition for the flow variables of the incompressible Navier-369

Stokes equations eq. 2.1.1,370

u(x, t) = ū(x) + u′(x, t),

p(x, t) = p̄(x) + p′(x, t),
(3.2.1)

we now substitute eq. 3.2.1 into the incompressible Navier-Stokes equations eq. 2.1.1 and we371

obtain for the continuity equation372

∇ · (u) = ∇ ·
(
ū + u′

)
= ∇ · (ū) +∇ ·

(
u′
)

= 0. (3.2.2)

Then, time averaging this equation results in373

∇ · (ū) +∇ ·
(
ū′
)

= 0, (3.2.3)

and using the averaging rules stated in eq. 3.1.7, it follows that374

∇ · (ū) = 0. (3.2.4)

We next consider the momentum equation of the incompressible Navier-Stokes equations eq.375

2.1.1. We begin by substituting eq. 3.2.1 into eq. 2.1.1 in order to obtain,376

∂ (ū + u′)

∂t
+∇ ·

((
ū + u′

) (
ū + u′

))
=
−∇ (p̄+ p′)

ρ
+ ν∇2

(
ū + u′

)
, (3.2.5)

by time averaging eq. 3.2.5, expanding and applying the rules set in eq. 3.1.7, we obtain377

16



∂ū

∂t
+∇ ·

(
ūū + u′u′

)
=
−∇p̄
ρ

+ ν∇2ū. (3.2.6)

or after rearranging,378

∂ū

∂t
+∇ · (ūū) =

−∇p̄
ρ

+ ν∇2ū−∇ ·
(
u′u′

)
(3.2.7)

By setting τR = −ρ
(
u′u′

)
in equation 3.2.7, and grouping with equation 3.2.4, we obtain the379

following set of equations,380

∇ · (ū) = 0,

∂ū

∂t
+∇ · (ūū) =

−∇p̄
ρ

+ ν∇2ū +
1

ρ
∇ · τR.

(3.2.8)

The set of equations eq. 3.2.8 are the incompressible Reynolds-Averaged Navier-Stokes (RANS)381

equations. Notice that in eq. 3.2.8 we have retained the term ∂ū/∂t, despite the fact that382

ū is independent of time for statistically steady turbulence, hence this expression is equal to383

zero when time average. In practice, in all modern formulations of the RANS equations the384

time derivative term is included. In references [17, 13, 3, 10, 20], a few arguments justifying385

the retention of this term are discussed. For not statistically stationary turbulence or unsteady386

turbulence, a time-dependent RANS or unsteady RANS (URANS) approach is required, an387

URANS computation simply requires retaining the time derivative term ∂ū/∂t in the computa-388

tion. For unsteady turbulence, ensemble average is recommended and often necessary.389

390

The incompressible Reynolds-Averaged Navier-Stokes (RANS) equations eq. 3.2.8 are identical391

to the incompressible Navier-Stokes equations eq. 2.1.1 with the exception of the additional term392

τR = −ρ
(
u′u′

)
, where τR is the so-called Reynolds-stress tensor (notice that by doing a check393

of dimensions, it will show that τR it is not actually a stress; it must be multiplied by the density394

ρ, as it is done consistently in this manuscript, in order to have dimensions corresponding to the395

stresses. On the other hand, since we are assuming that the flow is incompressible, that is, ρ is396

constant, we might set the density equal to unity, thus obtaining implicit dimensional correctness.397

Moreover, because we typically use kinematic viscosity ν, there is an implied division by ρ in398

any case). The Reynolds-stress tensor represents the transfer of momentum due to turbulent399

fluctuations. In 3D, the Reynolds-stress tensor τR consists of nine components400

τR = −ρ
(
u′u′

)
= −

ρu′u′ ρu′v′ ρu′w′

ρv′u′ ρv′v′ ρv′w′

ρw′u′ ρw′v′ ρw′w′

 . (3.2.9)

However, since u, v and w can be interchanged, the Reynolds-stress tensor forms a symmetrical401

second order tensor containing only six independent components. By inspecting the set of402

equations eq. 3.2.8 we can count ten unknowns, namely; three components of the velocity (u, v,403

w), the pressure (p), and six components of the Reynolds stress
(
τR = −ρ

(
u′u′

))
, in terms of404

four equations, hence the system is not closed. The fundamental problem of turbulence modeling405

based on the Reynolds-averaged Navier-Stokes equations is to find six additional relations in406

order to close the system of equations eq. 3.2.8.407

3.3 Boussinesq Approximation408

The Reynolds averaged approach to turbulence modeling requires that the Reynolds stresses409

in eq. 3.2.8 to be appropriately modeled (however, it is possible to derive its own governing410
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equations, but it is much simpler to model this term). A common approach uses the Boussinesq411

hypothesis to relate the Reynolds stresses τR to the mean velocity gradients such that412

τR = −ρ
(
u′u′

)
= 2µT D̄

R − 2

3
ρkI = µT

[
∇u + (∇u)T

]
− 2

3
ρkI, (3.3.1)

where D̄
R

denotes the Reynolds-averaged strain-rate tensor (1
2(∇u + ∇uT)), I is the identity413

matrix, µT is called the turbulent eddy viscosity, and414

k =
1

2
u′ · u′, (3.3.2)

is the turbulent kinetic energy. Basically, we assume that this fluctuating stress is proportional415

to the gradient of the average quantities (similarly to Newtonian flows). The second term in416

eq. 3.3.1 (2
3ρkI), is added in order for the Boussinesq approximation to be valid when traced,417

that is, the trace of the right hand side in eq. 3.3.1 must be equal to that of the left hand side418

(−ρ(u′u′)tr = −2ρk), hence it is consistent with the definition of turbulent kinetic energy (eq.419

3.3.2). In order to evaluate k, usually a governing equation for k is derived and solved, typically420

two-equations models include such an option.421

422

The turbulent eddy viscosity µT (in contrast to the molecular viscosity µ), is a property of the423

flow field and not a physical property of the fluid. The eddy viscosity concept was developed424

assuming that a relationship or analogy exists between molecular and turbulent viscosities. In425

spite of the theoretical weakness of the turbulent eddy viscosity concept, it does produce rea-426

sonable results for a large number of flows.427

428

The Boussinesq approximation reduces the turbulence modeling process from finding the six429

turbulent stress components τR to determining an appropriate value for the turbulent eddy430

viscosity µT .431

432

One final word of caution, the Boussinesq approximation discussed here, should not be associ-433

ated with the completely different concept of natural convection.434

435

3.4 Two-Equations Models. The k − ω Model436

In this section we present the widely used k − ω model. As might be inferred from the termi-437

nology (and the tittle of this section), it is a two-equation model. In its basic form it consist438

of a governing equation for the turbulent kinetic energy k, and a governing equation for the439

turbulent specific dissipation rate ω. Together, these two quantities provide velocity and length440

scales needed to directly find the value of the turbulent eddy viscosity µT at each point in a441

computational domain. The k − ω model has been modified over the years, new terms (such442

as production and dissipation terms) have been added to both the k and ω equations, which443

have improved the accuracy of the model. Because it has been tested more extensively than any444

other k − ω model, we present the Wilcox model [21].445

446

Eddy Viscosity447

448

µT =
ρk

ω
(3.4.1)

Turbulent Kinetic Energy449

450

ρ
∂k

∂t
+ ρ∇ · (ūk) = τR:∇ū− β∗ρkω +∇ · [(µ+ σ∗µT )∇k] (3.4.2)

18



Specific Dissipation Rate451

452

ρ
∂ω

∂t
+ ρ∇ · (ūω) = α

ω

k
τR:∇ū− βρω2 +∇ · [(µ+ σµT )∇ω] (3.4.3)

Closure Coefficients453

454

α =
5

9
, β =

3

40
, β∗ =

9

100
, σ =

1

2
, σ∗ =

1

2
(3.4.4)

Auxiliary Relations455

456

ε = β∗ωk and l =
k

1
2

ω
(3.4.5)

Equations eq. 3.2.8 and eq. 3.4.1-3.4.5, are the governing equations of an incompressible,457

isothermal, turbulent flow written in conservation form. Hence, we look for an approximate458

solution of this set of equations in a given domain D, with prescribed boundary conditions ∂D,459

and given initial conditions Dq̊.460
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Chapter 4461

Finite Volume Method Discretization462

The purpose of any discretization practice is to transform a set of partial differential equations463

(PDEs) into a corresponding system of discrete algebraic equations (DAEs). The solution of464

this system produces a set of values which correspond to the solution of the original equations at465

some predetermined locations in space and time, provided certain conditions are satisfied. The466

discretization process can be divided into two steps, namely; the discretization of the solution467

domain and the discretization of the governing equation.468

469

The discretization of the solution domain produces a numerical description of the computational470

domain (also known as mesh generation). The space is divided into a finite number of discrete471

regions, called control volumes (CVs) or cells. For transient simulations, the time interval is also472

split into a finite number of time steps. The governing equations discretization step altogether473

with the domain discretization, produces an appropriate transformation of the terms of the gov-474

erning equations into a system of discrete algebraic equations that can be solve using any direct475

or iterative method.476

477

In this section, we briefly presents the finite volume method (FVM) discretization, with the478

following considerations in mind:479

• The method is based on discretizing the integral form of the governing equations over each480

control volume of the discrete domain. The basic quantities, such as mass and momentum,481

will therefore be conserved at the discrete levels.482

• The method is applicable to both steady-state and transient calculations.483

• The method is applicable to any number of spatial dimensions (1D, 2D or 3D).484

• The control volumes can be of any shape. All dependent variables share the same control485

volume and are computed at the control volume centroid, which is usually called the486

collocated or non-staggered variable arrangement.487

• Systems of partial differential equations are treated in a segregated way, meaning that488

they are are solved one at a time in a sequential manner.489

The specific details of the solution domain discretization, system of equations discretization490

practices and implementation of the FVM are far beyond the scope of the present discussion.491

Hereafter, we give a brief description of the FVM method. For a detailed discussion, the inter-492

ested reader should refer to references [22, 3, 12, 23, 19, 24, 25].493

494
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4.1 Discretization of the Solution Domain495

Discretization of the solution domain produces a computational mesh on which the governing496

equations are solved (mesh generation stage). It also determines the positions of points in space497

and time where the solution will be computed. The procedure can be split into two parts: tem-498

poral discretization and spatial discretization.499

500

The temporal solution is simple obtained by marching in time from the prescribed initial condi-501

tions. For the discretization of time, it is therefore necessary to prescribe the size of the time-step502

that will be used during the calculation.503

504

The spatial discretization of the solution domain of the FVM method presented in this manuscript,505

requires a subdivision of the continuous domain into a finite number of discrete arbitrary con-506

trol volumes (CVs). In our discussion, the control volumes do not overlap, have a positive finite507

volume and completely fill the computational domain. Finally, all variables are computed at the508

centroid of the control volumes (collocated arrangement).509

510

Figure 4.1: Arbitrary polyhedral control volume VP . The control volume has a volume V and is con-
structed around a point P (control volume centroid), therefore the notation VP . The vector from the
centroid of the control volume VP (point P), to the centroid of the neighboring control volume VN (point
N), is defined as d. The face area vector Sf points outwards from the surface bounding VP and is normal
to the face. The control volume faces are labeled as f, which also denotes the face center.

A typical control volume is shown in figure 4.1. In this figure, the control volume VP is bounded511

by a set of flat faces and each face is shared with only one neighboring control volume. The512

shape of the control volume is not important for our discussion, for our purposes it is a general513

polyhedron, as shown in figure 4.1. The control volume faces in the discrete domain can be514

divided into two groups, namely; internal faces (between two control volumes) and boundary515

faces, which coincide with the boundaries of the domain. The face area vector Sf is constructed516

for each face in such a way that it points outwards from the control volume, is located at the517

face centroid, is normal to the face and has a magnitude equal to the area of the face (e.g., the518

shaded face in figure 4.1). Boundary face area vectors point outwards from the computational519

domain. In figure 4.1, the point P represents the centroid of the control volume VP and the520

point N represents the centroid of the neighbor control volume VN . The distance between the521
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point P and the point N is given by the vector d. For simplicity, all faces of the control volume522

will be marked with f, which also denotes the face centroid (see figure 4.1).523

524

A control volume VP , is constructed around a computational point P. The point P, by definition,525

is located at the centroid of the control volume such that its centroid is given by526 ∫
VP

(x− xP ) dV = 0. (4.1.1)

In a similar way, the centroid of the faces of the control volume VP is defined as527 ∫
Sf

(x− xf ) dS = 0. (4.1.2)

Finally, let us introduce the mean value theorem for the transported quantity φ over the control528

volume VP , such that529

φ =
1

VP

∫
VP

φ(x)dV. (4.1.3)

In the FVM method discussed in this manuscript, the centroid value φP of the control volume530

VP is represented by a piecewise constant profile. That is, we assume that the value of the531

transported quantity φ is computed and stored in the centroid of the control volume VP and532

that its value is equal to the mean value of φ inside the control volume,533

φP = φ =
1

VP

∫
VP

φ(x)dV. (4.1.4)

This approximation is exact if φ is constant or vary linearly.534

535

4.2 Discretization of the Transport Equation536

The general transport equation is used throughout this discussion to present the FVM discretiza-537

tion practices. All the equations described in sections 2 and 3 can be written in the form of538

the general transport equation over a given control volume VP (as the control volume shown in539

figure 4.1), as follows540 ∫
VP

∂ρφ

∂t
dV︸ ︷︷ ︸

temporal derivative

+

∫
VP

∇ · (ρuφ) dV︸ ︷︷ ︸
convective term

−
∫
VP

∇ · (ρΓφ∇φ) dV︸ ︷︷ ︸
diffusion term

=

∫
VP

Sφ (φ) dV︸ ︷︷ ︸
source term

. (4.2.1)

Here φ is the transported quantity, i.e., velocity, mass or turbulent energy and Γφ is the diffusion541

coefficient of the transported quantity. This is a second order equation since the diffusion542

term includes a second order derivative of φ in space. To represent this term with acceptable543

accuracy, the order of the discretization must be equal or higher than the order of the equation544

to be discretized. In the same order of ideas, to conform to this level of accuracy, temporal545

discretization must be of second order as well. As a consequence of these requirements, all546

dependent variables are assumed to vary linearly around the point P in space and instant t in547

time, such that548

φ(x) = φP + (x− xP ) · (∇φ)P where φP = φ(xP ). (4.2.2)

φ(t+ δt) = φt + δt

(
∂φ

∂t

)t
where φt = φ(t). (4.2.3)
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Equations 4.2.2 and 4.2.3 are obtained by using Taylor Series Expansion (TSE) around the nodal549

point P and time t, and truncating the series in such a way to obtain second order accurate550

approximations.551

552

A key theorem in the FVM method is the Gauss theorem (also know as the divergence or Ostro-553

gradsky’s theorem), which will be used throughout the discretization process in order to reduce554

the volume integrals in eq. 4.2.1 to their surface equivalents.555

556

The Gauss theorem states that the volume integral of the divergence of a vector field in a region557

inside a volume, is equal to the surface integral of the outward flux normal to the closed surface558

that bounds the volume. For a vector a, the Gauss theorem is given by,559

∫
V
∇ · adV =

∮
∂V

ndS · a,
(4.2.4)

where ∂V is the surface bounding the volume V and dS is an infinitesimal surface element with560

the normal n pointing outward of the surface ∂V . From now on, dS will be used as a shorthand561

for ndS.562

563

By using the Gauss theorem, we can write eq. 4.2.1 as follows564

∂

∂t

∫
VP

(ρφ) dV +

∮
∂VP

dS · (ρuφ)︸ ︷︷ ︸
convective flux

−
∮
∂VP

dS · (ρΓφ∇φ)︸ ︷︷ ︸
diffusive flux

=

∫
VP

Sφ (φ) dV. (4.2.5)

Equation 4.2.5 is a statement of conservation. It states that the rate of change of the transported565

quantity φ inside the control volume VP is equal to the rate of change of the convective and566

diffusive fluxes across the surface bounding the control volume VP , plus the net rate of creation567

of φ inside the control volume. Notice that so far we have not introduce any approximation,568

equation 4.2.5 is exact.569

570

In the next sections, each of the terms in eq. 4.2.1 will be treated separately, starting with the571

spatial discretization and concluding with the temporal discretization. By proceeding in this572

way we will be solving eq. 4.2.1 by using the Method of Lines (MOL). The main advantage of573

the MOL, is that it allows us to select numerical approximations of different accuracy for the574

spatial and temporal terms. Each term can be treated differently to yield to different accuracies.575

576

4.2.1 Approximation of Surface Integrals and Volume Integrals577

In eq. 4.2.5, a series of surface and volume integrals need to be evaluated over the control volume578

VP . These integrals must be approximated to at least second order accuracy in order to conform579

to the same level of accuracy of eq. 4.2.1.580

581

To calculate the surface integrals in eq. 4.2.5 we need to know the value of the transported quan-582

tity φ on the faces of the control volume. This information is not available, as the variables are583

calculated on the control volume centroid, so an approximation must be introduced at this stage.584

585

We now make a profile assumption about the transported quantity φ. We assume that φ varies586

linearly over each face f of the control volume VP , so that φ may be represented by its mean587

value at the face centroid f . We can now approximate the surface integral as a product of the588

transported quantities at the face center f (which is itself an approximation to the mean value589
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over the surface) and the face area. This approximation to the surface integral is known as the590

midpoint rule and is of second-order accuracy.591

592

It is worth mentioning that a wide range of choices exists with respect to the way of approximat-593

ing the surface integrals, e.g., midpoint rule, trapezoid rule, Simpson’s rule, Gauss quadrature.594

Here, we have used the simplest method, namely, the midpoint rule.595

596

For illustrating this approximation, let us consider the term under the divergence operator in597

eq. 4.2.4 and recalling that all faces are flat (that is, all vertexes that made up the face are598

contained in the same plane), eq. 4.2.4 can be converted into a discrete sum of integrals over all599

faces of the control volume VP as follows,600

∫
VP

∇ · adV =

∮
∂VP

dS · a,

=
∑
f

(∫
f
dS · a

)
,

≈
∑
f

(Sf · af ) =
∑
f

(Sf · af ) .

(4.2.6)

Using the same approximations and assumptions as in eq. 4.2.6, the surface integrals (or fluxes)601

in eq. 4.2.5 can be approximate as follow602

∮
∂VP

dS · (ρuφ)︸ ︷︷ ︸
convective flux

=
∑
f

∫
f
dS · (ρuφ)f ≈

∑
f

Sf ·
(
ρuφ

)
f

=
∑
f

Sf · (ρuφ)f . (4.2.7)

∮
∂VP

dS · (ρΓφ∇φ)︸ ︷︷ ︸
diffusive flux

=
∑
f

∫
f
dS · (ρΓφ∇φ)f ≈

∑
f

Sf ·
(
ρΓφ∇φ

)
f

=
∑
f

Sf · (ρΓφ∇φ)f . (4.2.8)

To approximate the volume integrals in eq. 4.2.5, we make similar assumptions as for the surface603

integrals, that is, φ varies linearly over the control volume and φ = φP . Integrating eq. 4.2.2604

over a control volume VP , it follows605

∫
VP

φ (x) dV =

∫
VP

[φP + (x− xP ) · (∇φ)P ] dV,

= φP

∫
VP

dV +

[∫
VP

(x− xP ) dV

]
· (∇φ)P ,

= φPVP .

(4.2.9)

The second integral in the RHS of eq. 4.2.9 is equal to zero because the point P is the centroid606

of the control volume (recall eq. 4.1.1). This quantity is easily calculated since all variables at607

the centroid of VP are known, no interpolation is needed. The above approximation becomes608

exact if φ is either constant or varies linearly within the control volume; otherwise, it is a second609

order approximation.610

611

Introducing equations 4.2.7-4.2.9 into eq. 4.2.5 we obtain,612

∂

∂t
ρφVP +

∑
f

Sf · (ρuφ)f −
∑
f

Sf · (ρΓφ∇φ)f = SφVP . (4.2.10)
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Let us recall that in our formulation of the FVM, all the variables are computed and stored at613

the control volumes centroid. The face values appearing in eq. 4.2.10; namely, the convective614

flux FC = S·(ρuφ) through the faces, and the diffusive flux FD = S·(ρΓφ∇φ) through the faces,615

have to be calculated by some form of interpolation from the centroid values of the neighboring616

control volumes located at both sides of the faces, this issue is discussed in the following section.617

618

4.2.2 Convective Term Spatial Discretization619

The discretization of the convective term in eq. 4.2.1 is obtained as in eq. 4.2.7, i.e.,620

∫
VP

∇ · (ρuφ) dV =
∑
f

Sf · (ρuφ)f ,

=
∑
f

Sf · (ρu)f φf ,

=
∑
f

F̊ φf ,

(4.2.11)

where F̊ in eq. 4.2.11 represents the mass flux through the face,621

F̊ = Sf · (ρu)f . (4.2.12)

Obviously, the flux F̊ depends on the face value of ρ and u, which can be calculated in a similar622

fashion to φf (as it will be described in the next section), with the caveat that the velocity field623

from which the fluxes are derived must be such that the continuity equation is obeyed, i.e.,624 ∫
VP

∇ · udV =

∮
∂VP

dS · u =
∑
f

(∫
f
dS · u

)
=
∑
f

Sf · (ρu)f =
∑
f

F̊ = 0. (4.2.13)

Before we continue with the formulation of the interpolation scheme or convection differencing625

scheme used to compute the face value of the transported quantity φ; it is necessary to examine626

the physical properties of the convection term. Irrespective of the distribution of the velocity in627

the domain, the convection term does not violate the bounds of φ given by its initial condition.628

If for example, φ initially varies between 0 and 1, the convection term will never produce values629

of φ that are lower than zero or higher that one. Considering the importance of boundedness630

in the transport of scalar properties, it is essential to preserve this property in the discretized631

form of the term.632

633

4.2.2.1 Convection Interpolation Schemes634

The role of the convection interpolation schemes is to determine the value of the transported635

quantity φ on the faces f of the control volume VP . Therefore, the value of φf is computed636

by using the values from the neighbors control volumes. Hereafter, we present two of the637

most widely used schemes. For a more detailed discussion on the subject and a presenta-638

tion of more convection interpolation schemes, the interested reader should refer to references639

[22, 3, 12, 23, 24, 25, 26].640

641

• Central Differencing (CD) scheme. In this scheme (also known as linear interpo-642

lation), linear variation of the dependent variables is assumed. The face centered value643
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is found from a simple weighted linear interpolation between the values of the control644

volumes at points P and N (see figure 4.2), such that645

φf = fxφP + (1− fx)φN . (4.2.14)

In eq. 4.2.14, the interpolation factor fx, is defined as the ratio of the distances fN and646

PN (refer to figure 4.2), i.e.,647

fx =
fN

PN
=
| xf − xN |
| d |

. (4.2.15)

A special case arises when the face is situated midway between the two neighboring control648

volumes VP and VN (uniform mesh), then the approximation reduces to an arithmetic649

average650

φf =
(φP + φN )

2
. (4.2.16)

This practice is second order accurate, which is consistent with the requirement of overall651

second order accuracy of the method. It has been noted however, that CD causes non-652

physical oscillations in the solution for convection dominated problems, thus violating the653

boundedness of the solution ([22, 3, 12, 23, 24, 25, 26]).654

655

Figure 4.2: Face interpolation. Central Differencing (CD) scheme.

• Upwind Differencing (UD) scheme. An alternative discretization scheme that guar-656

antees boundedness is the Upwind Differencing (UD). In this scheme, the face value is657

determined according to the direction of the flow (refer to figure 4.3),658

φf =

{
φf = φP for F̊ ≥ 0,

φf = φN for F̊ < 0.
(4.2.17)

This scheme guarantees the boundedness of the solution ([22, 3, 12, 23, 24, 25, 26]). Unfor-659

tunately, UD is at most first order accurate, hence it sacrifices the accuracy of the solution660

by implicitly introducing numerical diffusion.661

662

In order to circumvent the numerical diffusion inherent of UD and unboundedness of CD, linear663

combinations of UD and CD, second order variations of UD and bounded CD schemes has been664

developed in order to conform to the accuracy of the discretization and maintain the bounded-665

ness and stability of the solution [22, 3, 12, 23, 24, 25, 26].666

667
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Figure 4.3: Face interpolation. Upwind Differencing (UD) scheme. A) F̊ ≥ 0. B) F̊ < 0.

4.2.3 Diffusion Term Spatial Discretization668

Using a similar approach as before, the discretization of the diffusion term in eq. 4.2.1 is obtained669

as in eq. 4.2.8, i.e.,670

∫
VP

∇ · (ρΓφ∇φ) dV =
∑
f

Sf · (ρΓφ∇φ)f ,

=
∑
f

(ρΓφ)f Sf · (∇φ)f ,
(4.2.18)

4.2.3.1 The Interface Conductivity671

In eq. 4.2.18, Γφ is the diffusion coefficient. If Γφ is uniform, its value is the same for all672

control volumes. The following discussion is, of course, not relevant to situations where the Γφ673

is uniform. For situations of non-uniform Γφ, the interface conductivity (Γφ)f can be found by674

using linear interpolation between the control volumes VP and VN (see figure 4.4),675

Figure 4.4: Diffusion coefficient Γφ variation in neighboring control volumes.

(Γφ)f = fx(Γφ)P + (1− fx) (Γφ)N where fx =
fN

PN
=
| xf − xN |
| d |

. (4.2.19)

If the control volumes are uniform (the face f is midway between VP and VN ), then fx is equal676

to 0.5, and (Γφ)f is equal to the arithmetic mean.677

678
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However, the method above described suffers from the drawback that if (Γφ)N is equal to zero,679

it is expected that there would be no diffusive flux across face f . But in fact, eq. 4.2.19680

approximates a value for (Γφ)f , namely681

(Γφ)f = fx(Γφ)P , (4.2.20)

where we normally would have expected zero. Similarly, if (Γφ)N is much less that (Γφ)P , there682

would be relatively little resistance to the diffusive flux between VP and face f , compared to683

that between VN and the face f . In this case it would be expected that (Γφ)f would depend on684

(Γφ)N and inversely on fx.685

686

A better model for the variation of Γφ between control volumes is to use the harmonic mean,687

which is expressed as follows,688

689

(Γφ)f =
(Γφ)N (Γφ)P

fx(Γφ)P + (1− fx)(Γφ)N
where fx =

fN

PN
=
| xf − xN |
| d |

. (4.2.21)

This formulation gives (Γφ)f equal to zero if either (Γφ)N or (Γφ)P is zero. For (Γφ)P >> (Γφ)N690

gives691

(Γφ)f =
(Γφ)N
fx

, (4.2.22)

as required.692

693

4.2.3.2 Numerical Approximation of the Diffusive Term694

From the spatial discretization process of the diffusion terms a face gradient arise, namely (∇φ)f695

(see eq. 4.2.18). This gradient term can be computed as follows. If the mesh is orthogonal, i.e.,696

the vectors d and S in figure 4.5 are parallel, it is possible to use the following expression697

Figure 4.5: A) Vector d and S on an orthogonal mesh. B) Vector d and S on a non-orthogonal mesh.

S · (∇φ)f = |S|φN − φP
|d|

. (4.2.23)

By using eq. 4.2.23, the face gradient of φ can be calculated from the values of the control vol-698

umes straddling face f (VP and VN ), so basically we are computing the face gradient by using699

a central difference approximation of the first order derivative in the direction of the vector d.700

This method is second order accurate, but can only be used on orthogonal meshes.701

702
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An alternative to the previous method, would be to calculate the gradient of the control volumes703

at both sides of face f by using Gauss theorem, as follows704

(∇φ)P =
1

VP

∑
f

(Sfφf ) .
(4.2.24)

After computing the gradient of the neighboring control volumes VP and VN , we can find the705

face gradient by using weighted linear interpolation.706

707

Although both of the previously described methods are second order accurate; eq. 4.2.24 uses a708

larger computational stencil, which involves a larger truncation error and can lead to unbounded709

solutions. On the other hand, spite of the higher accuracy of eq. 4.2.23, it can not be used on710

non-orthogonal meshes.711

712

Unfortunately, mesh orthogonality is more an exception than a rule. In order to make use of713

the higher accuracy of eq. 4.2.23, the product S · (∇φ)f is split in two parts714

S · (∇φ)f = ∆⊥ · (∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ k · (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

. (4.2.25)

The two vectors introduced in eq. 4.2.25, namely; ∆⊥ and k, need to satisfy the following715

condition716

S = ∆⊥ + k. (4.2.26)

If the vector ∆⊥ is chosen to be parallel with d, this allows us to use eq. 4.2.23 on the orthogonal717

contribution in eq. 4.2.25, and the non-orthogonal contribution is computed by linearly interpo-718

lating the face gradient from the centroid gradients of the control volumes at both sides of face719

f , obtained by using eq. 4.2.24. The purpose of this decomposition is to limit the error intro-720

duced by the non-orthogonal contribution, while keeping the second order accuracy of eq. 4.2.23.721

722

To handle the mesh orthogonality decomposition within the constraints of eq. 4.2.26, let us723

study the following approaches ([26, 27, 12]), with k calculated from eq. 4.2.26:724

• Minimum correction approach (figure 4.6). This approach attempts to minimize the non-725

orthogonal contribution by making ∆⊥ and k orthogonal,726

∆⊥ =
d · S
d · d

d. (4.2.27)

In this approach, as the non-orthogonality increases, the contribution from φP and φN727

decreases.728

729

• Orthogonal correction approach (figure 4.7). This approach attempts to maintain the730

condition of orthogonality, irrespective of whether non-orthogonality exist,731

∆⊥ =
d

|d|
|S|. (4.2.28)
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Figure 4.6: Non-orthogonality treatment in the minimum correction approach.

Figure 4.7: Non-orthogonality treatment in the orthogonal correction approach.

• Over-relaxed approach (figure 4.8). In this approach, the contribution from φP and φN732

increases with the increase in non-orthogonality, such as733

∆⊥ =
d

d · S
|S|2. (4.2.29)

Figure 4.8: Non-orthogonality treatment in the over-relaxed approach.

All of the approaches described above are valid, but the so-called over-relaxed approach seems734

to be the most robust, stable and computationally efficient.735

736

Non-orthogonality adds numerical diffusion to the solution and reduces the accuracy of the nu-737

merical method. It also leads to unboundedness, which in turn can conduct to nonphysical738

results and/or divergence of the solution.739

740

The diffusion term, eq. 4.2.18, in its differential form exhibits a bounded behavior. Hence, its741

discretized form will preserve only on orthogonal meshes. The non-orthogonal correction poten-742

tially creates unboundedness, particularly if mesh non-orthogonality is high. If the preservation743

of boundedness is more important than accuracy, the non-orthogonal correction has got to be744

limited or completely discarded, thus violating the order of accuracy of the discretization. Hence745

30



care must be taken to keep mesh orthogonality within reasonable bounds.746

747

The final form of the discretized diffusion term is the same for all three approaches. Since eq.748

4.2.23 is used to compute the orthogonal contribution, meaning that d and ∆⊥ are parallel, it749

follows750

∆⊥ · (∇φ)f = |∆⊥|
φN − φP
|d|

, (4.2.30)

then eq. 4.2.25 can be written as751

S · (∇φ)f = |∆⊥|
φN − φP
|d|︸ ︷︷ ︸

orthogonal contribution

+ k · (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

. (4.2.31)

In eq. 4.2.31, the face interpolated value of ∇φ of the non-orthogonal contribution is calculated752

as follows753

(∇φ)f = fx (∇φ)P + (1− fx) (∇φ)N . (4.2.32)

where the gradient of the control volumes VP and VN are computed using eq. 4.2.24.754

755

4.2.4 Evaluation of Gradient Terms756

In the previous section, the face gradient arising from the discretization of the diffusion term757

was computed by using eq. 4.2.23 (central differencing) in the case of orthogonal meshes, and758

a correction was introduced to improve the accuracy of this face gradient in the case of non-759

orthogonal meshes (eq. 4.2.31).760

761

By means of the Gauss theorem, the gradient terms of the control volume VP arising from the762

discretization process or needed to compute the face gradients are calculated as follows,763

∫
VP

∇φdV =

∮
∂VP

dSφ,

(∇φ)P VP =
∑
f

(Sfφf ) ,

(∇φ)P =
1

VP

∑
f

(Sfφf ) ,

(4.2.33)

where the value φf on face f can be evaluated using the convection central differencing scheme.764

765

After computing the gradient of the control volumes at both sides of face f by using eq. 4.2.33,766

we can find the face gradient by using weighted linear interpolation,767

(∇φ)f = fx (∇φ)P + (1− fx) (∇φ)N , (4.2.34)

and dot it with S. This method is often referred to as Green-Gauss cell based gradient evaluation768

and is second order accurate.769

770

The Green-Gauss cell based gradient evaluation uses a computational stencil larger than the771

one used by eq. 4.2.23; hence the truncation error is larger and it might lead to oscillatory772
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solutions (unboundedness), which in turns can lead to nonphysical values of φ and divergence,773

The advantage of this method is that it can be used in orthogonal and non-orthogonal meshes;774

whereas eq. 4.2.23, can be only used in orthogonal meshes.775

776

Another alternative, is by evaluating the face gradient by using a Least-Square fit (LSF). This777

method assumes a linear variation of φ (which is consistent with the second order accuracy778

requirement), and evaluates the gradient error at each neighboring control volume N using the779

following expression,780

εN = φN − (φP + d · (∇φ)P ) . (4.2.35)

The objective now is to minimize the least-square error at P given by781

ε2P =
∑
N

w2
N ε

2
N , (4.2.36)

where the weighting function w is given by wN = 1/|d|. Then, the following expression is used782

to evaluate the gradient at the centroid of the control volume VP ,783

(∇φ)P =
∑
N

w2
NG−1 · d (φN − φP ) .

G =
∑
N

w2
Ndd.

(4.2.37)

After evaluation the neighbor control volumes gradient, they can be interpolated to the face.784

Note that G is a symmetric N×N matrix and can easily be inverted (where N is the number of785

spatial dimensions). This formulation leads to a second order accurate gradient approximation786

which is independent of the mesh topology.787

788

4.2.5 Source Terms Spatial Discretization789

All terms of the transport equation that cannot be written as convection, diffusion or temporal790

contributions are here loosely classified as source terms. The source term, Sφ(φ), can be a791

general function of φ. When deciding on the form of the discretization for the source term,792

its interaction with other terms in the equation and its influence on boundedness and accuracy793

should be examined. Some general comments on the treatment of source terms are given in794

references [22, 3, 12, 24, 25]. But in general and before the actual discretization, the source795

terms need to be linearized (for instance by using Picard’s method), such that,796

Sφ (φ) = Sc + Spφ, (4.2.38)

where Sc is the constant part of the source term and Sp depends on φ. For instance, if the source797

term is assume to be constant, eq. 4.2.38 reduces to Sφ(φ) = Su.798

799

Following eq. 4.2.9, the volume integral of the source terms is calculated as800 ∫
VP

Sφ (φ) dV = ScVP + SpVPφP . (4.2.39)
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4.2.6 Temporal Discretization801

In the previous sections, the discretization of the spatial terms was presented. Let us now802

consider the temporal derivative of the general transport eq. 4.2.1, integrating in time we get803

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφdV +

∫
VP

∇ · (ρuφ) dV −
∫
VP

∇ · (ρΓφ∇φ) dV

]
dt

=

∫ t+∆t

t

(∫
VP

Sφ (φ) dV

)
dt. (4.2.40)

Using equations 4.2.7-4.2.9 and 4.2.39, eq. 4.2.40 can be written as,804

∫ t+∆t

t

(∂ρφ
∂t

)
P

VP +
∑
f

Sf · (ρuφ)f −
∑
f

Sf · (ρΓφ∇φ)f

 dt
=

∫ t+∆t

t
(ScVP + SpVPφP ) dt. (4.2.41)

The above expression is usually called the semi-discretized form of the transport equation. It805

should be noted that the order of the temporal discretization of the transient term in eq. 4.2.41806

does not need to be the same as the order of the discretization of the spatial terms (convection,807

diffusion and source terms). Each term can be treated differently to yield different accuracies.808

As long as the individual terms are second order accurate, the overall accuracy of the solution809

will also be second order.810

4.2.6.1 Time Centered Crank-Nicolson811

Keeping in mind the assumed variation of φ with t (eq. 4.2.3), the temporal derivative and time812

integral can be calculated as follows,813

(
∂ρφ

∂t

)
P

=
ρnPφ

n
P − ρ

n−1
P φn−1

P

∆t
,∫ t+∆t

t
φ(t)dt =

1

2

(
φn−1
P + φn

)
∆t,

(4.2.42)

where φn = φ(t+ ∆t) and φn−1 = φ(t) represent the value of the dependent variable at the new814

and previous times respectively. Equation 4.2.42 provides the temporal derivative at a centered815

time between times n− 1 and n. Combining equations 4.2.41 and 4.2.42 and assuming that the816

density and diffusivity do not change in time, we get817

ρPφ
n
P − ρPφ

n−1
P

∆t
VP +

1

2

∑
f

F̊ φnf −
1

2

∑
f

(ρΓφ)f S · (∇φ)nf

+
1

2

∑
f

F̊ φn−1
f − 1

2

∑
f

(ρΓφ)f S · (∇φ)n−1
f

= SuVP +
1

2
SpVPφ

n
P +

1

2
SpVPφ

n−1
P . (4.2.43)

This form of temporal discretization is called Crank-Nicolson (CN) method and is second order818

accurate in time. It requires the face values of φ and ∇φ as well as the control volume values for819
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both old (n−1) and new (n) time levels. The face values are calculated from the control volume820

values on each side of the face, using the appropriate differencing scheme for the convection term821

and eq. 4.2.31 for the diffusion term. The CN method is unconditionally stable, but does not822

guarantee boundedness of the solution.823

824

4.2.6.2 Backward Differencing825

Since the variation of φ in time is assumed to be linear, eq. 4.2.42 provides a second order826

accurate representation of the time derivative at t + 1
2∆t only. Assuming the same value for827

the derivative at time t or t+ ∆t reduces the accuracy to first order. However, if the temporal828

derivative is discretized to second order, the whole discretization of the transport equation will829

be second order without the need to center the spatial terms in time. The scheme produced is830

called Backward Differencing (BD) and uses three time levels,831

φn−2 = φt−∆t,

φn−1 = φt,

φn = φt+∆t,

(4.2.44)

to calculate the temporal derivative. Expressing time level n− 2 as a Taylor expansion around832

n we get833

φn−2 = φn − 2

(
∂φ

∂t

)n
∆t+ 2

(
∂2φ

∂t2

)n
∆t2 +O

(
∆t3

)
, (4.2.45)

doing the same for time level n− 1 we obtain834

φn−1 = φn −
(
∂φ

∂t

)n
∆t+

1

2

(
∂2φ

∂t2

)n
∆t2 +O

(
∆t3

)
. (4.2.46)

Combining this equation with eq. 4.2.45 produces a second order approximation of the temporal835

derivative at the new time n as follows836 (
∂φ

∂t

)n
=

3
2φ

n − 2φn−1 + 1
2φ

n−2

∆t
. (4.2.47)

By neglecting the temporal variation in the face fluxes and derivatives, eq. 4.2.47 produces a837

fully implicit second order accurate discretization of the general transport equation,838

3
2ρPφ

n − 2ρPφ
n−1 + 1

2ρPφ
n−2

∆t
VP +

∑
f

F̊ φnf −
∑
f

(ρΓφ)f S · (∇φ)nf

= SuVP + SpVPφ
n
P . (4.2.48)

In the CN method, since the flux and non-orthogonal component of the diffusion term have to839

be evaluated using values at the new time n, it means that it requires inner-iterations during840

each time step. Coupled with the memory overhead due to the large number of stored variables,841

this implies that the CN method is expensive compared to the BD described before. The BD842

method, although cheaper and considerably easier to implement than the CN method, results in843

a truncation error larger than the latter. This is due to the assumed lack of temporal variation844

in face fluxes and derivatives. This error manifests itself as an added diffusion. However, if we845

restrict the Courant number (CFL) to a value below 1, the time step will tend to be very small,846

keeping temporal diffusion errors to a minimum.847

848
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4.2.7 System of Algebraic Equations849

At this point, after spatial and temporal discretization and by using equations 4.2.43 or 4.2.48850

in every control volume of the domain, a system of algebraic equations of the form851

[A] [φ] = [R] , (4.2.49)

is assembled. In eq. 4.2.49, [A] is a sparse matrix, with coefficients aP on the diagonal and852

aN off the diagonal, [φ] is the vector of φ for all control volumes and [R] is the source term853

vector. When this system is solved, it gives a new set of [φ] values (the solution for the new854

time step n). The coefficients aP include the contribution from all terms corresponding to [φnP ],855

that is, the temporal derivative, convection and diffusion terms, as well as the linear part of the856

source term. The coefficients aN include the corresponding terms for each of the neighboring857

control volumes. The summation is done over all the control volumes that share a face with858

the current control volume. The source term includes all terms that can be evaluated without859

knowing the new [φ], namely, the constant part of the source term and the parts of the temporal860

derivative, convection and diffusion terms corresponding to the old time level n−1. This system861

of equations can be solved either by direct or iterative methods. Direct methods give the solu-862

tion of the system of algebraic equations in a finite number of arithmetic operations. Iterative863

methods start with an initial guess and then continue to improve the current approximation864

of the solution until some solution tolerance is met. While direct methods are appropriate for865

small systems, the number of operations necessary to reach the solution raises with the number866

of equations squared, making them prohibitively expensive for large systems. Iterative methods867

are more economical, but they usually pose some requirements on the matrix.868

869

4.2.8 Boundary Conditions and Initial Conditions870

Each control volume provides one algebraic equation. Volume integrals are calculated in the871

same way for every interior control volume, but fluxes through control volume faces coinciding872

with the domain boundary require special treatment. These boundary fluxes must either be873

known, or be expressed as a combination of interior values and boundary data. Since they do874

not give additional equations, they should not introduce additional unknowns. Since there are875

no nodes outside the boundary, these approximations must be based on one-sided differences or876

extrapolations.877

878

Mainly, there are three boundary conditions which are used to close the system of equations,879

namely:880

• Zero-gradient boundary condition, defining the solution gradient to be zero. This condition881

is known as a Neumann type boundary condition.882

• Fixed-value boundary condition, defining a specified value of the solution. This is a Dirich-883

let type condition.884

• Symmetry boundary condition, treats the conservation variables as if the boundary was a885

mirror plane. This condition defines that the component of the solution gradient normal886

to this plane should be fixed to zero. The parallel components are extrapolated from the887

interior cells,888

For example, for an external aerodynamics simulation we might set the following boundary889

conditions. At the inflow boundary the velocity is defined as fixed-value and the pressure as890

zero-gradient. At the outflow boundary, the pressure is defined as a fixed-value and the velocity891

as a zero-gradient. If symmetry is a concern, symmetrical boundary conditions are used at fixed892
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boundaries. On a fixed wall, we need to ensure a zero flux through the wall or non penetrating893

condition. In the case of a no-slip wall, a fixed-value is specified for the velocity (u = 0) in894

combination with a zero-gradient for the pressure. If the boundary of the wall moves, then the895

proper boundary condition is a moving-wall velocity which introduces an extra velocity in order896

to maintain the no-slip condition and ensures a zero flux through the moving boundary.897

898

Together with suitable boundary conditions we need to impose initial conditions. The initial899

conditions determine the initial state of the governing equations at the initial time for an un-900

steady problem (usually at t = 0), or at the first iteration for an iterative scheme. The better901

the initial conditions are (the closer to the real solution), the stable and robust the numerical902

scheme will be and the faster a converged solution will be reached (locally or globally). A com-903

mon practice in external aerodynamics consist in setting the freestream values of velocity and904

pressure as initial conditions in the whole domain.905

906

4.3 Discretization Errors907

The discretization errors related to the FVM formulation previously presented, results mainly908

from two sources. The first source of errors is linked to the truncation errors associated with909

the second order approximation of the temporal and spatial terms (profile assumptions). And910

the second source of errors is related to mesh quality issues, where the most important quality911

metrics to consider are non-orthogonality and skewness. In this section, we are going to study912

the discretization errors due to the profile assumptions and mesh quality.913

914

4.3.1 Taylor Series Expansions915

Figure 4.9: Variation of φ(x) in a uniform mesh.
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Let us first introduce Taylor Series Expansions (TSE), which we are going to use to determine the916

order of the truncation error O of the various approximations presented in the previous sections.917

918

Consider the equally spaced mesh shown in figure 4.9, where ∆WP = ∆PE = ∆x. According to919

TSE, any continuous differentiable function can be expressed as an infinite sum of terms that920

are calculated from the values of the function derivatives at a single point. For φ(x) the TSE at921

φ(x+ ∆x) is equal to922

φ(x+ ∆x) = φ(x) + ∆x

(
∂φ

∂x

)
x

+
(∆x)2

2!

(
∂2φ

∂x2

)
x

+
(∆x)3

3!

(
∂3φ

∂x3

)
x

+HOT , (4.3.1)

where HOT are the higher order terms. Equation 4.3.1 can be written in a more compact way923

as924

φ(x+ ∆x) = φ(x) +
∞∑
n=1

(∆x)n

n!

∂nφ

∂xn
. (4.3.2)

Similarly, the TSE of φ(x) at φ(x−∆x) is equal to925

φ(x−∆x) = φ(x)−∆x

(
∂φ

∂x

)
P

+
1

2
∆x2

(
∂2φ

∂x2

)
x

− 1

3!
∆x3

(
∂3φ

∂x3

)
x

+HOT , (4.3.3)

which can be written in a more compact way as926

φ(x−∆x) = φ(x) +
∞∑
n=1

[
(−1)n

(∆x)n

n!

]
∂nφ

∂xn
. (4.3.4)

By using TSE, we can obtain approximate expressions for the first and higher derivatives at a927

point located in the direction x in terms of the function values at neighboring points.928

929

Let us consider the discrete points W , P and E shown in figure 4.9. The TSE of φE around930

point P (for P located midway between points W and E such that ∆WP = ∆PE = ∆x and931

∆wP = ∆Pe = ∆PE/2 = ∆x/2), is given by932

φE = φP + ∆x

(
∂φ

∂x

)
P

+
1

2!
∆x2

(
∂2φ

∂x2

)
P

+
1

3!
∆x3

(
∂3φ

∂x3

)
P

+HOT . (4.3.5)

Equation 4.3.5 may be rearranged to give933 (
∂φ

∂x

)
P

=
φE − φP

∆x
− 1

2!
∆x

(
∂2φ

∂x2

)
P

− 1

3!
∆x2

(
∂3φ

∂x3

)
P

+HOT . (4.3.6)

By summing all terms which involve the multiplying factor ∆x and higher and representing934

them as O(∆x), yields to935 (
∂φ

∂x

)
P

=
φE − φP

∆x
+O(∆x), (4.3.7)

which is an approximation for the first derivative of φ with respect to x at the discrete point936

P . The term O(∆x)n represents the truncation error of the approximation and determines the937

rate at which the error decreases as the spacing between the points is reduced. The smaller ∆x938

is, the smaller the error.939

940

Equation 4.3.7 is known as the forward difference approximation of the first derivative and is941

first order accurate because the truncation error is of order one or O(∆x).942

943
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In our notation we used discrete values φP , φE and φW , by using subscript index notation i to944

represent the discrete points (this notation might be more amenable to follow for some readers),945

eq. 4.3.7 is written as946 (
∂φ

∂x

)
i

=
φi+1 − φi

∆x
+O(∆x). (4.3.8)

Let us consider the TSE of φW around the discrete point P which is given by947

φW = φP −∆x

(
∂φ

∂x

)
P

+
1

2
∆x2

(
∂2φ

∂x2

)
P

− 1

3!
∆x3

(
∂3φ

∂x3

)
P

+HOT . (4.3.9)

Rearranging and grouping eq. 4.3.9 we obtain948 (
∂φ

∂x

)
P

=
φP − φW

∆x
+O(∆x), (4.3.10)

or949 (
∂φ

∂x

)
i

=
φi − φi−1

∆x
+O(∆x). (4.3.11)

Equation 4.3.10 (or eq. 4.3.11) is known as the backward difference approximation of the first950

derivative and is first order accurate because the truncation error is of order one or O(∆x).951

952

Now consider the TSE in eq. 4.3.5 and eq. 4.3.9, which are repeated here for convenience953

φE = φP + ∆x

(
∂φ

∂x

)
P

+
1

2!
∆x2

(
∂2φ

∂x2

)
P

+
1

3!
∆x3

(
∂3φ

∂x3

)
P

+HOT , (4.3.12)

and954

φW = φP −∆x

(
∂φ

∂x

)
P

+
1

2
∆x2

(
∂2φ

∂x2

)
P

− 1

3!
∆x3

(
∂3φ

∂x3

)
P

+HOT . (4.3.13)

Subtracting eq. 4.3.13 from eq. 4.3.12, we obtain955

φE − φW = 2∆x

(
∂φ

∂x

)
P

+ 2
1

3!
∆x3

(
∂3φ

∂x3

)
P

+HOT . (4.3.14)

Rearranging and grouping eq. 4.3.14, we obtain956 (
∂φ

∂x

)
P

=
φE − φW

2∆x
+O(∆x)2, (4.3.15)

or957 (
∂φ

∂x

)
i

=
φi+1 − φi−1

2∆x
+O(∆x)2. (4.3.16)

Equation 4.3.15 (or eq. 4.3.16) is known as the central difference approximation of the first958

derivative and is second order accurate because the truncation error is of order two or O(∆x)2.959

Approximations for the derivatives in the other directions are obtained in exactly the same fash-960

ion.961

962
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4.3.2 Accuracy of the Upwind Scheme and Central Differencing Scheme963

Let us study the truncation error associated with the upwind and central differencing schemes964

presented in section 4.2.2. Consider the equally spaced mesh shown in figure 4.9, such that965

∆WP = ∆PE = ∆x and ∆Pe = ∆eE = ∆PE/2 = ∆x/2. Using TSE about face e, we obtain966

φP = φe −
(

∆x

2

)(
∂φ

∂x

)
e

+
1

2!

(
∆x

2

)2(∂2φ

∂x2

)
e

− 1

3!

(
∆x

2

)3(∂3φ

∂x3

)
e

+HOT , (4.3.17)

φE = φe +

(
∆x

2

)(
∂φ

∂x

)
e

+
1

2!

(
∆x

2

)2(∂2φ

∂x2

)
e

+
1

3!

(
∆x

2

)3(∂3φ

∂x3

)
e

+HOT . (4.3.18)

Truncating equations 4.3.17-4.3.18 at the first order derivative we get967

φP = φe +O(∆x), (4.3.19)

φE = φe +O(∆x), (4.3.20)

and recalling eq. 4.2.17, which we rewrite here for convenience968

φe =

{
φe = φP for F̊ ≥ 0,

φe = φN for F̊ < 0.
(4.3.21)

From equations 4.3.19-4.3.21 we see that the upwind differencing scheme is first order accurate969

because the truncation error is of order one or O(∆x).970

971

Adding equations 4.3.17-4.3.18, rearranging and manipulating we obtain972

φe =
φP + φE

2
− (∆x)2

8

(
∂2φ

∂x2

)
e

+HOT , (4.3.22)

which is a central differencing approximation of φ at face e. Truncating eq. 4.3.22 at the second973

order derivative yields to974

φe =
φP + φE

2
+O(∆x)2, (4.3.23)

hence the central differencing scheme is second order accurate because the truncation error is of975

order two or O(∆x)2.976

977

Equation 4.3.23 is second order accurate only on uniform meshes (when ∆WP = ∆PE = ∆x and978

∆Pe = ∆eE = ∆PE/2 = ∆x/2). On non uniform meshes we need to use equations 4.2.14-4.2.15.979

980

Consider the mesh shown in figure 4.9 and let us say that ∆WP 6= ∆PE and ∆Pe 6= ∆eE981

(non-uniform mesh). The interpolated face value e can be found by using a weighted linear982

interpolation as follows983

φe = exφP + (1− ex)φE , (4.3.24)

where the interpolation factor ex, is defined as the ratio of the distances eE and PE, i.e.,984

ex =
eE

PE
=
| xe − xE |
| ∆PE |

. (4.3.25)
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Let us find the truncation error of eq. 4.3.24. The TSE of φP around the discrete point E is985

given by986

φP = φE− (xE−xP )

(
∂φ

∂x

)
E

+
(xE − xP )2

2!

(
∂2φ

∂x2

)
E

− (xE − xP )3

3!

(
∂3φ

∂x3

)
E

+HOT . (4.3.26)

Solving for ∂φ/∂x in eq. 4.3.26 and truncating in the second order derivative, we obtain987 (
∂φ

∂x

)
E

=
φE − φP

(xE − xP )
. (4.3.27)

The TSE of φe about the discrete point E is expressed as follows988

φe = φE − (xE − xe)
(
∂φ

∂x

)
E

+
(xE − xe)2

2!

(
∂2φ

∂x2

)
E

− (xE − xe)3

3!

(
∂3φ

∂x3

)
E

+HOT . (4.3.28)

Substituting eq. 4.3.27 into eq. 4.3.28 in order to eliminate the first order derivative, we obtain989

φe = φE− (xE−xe)
φE − φP

(xE − xP )
+

(xE − xe)2

2!

(
∂2φ

∂x2

)
E

− (xE − xe)3

3!

(
∂3φ

∂x3

)
E

+HOT . (4.3.29)

Notice that the truncation error of the first order derivative in eq. 4.3.26 and eq. 4.3.28 is of990

the same order. Rearranging and manipulating eq. 4.3.29 yields to991

φe = (1− ex)φE + exφP +
(xE − xe)(xe − xP )

2!

(
∂2φ

∂x2

)
E

−(xE − xe)3(xe − xP )

3!(xE − xe)

(
∂3φ

∂x3

)
E

+HOT . (4.3.30)

where the interpolation factor ex is given by992

ex =
xE − xe
xE − xP

(4.3.31)

The truncation error in eq. 4.3.30 is proportional to the product of the mesh spacing, hence the993

scheme is second order accurate on uniform and non uniform meshes. Notice that when the face994

e is situated midway between the two neighboring control volumes (uniform mesh), ex is equal995

to 0.5 and eq. 4.3.30 reduces to eq. 4.3.23.996

997

4.3.3 Mean Value Approximation998

Consider the variation of the function φ(x) within the control volume VP (as shown in figure999

4.9). The TSE of φ(x) about point P is equal to1000

φ(x) = φP + (x− xP )

(
∂φ

∂x

)
P

+
(x− xP )2

2!

(
∂2φ

∂x2

)
P

+
(x− xP )3

3!

(
∂3φ

∂x3

)
P

+HOT . (4.3.32)

Integrating eq. 4.3.32 over the control volume VP , yields1001

∫
VP

φ (x) dV =

∫
VP

[
φP + (x− xP )

(
∂φ

∂x

)
P

+
(x− xP )2

2!

(
∂2φ

∂x2

)
P

+
(x− xP )3

3!

(
∂3φ

∂x3

)
P

+HOT
]
. (4.3.33)
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Assuming that φ(x) varies linearly over the control volume, all derivatives of order higher than1002

∂φ/∂x in eq. 4.3.33 are zero. Also, the term containing the derivative ∂φ/∂x is equal to zero1003

since the point P is the centroid of the control volume, which is given by1004 ∫
VP

(x− xP ) dV = 0. (4.3.34)

Hence eq. 4.3.33 becomes1005

∫
VP

φ (x) dV = φPVP ,
(4.3.35)

dividing eq. 4.3.35 by VP we obtain1006

φ =
1

VP

∫
VP

φ (x) dV = φP .
(4.3.36)

Thus, the centroid value φP represents the mean value φ. Equation 4.3.36 is easily calculated1007

since all variables at the centroid of VP are known, no interpolation is needed. The above ap-1008

proximation becomes exact if φ is either constant or varies linearly within the control volume;1009

otherwise, it is a second order approximation. The above analysis can be applied to any variable1010

being represented by its volume or face centroid value.1011

1012

4.3.4 Gradient Approximation1013

Consider the equally spaced mesh shown in figure 4.9, such that ∆WP = ∆PE = ∆x and1014

∆Pe = ∆eE = ∆PE/2 = ∆x/2. Let us study the truncation error associated in representing the1015

face gradient (∂φ/∂x)e as1016 (
∂φ

∂x

)
e

=
φE − φP

∆x
. (4.3.37)

Using TSE about face e, we obtain1017

φE = φe +

(
∆x

2

)(
∂φ

∂x

)
e

+
1

2!

(
∆x

2

)2(∂2φ

∂x2

)
e

+
1

3!

(
∆x

2

)3(∂3φ

∂x3

)
e

+HOT . (4.3.38)

φP = φe −
(

∆x

2

)(
∂φ

∂x

)
e

+
1

2!

(
∆x

2

)2(∂2φ

∂x2

)
e

− 1

3!

(
∆x

2

)3(∂3φ

∂x3

)
e

+HOT , (4.3.39)

Subtracting eq. 4.3.39 from eq. 4.3.38 , rearranging and manipulating we obtain1018 (
∂φ

∂x

)
e

=
φE − φP

∆x
− ∆x2
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(
∂3φ

∂x3

)
e

+HOT . (4.3.40)

Truncating eq. 4.3.40 at the third order derivative we get1019 (
∂φ

∂x

)
e

=
φE − φP

∆x
+O(∆x)2. (4.3.41)

Therefore the assumption of linear variation in eq. 4.3.41 leads to a second order accurate ap-1020

proximation of (∂φ/∂x)e because the truncation error is of order two or O(∆x)2.1021

1022
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4.3.5 Spatial and Temporal Linear Variation1023

Let us study the truncation error associated with the assumption of spatial and temporal linear1024

variation of φ. Using TSE around the discrete point P (refer to figure 4.9) and time t yields to1025

φ(x) = φP + (x− xP )

(
∂φ

∂x

)
P

+
(x− xP )2

2!

(
∂2φ

∂x2

)
P

+

(x− xP )3

3!

(
∂3φ

∂x3

)
P

+HOT , (4.3.42)

φ(t+ ∆t) = φt + ∆t

(
∂φ

∂t

)t
+

∆t2

2!

(
∂2φ

∂t2

)t
+

∆t3

3!

(
∂3φ

∂t3

)t
+HOT . (4.3.43)

Truncating equations 4.3.42-4.3.43 at the second order derivative we get1026

φ(x) = φP + (x− xP )

(
∂φ

∂x

)
P

+O(∆x)2, (4.3.44)

φ(t+ ∆t) = φt + ∆t

(
∂φ

∂t

)t
+O(∆t)2. (4.3.45)

From equations 4.3.44-4.3.45 we see that the assumption of spatial and temporal linear variation1027

is second order accurate because the truncation error is of order two or O(∆x)2 in space, and1028

O(∆t)2 in time.1029

1030

4.3.6 Mesh Induced Errors1031

The influence of mesh non-orthogonality on the solution accuracy has been described in section1032

4.2.3. When the mesh is orthogonal (figure 4.10), the face gradient of the transported quan-1033

tity φ in eq. 4.2.18 can be calculated by using eq. 4.2.23. This equation uses the φ values of1034

the control volumes straddling the face f and is second order accurate only on orthogonal meshes.1035

1036

Figure 4.10: Orthogonal and non-skew mesh. Notice that the vectors d and S are parallel.

For non-orthogonal meshes (figure 4.11), we computed the face gradient of the transported quan-1037

tity φ using eq. 4.2.31. In this equation we introduced a correction to improve the accuracy of1038

the face gradient in the case of non-orthogonality. The non-orthogonality affect the solution by1039

adding numerical diffusion to the solution, hence reducing the accuracy. Non-orthogonality can1040

also lead to oscillatory solutions (unboundedness), which in turn can lead to nonphysical values1041

and divergence. The higher the non-orthogonal angle (the angle between the face area vector S1042
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and the vector d in figure 4.11), the higher the numerical diffusion, and this in fact reduces the1043

accuracy of the numerical method.1044

1045

Figure 4.11: Non-orthogonal and non-skew mesh. Notice that the vectors d and S are not parallel. The
angle between the vector d and S is the non-orthogonal angle.

Let us now study the influence of skewness on the solution accuracy. Skewness can be defined as1046

the deviation of the face centroid f from the point where the vector d intercepts the face. This1047

situation is shown in figure 4.12, where f is the face centroid, fi is the point where the vector1048

d intersects the face f , and ∆i is the vector that represents the deviation of fi from f . Under1049

these conditions, the face values linearly interpolated from the control volumes VP and VN , no1050

longer accurately represent the value of the face center.1051

1052

Figure 4.12: Skewness error in neighboring control volumes; where fi represents the face interpolated
value, f the face centroid, and the vector ∆i is the deviation of fi from f .

With reference to figure 4.12, the degree of skewness can be measured ass follows,1053

1054

ψskew =
| ∆i |
| d |

. (4.3.46)

Skewness adds numerical diffusion to the solution and reduces the accuracy of the numerical1055

method. It also leads to unboundedness, which in turn can conduct to nonphysical results1056

and/or divergence of the solution.1057

1058

In some situations, it can happen that the point fi falls outside face f , which leads to even higher1059

truncation errors and more severe unboundedness. This type of scenarios is usually found when1060

dealing with sharp edges or the intersection of two or more surfaces. In general, it is highly1061
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advisable to keep the skewness to a minimum.1062

1063

The error due to mesh skewness can be reduced by correcting the error introduced due to the1064

deviation of the face interpolated value fi from the face centroid f , by using the following second1065

order approximation,1066

φf = φfi + ∆i · (∇φ)fi (4.3.47)

where φfi and (∇φ)fi are the interpolated values of φ and ∇φ at the point where the vector d1067

intersects the face f (point fi), as shown in figure 4.12. In eq. 4.3.47 φfi and (∇φ)fi can be1068

evaluated by using linear interpolation as follows1069

φfi = fxφP + (1− fx)φN , (4.3.48)

∇φfi = fx∇φP + (1− fx)∇φN . (4.3.49)

where the interpolation factor fx, is defined as the ratio of the distances fiN and PN (refer to1070

figure 4.12), i.e.,1071

fx =
fiN

PN
=
| xfi − xN |
| d |

. (4.3.50)

Problems can be encountered in the evaluation of the gradients of φ in eq. 4.3.49, as the1072

calculation of the gradient of the control volumes VP and VN requires the knowledge of the face1073

centroid gradient at point fi or (∇φ)fi , by using the Gauss theorem (eq. 4.2.33) we obtain,1074

(∇φ)P =
1

VP

∑
f

Sfφf =
1

VP

∑
f

Sf

[
φfi + ∆i · (∇φ)fi

]
. (4.3.51)

One way to circumvent this problem, is by computing an initial approximation of (∇φ)fi by1075

using centered differences as follows,1076

∇φfi =
(φN − φP )

|d|
. (4.3.52)

Then eq. 4.3.51 is used to compute (∇φ)P and (∇φ)N based on the initial approximation of1077

(∇φ)fi . Once we obtain the new face gradient (∇φ)fi by using eq. 4.3.49, we can improve this1078

initial approximation by iterating again using the newly computed value. At the end of the iter-1079

ative process, the corrected value of φf is computed by using eq. 4.3.47 and the corrected value1080

of∇φf is approximated by linearly interpolating the gradient of the neighboring control volumes.1081

1082

Alternatively, we can compute the gradient of the control volumes straddling face f by using1083

Gauss theorem (eq. 4.2.33), which we repeat here for convenience1084

(∇φ)P =
1

VP

∑
f

(Sfφf ) , (4.3.53)

where the value φf on face f can be evaluated by using linear interpolation (eq. 4.2.14). Once1085

we have obtained the gradient of the neighboring control volumes VP and VN (by using eq.1086

4.3.53), we can obtain an initial approximation to the face gradient by using arithmetic average1087

as follows,1088

∇φf =
(∇φP +∇φN )

2
. (4.3.54)
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Figure 4.13: Orthogonal and skew mesh; where ∆Pf is the vector connecting the centroid of the control
volume VP with the face center f , and ∆Nf is the vector connecting the centroid of the control volume
VN with the face center f .

This initial approximation of the face interpolated values is then improved by doing a linear1089

reconstruction from the control volumes centroid values to the face f (linear extrapolation). By1090

looking at figure 4.13, this approximation is given by1091

φf =
(φP + ∆Pf · ∇φP ) + (φN + ∆Nf · ∇φN )

2
. (4.3.55)

Equation 4.3.55 is a second order approximation to the face value φf . We now can use this new1092

approximation to compute a new control volume gradient value by using eq. 4.3.53. Finally, we1093

find the face corrected gradient by using linear interpolation as follows,1094

(∇φ)f = fx (∇φ)P + (1− fx) (∇φ)N . (4.3.56)

Both of the previously presented approaches to treat the skewness suggest an iterative approach1095

for computing successively better approximations to the face values. In practice, only two or1096

three iterations are used.1097

1098

Skewness and non-orthogonality can be presented together, reducing significatively the accuracy1099

of the numerical scheme (refer to figure 4.14). Whenever one of these mesh induced errors are1100

presented (figures 4.11-4.14), corrections should be applied in order to avoid numerical diffusion,1101

unboundedness, and to maintain second order accuracy. In spite of the fact that the methods1102

previously presented to handle non-orthogonality and skewness are second order accurate, they1103

use a large computational stencil, which implies larger truncation errors, and can also lead to1104

potential unboundedness.1105

1106

To approximate the convective fluxes with the highest accuracy by using the approximations1107

presented in the previous sections (e.g., CD and midpoint rule), the vector d connecting the1108

centroid of two neighboring control volumes should pass through the center of the common1109

face f (non-skew mesh). Maximum accuracy for the diffusive flux is obtained when the vector1110

d connecting the centroid of two neighboring control volumes is orthogonal to the face f and1111

passes through the face center (orthogonal and non-skew mesh). Unfortunately, this type of1112

meshes are more an exception than a rule. Hence, mesh generation requires careful user input1113

and good meshing practices in order to avoid highly skewed and/or awful non-orthogonal meshes.1114

1115

From our discussion, we have seen the importance of mesh quality in the solution accuracy.1116

Highly skewed and/or awful non-orthogonal meshes, will substantially reduce the accuracy of1117

the numerical method and will add numerical diffusion to the solution, which in turn will smear1118

the gradients of the transported quantity φ. Bad quality meshes can also lead to oscillatory1119
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Figure 4.14: Non-orthogonal and skew mesh; where fi represents the face interpolated value, f the face
centroid and the vector ∆i is the deviation of fi from f .

solutions (unboundedness), which in turn can conduct to nonphysical values and therefore di-1120

vergence. In practice, in order to avoid unboundedness when reconstructing the face gradients1121

we use gradient limiters (also known as slope limiters), to bound the face gradients so as to1122

avoid undershoots and overshoots on the solution. In this manuscript we will not discuss gra-1123

dient limiters, but the interested reader should refer to references [3, 22, 27, 24, 12, 25, 26, ?, 28].1124

1125

4.3.7 Mesh Spacing1126

In the previous sections, we employed TSE to determine the accuracy of the approximations1127

used to find the face values of φ and ∇φ. It was found that the weighted linear interpolation1128

eq. 4.3.24 is valid on uniform meshes (see figure 4.15) and non-uniform meshes (see figure 4.16).1129

On uniform meshes, eq. 4.3.24 reduces to an arithmetic average between the two neighboring1130

control volumes.1131

1132

As we assumed that the values of the transported quantity φ are computed and stored in the1133

centroid of the control volume VP , and at the centroid of the faces of the same control volume;1134

the mean value approximation (eq. 4.3.36), is valid on both uniform and non-uniform meshes.1135

1136

However, the value of the face gradient approximation, eq. 4.3.37, is only valid on uniform1137

meshes (refer to section 4.3.4). For non-uniform meshes (see figure 4.16), some of the terms in1138

the TSE do not cancel, leaving a formal truncation error of order one or O(∆x), this scenario1139

will be studied hereafter.1140

1141

Let us consider the unequally spaced mesh shown in figure 4.16, such that ∆WP < ∆PE,1142

∆Ww < ∆wP, and ∆Pe < ∆eE. Using TSE about face e, we obtain1143

φE = φe + ∆eE

(
∂φ

∂x

)
e

+
1

2!
∆2

eE

(
∂2φ

∂x2

)
e

+
1

3!
∆3

eE

(
∂3φ

∂x3

)
e

+HOT , (4.3.57)

φP = φe −∆Pe

(
∂φ

∂x

)
e

+
1

2!
∆2

Pe

(
∂2φ

∂x2

)
e

− 1

3!
∆3

Pe

(
∂3φ

∂x3

)
e

+HOT . (4.3.58)

Subtracting eq. 4.3.58 from eq. 4.3.57, we obtain1144
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Figure 4.15: Uniform mesh. Notice that ∆WP = ∆PE = ∆x, ∆wP = ∆Pe, and ∆Ww = ∆Pe = ∆eE =
∆PE/2 = ∆x/2.

Figure 4.16: Non-uniform mesh. Notice that ∆WP < ∆PE, ∆Ww < ∆wP, and ∆Pe < ∆eE.
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φE − φP = (∆eE + ∆Pe)

(
∂φ

∂x

)
e

+
1

2

(
∆2

eE −∆2
Pe

)(∂2φ

∂x2

)
e

+

1

6

(
∆3

eE + ∆3
Pe

)(∂3φ

∂x3

)
e

+HOT . (4.3.59)

Solving for (∂φ/∂x)e in eq. 4.3.59, yields to1145

(
∂φ

∂x

)
e

=
φE − φP

(∆eE + ∆Pe)
− 1

2

(
∆2

eE −∆2
Pe

)
(∆eE + ∆Pe)

(
∂2φ

∂x2

)
e

−1

6

(
∆3

eE + ∆3
Pe

)
(∆eE + ∆Pe)

(
∂3φ

∂x3

)
e

+HOT . (4.3.60)

In eq. 4.3.60 the truncation error εt is given by1146

εt = −1

2

(
∆2

eE −∆2
Pe

)
(∆eE + ∆Pe)

(
∂2φ

∂x2

)
e

− 1

6

(
∆3

eE + ∆3
Pe

)
(∆eE + ∆Pe)

(
∂3φ

∂x3

)
e

+HOT . (4.3.61)

By inspecting eq. 4.3.61, we notice that if ∆eE = ∆Pe (uniform mesh), the leading term of εt1147

is equal to zero and we obtain a second order accurate approximation to (∂φ/∂x)e. We can1148

also infer that the larger the difference between ∆eE and ∆Pe, the larger the error. Hence, it1149

becomes clear that if we keep the difference between ∆eE and ∆Pe small, the error of the leading1150

term in eq. 4.3.61 will tend to zero.1151

1152

Let us introduce the mesh growth factor Gf , such that1153

∆eE = Gf∆Pe, (4.3.62)

Gf determines how fast or how slow the mesh expands or contracts between adjacent control1154

volumes. Substituting eq. 4.3.62 into 4.3.61, yields to1155

εt = −1

2

(
G2
f∆2

Pe −∆2
Pe

)
(Gf∆Pe + ∆Pe)

(
∂2φ

∂x2

)
e

, (4.3.63)

where we only show the leading term of the truncation error εt. Manipulating eq. 4.3.63 yields1156

to1157

εt =
(1− Gf ) ∆Pe

2

(
∂2φ

∂x2

)
e

. (4.3.64)

From eq. 4.3.64 we can see that the truncation error of the centered difference approximation is1158

of order one and proportional to the mesh spacing ∆Pe. Similarly, the truncation error of the1159

backward difference approximation (eq. 4.3.58) is of order one and proportional to the mesh1160

spacing ∆Pe and is given by1161

εt =
∆Pe

2

(
∂2φ

∂x2

)
e

. (4.3.65)

48



However, if we set the value of Gf close to one in eq. 4.3.64, the truncation error of the centered1162

difference approximation is significatively smaller than the truncation error of the backward1163

difference approximation (eq. 4.3.65). It is clear that in order to keep small as possible the error1164

of the leading term in eq. 4.3.61, we should use a growth factor Gf close to unity.1165

1166

From the previous discussion, it seems that uniform meshes are desirable. The use of uniform1167

meshes to represent complex geometries is not an easy task and it is computational expensive,1168

as it will use the same mesh resolution in areas of high gradients (where we concentrate more1169

control volumes in order to better resolve steep gradients or local features), and areas where the1170

solution change slowly. In practice, we refine the mesh (or concentrate more control volumes),1171

close to walls where we expect boundary layers, in areas of strong gradients, and in zones where1172

we want to better resolve some local features. Far from the walls and areas of steep gradients or1173

zones interest, we use a coarse mesh. Non-uniform meshes are the rule rather than the exception1174

when dealing with complex geometries.1175

1176

The only thing that we should keep in mind when using non-uniform meshes is that the mesh1177

should be smooth, i.e., there should be no large spacing differences or fast volume transitions1178

between neighboring control volumes (otherwise the solution accuracy will be compromise), and1179

this is achieved by using local refinement an a suitable value of growth factor Gf .1180

1181
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Chapter 51182

The Finite Volume Method for1183

Diffusion and Convection-Diffusion1184

Problems1185

5.1 Steady One-Dimensional Diffusion1186

WORK IN PROGRESS1187

5.2 Steady One-Dimensional Convection-Diffusion1188

In the absence of source terms, steady convection and diffusion of a property φ in a given1189

one-dimensional flow field is governed by1190

∂

∂x
(ρuφ) =

∂

∂x

(
Γ
∂φ

∂x

)
(5.2.1)

The flow must also satisfy continuity1191

∂ (ρu)

∂x
= 0 (5.2.2)

We consider the one-dimensional control volume shown in figure 5.1. Our attention is focused1192

in a general node P, the neighboring nodes are identified by W and E and the control volume1193

faces by w and e.1194

Figure 5.1: A general nodal point is identified by P and its neighbors in a one-dimensional geometry,
the nodes to the west and east, are identified by W and E respectively. The west side face of the control
volume is referred to by w and the east side control volume face by e. The distances between the nodes W
and P, and between nodes P and E, are identified by ∆xWP and ∆xPE respectively. Similarly distances
between face w and point P and between P and face e are denoted by ∆xwP and ∆xPe respectively. Figure
6 shows that the control volume width is ∆x = ∆xwe.

Integration of eq. 5.2.1 over the control volume shown in figure 5.1 gives1195
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(ρuSφ)e − (ρuSφ)w =

(
ΓS

∂φ

∂x

)
e

−
(

ΓS
∂φ

∂x

)
w

(5.2.3)

and integration of eq. 5.2.2 yields to1196

(ρuS)e − (ρuS)w = 0 (5.2.4)

To obtain discretized equations for the convection-diffusion problem we must approximate the1197

terms in eq. 5.2.3. It is convenient to define two variables F and D to represent the convective1198

mass flux per unit area and diffusion conductance at cell faces1199

F = ρu,

D =
Γ

∆x

(5.2.5)

The cell face values of the variables F and D can be written as1200

Fw = (ρu)w Fe = (ρu)e ,

Dw =
Γ

∆xWP
De =

Γ

∆xPE

(5.2.6)

By employing the central differencing approach to represent the contribution of the diffusion1201

terms on the right hand side of eq. 5.2.3, we obtain1202

(
ΓS

∂φ

∂x

)
e

= ΓeSe

(
φE − φP
∆xPE

)
(

ΓS
∂φ

∂x

)
w

= ΓwSw

(
φP − φW
∆xWP

) (5.2.7)

for the diffusive terms.1203

1204

Integrating the convection-diffusion eq. 5.2.3, we obtain1205

Feφe − Fwφw = De (φE − φP )−Dw (φP − φW ) (5.2.8)

and the integrated continuity eq. 5.2.4 becomes1206

Fe − Fw = 0 (5.2.9)

In the previous we assumed that Sw = Se = S, so we can divide the left and right hand sides of1207

eq. 5.2.3 by the area S.1208

1209

The central differencing approximation has been used to represent the diffusion terms which1210

appear on the right hand side of eq. 5.2.8, and it seems logical to try linear interpolation to1211

compute the cell face values for the convective terms on the left hand side of this equation. For1212

a uniform mesh we can write the cell face values of the quantity φ as1213

φe =
(φP + φE)

2

φw =
(φW + φP )

2

(5.2.10)
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Substitution of the above equations into the convection terms of eq. 5.2.8 yields to1214

Fe
2

(φP + φE)− Fw
2

(φW + φP ) = De (φE − φP )−Dw (φP − φW ) (5.2.11)

Rearranging and grouping eq. 5.2.11 yields to1215

aPφP = aWφW + aEφE (5.2.12)

where1216

aW = Dw +
Fw
2

aE = De −
Fe
2

aP = aW + aE + (Fe − Fw)

(5.2.13)

To solve a one-dimensional convection-diffusion problem we write discretized equations of the1217

form of eq. 5.2.13 for all mesh nodes. This yields to a set of algebraic equations that is solved1218

to obtain the distribution of the transported property φ. We also need to defined the initial and1219

boundary condition in order to have a well posed problem. Let us now present the previously1220

discussed concepts by means of a working example.1221

1222

5.3 Steady one-dimensional convection-diffusion working exam-1223

ple1224

A property φ is transported by means of convection and diffusion through the one-dimensional1225

domain sketched in figure 5.2. The governing equation is eq. 5.2.1 and eq. 5.2.2; the boundary1226

conditions are φ0 = 1 at x = 0 and φL = 0 at x = L. Using five equally spaced cells and the1227

central differencing scheme for the convection and diffusion terms, calculate the distribution of φ1228

as a function of x for u = 0.1m/s and u = 2.5m/s, and compare the results with the analytical1229

solution1230

φ− φ0

φL − φ0
=
e
ρux
Γ − 1

e
ρuL

Γ − 1
(5.3.1)

Figure 5.2: Domain with initial and boundary conditions.

Let us explain step by step the solution method by using the mesh illustrated in figure 5.3. The1231

domain has been divided into five control volumes, so as ∆x = 0.2m. Note that L = 1.0m1232

(length), ρ = 0.1 kg/m3, Γ = 0.1 kg/m.s.1233

Figure 5.3: Grid used for discretization.
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The discretized eq. 5.2.12 and its coefficients eq. 5.2.13 apply to all internal control volumes1234

(2, 3 and 4). Control volumes 1 and 5 need special treatment since they are boundary cells.1235

Integrating the convection-diffusion equation eq. 5.2.1 and using central differences for both1236

the convective and diffusive terms, and by applying the boundary and initial conditions we can1237

obtain the solution to our model equation.1238

1239

The value of φ is given at the west face of cell 1 (φw = φA = 1) so we do not need to make any1240

approximation in the convective flux term at this boundary. This yields the following equation1241

for node 1,1242

Fe
2

(φP + φE)− FAφA = De (φE − φP )−DA (φP − φA) (5.3.2)

For the control volume 5, the φ value at the east face is known (φe = φB = 0). As before, we1243

obtain the following equation1244

FBφB −
Fw
2

(φP + φW ) = DE (φB − φP )−Dw (φP − φW ) (5.3.3)

Rearranging and grouping equations 5.3.2 and 5.3.3, we get the discretized equations at bound-1245

aries nodes,1246

aPφP = aWφW + aEφE + Su (5.3.4)

where1247

aP = aW + aE + (Fe − Fw)− SP (5.3.5)

Note that DA = DB = 2Γ/∆x = 2D and FA = FB = F .1248

1249

To introduce the boundary conditions we have suppressed the link to the boundary side and1250

entered the boundary flux as source terms.1251

1252

Table 5.1: Nodes discretization.

Node aW aE SP Su
1 0 D − F/2 −(2D + F ) (2D + F )φA
2, 3, 4 D + F/2 D − F/2 0 0

5 D + F/2 0 −(2D − F ) (2D − F )φB

For u = 0.1m/s, F = ρu = 0.1, D = Γ/∆x = 0.5, the coefficient are summarized in table 2.1253

1254

Table 5.2: Coefficients summary.

Node aW aE SP Su aP = aW + aE − SP
1 0 0.45 -1.1 1.1φA 1.55

2 0.55 0.45 0 0 1.0

3 0.55 0.45 0 0 1.0

4 0.55 0.45 0 0 1.0

5 0.55 0 -0.9 0.9φB 1.45

By setting now φA = 1 and φB = 0, we get the following system of equations,1255
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
1.55 −0.45 0.0 0.0 0.0
−0.55 1.0 −0.45 0.0 0.0

0.0 −0.55 1.0 −0.45 0.0
0.0 0.0 −0.55 1.0 −0.45
0.0 0.0 0.0 −0.55 1.45



φ1

φ2

φ3

φ4

φ5

 =


1.1
0.0
0.0
0.0
0.0

 (5.3.6)

The solution of the previous system yields to1256 
φ1

φ2

φ3

φ4

φ5

 =


0.9421
0.8006
0.6276
0.4163
0.1579

 (5.3.7)

The numerical and analytical solutions are compared in table 5.3 and in figure 5.4. The analytical1257

solution for this problem is,1258

φ(x) =
2.7183− ex

1.7183
(5.3.8)

From the results, it can be seen that regardless the coarseness of the mesh, the central differ-1259

encing (CD) scheme gives reasonable agreement with the analytical solution.1260

1261

Table 5.3: Comparison of the numerical and analytical solutions.

Node Position FVM solution Analytical solution Difference Percentage error

1 0.1 0.9421 0.9387 -0.003 -0.36

2 0.3 0.8006 0.7963 -0.004 -0.53

3 0.5 0.6276 0.6224 -0.005 -0.83

4 0.7 0.4163 0.4100 -0.006 -1.53

5 0.9 0.1579 0.1505 -0.007 -4.91

Figure 5.4: Comparison of the numerical and analytical solutions for u = 0.1m/s.

The cell Peclet number (or cell Reynolds number), is defined as,1262

Pecell =
ρu∆x

Γ
(5.3.9)

gives a relation between convection and diffusion. If the local Peclet number is less than 2, it is1263

sufficient for boundedness of the solution by using CD for computing the convective terms. But1264
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when the Peclet number is higher than 2, the solution obtained by using CD for the convective1265

terms shows an oscillatory behavior (unboundedness).1266

1267

As an exercise, try to compute the cell Peclet number for the previous example.1268

1269

In the next case (u = 2.5m/s), the cell Peclet number is higher than 2. Let us see the solution,1270

this is let to you as an exercise. You just need to proceed in exactly the same way as we did before.1271

1272

5.4 Unsteady One-Dimensional Diffusion1273

WORK IN PROGRESS1274

5.5 Unsteady One-Dimensional Convection-Diffusion1275

WORK IN PROGRESS1276
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Chapter 61277

Finite Volume Method Algorithms1278

for Pressure-Velocity Coupling1279

WORK IN PROGRESS1280
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