
1 Governing Equations of Fluid Dynamics1

The starting point of any numerical simulation are the governing equations of the physics of the2

problem to be solved. Hereafter, we present the governing equations of fluid dynamics and their3

simplification for the case of an incompressible viscous flow.4

5

The equations governing the motion of a fluid can be derived from the statements of the conser-6

vation of mass, momentum, and energy [1, 2, 3]. In the most general form, the fluid motion is7

governed by the time-dependent three-dimensional compressible Navier-Stokes system of equa-8

tions. For a viscous Newtonian, isotropic fluid in the absence of external forces, mass diffusion,9

finite-rate chemical reactions, and external heat addition; the conservation form of the Navier-10

Stokes system of equations in compact differential form and in primitive variable formulation11

(ρ, u, v, w, et) can be written as,12

∂ρ

∂t
+∇ · (ρu) = 0,

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + Su,

∂ (ρet)

∂t
+∇ · (ρetu) = −∇ · q −∇ · (pu) + τ :∇u+ Set ,

(1.1)

where τ is the viscous stress tensor and is given by,13

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 . (1.2)

The set of equations 1.1 can be rewritten in matrix-vector form as follows,14

∂q

∂t
+

∂ei
∂x

+
∂fi
∂y

+
∂gi
∂z

=
∂ev
∂x

+
∂fv
∂y

+
∂gv
∂z

, (1.3)

where q is the vector of the conserved flow variables given by,15

q =


ρ
ρu
ρv
ρw
ρet

 , (1.4)

and ei, fi and gi are the vectors containing the inviscid fluxes (or convective fluxes) in the x, y16

and z directions and are given by,17

ei =


ρu

ρu2 + p
ρuv
ρuw

(ρet + p)u

 , fi =


ρv
ρvu

ρv2 + p
ρvw

(ρet + p) v

 , gi =


ρw
ρwu
ρwv

ρw2 + p
(ρet + p)w

 , (1.5)

where u is the velocity vector containing the u, v and w velocity components in the x, y and18

z directions and p, ρ and et are the pressure, density and total energy per unit mass respectively.19

20

The vectors ev, fv and gv contain the viscous fluxes in the x, y and z directions and are defined21

as follows,22

1



ev =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx

 ,

fv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz − qy

 ,

gv =


0
τzx
τzy
τzz

uτzx + vτzy + wτzz − qz

 ,

(1.6)

where the heat fluxes qx, qy and qz are given by the Fourier’s law of heat conduction as follows,23

qx = −k
∂T

∂x
,

qy = −k
∂T

∂y
,

qz = −k
∂T

∂z
,

(1.7)

and the viscous stresses τxx, τyy, τzz, τxy, τyx, τxz, τzx, τyz and τzy, are given by the following24

relationships,25

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

τzz =
2

3
µ

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
,

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
,

τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)
,

τyz = τzy = µ

(
∂v

∂z
+

∂w

∂y

)
.

(1.8)

In equations 1.6-1.8, T is the temperature, k is the thermal conductivity and µ is the molecular26

viscosity. In order to derive the viscous stresses in eq. 1.8 the Stokes hypothesis was used27

[1, 4, 5, 6].28

29

Examining closely equations 1.3-1.8 and counting the number of equations and unknowns, we30

clearly see that we have five equations in terms of seven unknown flow field variables u, v, w,31

ρ, p, T , and et. It is obvious that two additional equations are required to close the system.32

These two additional equations can be obtained by determining relationships that exist between33
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the thermodynamic variables (p, ρ, T, ei) through the assumption of thermodynamic equilibrium.34

Relations of this type are known as equations of state, and they provide a mathematical rela-35

tionship between two or more state functions (thermodynamic variables). Choosing the specific36

internal energy ei and the density ρ as the two independent thermodynamic variables, then37

equations of state of the following form are required,38

p = p (ei, ρ) , T = T (ei, ρ) . (1.9)

For most problems in aerodynamics and gasdynamics, it is generally reasonable to assume that39

the gas behaves as a perfect gas (a perfect gas is defined as a gas whose intermolecular forces40

are negligible), i.e.,41

p = ρRgT, (1.10)

where Rg is the specific gas constant and is equal to 287 m2

s2K
for air. Assuming also that the42

working gas behaves as a calorically perfect gas (a calorically perfect gas is defined as a perfect43

gas with constant specific heats), then the following relations hold,44

ei = cvT, h = cpT, γ =
cp
cv
, cv =

Rg

γ − 1
, cp =

γRg

γ − 1
, (1.11)

where γ is the ratio of specific heats and is equal to 1.4 for air, cv the specific heat at constant45

volume, cp the specific heat at constant pressure and h is the enthalpy. By using eq. 1.10 and46

eq. 1.11, we obtain the following relations for pressure p and temperature T in the form of eq.47

1.9,48

p = (γ − 1) ρei, T =
p

ρRg
=

(γ − 1) ei
Rg

, (1.12)

where the specific internal energy per unit mass ei = p/(γ − 1)ρ is related to the total energy49

per unit mass et by the following relationship,50

et = ei +
1

2

(
u2 + v2 + w2

)
. (1.13)

In our discussion, it is also necessary to relate the transport properties (µ, k) to the thermody-51

namic variables. Then, the molecular viscosity µ is computed using Sutherland’s formula,52

µ =
C1T

3
2

(T + C2)
, (1.14)

where for the case of the air, the constants are C1 = 1.458× 10−6 kg

ms
√
K

and C2 = 110.4K.53

54

The thermal conductivity of the fluid (k) is determined from the Prandtl number (Pr = 0.72 for air)55

which in general is assumed to be constant and is equal to,56

k =
cpµ

Pr
, (1.15)

where cp and µ are given by equations eq. 1.11 and eq. 1.14 respectively.57

58

2 Simplification of the Navier-Stokes System of Equations: In-59

compressible Viscous Flow Case60

Equations 1.3-1.6, with an appropriate equation of state and boundary and initial conditions,61

governs the unsteady three-dimensional motion of a viscous Newtonian, compressible fluid. In62
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many applications the fluid density may be assumed to be constant. This is true not only for63

liquids, whose compressibility may be neglected, but also for gases if the Mach number is below64

0.3 [2, 7]; such flows are said to be incompressible. If the flow is also isothermal, the viscosity is65

also constant. In this case, the governing equations written in compact conservation differential66

form and in primitive variable formulation (u, v, w, p) reduce to the following set,67

∇ · (u) = 0,

∂u

∂t
+∇ · (uu) = −∇p

ρ
+ ν∇2u,

(2.1)

where ν is the kinematic viscosity and is equal ν = µ/ρ. The previous set of equations in68

expanded three-dimensional Cartesian coordinates is written as follows,69

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂vw

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
,

∂w

∂t
+

∂uw

∂x
+

∂vw

∂y
+

∂w2

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
.

(2.2)

The set of equations 2.2 governs the unsteady three-dimensional motion of a viscous, incompress-70

ible and isothermal flow. This simplification is generally not of a great value, as the equations71

are hardly any simpler to solve. However, the computing effort may be much smaller than for72

the full equations (due to the reduction of the unknowns and the fact that the energy equation73

is decoupled from the system of equation), which is a justification for such a simplification. The74

set of equations 2.1 can be rewritten in matrix-vector form as follows,75

∂q

∂t
+

∂ei
∂x

+
∂fi
∂y

+
∂gi
∂z

=
∂ev
∂x

+
∂fv
∂y

+
∂gv
∂z

, (2.3)

where q is the vector containing the primitive variables and is given by,76

q =


0
u
v
w

 , (2.4)

and ei, fi and gi are the vectors containing the inviscid fluxes (or convective fluxes) in the x, y77

and z directions and are given by,78

ei =


u

u2 + p
uv
uw

 , fi =


v
vu

v2 + p
vw

 , gi =


w
wu
wv

w2 + p

 . (2.5)

The viscous fluxes (or diffusive fluxes) in the x, y and z directions, ev, fv and gv respectively,79

are defined as follows,80

ev =


0
τxx
τxy
τxz

 , fv =


0
τyx
τyy
τyz

 , gv =


0
τzx
τzy
τzz

 . (2.6)
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Since we made the assumptions of an incompressible flow, appropriate expressions for shear81

stresses must be used, these expressions are given as follows,82

τxx = 2µ
∂u

∂x
,

τyy = 2µ
∂v

∂y
,

τzz = 2µ
∂w

∂z
,

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
,

τxz = τzx = µ

(
∂w

∂x
+

∂u

∂z

)
,

τyz = τzy = µ

(
∂w

∂y
+

∂v

∂z

)
,

(2.7)

where we used Stokes hypothesis [4, 1, 5, 6] in order to derive the viscous stresses in eq. 2.7.83

Equation 2.7 can be written in compact vector form as τ = 2µS, where,84

S =
1

2

[
∇u+∇uT

]
, (2.8)

represents the strain-rate tensor. We can further decompose the velocity gradient tensor as85

follows,86

∇u = [S+Ω] , (2.9)

where S represents the symmetric part of the velocity gradient tensor (or the strain-rate tensor),87

and Ω represents the anti-symmetric part of the velocity gradient tensor (or the spin tensor, also88

know as vorticity). In eq. 2.9, the skew or anti-symmetric part of the velocity gradient tensor89

is given by,90

Ω =
1

2

[
∇u−∇uT

]
. (2.10)

Equations 2.3-2.6, are the governing equations of an incompressible, isothermal, viscous flow91

written in conservation form.92

3 Reynolds Averaging93

The starting point for deriving the RANS equations is the Reynolds decomposition [3, 8, 9, 10,94

11, 12] of the flow variables of the governing equations. This decomposition is accomplished by95

representing the instantaneous flow quantity ϕ by the sum of a mean value part (denoted by a96

bar over the variable, as in ϕ̄) and a time-dependent fluctuating part (denoted by a prime, as97

in ϕ′). This concept is illustrated in figure 1 and is mathematically expressed as follows,98

ϕ(x, t) = ϕ̄(x)︸︷︷︸
mean value

+ ϕ′(x, t)︸ ︷︷ ︸
fluctuating part

. (3.1)

Hereafter, x is the vector containing the Cartesian coordinates x, y, and z in N = 3 (where N is99

equal to the number of spatial dimensions). A key observation in eq. 3.1 is that ϕ̄ is independent100

of time, implying that any equation deriving for computing this quantity must be steady state.101

102

In eq. 3.1, the mean value ϕ̄ is obtained by an averaging procedure. There are three different103

forms of the Reynolds averaging:104
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Figure 1: Time averaging for a statistically steady turbulent flow (left) and time averaging for an
unsteady turbulent flow (right).

1. Time averaging: appropriate for stationary turbulence, i.e., statically steady turbulence105

or a turbulent flow that, on average, does not vary with time.106

ϕ̄(x) = lim
T→+∞

1

T

∫ t+T

t
ϕ(x, t) dt, (3.2)

here t is the time and T is the averaging interval. This interval must be large compared107

to the typical time scales of the fluctuations; thus, we are interested in the limit T → ∞.108

As a consequence, ϕ̄ does not vary in time, but only in space.109

2. Spatial averaging: appropriate for homogeneous turbulence.110

ϕ̄(t) = lim
CV→∞

1

CV

∫
CV

ϕ(x, t) dCV, (3.3)

with CV being a control volume. In this case, ϕ̄ is uniform in space, but it is allowed to111

vary in time.112

3. Ensemble averaging: appropriate for unsteady turbulence.113

ϕ̄(x, t) = lim
N→∞

1

N

N∑
i=1

ϕ̄(x, t), (3.4)

where N , is the number of experiments of the ensemble and must be large enough to114

eliminate the effects of fluctuations. This type of averaging can be applied to any flow115

(steady or unsteady). Here, the mean value ϕ̄ is a function of both time and space (as116

illustrated in figure 1).117

We use the term Reynolds averaging to refer to any of these averaging processes, applying any of118

them to the governing equations yields to the Reynolds-Averaged Navier-Stokes (RANS) equa-119

tions. In cases where the turbulent flow is both stationary and homogeneous, all three averaging120

are equivalent. This is called the ergodic hypothesis.121

122

If the mean flow ϕ̄ varies slowly in time, we should use an unsteady approach (URANS); then,123

equations eq. 3.1 and eq. 3.2 can be modified as124

ϕ(x, t) = ϕ̄(x, t) + ϕ′(x, t), (3.5)
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and125

ϕ̄(x, t) =
1

T

∫ t+T

t
ϕ(x, t)dt, T1 << T << T2, (3.6)

where T1 and T2 are the characteristics time scales of the fluctuations and the slow variations126

in the flow, respectively (as illustrated in figure 1). In eq. 3.6 the time scales should differ by127

several order of magnitude, but in engineering applications very few unsteady flows satisfy this128

condition.129

130

Before deriving the RANS equations, let us recall the following averaging rules,131

ϕ̄′ = 0,

¯̄ϕ = ϕ̄,

ϕ̄ = ϕ̄+ ϕ′ = ϕ̄,

ϕ+ φ = ϕ̄+ φ̄ ,

ϕ̄φ = ϕ̄φ̄ = ϕ̄φ̄,

ϕ̄φ′ = ϕ̄φ̄′ = 0,

ϕφ = (ϕ̄+ ϕ′)(φ̄+ φ′)

= ϕ̄φ̄+ ϕ̄φ′ + φ̄ϕ′ + ϕ′φ′

= ϕ̄φ̄+ ϕ̄φ′ + φ̄ϕ′ + ϕ′φ′

= ϕ̄φ̄+ ϕ′φ′,

ϕ′2 ̸= 0,

ϕ′φ′ ̸= 0,

∂ϕ

∂x
=

∂ϕ̄

∂x
,

∂ϕ

∂t
=

∂ϕ̄

∂t
,∫

ϕds =

∫
ϕ̄ds

(3.7)

4 Incompressible Reynolds Averaged Navier-Stokes Equations132

Let us recall the Reynolds decomposition for the flow variables of the incompressible Navier-133

Stokes equations eq. 2.1,134

u(x, t) = ū(x) + u′(x, t),

p(x, t) = p̄(x) + p′(x, t),
(4.1)

we now substitute eq. 4.1 into the incompressible Navier-Stokes equations eq. 2.1 and we obtain135

for the continuity equation,136

∇ · (u) = ∇ ·
(
ū+ u′) = ∇ · (ū) +∇ ·

(
u′) = 0. (4.2)

Then, time averaging this equation results in,137

∇ · (ū) +∇ ·
(
ū′
)
= 0, (4.3)
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and using the averaging rules stated in eq. 3.7, it follows that,138

∇ · (ū) = 0. (4.4)

We next consider the momentum equation of the incompressible Navier-Stokes equations eq.139

2.1. We begin by substituting eq. 4.1 into eq. 2.1 in order to obtain,140

∂ (ū+ u′)

∂t
+∇ ·

((
ū+ u′) (ū+ u′)) = −∇ (p̄+ p′)

ρ
+ ν∇2

(
ū+ u′) , (4.5)

by time averaging eq. 4.5, expanding and applying the rules set in eq. 3.7, we obtain141

∂ū

∂t
+∇ ·

(
ūū+ u′u′

)
=

−∇p̄

ρ
+ ν∇2ū, (4.6)

or after rearranging,142

∂ū

∂t
+∇ · (ūū) = −∇p̄

ρ
+ ν∇2ū−∇ ·

(
u′u′

)
. (4.7)

By setting τR = −ρ
(
u′u′

)
in equation 4.7, and grouping with equation 4.4, we obtain the143

following set of equations,144

∇ · (ū) = 0,

∂ū

∂t
+∇ · (ūū) = −∇p̄

ρ
+ ν∇2ū+

1

ρ
∇ · τR.

(4.8)

The set of equations eq. 4.8 are the incompressible Reynolds-Averaged Navier-Stokes (RANS)145

equations. Notice that in eq. 4.8 we have retained the term ∂ū/∂t, despite the fact that ū is in-146

dependent of time for statistically steady turbulence, hence this expression is equal to zero when147

time average. In practice, in all modern formulations of the RANS equations the time derivative148

term is included. In references [3, 8, 9, 13, 14], a few arguments justifying the retention of this149

term are discussed. For not statistically stationary turbulence or unsteady turbulence, a time-150

dependent RANS or unsteady RANS (URANS) approach is required, an URANS computation151

simply requires retaining the time derivative term ∂ū/∂t in the computation.152

153

The incompressible Reynolds-Averaged Navier-Stokes (RANS) equations eq. 4.8 are identical154

to the incompressible Navier-Stokes equations eq. 2.1 with the exception of the additional term155

τR = −ρ
(
u′u′

)
, where τR is the so-called Reynolds-stress tensor. Notice that by doing a check156

of dimensions, it will show that τR it is not actually a stress; it must be multiplied by the density157

ρ, as it is done consistently in this manuscript, in order to have dimensions corresponding to the158

stresses. On the other hand, since we are assuming that the flow is incompressible, that is, ρ is159

constant, we might set the density equal to unity, thus obtaining implicit dimensional correctness.160

Moreover, because we typically use kinematic viscosity ν, there is an implied division by ρ. The161

Reynolds-stress tensor represents the transfer of momentum due to turbulent fluctuations. In162

3D, the Reynolds-stress tensor τR consists of nine components163

τR = −ρ
(
u′u′

)
= −

ρu′u′ ρu′v′ ρu′w′

ρv′u′ ρv′v′ ρv′w′

ρw′u′ ρw′v′ ρw′w′

 . (4.9)

However, since u, v and w can be interchanged, the Reynolds-stress tensor forms a symmetrical164

second order tensor containing only six independent components. By inspecting the set of165
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equations eq. 4.8 we can count ten unknowns, namely; three components of the velocity (u, v,166

w), the pressure (p), and six components of the Reynolds stress
(
τR = −ρ

(
u′u′

))
, in terms of167

four equations, hence the system is not closed. The fundamental problem of turbulence modeling168

based on the Reynolds-averaged Navier-Stokes equations is to find six additional relations in169

order to close the system of equations eq. 4.8.170

5 Boussinesq Approximation171

The Reynolds averaged approach to turbulence modeling requires that the Reynolds stresses172

in eq. 4.8 to be appropriately modeled (however, it is possible to derive its own governing173

equations, but it is much simpler to model this term). A common approach uses the Boussinesq174

hypothesis to relate the Reynolds stresses τR to the mean velocity gradients such that,175

τR = −ρ
(
u′u′

)
= 2µT S̄

R − 2

3
ρkI = µT

[
∇u+ (∇u)T

]
− 2

3
ρkI, (5.1)

where S̄
R
denotes the Reynolds-averaged strain-rate tensor,176

S̄
R
=

1

2
(∇u+∇uT), (5.2)

I is the identity matrix, µT is called the turbulent eddy viscosity, and,177

k =
1

2
u′ · u′, (5.3)

is the turbulent kinetic energy.178

179

Basically, we have assumed that the fluctuating Reynolds stresses are proportional to the gra-180

dient of the average quantities (similarly to Newtonian flows). The second term in eq. 5.1,181

namely,182

2

3
ρkI, (5.4)

is added in order for the Boussinesq approximation to be valid when traced. That is, the trace183

of the right hand side in eq. 5.1 must be equal to that of the left hand side184

−ρ(u′u′)tr = −2ρk, (5.5)

hence it is consistent with the definition of turbulent kinetic energy (eq. 5.3). In order to eval-185

uate k, usually a governing equation for k is derived and solved, typically two-equations models186

include such an option.187

188

The turbulent eddy viscosity µT (in contrast to the molecular viscosity µ), is a property of the189

flow field and not a physical property of the fluid. The eddy viscosity concept was developed190

assuming that a relationship or analogy exists between molecular and turbulent viscosities. In191

spite of the theoretical weakness of the turbulent eddy viscosity concept, it does produce rea-192

sonable results for a large number of flows.193

194

The Boussinesq approximation reduces the turbulence modeling process from finding the six195

turbulent stress components τR to determining an appropriate value for the turbulent eddy196

viscosity µT .197

198

One final word of caution, the Boussinesq approximation discussed here, should not be associ-199

ated with the completely different concept of natural convection.200

201
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