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1. More turbulence models
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Algebraic models – Review of the Prandtl 

mixture length model

More turbulence models – The Prandtl mixture length model
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• Prandtl in 1925 [1,2] introduced the concept of mixing 

length lm theory that closely relates to eddy viscosity 

concept and formed the basis for all turbulent modeling 

efforts. 

• The Prandtl mixing length is defined as the average 

distance travelled by a lump of fluid (or an eddy) in the 

normal direction across the flow, as illustrated in the 

figure.

• This concept is similar to the mean free path used in the 

kinetic theory of gases.

• In the 2D pure shear boundary layer shown in the figure, 

a fluid lump travels a distance of 2lm, exchanging 

momentum, and this results in a turbulent shear stress. 

• The velocities at the two locations (y + lm) and (y - lm) are 

given as

More turbulence models – The Prandtl mixture length model

[1] L. Prandtl. Report on Investigation of Developed Turbulence. NACA-TM-1231 (translation from German version), 1925.

[2] P. Bradshaw. Possible origin of Prandtl's mixing-length theory. Nature. 249 (6): 135–136, 1974.
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• Where the velocity fluctuation u’ (in any of the     

locations ±lm) is given by,

More turbulence models – The Prandtl mixture length model

• The turbulent velocity fluctuation, u’, is proportional to the 

mean of the velocities u (y + lm) and u (y - lm) at locations 

(y + lm) and (y - lm) across the mixing plane.

• Here, the assumption is that a lump of fluid from a certain 

layer is displaced over a distance in the transverse 

direction.

• Then, the difference in velocity of the fluid lump (eddy) 

will differ from its surrounds by an amount.

• Or, 



• Where       is the turbulent eddy viscosity and is defined 

as,
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• Based on this concept and assuming v’ of the same order 

as u’, the turbulent stress and turbulent eddy viscosity 

are expressed in terms of Prandtl mixing length 

hypothesis in the following manner,

More turbulence models – The Prandtl mixture length model

• And lm is the turbulent mixing length, yet to be specify.

• This quantity conceptually defines the characteristic 

distance a fluid parcel is transported across the flow by 

turbulent fluctuations before becoming mixed with the 

surrounding fluid (hence taking on the flow properties at 

the new level).
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• Prandtl proposed that along with the strong variation of 

turbulent eddy viscosity,      , within the boundary layer, 

the mixing length, lm, also varies throughout the boundary 

layer following the relation,

More turbulence models – The Prandtl mixture length model

• Where K is a constant of proportionality.

• Substituting this expression into Prandtl mixing length 

equation, the turbulent eddy viscosity is expressed as,

• Further assuming that in the near-wall region,
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• After substitution and rearranging, we obtain the following 

expression, 
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• Integration of this expression yields to the following 

velocity distribution profile,

• Where E is the constant of integration and        is equal 

to,

• The equation of the velocity profile distribution matched 

well experimental data in the near-wall region of the 

turbulent boundary layer, except in the so-called laminar 

sublayer region close to the wall where viscous shear is 

dominant.
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• As we have done so far, many of the previous derivations are based on dimensional analysis.

More turbulence models – The Prandtl mixture length model

• The velocity scale represent the velocity fluctuation u’.

• Using the previous scales, the eddy viscosity is equal to,

• The turbulent stress and total stress can be computed as follows,

Laminar stress

Turbulent stressBased on the Boussinesq hypothesis
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• The Prandtl mixture length model is very simple and elegant.

• But its range of applicability is very limited.

• It is only accurate in 2D pure shear boundary layers of fully developed flows in flat surfaces.

• Also, as previously stated, it is only accurate in the log-layer of the boundary layer.

• More elaborate forms of lm boundary layers have been proposed.

• For example, Van Driest proposed [1],

More turbulence models – The Prandtl mixture length model

This coefficient depends on 

the pressure gradient

lm is use as the length scale to compute the turbulent viscosity

• This function is commonly used in mixing length models (or zero equation models) to improve 

their predicting capabilities.

• This model is also classified as an incomplete model because it requires the definition of lm(x), 

and the specification of lm inevitably depends on the geometry.

[1] E. van Driest. On Turbulent Flow Near a Wall. J. Aero. Sci., 23, pp. 1007-1011, 1956.
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• For example, in the zero equation Cebeci-Smith model [1], the turbulent viscosity close to the 

walls is computed as follows,

More turbulence models – The Prandtl mixture length model

References:

[1] T. Cebeci, A.M.O. Smith. Analysis of Turbulent Boundary Layers. Academic Press, 1974.

[2] B. Baldwin, H. Lomax. Thin-layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper No. 78-257, 1978.

• In the zero equation Baldwin-Lomax model [2], the turbulent viscosity close to the walls is 

computed as follows,  
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• The mixing length idea is also used in some LES models. For example, in the Smagorisky  

model [3], the turbulent viscosity close to the walls is computed as follows, 

More turbulence models – The Prandtl mixture length model

• As the length scale is defined in an analytical way in this turbulence model, the user only needs 

to define the initial conditions and freestream boundary conditions values.

• The NASA Turbulence Modeling Resource is an excellent source of information related to 

turbulence models and validation cases,

• https://turbmodels.larc.nasa.gov/

A constant times the grid spacing

References:

[1] J. Smagorinsky. General circulation experiments with primitive equations. I. The basic experiment, Monthly Weather Review, Vol. 91, pp. 99-164, 1963.

https://turbmodels.larc.nasa.gov/
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RNG

More turbulence models – The RNG              model
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More turbulence models – The RNG              model

• This is a variant of the standard             turbulence model.

• It is based on the Boussinesq hypothesis (linear eddy viscosity model or EVM).

• The development of this model can be attributed to Yakhot and Orszag [1,2].

• This model was developed using a statistical technique called renormalization group theory.

• Generally speaking, this model is more accurate and reliable for a wider class of flows than the 

standard              model.

• In this model, the transport equations of the TKE and dissipation rate are the same as for the 

standard             turbulence model. 

• The main difference arises from the definition of the closure constants, where strain dependent 

terms are added in order to reduce the length scale at high strain rates.

• The RNG model improves the accuracy for rapidly strained and swirling flows. 

References:

[1] V. Yakhot, S. Orszag. Renormalization group analysis of turbulence: 1. Basic theory. Journal of Scientific Computing. Vol. 1, pp. 3-51. 1986.

[2] V. Yakhot, S.A. Orszag, S. Thangam, and C.G. Speziale. Development of Turbulence Models for Shear Flows by a Double Expansion technique. Physics of Fluids A Fluid Dynamics, 4(7), 1992. 
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• In this model, the transport equations of the TKE and dissipation rate are defined as follows,

More turbulence models – The RNG              model

Note:

• The kinematic eddy viscosity is computed as follows,

• This model uses the following auxiliary relationships,
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• The closure coefficients in this model are defined as follows,

More turbulence models – The RNG              model

Index notation Vector notation
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More turbulence models – The RNG              model

• This model is based on the standard               model; therefore, it is wall modelling.

• However, its range of applicability can be extended to lowRE cases by adding blending 

functions [1,2,3,4].

• The initial conditions and the free-stream boundary conditions are computed in the same way 

as for the highRE and lowRE models.

• The wall boundary conditions are set in the same way as for the highRE and lowRE              

models.

• The NASA Turbulence Modeling Resource is an excellent source of information related to 

turbulence models and validation cases,

• https://turbmodels.larc.nasa.gov/

References:

[1] W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.

[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119–1130, 1973.

[3] B. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1(2), pp. 131-138. 1974.

[4] K. Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, vol. 20(1), pp. 33-38, 1982.

https://turbmodels.larc.nasa.gov/
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More turbulence models – The Realizable              model
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More turbulence models – The Realizable              model

• This is a variant of the standard             turbulence model.

• We will review the model developed by Shih et. al [1,2,3], based on the Boussinesq hypothesis 

(linear eddy viscosity model or EVM).

• This model differs from the standard and RNG             versions in two different ways, 

• The coefficient        in the eddy viscosity definition is no longer constant. The model uses a 

different eddy-viscosity formulation which is based on several realizability constraints for 

the turbulent Reynolds stresses.

• A modified transport equation for the dissipation rate has been derived from an exact 

equation for the transport of the mean-square vorticity fluctuation.

• Generally speaking, this model is more accurate and reliable for a wider class of flows than the 

standard              model.

• This model provides superior performance for flows involving strong streamline curvature, 

rotation, vortices, boundary layers under strong adverse pressure gradients, separation, and 

recirculation.

• One limitation of this model is that it produces nonphysical turbulent viscosities in situations 

when the computational domain contains both rotating and stationary fluid zones like in the use 

of multiple reference frames or rotating sliding meshes.

References:

[1] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows. Computers Fluids. 24(3). 227–238. 1995.

[2] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation. NASA TM 106721. 1994.

[3] T. Shih, J. Zhu. A New Reynolds Stress Algebraic Equation Model. NASA TM 106644. 1994.
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More turbulence models – The Realizable              model

• The term realizable means that the model satisfies certain mathematical constraints on the 

Reynolds stresses, consistent with the physics of turbulent flows. Neither the standard nor the 

RNG              models are realizable.

Schwartz inequality

Normal Reynolds stresses are always positive

• The most straightforward way to ensure the realizability, that is, positivity of normal stresses 

and Schwarz inequality for shear stresses, is to make        variable by sensitizing it to the mean 

flow (mean deformation) and the turbulent quantities.

• Several studies have shown that the realizable             model provides the best performance of 

all the             model versions for several validations of separated flows and flows with complex 

secondary flow features.



20

• In this model, the transport equations of the TKE and dissipation rate are defined as follows,

More turbulence models – The Realizable              model

Note:

• The eddy viscosity is computed as follows,

• Here the coefficient          is no longer constant.

• Note that in the transport equations of the turbulent quantities we included the effect of transport 

by molecular viscosity, which is not included in the original references [1,2].

References:

[1] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows. Computers Fluids. 24(3). 227–238. 1995.

[2] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation. NASA TM 106721. 1994.
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• In this model,          is computed as follows,

More turbulence models – The Realizable              model

• Where the variable U(*) is defined as follows,

Mean rate-of-rotation tensor viewed in a moving 
reference frame with the angular velocity

This extra rotation term many times is not included 
as is not compatible multiple reference frames

• The parameter As is defined as follows,
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• The closure coefficient C1 us defined as follows,

More turbulence models – The Realizable              model

• Finally, this model uses the following support relations and closure coefficients,
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• This model is based on the standard               model; therefore, it is wall modelling.

• However, as the coefficient         is variable, this model can also be used with wall resolving 

meshes (with some limitations of course).

• However, its range of applicability can be extended to lowRE cases by adding blending 

functions [1,2,3,4].

• The initial conditions and the free-stream boundary conditions are computed in the same way 

as for the highRE and lowRE              models

• The wall boundary conditions are set in the same way as for the highRE and lowRE              

models.

• The NASA Turbulence Modeling Resource is an excellent source of information related to 

turbulence models and validation cases,

• https://turbmodels.larc.nasa.gov/

References:

[1] W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.

[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119–1130, 1973.

[3] B. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1(2), pp. 131-138. 1974.

[4] K. Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, vol. 20(1), pp. 33-38, 1982.

More turbulence models – The Realizable              model

https://turbmodels.larc.nasa.gov/
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The Menter            SST 

More turbulence models – The Menter                SST model
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• The development of the              SST turbulence model can be attributed to Menter [1,2].

• This method is an improvement of the BSL               model, also developed by Menter [1,2].

• It is worth mentioning that the BSL and SST models are almost identical. Only one constant and 

the expression for turbulent eddy viscosity are different.  

• These models address some of the deficiencies of the Wilcox 1988 [2] and the                  

Wilcox 1998 [3]               turbulence models. 

• Namely, overly sensitive to the free-stream boundary conditions and erratic performance when 

dealing with strong adverse pressure gradient (actually, every single turbulence model struggles 

to deal with this situation).

• This method can be seen as an hybrid method, where the good properties of the            

standard             model (away from the walls), are merged with the good properties of the 

Wilcox              model (close to the walls), with a blending function to compute the asymptotic 

turbulent behavior between both models.

• Thus, the shortcoming of a model are compensated by the improved behavior of the other 

model and vice versa. 

• And as an extra bonus, there is no need to use damping functions near the walls or difficulties 

when setting the wall boundary conditions.

References:

[1] F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, Vol. 32, No. 8, 1994, 1598-1605, 1994

[2] F. Menter. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992.

[3] D. C. Wilcox. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, 1988.

[4] D. C. Wilcox. Turbulence Modeling for CFD. Second edition, DCW Industries, 1998.

More turbulence models – The Menter                SST model
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• The solvable equations of the              SST turbulence model [1,2] are the following ones, 

• This model features several closure coefficients, blending functions, and auxiliary relations.

• Many of the coefficients used in this model are computed by a blend function between the 

respective constants of the            and             models.

Magnitude of the vorticity tensor Anti-symmetric part of the velocity gradient (vorticity tensor)

References:

[1] F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, Vol. 32, No. 8, 1994, 1598-1605, 1994.

[2] F. Menter. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992.. 

More turbulence models – The Menter                SST model

Note:



• That is, we obtain the coefficients of the             turbulence model.
28

• Letting     denote any one of the parameters                            , then each of these parameters 

varies between a near-wall state      and a far-wall state      according to, 

• Where F1 and arg1 are defined as follows,

• Notice that 0 ≤ F1 ≤ 1, and arg1 ≥ 0. 

• In the equations, d is the distance from the wall. So, as d increases, the two expressions in the 

maximum of arg1 become smaller as well the term that the maximum is being compared to.

• Thus, arg1 diminishes with d, causing F1 to approach zero and      to approach the                  

far-field value      (the coefficients of the            turbulence model).

• The opposite behavior occurs as the wall is approached with,

More turbulence models – The Menter                SST model
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• The additional expressions and coefficients used in the formulation are, 

or

More turbulence models – The Menter                SST model
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• Plot of the function F1 as a function of arg1.

• When F1 = 0 the formulation is in the far-field 

conditions. That is, the formulation uses           

the             model.

• And when F1 = 1 the formulation is in the near 

wall region. That is, the formulation uses              

the              model.

• The function F1 represents a blending between 

the two turbulence models.

• Plot of the parameters        and F1 in function 

of arg1.

• When F1 = 0 we use the parameters of          

the              model.

• This function indicates how the parameters 

vary between a near-wall state and a far-wall 

state.

• The function      blends the parameters of the 

two turbulence models.

2 is equivalent to

1 is equivalent to0 is far away from the walls -

1 is near the walls -

Blending – Stress limiter
Blending

More turbulence models – The Menter                SST model
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• The SST model and the Wilcox              model share many common parameters.

• It is worth noting that the SST model conforms to the standard            model away from walls.

• And close to the walls it uses a slightly modified version of the Wilcox 1988             model, 

which is y+ insensitive.

• By using the following relationship,

• Taking its substantial derivative and substituting for the     and     derivatives using the solvable 

equations of the SST model, gives a differential equation for     of essentially the same form as 

the solvable equation of the dissipation rate     of the generalized             turbulence model.

• Substituting the far-field form of the constants into the expression yields an equation for the 

turbulent dissipation rate     that conforms to that in the              closure with only small 

differences.

More turbulence models – The Menter                SST model
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• The            SST model is considered by many authors the most efficient and general 

RANS/URANS turbulence model. 

• Therefore, it is strongly recommended to use this model. 

• This model performs quite well for a wide variety of applications, to name a few,

• Adverse pressure gradients.

• Separated flows.

• Turbulent heat transfer and mass transfer.

• Transonic shock waves.

• Aerospace applications.

• The initial conditions and the free-stream boundary conditions are computed in the same way 

as for the Wilcox 1988              turbulence model.

More turbulence models – The Menter                SST model
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• The wall boundary conditions for the turbulent variables can be computed as follows [1,2,3], 

More turbulence models – The Menter                SST model

• In the      wall boundary condition definitions, y is the distance normal to the wall. Also, the 

results are not sensitive to the factor 10 in the Menter formulation [3].

• The NASA Turbulence Modeling Resource is an excellent source of information related to 

turbulence models and validation cases,

• https://turbmodels.larc.nasa.gov/

References:

[1] D. C. Wilcox. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, 1988.

[2] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[3] F. Menter. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992.

Proposed by Wilcox [3,4]

Recommended to use a few cell center 
layers away from the wall

Proposed by Menter [3]

Recommended to use in the first cell center 
layer next to the wall

https://turbmodels.larc.nasa.gov/
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Wilcox 2006

More turbulence models – The Wilcox 2006
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• The Menter               SST model is very accurate, but at the same time the formulation is quite 

complex, as it uses many additional blending and limiter functions.

• Due to the complexity, the model contradicts the ideal development of turbulence models,

“An ideal model should introduce the minimum amount of  complexity 

while capturing the essence of  the relevant physics.”

D. C. Wilcox

• To offer a similar level of accuracy and reliability to that of the Menter SST model and without 

the extra complexity, Wilcox further improved the 1988              [1] and               1998 [2] 

turbulence models. 

• These developments resulted in the Wilcox 2006              turbulence model [3,4], which solved 

many deficiencies of previous versions of the Wilcox turbulence models.

References:

[1] D. C. Wilcox. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, 1988.

[2] D. C. Wilcox. Turbulence Modeling for CFD. Second edition, DCW Industries, 1998.

[3] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[4] D. C. Wilcox. Formulation of the k-omega turbulence model revisited. AIAA Journal 46(11), pp. 2823-2838, 2006.

More turbulence models – The Wicox 2006
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• The most important differences between the Wilcox 2006 model and earlier versions created by 

Wilcox are the addition of a cross-diffusion term and a built-in stress limiter.

• The cross-diffusion term was included to minimize the sensitivity of the model to           

free-stream boundary conditions in shear free regions [1,2]. 

• The stress limiter was added to improved the modeling capabilities when dealing with flow 

separation, incompressible free shear flows, and transonic/supersonic flows [1,3].

• The Wilcox 2006               turbulence model has the same predicting capabilities as the     

Menter              SST  model, with the added bonus that it does need to use several complex 

blending functions [1,4].

• This model is a great contender to the Menter               SST.

• However, is not implemented in Ansys Fluent. 

• Nevertheless, it can be implemented in Ansys Fluent using UDFs.

References:

[1] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[2] C. Speziale, R. Abid, E. Anderson. A Crtical Evaluation of Two-Equation Models for Near Wall Turbulence. AIAA Paper 90-1481, 1990.

[3] F. Menter. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992.

[4] S. Rodriguez. Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, 2019.

More turbulence models – The Wicox 2006
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Note:

• The solvable equations of the Wilcox 2006              turbulence model are the following ones, 

• With the following closure relation to compute the kinematic eddy viscosity,

Stress limiter

Cross diffusion term

• The stress limiter is activated when the magnitude of the strain rate is too large, which happens 

with separated flows, high Mach numbers flows, and in the presence of shock waves.

More turbulence models – The Wicox 2006
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• The cross-diffusion term was included to minimize sensitives to free-stream boundary 

conditions. 

• The cross-diffusion coefficient is defined as follows,

• The near wall and shear free behaviors are controlled via the product of the gradients of TKE 

and specific dissipation rate.

• The coefficient is zero near the walls, so cross-diffusion is suppressed.

• Far from the walls (shear free), the coefficient is active, so it acts as a source term in the 

transport equation of the specific dissipation rate. 

• That is, it increases the value of     . 

Near the walls

Free shear

More turbulence models – The Wicox 2006



* Using index and vector notation, matrix multiplication is 

written as follows.
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This is the magnitude of the second rank tensor resulting from 

this matrix multiplication (the tensor has dimensions i by i) **

• The closure coefficients in this model are defined as follows,

Matrix (or second rank tensor) multiplication*

Strain rate tensor

Vorticity tensor (or spin tensor)

More turbulence models – The Wicox 2006

** The magnitude of a second rank tensor is defined as 

follows,
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• The blending function     , ranges from a minimum of 0.85 as       approaches large values for 

free shear, up to a peak value of 1.0 as       approaches 0 near the wall.

• In this context,       is the so-called non-dimensional vortex stretching.

• Recall that      and       are defined as,

• Notice the introduction of the vorticity tensor      in this model, which is an ideal function for 

quantifying rotational flows. Turbulent coherent structures involve 3D sheets that folds with 

spiral like curvature; therefore, using the spin tensor is intuitive.

• Note that for       is zero for 2D flows, as there is no vortex stretching.

More turbulence models – The Wicox 2006

Free shearNear the wall
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• Finally, this model uses the following auxiliary relationships,

• The initial conditions and the free-stream boundary conditions are computed in the same way 

as for the Menter SST              turbulence models (or any              turbulence model).

More turbulence models – The Wicox 2006
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• The wall boundary conditions for the turbulent variables can be computed as follows [1,2,3], 

More turbulence models – The Wicox 2006

References:

[1] D. C. Wilcox. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, 1988.

[2] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[3] F. Menter. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA TM-103975, 1992.

• In the      wall boundary condition definitions, y is the distance normal to the wall. Also, the 

results are not sensitive to the factor 10 in the Menter formulation [3].

• The NASA Turbulence Modeling Resource is an excellent source of information related to 

turbulence models and validation cases,

• https://turbmodels.larc.nasa.gov/

Proposed by Wilcox [3,4]

Recommended to use a few cell center 
layers away from the wall

Proposed by Menter [3]

Recommended to use in the first cell center 
layer next to the wall

https://turbmodels.larc.nasa.gov/
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Compressible Wilcox 2006

More turbulence models – The compressible Wicox 2006
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• To introduce the compressible Wilcox 2006              turbulence model [1,2], we need to 

introduce first the compressible averaged Navier-Stokes equations.

• This new set of equations is very similar to the incompressible RANS equations.

• But when dealing with compressible flows we use Favre average [1,2,3,4] instead of Reynolds 

average. 

• The Favre average is very similar to the Reynolds average, but it is mass weighted in order to 

simplify the density fluctuations that arises from the Favre decomposition (similar to the 

Reynolds decomposition).

• As for the Reynolds decomposition, there a few rules of Favre averaging that we should be 

aware of.

• In our notation, the overbar denotes Reynolds averaging and the tilde denotes Favre averaging.

More turbulence models – The compressible Wicox 2006

References:

[1] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[2] K. Hoffmann, S. Chian. Computational Fluid Dynamics. Volume III. Fourth Edition. EES Books, 2000.

3[] R. Pletcher, J. Tannehill, D. Anderson. Computational Fluid Mechanics and Heat Transfer. Third Edition. CRC Press, 2013.

[3] A. Favre. Equations des Gaz Turbulents Compressibles. Journal de Mecanique. 1965. 

• We will review the Favre averaging in another lecture.

Favre averaging

Reynolds averaging
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• The Favre averaged compressible Navier-Stokes equations or FANS [1,2], read as follows,

More turbulence models – The compressible Wicox 2006

References:

[1] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[2] K. Hoffmann, S. Chian. Computational Fluid Dynamics. Volume III. Fourth Edition. EES Books, 2000.

• Where we use the perfect gas law to relate pressure, density and temperature,

• With the following thermodynamics relationships,



47

• The Favre averaged compressible Navier-Stokes equations or FANS [1,2], read as follows,

More turbulence models – The compressible Wicox 2006

References:

[1] D. C. Wilcox. Turbulence Modeling for CFD. Third edition, DCW Industries, 2010.

[2] K. Hoffmann, S. Chian. Computational Fluid Dynamics. Volume III. Fourth Edition. EES Books, 2000.

• The molecular and Reynolds stresses can be written as follows,

• Note that in our notation the Reynolds stress is defined as follows,
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• The Favre averaged compressible Navier-Stokes equations or FANS [1,2], read as follows,
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• In this FANS set of equations we used the following closure relations for the turbulent heat flux 

vector and the molecular diffusion and turbulent transport terms,
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• The Favre averaged compressible Navier-Stokes equations or FANS [1,2], read as follows,
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• The previous FANS set of equations can be further simplified by introducing the following 

relations,
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• The Favre averaged compressible Navier-Stokes equations or FANS [1,2], read as follows,
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• In our discussion, it is also necessary to relate the transported fluid properties, molecular 

viscosity     and thermal conductivity     (do not confuse with TKE) to the thermodynamic 

variables. 

• For example, we could use the following models,

Sutherland’s formula with two coefficients
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• At this point, the transport equations of the compressible Wilcox 2006               turbulence 

model [1,2], are written as follows,
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• With the following closure relation to compute the kinematic eddy viscosity,

Note:
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• The closure coefficients in this model are defined as follows,
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• With the following closure functions,
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• Except for some compressible corrections, additional terms, and the use of the Favre averaging 

method, the compressible              Wilcox 2006 turbulence model [1,2] is exactly the same as 

the incompressible version. 

• The free-stream and wall boundary conditions for the turbulent variables are set in the same 

way as for the incompressible version. 

• Have in mind that there are many corrections and extra considerations when dealing with 

compressible high-speed flows (transonic, supersonic, hypersonic).

• For example, a dilatation-dissipation correction [3,4] is often used to improve the  

predicting capabilities of turbulence models. 

• Sometimes, it might be necessary to adjust the closure coefficients according to the 

physics involved.

• Very often, the compressibility effects corrections have been calibrated for a very limited 

number of free shear flow experiments and should be used with caution.

• In overall, this model shows similar performance to the compressible              SST version.
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• There are a few extra points worthy of mention regarding the closure equations [1].

• The turbulent energy equation contains no special compressibility terms involving pressure 

work, diffusion or dilatation.

• Although a dilatation-dissipation modification to the TKE equation improves compressibility 

mixing layer predictions, the same modification has a detrimental effect of shock-

separated predictions.

• Some researchers prefer the magnitude of the vorticity vector instead of the magnitude of 

the strain rate tensor in the stress-limiter modification. Using the magnitude of the vorticity 

with 0.95 instead of 7/8 is satisfactory for shock separated flow predictions up to Mach 3.

• However, numerical experimentation with this model has shown that it has a detrimental 

effect on hypersonic shock-induced separation, some attached boundary layers and some 

free shear flows.
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Wilcox Stress
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• This model is part of the Reynolds Stress transport family of turbulence models or RSM.

• The RSM models are also known as second-order closure (SOC), second-moment closure 

(SMC), differential stress models (DSM), and stress-transport models (STM).

• In this model, Wilcox [1,2] proposed the use of the      equation instead of the     equation.

• Note that, by design, aside from the equation for the Reynolds-stress tensor replacing the 

stress-limiter, the underlying equations for     and      are identical to those of the               

Wilcox 2006               turbulence model [1,3].

• All closure coefficients shared by the              and the Stress          have the same values.

• The most significant difference between the LRR and the Stress         models is in the        

scale-determining equation. The LRR model uses the     equation while the Stress             

model uses the      equation. All other differences are minor by comparison.

• This strongly suggests that the end accomplished by the LRR wall-reflection term           may be 

to mitigate a shortcoming of the model equation for      rather than to correctly represent the 

physics of the pressure echo process [1].

• When using this model, you should follow the same standard practices as the ones 

recommended for the Wilcox 2006               turbulence model.
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• Let us write down the compressible equations of the Wilcox Stress         turbulence model.

• The Reynolds-Stress tensor can be written as follows,
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• The specific dissipation rate equation is given as follows,

• This model uses the following pressure-strain correlation,

Note:

If the density is constant,              and                , and we recast the incompressible RANS equations.

Note:
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• With the following auxiliary relations,
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• And the following closure coefficients,
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• And the following closure coefficients,

• With the following closure functions,
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ASM and EARSM

More turbulence models – ASM and EARSM
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• Under certain assumptions the exact Reynolds stress equations can be reduced to a system of 

algebraic equations that require knowledge of the turbulent kinetic energy TKE and the 

turbulent dissipation rate    . 

• This class of models is known as algebraic stress models or ASM.

• ASM models reduce the closure problem to only  solving two transport equations and a system 

of algebraic equations.

• This is significantly faster easier than solving the full RSM equations.

• The ASM equation include most of the models and assumptions that are used to solve the full 

RSM equations. Therefore, the complexity of the constitutive equations of the ASM models 

depends on the complexity of the closure approximations.

• ASM and EARSM (Explicit Algebraic Reynolds Stress Model) models are in between RSM and 

eddy viscosity models. 

• They are characterized by less computational demands and (arguably) better accuracy 

compared to LEVM.

• ASM and EARSM models are non-nonlinear (anisotropic viscosity), so they do not suffer of the 

same deficiencies of LEVM.

• However, not necessary they give better results and sometimes they are difficult to make 

converge.

More turbulence models – ASM and EARSM
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• The mathematical framework behind ASM and EARSM models is quite complex and will not be 

addressed the details hereafter.

• There are many formulations, the interested reader can refer to the following publications 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], to name a few.

• Hereafter, we will briefly address the derivation of the algebraic stress approximation.

• By introducing a few approximations, the RSM model can be reduced to a set of algebraic 

stress equations, which implicitly determines the Reynolds stresses (locally) as function of TKE, 

turbulent dissipation rate, and the mean velocity gradients.

• Because of the approximations involved, ASM models are less general and less accurate than 

RSM models

More turbulence models – ASM and EARSM
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• Where        is the rate of production of Reynolds stress and        is the redistribution between 

components of the stress tensor.

• Redistribution incorporates anisotropy of dissipation, so only the isotropic part         appears.

• One half of the trace of this equation is the turbulent kinetic energy equation; therefore, we 

obtain,
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• One way to devise a constitutive equation is to reduce a Reynolds stress closure models to a 

set of algebraic equations.

• Let us assume the case of homogenous turbulence, in this case the Reynolds stress transport 

equation takes the following form,
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• By using the equilibrium stress approximation,
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• We obtain the following equation,

• This is the set of equations solved in the ASM model.

• It is a system of equations for          (or equivalently for the normalized anisotropy tensor bij) as 

an implicit function of the mean velocity gradient         .
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• For example, if we derive the ASM model from the LRR RSM model [1], we obtain the following 

equation for the normalized anisotropy tensor bij,

More turbulence models – ASM and EARSM

[1] B. E. Launder, G. J. Reece, W. Rodi. Progress in the Development of a Reynolds-Stress Turbulence Closure. 1975.

• Where the normalized anisotropy tensor bij, can be written as follows,

• And where aij is the deviatoric anisotropic part of the Reynolds stress tensor,



• In the figure [1], the anisotropies bij are plotted in 

function of          according to the LRR ASM model.

• For large          values,           tends to asymptote

• Whereas, the value given by the              model 

continually increases and becomes non-realizable.
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• An implication of the model is that the Reynolds stress anisotropy is directly proportional to the 

production anisotropy. 
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• For simple shear flows, the equation of bij can be solved to obtain the results shown in the 

figure below.

[1] S. Pope. Turbulent Flows. Cambridge University Press, 2010.
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• By using the following relation for simple shear flows,
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[1] S. Pope. Turbulent Flows. Cambridge University Press, 2010.

• We can obtain the following relation for the coefficient         for the LRR ASM model,

• In the figure [1], the value of        a function of          

is plotted.

• The results correspond to the LRR ASM model.

• As can be seen, the value of        decreases with 

increasing         , corresponding to shear-thinning 

behavior.

• That is,       decreases with increasing shearing, 
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• The ASM constitutive equations is an implicit equation for           (or equivalently for the 

anisotropy tensor bij), i.e., the Reynolds stresses appear both on the left and the right sides of 

the equation.   
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• It would be of course be advantageous to be able to get an explicit expression for the Reynolds  

stresses or the anisotropy tensor bij.  
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• Pope [1,2], maybe was the first one to derive an explicit expression for the ASM. 

• He assumed that the Reynolds stress tensor can be expressed in function of the strain-rate 

tensor, S, and the vorticity tensor,    .

• Furthermore, he showed that the coefficients, Gn, in the expression of the anisotropy tensor bij

can be a function of not more than five invariants       .
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• The exact explicit ASM or EARSM constitutive equations can be written as follows,
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• This corresponds to the three-dimensional expression of the Reynolds stresses.

• At this point, we need to find the closure coefficients, which can be constant or a function of a 

variable or combination of tensors.

• The derivation of the invariants is addressed in references [1,2,3].

References:

[1] S. Pope. A More General Effective Viscosity Hypothesis. Journal of Fluid Mechanics, Vol. 72, 1975. 

[2] S. Pope. Turbulent Flows. Cambridge University Press, 2010.

[3] M. Leschziner. Statistical Turbulence Modeling for Fluid Dynamics. Imperial College Press, 2016.



70

• The exact two-dimensional expression only retain the first two invariants.
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• The exact two-dimensional expression only retain the first two invariants.

• At this point, we need to find the closure coefficients, which can be constant or a function of a 

variable or combination of tensors.

• The derivation of the invariants is addressed in references [1,2,3].

• Note that if C1 = 0 ,                  , and                  , we recover the linear               turbulence 

viscosity formulation,
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• The model of Pope [1,2].

• This model is based on the RSM LRR model [3].

• The constitute equations of this model read as follows,
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• Note that the formulation shown is two-dimensional.
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• The model of Gatski and Speziale [1,2].

• This model is based on the RSM LRR model [3].

• The constitute equations of this model read as follows,
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• Note that the formulation shown is two-dimensional.
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• The mathematical formalism of ASM and EARSM models is the starting point to develop non-

linear eddy viscosity models (NLEVM).

• NLEVM models not based on algebraic stress models have been also developed. 

• References [1,2,3,4,5,6,7] addressed a few NLEVM not based on ASM/EARSM.

• In all models, the way in which non-linear stress-strain relationships are derived differs greatly 

but ultimately the derivation involves expansions with strain and vorticity tensors.

• In some formulations, in particular cubic formulations, the quadratic terms allow anisotropic to 

be modelled and the cubic terms the consequences of streamline curvature.

• These models also involve variable         (or equivalent coefficient) formulations based on S

and     , which helps avoid excessive turbulence prediction at stagnation points.

• In these models, the realizability conditions are always enforced.
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• Despite being often marketed as a means of nearly getting Reynolds stress model performance 

at linear eddy viscosity model cost, practice shows this can be far from reality.

• Solutions obtained with these models can be nearly as expensive as performing a hybrid 

RANS-LES.

• Also, results can be worse can be worse than for EVM.

• The complexity of the constitutive equations of these models and therefore the accuracy, 

depends on the complexity of the closure approximations and alternative approximations.

• No need to mention that the mathematical formalism behind these models is quite complex.

• The EARSM derived by Pope [1] was a two-dimensional formulation. This formulation was later 

extended and refined by Gatski and Speziale [2] and by Jongen and Gatski [3] for 3-D flows. 

• The EARSM models are popular for predicting aeronautical flows, in particular with the model 

by Wallin and Johansson [4].
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