Quick review of index and vector notation

- These two sets of equations are the same, we simply wrote them using different notations.

$$
\begin{aligned}
\nabla \cdot(\mathbf{u}) & =0 \\
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot(\mathbf{u u}) & =\frac{-\nabla p}{\rho}+\nu \nabla^{2} \mathbf{u}
\end{aligned}
$$

Vector notation

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{i}} & =0 \\
\frac{\partial u_{i}}{\partial t}+\frac{\partial u_{i} u_{j}}{\partial x_{j}} & =-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{j} x_{j}}
\end{aligned}
$$

- Let us illustrate index and vector notation using operators that commonly appears in the governing equations of fluid dynamics.
- In our notation, the indices i, j, k can take the following values,

$$
\left.\begin{array}{l}
i \\
j \\
k
\end{array}\right\} 1,2,3
$$

- For example, the vectors x_{i} and u_{j}, are defined as follows,

$$
x_{i}\left\{\begin{array} { l }
{ x _ { 1 } = x } \\
{ x _ { 2 } = y } \\
{ x _ { 3 } = z }
\end{array} \quad u _ { j } \left\{\begin{array}{l}
u_{1}=u \\
u_{2}=v \\
u_{3}=w
\end{array}\right.\right.
$$

- The second rank tensor $\boldsymbol{\tau}_{i j}$ is defined as follows,

$$
\boldsymbol{\tau}_{i j}=\left(\begin{array}{ccc}
\tau_{11} & \tau_{12} & \tau_{13} \\
\tau_{21} & \tau_{22} & \tau_{23} \\
\tau_{31} & \tau_{32} & \tau_{33}
\end{array}\right)
$$

- One free index results in a vector.
- It represents a gradient.

$$
\frac{\partial \phi}{\partial x_{i}}=\frac{\partial \phi}{\partial x_{1}}+\frac{\partial \phi}{\partial x_{2}}+\frac{\partial \phi}{\partial x_{3}}
$$

- In vector notation, is equivalent to,

$$
\frac{\partial \phi}{\partial x_{i}}=\operatorname{grad} \phi=\nabla \phi
$$

- The gradient will increase the rank of a tensor.
- That is, a zero-rank tensor (scalar), will become a first-rank tensor (vector), and a first-rank tensor will become a second-rank tensor (tensor).
- One repeated index results in a scalar.
- It is the sum over the index.

$$
\frac{\partial u_{i}}{\partial x_{i}}=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}
$$

- In vector notation, is equivalent to,

$$
\frac{\partial u_{i}}{\partial x_{i}}=\operatorname{div} \mathbf{u}=\nabla \cdot \mathbf{u}
$$

- The divergence will decrease the rank of a tensor.
- That is, a second-rank tensor (tensor), will become a first-rank tensor (vector), and a first-rank tensor will become a zero-rank (tensor).
- Two free indices results in a second rank tensor.

$$
\begin{aligned}
& u_{i} u_{j}=\left(\begin{array}{lll}
u_{1} u_{1} & u_{1} u_{2} & u_{1} u_{3} \\
u_{2} u_{1} & u_{2} u_{2} & u_{2} u_{3} \\
u_{3} u_{1} & u_{3} u_{2} & u_{3} u_{3}
\end{array}\right) \quad \rightarrow \quad \mathbf{a} \otimes \mathbf{b}=\mathbf{a b}^{T}=\mathbf{a b} \\
& \frac{\partial \phi_{i}}{\partial x_{j}}=\left(\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial \phi_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right) \\
& \rightarrow \quad \nabla \phi
\end{aligned}
$$

- Two free indices results in a tensor.

$$
\tau_{i j}^{R}=-\rho \overline{u_{i}^{\prime} u_{j}^{\prime}}=\left[\begin{array}{ccc}
2 \mu S_{11}-\frac{2}{3} \rho k & 2 \mu S_{12} & 2 \mu S_{13} \\
2 \mu S_{21} & 2 \mu S_{22}-\frac{2}{3} \rho k & 2 \mu S_{23} \\
2 \mu S_{31} & 2 \mu S_{32} & 2 \mu S_{33}-\frac{2}{3} \rho k
\end{array}\right]
$$

- In vector notation, is equivalent to,

$$
-\rho\left(\overline{\overline{\mathbf{u}}^{\prime} \mathbf{u}^{\prime}}\right)=2 \mu_{T} \overline{\mathbf{S}}^{R}-\frac{2}{3} \rho k \mathbf{I} \quad \mathbf{S}=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)
$$

- Two repeated indices (j) and one free indices (i) results in a tensor.
- Summation in j and it will form a vector in i.

$$
\begin{aligned}
& \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}}=\frac{\partial\left(\overline{u_{i} u_{1}}\right)}{\partial x_{1}}+\frac{\partial\left(\overline{u_{i} u_{2}}\right)}{\partial x_{2}}+\frac{\partial\left(\overline{u_{i} u_{3}}\right)}{\partial x_{3}} \quad \rightarrow \quad \text { Summation in } j \\
& \frac{\partial\left(\overline{u_{i} u_{1}}\right)}{\partial x_{1}}+\frac{\partial\left(\overline{u_{i} u_{2}}\right)}{\partial x_{2}}+\frac{\partial\left(\overline{u_{i} u_{3}}\right)}{\partial x_{3}}= \\
& \left(\frac{\partial\left(\overline{u_{1} u_{1}}\right)}{\partial x_{1}}+\frac{\partial\left(\overline{u_{1} u_{2}}\right)}{\partial x_{2}}+\frac{\partial\left(\overline{u_{1} u_{3}}\right)}{\partial x_{3}}\right) \vec{i}+ \\
& \left(\frac{\partial\left(\overline{u_{2} u_{1}}\right)}{\partial x_{1}}+\frac{\partial\left(\overline{u_{2} u_{2}}\right)}{\partial x_{2}}+\frac{\partial\left(\overline{u_{2} u_{3}}\right)}{\partial x_{3}}\right) \vec{j}+ \\
& \left(\frac{\partial\left(\overline{u_{3} u_{1}}\right)}{\partial x_{1}}+\frac{\partial\left(\overline{u_{3} u_{2}}\right)}{\partial x_{2}}+\frac{\partial\left(\overline{u_{3} u_{3}}\right)}{\partial x_{3}}\right) \vec{k}
\end{aligned}
$$

- Permutation or Levi-Civita operator.

$$
\varepsilon_{i j k} \begin{cases}=0 & \text { if any two of } i, j, k \text { are the same } \\ =1 & \text { for even permutation } \\ =-1 & \text { for odd permutation }\end{cases}
$$

$$
\begin{aligned}
\text { for even permutation } & =123,312,231 \\
\text { for } \text { odd permutation } & =321,132,213
\end{aligned}
$$

- Using the Levi-Civita operator in the following way,

$$
\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}}
$$

- Results in the following vector,

$$
\begin{aligned}
& \underbrace{\varepsilon_{i 21} \frac{\partial u_{1}}{\partial x_{2}}}_{\substack{j=2 \\
k=1}}+\underbrace{\varepsilon_{i 22} \frac{\partial u_{2}}{\partial x_{2}}}_{\substack{j=2 \\
k=2}}+\underbrace{\varepsilon_{i 23} \frac{\partial u_{3}}{\partial x_{2}}}_{\substack{j=2 \\
k=3}}+\ldots \\
& i=1 \rightarrow \varepsilon=0 \quad i=1 \rightarrow \varepsilon=0 \quad i=1 \rightarrow \varepsilon=+1 \\
& i=2 \rightarrow \varepsilon=0 \quad i=2 \rightarrow \varepsilon=0 \quad i=2 \rightarrow \varepsilon=0 \\
& i=3 \rightarrow \varepsilon=-1 \quad i=3 \rightarrow \varepsilon=0 \quad i=3 \rightarrow \varepsilon=0 \\
& \underbrace{\varepsilon_{i 31} \frac{\partial u_{1}}{\partial x_{3}}}_{\substack{j=3 \\
k=1}}+\underbrace{\varepsilon_{i 32} \frac{\partial u_{2}}{\partial x_{3}}}_{\substack{j=3 \\
k=2}}+\underbrace{\varepsilon_{i 33} \frac{\partial u_{3}}{\partial x_{3}}}_{\substack{j=3 \\
k=3}} \\
& i=1 \rightarrow \varepsilon=0 \quad i=1 \rightarrow \varepsilon=-1 \quad i=1 \rightarrow \varepsilon=0 \\
& i=2 \rightarrow \varepsilon=+1 \quad i=2 \rightarrow \varepsilon=0 \quad i=2 \rightarrow \varepsilon=0 \\
& i=3 \rightarrow \varepsilon=0 \quad i=3 \rightarrow \varepsilon=0 \quad i=3 \rightarrow \varepsilon=0
\end{aligned}
$$

- Using the Levi-Civita operator in the following way,

$$
\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}}
$$

- And after some algebra, we obtain the following vector,

$$
\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}}=\left(\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}}\right) \vec{i}+\left(\frac{\partial u_{1}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{1}}\right) \vec{j}+\left(\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}\right) \vec{k}
$$

- In vector notation, is equivalent to,

$$
\operatorname{curl} \mathbf{u}=\nabla \times \mathbf{u}
$$

- A second rank tensor can also be decomposed into a deviatoric part (anisotropic part) and a spherical part (isotropic part).
- This procedure is known as additive decomposition of a second rank tensor.

\[

\]

- Notice that the deviatoric part (dev) is traceless, and the spherical part (sph) is the trace of the second rank tensor
- This kind of decomposition is often used in continuous mechanics.
- A few additional operators in index and vector notation that you will find in the governing equations of fluid dynamics.
- Strain rate tensor,

$$
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

- In vector notation, is equivalent to,

$$
\mathbf{S}=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)
$$

- A few additional operators in index and vector notation that you will find in the governing equations of fluid dynamics.
- Laplacian,

$$
\frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}=\frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)=\left[\begin{array}{ccc}
\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}} & \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}} & \frac{\partial^{2} u_{1}}{\partial x_{3}^{2}} \\
\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}} & \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}} & \frac{\partial^{2} u_{2}}{\partial x_{3}^{2}} \\
\frac{\partial^{2} u_{3}}{\partial x_{1}^{2}} & \frac{\partial^{2} u_{3}}{\partial x_{2}^{2}} & \frac{\partial^{2} u_{3}}{\partial x_{3}^{2}}
\end{array}\right]
$$

- In vector notation, is equivalent to,

$$
\nabla \cdot \nabla \mathbf{u}=\nabla^{2} \mathbf{u}=\Delta \mathbf{u}
$$

- The Laplacian operator will not change the rank of a tensor.
- A few additional operators in index and vector notation that you will find in the governing equations of fluid dynamics.
- Every second-rank tensor, e.g., the gradient of a vector, can be decomposed into a symmetric part and an anti-symmetric part.

$$
\frac{\partial u_{i}}{\partial x_{j}}=\underbrace{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)}_{\text {Symmetric part }}+\underbrace{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right)}_{\text {Anti-symmetric part }}
$$

- In vector notation, is equivalent to,

$$
\nabla \mathbf{u}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)}_{\text {Symmetric part }}+\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}-\nabla \mathbf{u}^{T}\right)}_{\text {Anti-symmetric part }}
$$

- The symmetric part is equivalent to the strain rate tensor (stretching and shearing) and the anti-symmetric part is equivalent to the spin tensor (vorticity).
- A few additional operators in index and vector notation that you will find in the governing equations of fluid dynamics.
- The dot product of two second-rank tensor (also known as single dot product or tensor product of two tensor), is written using index and vector notation as follows,

$$
\mathbf{C}=C_{i j}=A_{i k} B_{k j}=\mathbf{A} \cdot \mathbf{B}=(\mathbf{A} \cdot \mathbf{B})_{i j}
$$

- This is a matrix multiplication, which in the case of second-rank tensors will results in another second rank tensor.
- Very often, especially when working with turbulence models, you will find expressions as the following ones (in this case we are illustrating the product of three second rank tensor),

Matrix (or second rank tensor) multiplication

$$
C_{i i}=\Omega_{i j} \Omega_{j k} S_{k i}
$$

- This matrix multiplication results in a square matrix i by i (a second rank tensor)

$$
c=\left|\Omega_{i j} \Omega_{j k} S_{k i}\right|
$$

- This is the magnitude of the second rank tensor resulting from this matrix multiplication.
- The result is a scalar.
- The magnitude of a second rank tensor is defined as

$$
|\mathbf{S}|=(2 \mathbf{S}: \mathbf{S})^{1 / 2} \quad\left|S_{i j}\right|=\left(2 S_{i j} S_{i j}\right)^{1 / 2}
$$

- A few additional operators in index and vector notation that you will find in the governing equations of fluid dynamics.
- Very often, especially when working with turbulence models, you will find the following vector notation,

$$
c=\mathbf{A}: \mathbf{B}
$$

- This is the double dot product of two second rank tensors, and the output is a scalar.
- It is evaluated as the sum of the 9 products of the tensor components.
- Using index notation, it is written as follows,

$$
\begin{aligned}
\phi=A_{i j} B_{i j}= & A_{11} B_{11}+A_{12} B_{12}+A_{13} B_{13}+ \\
& A_{21} B_{21}+A_{22} B_{22}+A_{23} B_{23}+ \\
& A_{31} B_{31}+A_{32} B_{32}+A_{33} B_{33}
\end{aligned}
$$

- This operator is used to reduce the product of two second rank tensors to a scalar value, for example, the production term in turbulence models can be written as follows,

$$
\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}=\tau: \nabla \mathbf{u}
$$

