Turbulence and CFD models
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Transition to turbulence in shear flows

Motivation for transition work

Transition 1st Order Impact:
-Aerodynamic Drag and Control Authority
-Engine Performance and Operability
-Thermal Protection Requirements
-Structural Concepts and Weight

Example of Maneuvering RV:

*Heating and drag increase significantly at transition
~6X between peak turbulent and laminar heating rates

*Substructure failure due to excessive temperatures
If transition earlier than anticipated
*Added shielding mass



Transition to turbulence in shear flows

Motivation for transition work

Control:
Desire:
Delay transition (LFC - fuel efficiency, long range)
Encourage for enhanced mixing or separation delay
Most effective strategy:
Capitalize on the physics
|ldentify most unstable disturbances.

If laminar flow could be maintained on wings of transport
aircraft, fuel savings of up to 25% would be obtained.

Transport aircraft drag
50% skin friction

40% of that from wings



Transition to turbulence in shear flows

Motivation for transition work

Control:
Added benefits: CO, emission reductions and
reduced operatings costs

100 Parasite drag
Interference drag

—— Afterbody drag

It has been estimated (Joslin, 1998) wl

that aircraft laminar flow control [ Drag dueto lft
over wings, tail, nacelles, etc. 60}

can reduce DOC by a few s

percentage points, leading to OE

savings of several M$/year. | Friction drag

0=

0



Transition to turbulence in shear flows

Motivation for transition work

* Of interest to turbulence community, boundary-layer
flows are open systems, strongly influenced by
freestream and wall conditions.

* Breakdown well documented to vary considerably
when operating conditions change.

* Transition process then provides vital upstream
conditions from which downstream turbulent flowfield
evolves. Different transition patterns give rise to
different turbulence characteristics.



Transition to turbulence in shear flows

The usual picture
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Transition to turbulence in shear flows

Effect of roughness on skin friction
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Transition to turbulence in shear flows

When/where/why/how do instabilities start?

* Why does roughness affect skin friction?

 What kind of waves are most likely to be amplified?

 (Can they be controlled (eliminated, anticipated,
delayed)?

* How long does transition last?

* Once the turbulent flows sets in does it present a
universal character?

 Can we control turbulence?
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Transition to turbulence in shear flows

The usual methodology starts with:

* Basic State: Flow about which stability question is asked

— Boundary layer, pipe flow, some solution of Navier-
Stokes equations (analytical)

— Developed in-house or commercial  (numerical)

« Stability: Do small disturbances grow or decay in space
or time?

* Procedure: Superpose small disturbances on basic
state, solve
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Transition to turbulence in shear flows

 Numerical accuracy of basic state must be very high,
because stability and transition results very sensitive to
small departures of mean flow from its “exact” shape.

« Stability of flow can depend on small variations of
boundary conditions for the basic state, such as
freestream velocity or wall temperature. Basic-state
boundary conditions must also be very accurate.

« Example: For LFC, suction 103 to 10+ U.,
— relative growth reduced from e%¢ to e® at F = 10 x 106

(F = w/Re x 10° reduced frequency)
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Transition to turbulence in shear flows

Environmental conditions

The type(s) of disturbances which grow, their self- or
mutual interactions, and the amount by which
perturbations are amplified (in other words, the

transition process) depend on the forcing conditions
provided by the environment.
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Transition to turbulence in shear flows

Receptivity

Broadly speaking, the manner in which exogeneous
perturbations [sound waves (irrotational), free-stream
turbulence (rotational), leading edge curvature and/or
vibrations, gusts, vortical structures, wall roughness,
discontinuities in surface curvature at junction LE/flat plate,
etc. ...] enter the boundary layer and are filtered, eventually
turning into instability waves, determines the path to
turbulence, the coherent flow structures arising, the ‘critical’
or ‘transitional’ Reynolds number, the skin friction and heat
transfer to/from the wall.
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Transition to turbulence in shear flows

Forcing Environmental Disturbances
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Turbulence Morkovin, 1994
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Transition to turbulence in shear flows

Standard scenario for 2D boundary layer (A)
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Transition to turbulence in shear flows

Standard scenario for 2D boundary layer (A)
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Transition to turbulence in shear flows

Walter Tollmien (1900-1968) Hermann Schlichting (1907-1982)
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Transition to turbulence in shear flows

Experiments: smoke and laser light sheet
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Transition to turbulence in shear flows

Turbulent spot
(Matsubara & Alfredsson 2005)

Sinuous instability Varicose instability
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Transition to turbulence in shear flows

M:
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mean and rms values
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Transition to turbulence in shear flows

—
u,,, . o
T, =—=x100, turbulence intensity :2 « s o IC’
u 20 =
10 -
0
> (¥, - 1Y
Xi Xf —u
* Flight conditions and _£ o = 21
few wind tunnels: T, < 01% H N N

* Most wind tunnels: T, < 1%

) mean and rms values
* Turbines/compressors: Tu > 10%

Wind tunnels can give trends opposite to flight
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Transition to turbulence in shear flows

Experiments versus theory (TS waves)

y/o%

Very well-controlled
experimental
conditions

Bakchinov et al., 1998
(very low free stream Tu)
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Transition to turbulence in shear flows

... and DNS

A-vortices hairpin vortices

Schlatter, 2009
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Transition to turbulence in shear flows

Experiments versus theory (streaks)

Luchini, 2000
(large free stream Tu)

2
i’

25



Transition to turbulence in shear flows

... and DNS

Zaki & Durbin, 2000
(large free stream Tu)
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Transition to turbulence in shear flows

The initial stages of transition

Except for the cases of transition
scenarios D or E, small disturbances
are initially filtered and amplified;
this justifies focussing on the growth
of infinitesimal perturbations: the
equations are thus linearized.

Nonlinear interactions acquire
importance only once the amplitude
of the disturbances becomes large
enough.

Forcing Environmental Disturbances
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Generic evolution system:

dx

= flx(©), ;7]
X = state vector (/N components, column vector)
f = evolution function (another N-column vector)
rt = time
r = control parameter

dx

Autonomous system: — = f[x(¢t); r]

28



Transition to turbulence in shear flows

Recap on linear matrix algebra

Statement of the problem:

dx

i flx(t); ]

Predict the characteristics of the asymptotic state
(t — o0) as function of the initial conditions and the

control parameter.

Note:  we will see later that the behavior of the
system for small times is also of importance
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Basic state: x, that satisfies

dx,
T flxg 7]

Perturbation: €ex’(t) (e small amplitude) satisfying

dx’_A »
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Transition to turbulence in shear flows

Recap on linear matrix algebra

X=x,+e€x

f(x,) re| x4 O (e2) =

f(x,)+eAx + O(€?)

A = Jacobian matrix of coefficients (N x V)
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

dx’ t? d?x’'
x'(t) =x"(0) + tE + a2 + ...
t=0 t=0
dxr , dixr A2 d'xr .
— =Ax, ~-=A“x, .. —=A"x
dt dt dt
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

dx’ t? d?x’'
x'(t) =x"(0) + t? + EYPTE + ...
t=0 t=0
dxr pdixr o d'xr .
— =Ax, ~-=A“x, .. —=A"x
dt dt dt

X' (6) = x'(0) + £ A x'(0) + §A2 X' (0) + ..
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

X' (0) = x'(0) + £ A x'(0) + §A2 X'(0) + ..

Definition of the analytic function of a matrix:

- (tA)"

n!
n=0 24

oAt _




Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

The solution of our disturbance problem is thus:
x'(t) = et x'(0)

and to assess the stability of the system it is useful
to decompose the matrix 4 in the sum of products
of left and right eigenvectors
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

The N eigenvalues of the matrix 4 are the solutions
A, of the characteristic equation

The right eigenvectors u, are non-trivial solutions,
defined up to an arbitrary factor, of the system:

Auk = ﬂ,kuk
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Setting the eigenproblem

The left eigenvectors v, are non-trivial solutions,
defined up to an arbitrary factor, of the system:

vi A= 1, vy,

Note: the left eigenvectors of A are also the right
eigenvectors of the conjugate transpose of 4

ZTUI{ = Zkvk
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Definition of the scalar product between (in general
complex) vectors:

—
(Ug, Vi) = Ui Vg
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Definition of the scalar product between (in general
complex) vectors:

(g, Vi) = Wy vy
Definition of the adjoint matrix:
(Au,v) = Au'v=u"ATv = (u,A"v)
At = AT
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Adjoint operators/matrices are important in many
areas, including

 hydrodynamic stability, receptivity, sensitivity
e optimal and robust control theory

* optimal shape design

* inverse design

e data assimilation
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Transition to turbulence in shear flows

Recap on linear matrix algebra

if AT = A, the matrix 4 is self-adjoint

In this case the matrix is a real, symmetric matrix,
its eigenvalues are real and the eigenvectors form
an orthogonal basis. Furthermore, left and right
eigenvectors coincide.

A non-self-adjoint matrix has, in general, complex
eigenvalues, plus its conjugates.
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Property of orthogonality among eigenvectors

(vn, Auy) = (v, Lug) = A4, (v, uy)
(Athr uk) — (/Ih Vhn, uk) = ﬂ“h(vhl uk)

Thus (A4~ 4,) (Wp,uy) =0, or (vp,uy) =a oy,

a is some amplitude coefficient; if a = 1 left and
right eigenvectors are orthonormalized
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Let us imagine that the V eigenvalues are distinct and
the eigenvectors are linearly independent (so as to form

a basis); at t = 0 we have

N
x’(O) — Z U Cy,
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Let us imagine that the V eigenvalues are distinct and
the eigenvectors are linearly independent (so as to form

a basis): at t = 0 we have

N
x'(0)=x'y = Z U, Cy
k=1

(vh, x'o) = Zl,¥=1(vh,uk Ck) = Z’;Ll Cr (vh, uk) = Ch(vh; uh)

_ (vp X))
(vh’ uh) 44

Ch



Transition to turbulence in shear flows

Recap on linear matrix algebra

Let us assume that the eigenvectors are
orthonormalized = ¢, = (v, Xx'y), then

T
x'y = leg:1 uy, (v, x'y) = 2112’:1 u, v X9 =1x'

i.e. given that x' is any vector, the identity matrix can
be retrieved from 1 =YN_,u, vy
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Transition to turbulence in shear flows

Recap on linear matrix algebra

The matrix 4 can thus be represented as
_ _ VN —T _ N —T
A—AI—ZkzlAuk Vy, = kzl/lkuk Vi,

i.e. A can be written as the sum of the product of
eigenvalues and eigenvectors (of course, under the
assumption that eigenvalues are distinct, and
eigenvectors are linearly independent)
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Let U be the matrix whose columns are the /N right
eigenvectors and V the matrix with the NV left
eigenvectors in the colums; assume eigenvalues to be
distinct.
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Transition to turbulence in shear flows

Recap on linear matrix algebra

Let U be the matrix whose columns are the /N right
eigenvectors and V the matrix with the NV left
eigenvectors in the colums; assume eigenvalues to be
distinct. When e-vectors are orthonormal:

(Vn,uy) = Sp = Tp Ug = S = VU =1
—T _ —T _
Up A U = ﬁ“k Vy U = ﬂ‘k6hk

- VT'AU = A (the diagonal matrix of e-values)
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Transition to turbulence in shear flows

Recap on linear matrix algebra

VIAU=A - A=U0AV"

!

for the problem (’Z—t = Ax'(t) letustake

X =Uq(t), <°=Uq Uq=AUgq,

g=U"AUq, q=Aq - q(t)= eAq0)

49



Transition to turbulence in shear flows

Recap on linear matrix algebra

q(t) = U"x' = et q(0) = eA* U~ x'(0)

!

so that the solution of T A x'(t)
s x' = U e u-1x(0) =U e VT x'(0)
x' =L x'(0)

propagator of the initial condition

50



Transition to turbulence in shear flows

Recap on linear matrix algebra

N
A= z/lkuk V!
k=1 N N
A2 = AA = z/lkuk v_kTE/Ibuh v, =

N N —T.. —T
k=12h=1AxAnUk Vg Up Dy

N N —T __
k=12h=1 A An Uk O V. =

N 2 —T
2h=1 Ay Up Dy
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Transition to turbulence in shear flows

Recap on linear matrix algebra

The matrix A™ has the same eigenvectors as A4, and
eigenvalues which are 4,™. In general, for a linear
combination g of powers of 4

N
9() = ) g w ;"
k=1
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Transition to turbulence in shear flows

Recap on linear matrix algebra

and in particular

with the left eigenvectors weighting the initial condition
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Transition to turbulence in shear flows

Stability conditions

,(t) Zk 18 uk Cr

the eigenvalues A, define the asymptotic growth/decay
of the disturbance.

Should there be a double eigenvalue, terms of the form
relit

would appear in the expansion of the solution (resulting
in a linear time growth of the disturbance even when
Re(A,) <0, for all k).
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Transition to turbulence in shear flows

Stability conditions

An autonomous system, with evolution matrix 4
equipped with VN distict eigenvalues is:

 Asymptotically stable is all eigenvalues of A have
negative real part

 Marginally stable if one (or more) eigenvalues
have real part equal to zero (and the others have
negative real part)

 Unstable if at least one eigenvalue has real part
larger than zero
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Transition to turbulence in shear flows

Stability conditions

Near the marginal stability conditions, typically a

single (1!) eigenvalue crosses the stability boundary,
l.e.for t = oo we have

x'(t) ~ e’ u1 (v4,x(0)) = et U ¢4

all other modes (k= 2, 3, 4, ... N) being damped.
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Transition to turbulence in shear flows

Stability conditions

/ -\

growth rate angular frequency

The eigenvalue problem is
A U = ;i’k Uy

and in hydrodynamic stability analysis the u;’s are
called normal modes
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Transition to turbulence in shear flows

Stability conditions
E(t) = (x',x")

unstable
region

IV
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Transition to turbulence in shear flows

Stability conditions

Stable

Conditionally
stable (lll)

Globally
stable (Il)

Monotonically
stable ()

. E(r)
2 Eo) 0 d

38 >0: E(0) < 6 = stable

Conditionally stable with 6 — o

dE
Globally stable and I <0 vVtr>0
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Transition to turbulence in shear flows

A simple example

Consider the very simple linear system (A in the
chosen example is called a Jordan block):

dx' /01
E—AX((I) A_<00)

A has a double eigenvalue (A, = A, = 0) to which is
associated the double eigenvector u; = u, = (é)

60



Transition to turbulence in shear flows

Example

if x'(0) = (xlo) is the initial condition (at t = 0)

X20
then the solution is

o (X1o + tx20>
X20

i.e. the disturbance vector grows linearly in time
(algebraic growth), despite the fact that the
eigenvalues have vanishing real part.
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Transition to turbulence in shear flows

Example

Consider now the perturbed system with

—e 1
A:(U—Qt‘)’ D<exl
eigenvalues: A; = —€, A, = —2€
, (1 (1 (1 B 0
e-vectors: wu, = (O) U, = (—e)’vl = (1/€>, v, = (_1/€>
and the solutionis: x' =¢; et u; + ¢, e %t u,
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Transition to turbulence in shear flows

Example

The question is: how do the two solutions (linear
growth and exponential decrease) match as €
decreases to becomee=0"7
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Transition to turbulence in shear flows

Example

The question is: how do the two solutions (linear
growth and exponential decrease) match as €
decreases to becomee=0"7

To answer we must focus on the energy of the
disturbance, E(t) = (x', x'). For large times (when
et >> 1) the exponential behavior of the previous
slide holds and eventually at large times the
solution goes like x'~ e~ ¢ u,; . What about short
times?
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Transition to turbulence in shear flows

Example

For short times (et << 1) a Taylor series of the energy
gives:

E(t)
= (c; + )% + €2%¢5
— [2¢2 + 4(1 + €%)cs + 6¢,c,](et) + 0(e?t?)

and a linear growth in time is possible if the factor of
(et) is negative. This growth is related to the fact that
the two eigenvectors u4 and u, are not orthogonal
to one another (in fact, they are almost parallel !)
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Transition to turbulence in shear flows

Example

_growth, then decay

) ~ monotonic decay

0 | et 2 3
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Transition to turbulence in shear flows

Example

The optimal initial condition

It is easy to see that the
initial condition which 10
vields the largest gain,

ratio of final to initial energy,
for t large enough, is the first
left eigenvector.

_growth, then decay

~ monotonic decay

0 |

et
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Transition to turbulence in shear flows

Another simple example
0

The frictionless simple pendulum:
a mass m attached to a light rod of
length / that pivots freely about O.

Newton's laws tell us

0 +w?sinf =0 (1)
mg\L where w? = g/I.

We assume there is a steady solution #y, and we want to find its
stability. Let

9:90—|—691(f) (2)
where € < 1.
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Transition to turbulence in shear flows

Another simple example
Substitute (2) into (1):

0 = eby+w?sin(fo + ebr)
= €y +w?sinfpcos(efy) + w? cosfysin(efy).  (3)

Substitute the Taylor expansions

2 3
cos(efl1) ~ 1 — (6921) + ..., sin(ef1) ~ eby — (6961) + ..
into (3) and equate coefficients of O(1) and O(e):
sin 90 = 0 (4)

éi+(w2C0590)91 = 0 (5)
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Transition to turbulence in shear flows

Another simple example

e The nonlinear equation for steady states (4) has solutions
fo = 0 and #y = 7.

e The disturbance equation (5) is linear and its coefficients
depend on the steady solution 6.

e Substitute fp = 0 into (5):
f1+w? =0 = 6 =Acoswt+ Bsinwt, (6)

#1 remains bounded as t — oo, therefore 6y = 0 is stable.
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Transition to turbulence in shear flows

Another simple example

The nonlinear equation for steady states (4) has solutions
fo = 0 and #y = 7.

The disturbance equation (5) is linear and its coefficients
depend on the steady solution 6.

Substitute #g = 0 into (5):
f1+w? =0 = 6 =Acoswt+ Bsinwt, (6)

#1 remains bounded as t — oo, therefore 6y = 0 is stable.

Substitute o = 7 into (5):
By —w?h; =0 = @ =Ae“+Be vt (7)

01 — oo as t — oo, therefore g = 7 is unstable.
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Transition to turbulence in shear flows

Shear flow problems

Plane Poiseuille flow Plane Couette flow Poiseuille-Couette

=~ : { / . UH =0
: :f /.'

| : 1IN
| | AN

/ : J / A T~

- | e

// : --_--"-’,/ // /
............ — = =

OPlax <0 OP/ox—=0 OP/dx>0 T. > T

/ | T
! . S
jets wakes mixing

layers 72



Transition to turbulence in shear flows

Shear flow problems

For the simple problems above, the flow is parallel or quasi-
parallel and it is a good approximation to consider the velocity
profile as

uy, =U(y) i
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Transition to turbulence in shear flows

Hydrodynamic stability of // shear flows

‘V-u=0
” Yy u(y)
ou - _ 1 po2
_at+(u-l7)u- Vp+Re\7u l
u(x, 0) assigned ?
u(x,t) = 0 on solid boundaries

U= uy+ euy + €u, + ...
- , e K1
P =Dot+ €Epr t €°py T ..
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Transition to turbulence in shear flows

Hydrodynamic stability

g—

V'u0=0

h(’u,o . V)uO - — V pO + Rie Vzuo

V'u1=0

aul

+ (uy - Vug + (uy - MHu=—Vop, +— Vzul
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Transition to turbulence in shear flows

Hydrodynamic stability

We shall consider two-dimensional disturbances, and work in
cartesian coordinates:

a_u + U_V — 0

ox 0y
ou du du p 1 [0°u Ou
v v v ap 1 [0%°v  O%v
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Transition to turbulence in shear flows

Hydrodynamic stability

The stability of velocity profile U(y) is found by substituting

u = U)+e dlxy. 1
— e V(x,y,t)
p = P()+e plxy1)

into the equations and collecting terms of O(¢):

@ -+ % = 0

ox  dy
ol ol op 1 [0%0 0%
P U— U’A — — -
o Vox Y Ox  Re (c‘)xz N 8}»’2)

oV AV _%jL 1 82\?+32i}
ot Ox  dy  Re \0x2  0y?
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Transition to turbulence in shear flows

Hydrodynamic stability

The solution of the linear O(€) problem relies crucially on the
streamlines being parallel, i.e. U is independent of x. This

makes the solution separable, e.g. i = X (x)u(y)T(t).

More particularly, it can be shown that the solutions are the
sum of exponential functions of the invariant directions,
x and t (Fourier modes). A normal mode has the form:

(8,0,) = (u(y). v(y), p(y))el®=9) ;

thisis a x-travelling wave, with a the streamwise wavenumber
and @ the circular frequency.
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Transition to turbulence in shear flows

Hydrodynamic stability

iau+v = 0
1
—jwu+ialUu+Uv = —iap+ o (v — a?u)
e
1
—iwv L iaUy — —p @ v — ol
Pt o (v ).

where " = d/dy

Eliminating v and p gives the Orr-Sommerfeld equation:

1
iaRe

(U=c)(V'=a?v)=U"v = (V" —2a2V" + a’v),

where ¢ = w/a.
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Transition to turbulence in shear flows

Hydrodynamic stability

Boundary conditions
e No flow through a solid boundary: v = 0.
e No slip at a solid boundary: t=0= v/ =0

e If the flow is unbounded as y — oo then v — 0 and v/ — 0 as
y — 00.

e [he four boundary conditions may be summarised as

v(y1) =0, VI(JVI) =0, v(y2)=0, Vf(y2) = 0.

where y1 and/or y> could be finite or infinite depending on
whether we are considering channel flow, a boundary layer or
an unbounded shear layer.
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Transition to turbulence in shear flows

Hydrodynamic stability

e Nontrivial solutions satisfying these homogeneous boundary
conditions are only possible for certain v and w.

e These values satisfy a relation of the form A(«,w) = 0 called
the dispersion relation.

e Roots of A(a,w) = 0 are called eigenvalues.

e Suppose that a Fourier mode with a real a has been chosen

ei(&x—wt) _ ei(ﬂ:x—wrt—iu;t) _ ew;tei(&x—wrt].
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Transition to turbulence in shear flows

Hydrodynamic stability

e Therefore, if for any real a
w; > 0 = exponential growth in time = instability.
e If for all real a
w;j < 0 = exponential decay in time = stability.

e Obtaining growth /decay in time is called temporal stability
theory.

e Spatial stability theory (real w, complex «) and
spatio-temporal stability theory (complex w, complex «), i.e.
convective/absolute instabilities.
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Transition to turbulence in shear flows

Stability conditions

e In the inviscid limit the Orr-Sommerfeld equation reduces
to the Rayleigh equation

(U—c)(v' —a?v)—U"v =0.

e The non-slip boundary conditions are dropped for inviscid
flow, leaving

V(1) =0, v(y) =0

(the Rayleigh equation is only 2nd order, while the
Orr-Sommerfeld equation is 4th order).
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Transition to turbulence in shear flows

The inviscid problem

Rayleigh inflection point theorem

/h v — (UUHC + &2) v[* dy = 0.

Y1

Integrate the first term by parts:
— 1y2 & —/ ! U" 2 2
[vvhlJr/yl —V'v' — (U—cha ) v|*dy = 0

y2 y2 U”|V|2
= / V|2 4 o?|v|? dy +/ dy = 0
V1 V1 U-c
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Transition to turbulence in shear flows

The inviscid problem

Rayleigh inflection point theorem

The imaginary part of the equation above (a real) is

%) U”‘Vlz
Ci dy =0
’ ~/y1 U — c|?

ad this relation is satisfied for ¢; # 0 only when the integral

vanishes, which occursonly if U =0 or U" changes sign at

leastoncein y; < y < y»
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Transition to turbulence in shear flows

The inviscid problem

Rayleigh inflection point theorem:

a necessary, but not sufficient, condition for instability

is that the velocity profile has an inflection point

86



Transition to turbulence in shear flows

The inviscid problem
Figrtoft’s theorem
Let there be an inflection pointat y =y, andlet U, = U(y;).

: y2 "y, |2
If ¢; # 0 then (c, — UI)/ U" v :
y1 |U—C|

dy = 0.

The real part of the expression derived previously is

2. Yy — 2 y2
/ ( cr)2|v\ dy = —/ V|2 + a?|v|? dy
y |U_ Cl y1

1
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Transition to turbulence in shear flows

The inviscid problem

Figrtoft’s theorem

Adding up leads to:

/J"Q U"(U — U))|v|?
y U — cl?

dy <0

1

a necessary, but not sufficient, condition for instability is

that U"(U — U)) < 0, somewhere in the flow
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Transition to turbulence in shear flows

The inviscid problem

Figrtoft’s theorem

U""<O/J

Stable by Rayleigh

.f""-.-
-

,,// U’" >0

s
I
P

Stable by Rayleigh

v-o fu”(u Uy) >

<o _Unu-u) >

Sta ble by FJ;zsrtoft

U”<O ..f"“U”(U U)) <0

U” >0 ””U”(U U) <

Could be unsta ble
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Transition to turbulence in shear flows

The inviscid problem

Howard’s semi-circle theorem

Ci

Cr

Umfn Umax

the complex phase velocity lies inside, or on, the semi-

Umax + Umin Umax - Umin

of radius

circle centred on
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Transition to turbulence in shear flows

The viscous problem

e Viscous disturbances are governed by the Orr-Sommerfeld
equation:

1
i Re

(VH” . 2(12'!.-"'!; 1L V)

(U—=c)(v" —a?v)—=U"v =

e Viscosity regularizes the inviscid solution at U = c.

e Viscosity dissipates kinetic energy, so it is stabilizing?

e Bizarrely, some stable inviscid flows are destabilized by
viscosity!
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Transition to turbulence in shear flows

The viscous problem

e Tollmien (1929) found asymptotic solutions to the
Orr-Sommerfeld equation A
for profiles with
no inflection point
predicting instability:

unstable

lower
branch branch
T
Re. Re

Flow is stable for Re < Re..

The neutral curve has upper and lower branches.

Questionable assumptions made, results not widely accepted...

e _..until Schubauer & Skramstad (1947) verified this behaviour

in wind tunnel experiments on boundary layers in the US.
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Transition to turbulence in shear flows

The viscous problem: PPF
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Transition to turbulence in shear flows

The viscous problem: Blasius
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Transition to turbulence in shear flows

The viscous problem: Blasius

y/o%

y/&"

Very well-controlled
experimental
conditions

Bakchinov et al., 1998
(very low free stream Tu)
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Transition to turbulence in shear flows

The viscous problem

Flow X crit Recyir Crerir
Plane Poiseulle 1.02 5772 0.264
Blasius boundary layer flow 0.303 519.4 0.397

Typical wind tunnel experiments say that transition occurs
around Re = 2000 in PPF and around Re =400 in the Blasius
boundary layer ...

Could this be a 3D effect? Or something else?
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Transition to turbulence in shear flows

The viscous problem: 3D disturbances

Consider 3D disturbances and replace

(fj v, ﬁ) — (U(_V), V(}/),P(}f))ei{&x—wr)
by

(@, 0,w,p) = (u@®),v(y),w(y), p(y))ei(ax + Bz - wt)

to end up with the OS and Squire equations
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Transition to turbulence in shear flows

The viscous problem: 3D disturbances

) _
(—iw + ialU)(D? — k) — iaU" — R—(D2 —k?)?lv = 0
e —
. _
(—iw +ial) — —(D* - k*)|n = —igU'v
Re ]
n=ifu—iaw mode shape of the normal vorticity
v=v =1n=0 at a solid wall and in the far field

k? = a? + 32 D' = 9'/dy'
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Transition to turbulence in shear flows

The 3D viscous problem

In discrete form the temporal problem is a generalized
eigenvalue problem of the form:

(¢ &) &)=2(s &)0)

Ax' = wBXx'
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Transition to turbulence in shear flows

The 3D viscous problem

There are two families of solutions of the Orr-Sommerfeld and
Squire problems

0OS modes: {vn, 'ﬂﬁ;wn}ﬁzl

Squire modes: {v=0,1nm, Lum}f;f:l
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Transition to turbulence in shear flows

The 3D viscous problem: Squire theorem

It is easy to show that

(i) Squire modes are always damped and
(ii) for each 3D OS mode there is a 2D OS mode of lower
Reynolds number

This means that the search of the critical Reynolds number
(smaller value of Re at which w, becomes positive for the
first time) can be carried out looking at 2D OS modes only.
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Transition to turbulence in shear flows

The 3D viscous problem: Squire theorem

It is easy to show that

(i) Squire modes are always damped and
(ii) for each 3D OS mode there is a 2D OS mode of lower
Reynolds number.

This means that the search of the critical Reynolds number
(smaller value of Re at which w, becomes positive for the
first time) can be carried out looking at 2D OS modes only.

So, if 3D disturbances are not the answer, what happens? 102



Transition to turbulence in shear flows

The forced problem

Let us imagine that an oscillating source term forces our system
of equations (before Laplace-Fourier transforming them):

of _ oot
at—Lf+seS

[ is some state function, L is a linear evolution operator, s is the
spatial distribution of the forcing signal and oy its growth rate.
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Transition to turbulence in shear flows

The forced problem

The adjoint system is

_99 _ 1+
at_L g

g is the adjoint function, L* is the adjoint operator. This equation
runs backward in time, i.e. itis integrated from ¢t = 7 to £t=0.

It arises easily from the definition of the inner product:

T
[a, b] = ffab dV dt
oV
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Transition to turbulence in shear flows

The forced problem

0
[g,a—f = [g,Lf] + [g,5¢%]

0
B a_i»f]ﬁgﬂ%dh [L7g, f1+ [g,se%"]
|74
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Transition to turbulence in shear flows

The forced problem

0
- [794]+f§flgd‘/= [L*g, f1+ [g,se%']
vV

the solution of the direct problem at the final time is:

j G fleer dV = j T flimodV + [g,5e%]
V V
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Transition to turbulence in shear flows

The forced problem

As terminal condition of the adjoint problem choose

g(T) =d(x —x)

so that the direct solution at 7 is

F(,T) = f G flicodV + [g,5€%]

vV

i.e. the adjoint solution weights both the initial condition and the
source term in determining the solution at the final time 7.

107



Transition to turbulence in shear flows

The forced problem

If we solve the linear stability problem for a plane shear flow

it is very easy to show that the eigenfunctions of the adjoint
operator act as receptivity functions, both for the temporally
evolving case and for the eigenproblem. In particular, adjoint e-

functions provide inflow/wall/source receptivity coefficients.

Hill, 1995
Luchini & Bottaro, 1998
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Transition to turbulence in shear flows

Sensitivity analysis

Let us go back to the discrete world, and imagine that the
matrices A and B are perturbed, for example by disturbances
in the boundary conditions or by a noisy base flow. This will

produce perturbations in both the eigenvalues and the
eigenvectors.

Ax' = wBx'
A+ 6A)(x' + 6x') = (w + éw)(B + 6B)(x' + 6x")
and to first order (for small variations):

Aéx '+ 6Ax' =wBoéx'+wdéBx'+6w B X'
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Transition to turbulence in shear flows

Sensitivity analysis

The left eigenproblem is:

Left multiply A6x'+ dAx' = wBdéx'+ wéBx'+6w B x'’

by 7 to obtain the eigenvalue drift:

Sco — (y, 64 ’f’) W (y, 6B 95’)
(y,Bx') (y,Bx')
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Transition to turbulence in shear flows

e-pseudospectrum

Small variations in A and B with respect to their ideal behavior,
linked to noise or imperfect knowledge of base flow and/or
boundary conditions, can destabilize (and modify the frequency)
of a nominally stable flow. The e-pseudospectrum of a matrix €
is the set of all eigenvalues which are e-close to C':

A(C) ={LeC|Txe C\{0},3E € C™": (C+E)x =x||E||, < €

0.1 . — : . . . . ||E||2 — 10—1
of . 4 2t 5
Z||Ell2 = 10-

0.1 r

0.2

0.3

3
[: A
*x " =
0.4+ e L
¢ %
A

0.5

0.6+

07

PPF, Re=10000, ¢=1 o [IEll2=107° &

0.9 " " L
0 0.2 0.4 C 0.6 08 1
r

[--]
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Transition to turbulence in shear flows

e-pseudospectrum

The e-pseudospectrum is particularly useful to understand
non-normal matrices and their eigenvectors, i.e. matrices
which do not commute with their conjugate traspose, and

for which the eigenvectors are not orthogonal to one another

CC"+ C'C

Clearly non-normal matrices are not self-adjoint.

The OS operator/matrix is strongly non-normal
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Transition to turbulence in shear flows

Transient growth

Damped e-vectors in time can produce a disturbance
f=®, — ®, whose amplitude is initially/transiently amplified
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Transition to turbulence in shear flows

Transient growth

15

PPF, Re =1000, =1
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Transition to turbulence in shear flows

Transient growth

15

Butler & Farrell, 1992

TABLE III. Optimal perturbations in Poiseville Aow at R =5000.

T o &) E/E,

Antisymmetric global optimal 379 0 2.044 4897
Gustavsson—antisymmetric peak 420 0 1.98 4448
Symmetric global optimal 270 Q 2.644 2819
Gustavsson—symmetric peak 286 0 2,60 2708
Best optimal at =20 20 093 il 512
Best optimal at T=5 5 36 73 49.1
Best 2-D optimal 141 148 0 45.7

Julpee= BO.3
E /By = 1.0 E\/E, = 3433.8

oA r
T =

i IR
A L L]
::ll::“r [ S
(3] A LN
l““ﬁl"'-_{féf';i'{f;
#

%
=

s,

Ay
ol

t = 378.0
10| pg= 95.0 U | us= B7.0
B /By = 4808.5 Ey/Ep = 4139.4

FIG. 14. Development of the perturbation streamwise velocity « for the
global optimal in Poisenille flow with 8=35000, located at a=0, 8
=2.044, and +=379. Values are normalized by the maximum value of v
at time 1=0.
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Transition to turbulence in shear flows

Transient growth

The optimal transient growth (i.e. that producing the largest
energy gain) transforms streamwise elongated vortices (present
at £t =0 or x =0) into streamwise elongated streaks at the final
time/position.

The mechanism is of inviscid nature.

Let us take the OS/Squire system, in symbolic form
Ax" = wBx' andlet’s go one step backwards, i.e. before

. dx
the Laplace transform: Ax' = —i Bd—i, x'(t=0) =x
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Transition to turbulence in shear flows

Transient growth

This equation also reads: Z—i =Cx', with C=iB 1A

We have already seen that in this case we can decompose the

solution in the sum of eigenvectors, i.e. x' = U et VTx!, = L x)
propagator of the IC

The energy of the disturbanceis E(t) = (x',x’) and the gain of
the disturbance at a generic time T is

E(T) _ (Lxg Lxg)  (LTLxg, xg)
E()  (xox)  (x0,%0)

G(T) =
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Transition to turbulence in shear flows

Transient growth

This is called Rayleigh quotient

(LT Lx{, x{)

CD= "Gy

and the initial condition x; which yields the largest gain is easily
identified by power iterations (adjoint looping)

t=0 Lxy = x7 t=T
——
direct iterations
x6 - yo yT = x"T

adjoint iterations

ETJ’T = Yo
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Transition to turbulence in shear flows

Case closed?

Despite the fact that non-normality (and — as a direct consequence
— transient growth) is an important concept, it is not sufficient to
explain the breakdown to turbulence observed in experiments.

Streaks

advection of
meuan shear

Streamwise
Rolls



Transition to turbulence in shear flows

Case closed?

Despite the fact that non-normality (and — as a direct consequence
— transient growth) is an important concept, it is not sufficient to
explain the breakdown to turbulence observed in experiments.

Qtracls Streaks
advection of i”SZ’-(li”jP’ of
mean shear SSp 2
St : ﬁ Streamwise exp (i Olx)
reﬁm])lw 8¢ Rolls mode

nonlinear
self-interaction

Fabian Waleffe, Physics of Fluids, 9, 1997



Transition to turbulence in shear flows

Non-linearities matter!

e waves are coupled
* growth is due to linear mechanism
* nonlinear terms redistribute kinetic energy among modes
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Transition to turbulence in shear flows

Weakly non-linear approach

Consider a simple 1D model system:

ou du 521 du 10, 5
— 4+ U——v—"=—-u—=—=—(u
ot T ox o2 ox 25‘$( )
i .
uw = Z f.l.,!l.f:if.:lﬂ!kﬁ"r
h=—nc
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Transition to turbulence in shear flows

Weakly non-linear approach

Consider a simple 1D model system:

o Ly, Lecva:
> [% + ikalUay, + rxkzﬂ-:za-k] e'kar =

k=—nc

> Y i(m 4+ n)alam(t) an(t)] gllmtn)ax _

M— =0 N—— 00

ek Z [ﬂl?n(t) ﬂ-n(t)] Eikr‘_‘tr

k=—o0 m=n=Fk

= o]

MNP N
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Transition to turbulence in shear flows

Weakly non-linear approach

Thus, for each mode &

day, 1
di + tkaUay + VkQazak = - Eika Z am Qn

m—+n=k

and if we only considered three modes, k= -1, 0, 1, we would
have:

—

da : .
d—to = 0, a, is the mean flow correction

da
— =2 4 iaUa, + va?a, = —iaayay

da_ 1
dt

—iaUa_; + va?a_{ = iaaga_q

—
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Transition to turbulence in shear flows

Fully non-linear analysis

mssssmmmm)  Prof. Joel Guerrero!
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Transition to turbulence in shear flows

M.C. Escher, Angels and Demons
https://www.youtube.com/watch?v=YWVFIz4f5gk
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https://www.youtube.com/watch?v=YWVFIz4f5qk

