
Chapter 2

Aerodynamics of Flapping Flight

Flying animals flap their wings to generate lift and thrust as well as to perform remarkable
maneuvers with rapid accelerations and decelerations. Insects, bats and birds provide illuminating
examples of unsteady aerodynamics. In this chapter we present the various issues related to the
aerodynamics of flapping flight. We first present flapping flight in nature. We next review both
analytical and computational models and some experimental observations. Then, we present a
review of nonstationary airfoil aerodynamics including dynamic stall, vortex shedding and thrust
generation; followed by a presentation of flapping wing flight in terms of Reynolds number,
Strouhal number and reduced frequency. Finally, we close this chapter with a discussion of
flapping wings performance parameters and flapping wings kinematics.

2.1 Flight in Nature

The fundamentals of bird flight are similar to those of aircrafts. As the wings move through the
air, they are held at a slight angle, which deflects the air gently downward. This causes air pres-
sure to build up beneath the wings, while the pressure above the wings is reduced. The difference
in pressure produces lift, a force that acts roughly perpendicular to the wing surface and keeps the
bird or airplane from falling. Generally, bird flight can be divided into two modes of functioning,
i.e., unpowered flight (gliding and soaring flight) and powered flight (flapping and hovering flight).

When a bird is gliding, the wings are held out to the side of the body and do not flap. Lift force
is produced by the action of air flow on the wings. The lift force occurs because the air has a
lower pressure just above the wings and higher pressure below. But there is also air resistance
or drag on the body and wings of the bird. This force would eventually cause the bird to slow
down, up to the point where it would not have enough speed to fly. To make up for this, the
bird can lean forward a little and go into a shallow dive. In that way, the lift force produced by
the wings is angled forward slightly helping the bird to speed up. Really what the bird is doing
here is giving up some height in exchange for increased speed (or putting it in another way, it is
converting its gravitational potential energy into kinetic energy).

An alternative method to gliding used by many biological flyers to produce lift and thrust, is flap-
ping wing flight. Flapping flight is a far more complicated process than gliding. During flapping
flight, the bird’s wings systematically change shape. Flapping involves up and down movement
of the wings. During the downstroke (or power stroke), the wings move downward and forward.
During the upstroke (or recovery stroke), the wings move upward and drawn in toward the body
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to reduce drag. During flapping flight, the wings also changes their angle of attack depending
on the stroke. Flapping flight is basically rowing in the air with the added complication that lift
needs to be generated as well.

2.1.1 Unpowered Flight: Gliding and Soaring

Flying animals usually flap their wings to generate both lift and thrust. But if they stop flapping
and keep their wings stretched out, their wings actively produce only lift, nor thrust. Thrust
can be produced by gravity force while the animal is descending. When this happens, we call
them gliders. Many gliding birds (and soaring birds as well) appear to hang in the air effortlessly,
gaining height with barely a twitch of a wing. These are birds like vultures, albatrosses, pelicans
and storks with a high lift-to-drag ratio. Essentially, this means that their wings generate a lot of
lift without producing much drag. Large birds have evolved to be gliders partly because gliding
becomes easier the larger your wings are and obviously small birds can not have large wings. In
addition to birds, gliders can also be found among bats, fish, amphibians, reptiles, and mammals
[167].

Figure 2.1: A bird while gliding. Notice the separation between the wingtip feathers; these natural slots,
help to reduce the induced drag while gliding.

To maintain level flight, a flying animal must produce both lift and thrust to balance the gravity
force in the vertical direction and drag in the horizontal direction respectively. Because gliding
occurs with no active thrust production, an animal always resorts to the gravity force to over-
come the drag. In gliding, the animal tilts its direction of motion slightly downward relative to
the air that it moves through. When the animal tilts downward, the resulting angle between
the motion direction and the air becomes the gliding angle. The gliding angle directly controls
the lift-to-drag ratio. The higher this ratio, the shallower the glide becomes. The lift-to-drag
ratio increases with the Reynolds number, a parameter proportional to animal size and flight
speed. Large flying animals fly at high Reynolds numbers and have a large lift-to-drag ratio. For
example, a wandering albatross, with a wing span of over 3 meters, has a reported lift-to-drag
ratio of 19, whereas the fruit fly, which has a span of 6 millimeters, has a lift-to-drag ratio of 1.8
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[3, 200]. If the animal has a low lift-to-drag ratio, it must glide (if it can) with a considerably
large glide angle. For example, the North American flying squirrel has a glide angle of about 18
to 26 degrees with a lift-to-drag ratio of 2 to 3 [3, 167].

Figure 2.2: In gliding flight, a bird’s wing deflect air downward, causing a lift force that holds the bird up
in the air (see figure A). By tilting forward and going into a slight dive (figure B), the bird can maintain
forward speed.

Gliding flight always results in a bird moving downward through the air. In order to maintain
or gain height, birds resort to soaring (see figure 2.3). Soaring flight is a special kind of glide,
in which the bird flies into a rising air current. Because the air is rising, the bird can maintain
its height relative to the ground without the need of flapping its wings. Instead of using gravity,
soaring uses energy in the atmosphere, such as rising air current.

Figure 2.3: In soaring flight, birds use both the updraft thermals and orographic lifting to maintain or
gain altitude and save energy.

9



CHAPTER 2. AERODYNAMICS OF FLAPPING FLIGHT

2.1.2 Powered Flight: Flapping

Flapping flight is more complicated than flight with fixed wings because of the structural move-
ment and the resulting unsteady fluid dynamics. Conventional airplanes with fixed wings are, in
comparison, very simple. The forward motion relative to the air causes the wings to produce lift.
However, in flapping flight the wings not only move forward relative to the air, they also flap up
and down, bend, twist and sweep.

Figure 2.4: A Mallard in powered flight (flapping flight).

When a bird flaps, as opposed to gliding, its wings continue to develop lift as before, but they
also create an additional forward and upward force, thrust, to counteract its weight and drag.
Flapping involves two stages: the downstroke or power stroke, which provides the majority of
the thrust, and the upstroke or recovery stroke, which can also (depending on the bird’s wings)
provide some upward force. At each upstroke the wing is slightly folded inwards to reduce up-
ward resistance. Birds change the angle of attack between the upstroke and the downstroke of
their wings. During the downstroke the angle of attack is increased, and is decreased during the
upstroke.

When the wings move up and down, they are also moving forward through the air along with
the rest of the bird. Close to the body, there is very little up and down movement. Farther out
toward the wingtips, there is much more vertical motion. As the bird is flapping along, it needs
to make sure it has the correct angle of attack all along its wingspan. Since the outer part of
the wing moves up and down more steeply than the inner part, the wing has to twist (and bird’s
wings are very flexible), so that each part of the wing can maintain just the right angle of attack.
As the wing twists, and as the outer part of the wing moves downward, the lift force in the outer
part of the wing is angled forward. This is what would happen if the whole bird went into a
steep dive. However, only the wing is moving downward, not the whole bird. Therefore the bird
can generate a large amount of forward propulsive force without any loss of altitude. During this
stroke, the air is not only deflected downward, but also to the rear. The air is forced backward
just as it would be by a propeller.
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Figure 2.5: In A, the wings twist as shown to maintain the correct angle of attack for the downstroke.
In B, the bird’s wings produce lift and thrust during the downstroke.

During the upstroke, the outer part of the wing points straight along its line of travel so it can
pass through the air with the least possible resistance. In other words, the angle of attack is
reduced to zero. The bird partially folds its wings, which reduces the wingspan and eliminates
the draggy outer part of the wing (this is not strictly necessary though, and most insects lack this
capability). Also, the primaries (wingtip feathers) separate, these natural slots, allow passage of
air through them, reducing in this way the skin friction.

The inner part of the wing is different. There is little up-and-down movement there, so that part
of the wing continues to provide lift and functions more or less as it would when gliding. Because
only the inner part of the wing produces lift in the upstroke, the upstroke as a whole offers less
lift than the downstroke. As a result, the bird’s body will bob up and down slightly during flight.

Figure 2.6: In A, the inner part of the wing produces lift, even during the upstroke. In B, the outer part
of the wing is angled to pass through the air with little resistance.

What we have outlined so far is a basic description of how birds fly, when they are already in the
air and cruising along. Birds also have other flying techniques, which they use when taking off or
landing, or for other special maneuvers like hovering, as we will see later.

Birds, bats and insects apply a variety of different flapping patterns in hovering and forward flight
to generate lift and thrust. Larger birds have relatively simple wingtip paths. For example, an oval
tip path is often associated with albatrosses. Smaller flyers exhibit more complicated flapping
patterns. Figure 2.7 illustrates some of these patterns for two natural flyers. In figure 2.9,
hummingbird’s wing lying eight pattern is shown.
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Figure 2.7: Wingtip paths relative to the body for two natural flyers. (A) Pigeon (Columba Livia), here we
see the path transition from tip-reversal upstrokes during slow flight to feathered upstrokes at intermediate
speeds and a swept-wing upstroke during fast flight. (B) Black-billed magpie (Pica Hudsonica) wingtip path
at all flight speeds [187].

2.1.3 Hovering

Hovering is used by several species of birds. Hovering, which is generating only lift through flap-
ping alone rather than as a product of thrust, demands a lot of energy. Whether a flying animal
can hover or not depends on its size, moment of inertia of the wings, degrees of freedom in the
movement of the wings and the wings shape [167]. As a result of these limitations, hovering is
mainly performed by small birds and insects. The largest bird able to truly hover is the pied
kingfisher, although larger birds can hover but for short periods of time [3, 167, 200].

Large birds can also hover and they do so in an artificial way by flying into a headwind, allowing
them to utilize thrust to fly slowly but remain stationary to the ground (or water), this is known
as wind-hovering. Kestrels, terns and even hawks use this wind-hovering.

Most birds that hover have high aspect ratio wings that are suited to low speed flying. One
major exception to this are the hummingbirds, which are among the most accomplished hoverers
among all birds. Hummingbird flight is different from other birds flight in that the wings are fully
extended throughout the whole stroke, the stroke being a lying figure eight. Some hummingbirds
can beat their wings 52 times a second, though others do so less frequently.

There are two kinds of hovering, symmetric hovering and asymmetric hovering (figure 2.8), as de-
scribed by Norberg [135] and Shyy [167]. For large birds, which cannot rotate their wings between
the forward and backward stroke, the wings are extended to provide more lift during downstroke,
whereas during the upstroke the wings are flexed backward to reduce drag. In general the flex is
more pronounced in the slow forward flight than in fast forward flight. This type of asymmetric
hovering is usually called “avian stroke” [9, 167].
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Great Tit  (Parus Major) 

Bee Hummingbird (Mellisuga Helenae)
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Figure 2.8: Hovering flight: a) asymmetric hovering or “avian stroke” and b) symmetric hovering or
“insect stroke”.

Symmetric hovering, also called normal or true hovering, or “insect stroke” [9, 167], is performed
by hummingbirds or insects that hover with fully extended wings during the entire wing-beat
cycle. Lift is produced during the entire wing stroke, except at the reversal points. The wings are
rotated and twisted during the backstroke so that the leading edge of the wing remains the same
throughout the cycle, but the upper surface of the wing during the forward stroke becomes the
lower surface during the backward stroke. The wing movements during downstroke and upstroke
can be seen in figure 2.9. Note that, during hovering, the body axis is inclined at a desirable
angle and the wings describe a figure of a lying eight in the vertical plane.

2.1.4 Take-off and landing

Take-off can be one of the most energetically demanding aspects of flight, as the bird needs to
generate enough airflow under the wing to create lift. In small birds a jump up will suffice, while
for larger birds this is not possible. In this situation, birds need to take a run up in order to
generate the airflow to take off. Large birds often simplify take off by facing into the wind, and
if they can, perching on a branch or cliff so that all they need to do is drop off into the air.

Landing is also a problem for many large birds with high airspeeds. This problem is dealt with
in some species by aiming for a point below the intended landing area (such as a nest on a cliff)
then pulling up beforehand. If timed correctly, the airspeed once the target is reached is virtually
zero. Landing on water is simpler, and the larger waterfowl species prefer to do so whenever
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Figure 2.9: Illustration of a hummingbird in hovering flight. In the bottom figure, hummingbird ’s wing
figure-eight pattern is shown.

possible and some species, such as swans, are only able to land on water. In order to lose height
and velocity rapidly prior to landing, some large birds such as geese indulge in a rapid alternating
series of sideslips in a maneuver termed as whiffling.

2.1.5 Summary

In this section, we just presented a brief overview of flapping flight in nature. In the next sec-
tions, we present a review of some of the computational models and experimental observations
that constitute our current knowledge on flapping wing propulsion, this followed by a review of
nonstationary airfoil aerodynamics (including dynamic stall, leading edge vortex shedding and
thrust generation), flapping wing flight in terms of Reynolds number, Strouhal number and re-
duced frequency and finally we close this chapter with a presentation of flapping wings propulsion
performance parameters and kinematics.
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EXPERIMENTATION, OBSERVATIONS, ANALYTICAL AND
COMPUTATIONAL APPROACHES

Figure 2.10: A bufflehead running atop the water while taking off.

Figure 2.11: Precision touchdown of an eastern imperial eagle on a tree branch.

2.2 Brief History of Flapping Wing Research: Experimentation,
Observations, Analytical and Computational Approaches

For thousands of years, the graceful flight of insects and birds has captivated those who have wit-
nessed it. From those who dream of tasting the freedom of flight in man-made vehicles, to those
who hope to further our understanding of some of nature’s most fascinating creatures. There is
a great variety of documented research in the study of flapping flight, since those studying the
topic come from fields such as biology, engineering and aerodynamics. These studies have been
undertaken from analytical, experimental and computational standpoints. Hereafter we highlight
some of the works which form the basis of our current understanding of flapping flight.

The desire to fly like birds is almost as old as humanity itself. Indeed, Leonardo da Vinci was so
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fascinated by the birds flight that he made many sketches of bird’s wings and artificial wings and
summarized his flapping wing studies in a book manuscript named “Sul volo degli Uccelli” [200].
However, little progress was made during the following centuries until Otto Lilienthal, the great
pioneer in human flight, began his flying experiments with his brother Gustav in the mid-1800s.
While Lilienthal may be most famous for his glider experiments in the 1890s which proved that
heavier than air flight is possible without the use of flapping wings, much of his knowledge in
aeronautics was derived from experimentation with flapping wings and observation of birds. In
1889, Lilienthal published a book describing his experiments and detailing his predictions for the
energy required for flapping wing flight [110]. Perhaps the most significant of his findings was the
benefit of using cambered airfoils instead of flat plates, which he discovered by testing models on
a rotating apparatus. Shortly after his death in a gliding accident in 1896, Lilienthal served as
an inspiration to the Wright brothers in their successful effort to develop powered human flight.
Following the sustained flight of the Wright Flyer in 1903 and the subsequent rapid development
of fixed-wing airplanes in conjunction with the obvious mechanical complications introduced by
flapping wings, the further development of man-made flapping wing vehicles and the research of
flapping flight was discouraged.

The earliest scientific theories concerning flapping wing flight pertain to purely heaving airfoils.
In independent studies in 1909 and 1912, Knoller [101] and Betz [20], perceived that flapping
a wing in a free stream flow resulted in an effective angle of attack (αeff ) with a normal force
vector containing both lift and thrust components. This phenomenon is now referred to as the
Knoller-Betz effect and is illustrated in figure 2.12.

A B

Figure 2.12: Thrust (T ) and lift (L) components of the normal force vector (N) during heaving motion.

In 1922, Katzmayr [99] conducted wind tunnel tests to validate the Knoller-Betz effect. Rather
than flapping the airfoil, Katzmayr sinusoidally oscillated the freestream velocity. Katzmayr’s
measurements conclusively proved that an airfoil mounted in an oscillating wind stream expe-
rienced a thrust force. Also adding to this increasing field of research was Prandtl’s student
Birnbaum [22], who in the same decade developed a solution for an incompressible flow past
flapping airfoils and observed the conditions that lead to flutter or thrust generation. He also
suggested the use of a sinusoidally flapping (heaving) wing as an alternative to the conventional
propeller.
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By the 1930s, fixed wing aircrafts had improved greatly in performance. At this point, the devel-
opment of an unsteady aerodynamic theory became important for the investigation of flutter. In
1935, Theodorsen published an analytical approach for estimating the unsteady lift and moment
on harmonically oscillating airfoils [184]. In deriving this method, Theodorsen used the assump-
tions of an inviscid and incompressible flow. He also assumed that all oscillations were of very
small amplitude; thus the flow was assumed to remain fully attached to the airfoil during the
flapping cycle (the Kutta condition was applied at the trailing edge of the airfoil). Theodorsen as-
sumed that the wake of the airfoil would take the form of a continuous vortex sheet of sinusoidally
varying strength, stretching from the trailing edge to infinity in the downstream direction. The
wake was not allowed to change shape in response to the velocity induced by the wake. This
Theodorsen’s theory will become in the years to come the standard tool to analyze airfoil flutter,
rotorcraft aerodynamics and flapping flight problems.

In the following decade, the aerodynamics of heaving-and-pitching airfoils received much attention
because of its importance for reliable flutter and gust response analyses. However, such analy-
ses require only the determination of the lifting forces generated by heaving or pitching airfoils,
and consequently, little effort was devoted over the years to the determination of the thrust forces.

Nevertheless, in the mid 1930s von Karman and Burgers [205] offered the first theoretical expla-
nation of drag or thrust production based on the observed location and orientation of the wake
vortices, as illustrated in figure 2.13. In their work, von Karman and Burgers [205] experimen-
tally observed that a wake consisting of two rows of counter-rotating vortices could produce a
thrust force on an airfoil in an incompressible flow. At about the same time, Garrick [57] applied
Theodorsen’s inviscid, incompressible, oscillatory, flat plate theory [184] to the determination of
the thrust force (which remains the classical reference work to this day) and showed that heaving
airfoils generate thrust over the whole frequency range considered, whereas pitching airfoils do
so only with frequencies above a certain critical value and as function of the pivot location. The
first experimental verification of Garrick predictions was provided by Silverstein and Joyner [168]
in 1939. Later on, in 1950, Bratt [23] performed flow visualization experiments that corroborated
von Karman and Burger’s observations. Of particular interest, Bratt’s experimental data include
several cases where a non-symmetrical, deflected wake pattern was observed, but no comment
was made on these deflected wakes.

Recognizing the fact that some of the flapping energy is lost in the form of vorticity shed in
the wake, Schmidt [161] proposed that a stationary wing be placed in the oscillatory wake of a
flapping wing to take back some of the vortical energy lost by the flapping airfoil, the aft wing
thus is exposed to an oscillatory flow which generates thrust by virtue of the Katzmayr effect.
Schmidt, as a result of his studies about flapping foils in the 1940s and 1950s, developed the wave
propeller (which he claimed achieved efficiencies as good as those of conventional propellers) and
demonstrated it on a catamaran boat.

In the early 1970s, Lighthill [109] performed a very similar analysis to that of Garrick [57], with
an additional assumption of pitching motion leading plunging motion by 90 degrees, in the con-
text of lunate (crescent-shaped) tail propulsion by fishes and cetaceans. Using an energy method,
he obtained expressions for thrust and propulsive efficiency that are identical to those of Gar-
rick when converted into similar terms. In principle, any other relative phase difference between
pitching and plunging motion may be accounted for, by a change in the pitch axis of the airfoil,
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Figure 2.13: Dye visualizations of different wakes behind an oscillating airfoil (from von Karman vortex
street, to neutral wake, to reverse von Karman vortex street, to deflected wake).

however this is strictly only true for very small amplitude motion. As the Garrick work makes
no assumption about relative phases of plunging and pitching, Lighthill work it is slightly more
general. Similar analyses of the small amplitude motion of a 2D flat plate in potential flow may
be found in a variety of sources (e.g., Ashley and Landahl [8] and Katz and Plotkin [98]).

The linearized potential flow analyses discussed above, particularly the Garrick analysis, contain
a number of assumptions about the flow, the airfoil geometry and the airfoil motion. Firstly, the
airfoil is assumed to be thin and is treated as a flat plate. Secondly, the flow is assumed to be
inviscid and incompressible, and the Kutta condition is applied to the flow at the trailing edge
of the airfoil. Finally, the motion of the airfoil is assumed to be of small amplitude and the wake
does not evolve in response to its own induced velocity field. In order to avoid the limitations
imposed by the previous assumptions and to improve the predictive capabilities, new computa-
tional models that account for the unsteady nature of the motion, arbitrary airfoil sections and
three-dimensional effects were developed.

18



2.2. BRIEF HISTORY OF FLAPPING WING RESEARCH:
EXPERIMENTATION, OBSERVATIONS, ANALYTICAL AND
COMPUTATIONAL APPROACHES

Of special note is the replacement of Theodorsen oscillatory thin-airfoil theory by an approach
which enables the computation of incompressible potential flow past oscillating airfoils of arbi-
trary shape. This is being accomplished by the placement of sources and vortices on the airfoil
surface rather than along the chord line. This so-called panel method was pioneered by Giesing
[58], who generalized the method of Hess and Smith [82], for steady airfoil flow. The method
was further developed by Teng [183], Platzer et al. [148], and Jones et al. [147]. More recently,
two-dimensional unsteady panel methods have been used for prediction of flapping wing MAV
propulsion [94, 96, 97]. Three-dimensional methods also have been used to predict the forces on
insect wings and cetacean tails [171, 173].

Inviscid analyses require the separation point of the flow on the airfoil or wing to be known ahead
of time. This is usually fixed at the trailing edge (the Kutta condition), and vorticity is shed
into the wake from this point. Navier-Stokes flow solvers avoid this limitation by using the full
viscous flow equations rather than potential flow, allowing flow separation and vortex shedding
to be predicted rather than assumed a priori, allowing simulation of flows that involve leading
and trailing edge separation. Also, thanks to the rapid increase in computer power over the past
few years, such viscous flow solvers are becoming more popular and have been successfully used
to model flapping wing aerodynamics, thus making possible to compute the strong viscous effects
and three-dimensional flows characteristics of flapping flight.

Some recent works using Navier-Stokes solvers that are worth to mention, include the work done
by Young and Lai [216], where it is shown that the vortical wake structures, and the lift and
thrust characteristics of a heaving airfoil are strongly dependent on the oscillation frequency and
amplitude. Isogai et al. [89] carried out Navier-Stokes computations for a single flapping airfoil.
They calculated the thrust and the propulsive efficiency for various combinations of frequency
and phase shift, and gave a detailed analysis of the effects of the dynamic stall phenomena on
the behavior of the thrust and the propulsive efficiency. In a following work about the aerody-
namic performance of a dragonfly, Isogai et al. [88], clarified the fundamental mechanism of the
hovering flight of a dragonfly. Another flow simulation of an insect was presented by Togashi et
al. [189] in which, by solving the Navier-Stokes equations, they gave the approximate numerical
simulation of the flow past a hornet in a forward flight. Liu et al. [112], using a 3D Navier-Stokes
solver, successfully modeled the powered hovering mode of a Hawkmoth. Lewin and Haj-Hariri
[108] and Wang [207], both examined the propulsive characteristics of an elliptical airfoil heaving
sinusoidally over a range of frequencies and heave amplitudes in order to correlate viscous flow
structures to thrust generation. Pedro et al. [140], numerically studied the propulsive efficiency
of a flapping hydrofoil at a Reynolds number of 1100. In their work, Pedro et al. [140] studied
airfoils undergoing pure pitching motion and combined pitching-and-heaving motion and they
showed the sensitivity of thrust and efficiency to the Strouhal number, maximum pitch angle and
phase angle. Hover et al. [87] used sinusoidal and non-sinusoidal effective angle of attack varia-
tions in time to investigate the propulsive performance of an airfoil undergoing combined heave
and pitch oscillations. Lee et al. [106] identified the key physical flow phenomenon dictating the
thrust generation of a heaving and/or pitching airfoil in terms of flow and geometry parameters.
Tuncer et al. [196, 197, 198] performed several Navier-Stokes computations to explore the effect of
flow separation on the thrust and the propulsive efficiency of a single flapping airfoil in combined
pitch and heave oscillations.

Experimentally, Jones et al. [94] and Lai and Platzer [105], conducted water tunnel flow visualiza-
tion experiments on flapping airfoils which have provided a considerable amount of information on
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the wake characteristics of thrust producing flapping airfoils. Koochesfahani [103] experimentally
studied the wake structure behind a flapping foil and found different topologies of the wake with
associated numbers of shed vortices per cycle of oscillations as function of the amplitude and the
frequency of flapping. Triantafyllou et al. [191], based on the experimental results of Koochesfa-
hani [103] and on a linear stability analysis of an average velocity profile, assumed that optimal
efficiency is obtained when an airfoil flaps at the frequency of maximum spatial amplification of
the wake. Anderson et al. [7], in their experiments, also observed that the phase angle between
pitch and heave oscillations plays a significant role in maximizing the propulsive efficiency. The
experimental studies by Jones et al. [95] and Platzer and Jones [146] demonstrated that two air-
foils arranged in a biplane configuration and oscillating in counter-phase show significant benefits
of thrust and propulsive efficiency compared to a single flapping airfoil.

More recently, Heathcote and Gursul [67] carried out water tunnel experiments on a heaving-
and-pitching flexible airfoil for low Reynolds numbers. They observed a peak in thrust coefficient
at a particular value of the phase shift between heaving and pitching for fixed heave and pitch
amplitudes. Schouveiler et al. [163] experimentally studied the performance of an aquatic propul-
sion system inspired from the thunniform swimming mode to investigate the effects of flapping
parameters on the thrust force and the hydro-mechanical efficiency. In the computational area of
flexible airfoils/fins, Miao and Ho [124], studied the effect of chordwise flexure amplitude on the
unsteady aerodynamic characteristics for flapping airfoils with various combinations of Reynolds
number and reduced frequency. In this study, they observed an enhancement in the propulsive
efficiency for a flapping airfoil with flexure amplitude of 0.3 of the chord length, they also found
that the flow conditions which yield the highest propulsive efficiency correspond to a Strouhal
number St of 0.255. Liu and Kawachi [113], performed a numerical study of the undulatory loco-
motion of a swimming body. They successfully modeled the unsteady hydrodynamics of a realistic
three-dimensional tadpole-shaped model, establishing the importance of accurately predicting a
staggered array of reverse von Karman vortices, the jet stream and their correlation with thrust
generation. They also pointed to an optimal propulsive mechanism appropriate to undulatory
swimming, which is achieved by a best coupling of the geometry and the motion matched to the
body.

Despite the potential of flapping wings for either pure propulsion or as an integrated lift/propulsion
system, it was regarded as unattractive until very recently. Flapping wing studies therefore largely
remained restricted to scientists interested in bird flight or fish propulsion problems. An unex-
pected revival of interest in the study of flapping wing flight phenomena occurred in the late
1990s with the announcement of a major initiative by the United States of America Defense Ad-
vanced Research Projects Agency (DARPA) to encourage the development of micro-air-vehicles
(MAVs). The goal of the DARPA MAVs program was to determine whether evolving technolo-
gies could be favorably integrated into a mission capable flight system for military surveillance
and reconnaissance applications. The only requirement was that the dimension of the vehicle
should not exceed 15 cm. There were no other restrictions on the design. The use of flapping
wings for vehicles with dimensions not exceeding 15 cm in length or span is an obvious option
because of the low efficiency of conventional propellers and fixed wings at low Reynolds number.
Therefore, this DARPA initiative sparked a large number of investigations in the field of flapping
wing propulsion; some of these investigations are compiled in [127].
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2.3 The Physics of Drag and Thrust Generation Due to Wing
Flapping

As already mentioned, Knoller [101] and Betz [20] were the first ones to offer an explanation for
the birds’ ability to generate a propulsive force by means of flapping their wings. Consider the
airfoil undergoing sinusoidal flapping while also flying forward. As the airfoil moves through its
mean position during the downward stroke, it is effectively exposed to a flow with positive angle
of incidence (see figure 2.12). Similarly, it sees a negative incidence angle during the upstroke.
If, for simplicity, the resulting aerodynamic force is assumed to be essentially perpendicular to
the instantaneous approach flow angle, then decomposition into a force component parallel to the
flight velocity vector will produce a small sinusoidally varying thrust force. It is understood that
this explanation is greatly simplified. The actual flow which is produced is considerably more
complicated.

The flow over a stationary airfoil or a bluff body at low Reynolds number produces a von Kar-
man vortex street as shown in figure 2.14. In this configuration, where the upper row of vortices
rotates clockwise and the lower row counterclockwise (for flow from left to right), the measured
time-averaged velocity distribution in the wake shows a distinct velocity or momentum deficit,
indicative of drag. This vortex configuration is hereafter referred as drag producing wake.

Figure 2.14: Vortex street indicative of drag production (drag producing wake) [93].

As is well known, every change in the incidence of the airfoil will produce a starting vortex which
is shed from the trailing edge. Therefore, a sinusoidally oscillating airfoil will generate a vortex
street behind the airfoil. This phenomenon can be reproduced easily experimentally or simulated
with the computational approaches highlighted in the previous section. Depending of the heave
velocity, the resulting vortex street can be drag producing wake or can consist of an upper row
of counterclockwise vortices and a row of lower clockwise vortices (see figure 2.15). This vortex
street therefore is just the opposite of the well known von Karman vortex street and is known
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as reverse von Karman street. If time-averaging is applied at some location cutting the wake in
the normal direction to the free-stream a jet profile or momentum surfeit wake is obtained. The
vortex street produced by the flapping foil in effect produces a jet flow. This vortex configura-
tion is hereafter referred to as thrust producing wake. This is to be expected since the thrust
experienced by the airfoil must be found as momentum increase in the fluid. As shown by Jones
et al. [94] and Lewin and Haj-Hariri [108], this jet flow can indeed be measured and is in good
agreement with panel code and Navier-Stokes solver predictions.

Figure 2.15: Vortex street indicative of thrust production (thrust producing wake) [93].

From this analysis, clearly we see that increasing the vertical spacing between the rows increases
the region of lower time-averaged velocity (for von Karman street) or higher velocity (for reverse
von Karman street) between the rows. This then increases the drag (or thrust) of the configura-
tion in the direct proportion to the vertical spacing. It follows that reducing the vertical spacing
to zero, so that the two vortex rows are interspersed as in figure 2.16, will result in zero net drag
or thrust production. This vortex configuration is hereafter referred to as neutral wake.

Jones et al. [93], found that for large plunge velocities, the symmetric vortex street changes into
a dual-mode or nonsymmetric vortex street, as show in figure 2.17. In this case, in addition to
a net thrust, a net lift is also observed according to the deflection of the vortex street. This
vortex configuration is hereafter referred to as deflected wake or lift-thrust producing wake. This
phenomena was previously observed by Bratt in 1950 [23], but he did not make any comments
on these deflected wakes. Once again, the flow visualizations are in good agreement with panel
code [94, 96, 171] and Navier-Stoke solver [108, 115] predictions.

This encouraging agreement between the measurements and the inviscid flow predictions of Jones
et al. [93, 147] and Platzer et al. [148], might give the impression that the physics of flapping
airfoils is understood reasonably well and that the prediction of the achievable thrust can be
made with considerable confidence by using inviscid methods. Unfortunately, even disregarding
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Figure 2.16: Vortex street indicative of zero drag (neutral wake) [93].

Figure 2.17: Dual-mode or nonsymmetric vortex street indicative of thrust and lift production (deflected
wake) [93].

the three-dimensional flow effects introduced by finite-span wings, the range of validity of inviscid
flow predictions is severely limited by the onset of dynamic stall. This seems to be particularly
true at the low Reynolds numbers typically required for micro-air-vehicles. Hence panel methods
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must be dropped in favor of more sophisticated Navier-Stokes solvers, which take into account
viscous effects.

2.4 The Phenomenon of Dynamic Stall and Leading Edge Vortex
(LEV) Shedding

Dynamic stall is a non-linear unsteady aerodynamic effect that occurs when airfoils rapidly change
the angle of attack. The rapid change can cause a strong vortex to be shed from the leading edge
of the airfoil, and travel backwards above the wing, strongly interacting with the vortex which
forms at the trailing edge. The vortex, containing high velocity airflows, briefly increases the lift
produced by the wing. As soon as it passes behind the trailing edge, however, rapid lift loss and
changes in pitching moment occur, leading to a severe hysteresis loop in lift, drag and pitching
moment.

Dynamic stall is an effect mostly associated with helicopters, turbines, windmill blades and re-
cently to flapping wing propulsion. Helicopter aerodynamicists are quite familiar with this phe-
nomenon. A helicopter blade in forward flight can experience dynamic stall while it is in the
so-called retreating blade position, exposing the blade to high incidence angles. For this reason,
the aerodynamics of pitching airfoils experiencing dynamic stall has been studied to a consider-
able extent both experimentally and computationally. The current state-of-the-art can be found
in the papers of Carr and Chandrasekhara [31], Ekaterinaris and Platzer [47], McCroskey et al.
[117] and Rozhdestvensky and Ryzhov [156].

Most dynamic stall studies have been limited to pitching airfoils because of the importance of
this motion for helicopter blades. However, for thrust generation it is well known (and has been
shown in detail by Jones and Platzer [97]) that pure heave or a combined pitch/heave motion is
required in order to produce significant thrust forces. Very few experiments involving dynamic
stall due to pure heave have been carried out, but several Navier-Stokes computations have been
reported by Isogai et al. [89], Tuncer and Platzer [198] and Ramamurti and Sandberg [151],
among others. These computations clearly show the possibility of occurrence of dynamic stall for
values of flapping frequency, amplitude, and Reynolds number typical for MAV flight.

The basic physics of dynamic stall is illustrated in figure 2.18, where a sequence of images dur-
ing the downstroke of a heaving airfoil is shown from a Navier-Stokes simulation of a NACA
0012 airfoil undergoing sinusoidal heaving motion. In the figure, a strong vortex forms near the
leading edge (LEV), propagates over the upper surface and is then swept downstream past the
trailing edge. While the vortex is over the airfoil upper surface, lift is enhanced. This increased
lift is significantly greater than the static lift which would be generated at the corresponding
static incidence angle. As soon as the vortex approaches the trailing edge this lift is reduced
quite suddenly and dramatically. While the presence of dynamic stall is generally adverse on
aircrafts and rotorcrafts, there is evidence that birds and insects may benefit from this effect as a
high-lift mechanism, by simple relying on leading edge vortices (LEV) created by dynamic stall
during the flapping motion [48, 107, 125]. Basically, LEVs are originated due to roll up of the
shear layer separating from the leading edge region of the wing during flapping or pitching motion.
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Figure 2.18: Dynamic stall on a heaving airfoil during downstroke (sequence is top-to-bottom left column,
then top-to-bottom right column).

2.5 Reynolds Number in Terms of Flapping Flight

Given a reference length Lref and a reference velocity Uref , one normally defines the Reynolds
number Re as

Re =
ρUrefLref

µ
=

UrefLref

ν
(2.1)

where ρ is the fluid density, µ is the dynamic viscosity of the fluid and ν is the fluid kinematic
viscosity. Re represents the fluid ratio of inertial forces to viscous forces and is commonly used
in fluid dynamics. In flapping flight, with consideration of the fact that flapping wings produce
lift and thrust, the mean wing’s chord length cm is used as the reference length Lref , whereas
the body length or averaged length of the caudal fin is typically used in swimming animals. The
reference velocity Uref is also defined differently in hovering and forward flight.

In hovering flight, as there is no forward velocity, the mean wingtip velocity may be used as
the reference velocity, which can be written as Uref = ωR, where R is the wing length (half
wingtip-to-wingtip span) and ω is the mean angular velocity of the wing (ω = 2Φf , where Φ is
the wing-beat amplitude, measured in radians, and f is the flapping frequency). Therefore the
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Reynolds number for a 3D flapping wing in hovering flight (Refh3) is given by

Refh3 =
UrefLref

ν
=

2ΦfRcm

ν
=

ΦfR2

ν

(
4

AR

)
(2.2)

where AR is the wing aspect ratio (AR = S2/A) which gives a relation between the wingspan S
and the wing area A. In eq. 2.2, the aspect ratio is introduced in the form AR = (2R)2/A with
the wing area being the product of the wing span (2R) and the mean chord (cm). Note that the
Reynolds number here is proportional to the wing-beat amplitude Φ, the flapping frequency f ,
the square of the wing length R2, but inversely proportional to the AR of the wing.

For a 2D flapping airfoil undergoing hovering motion, the Reynolds number (Refh2) is defined by
the maximum heaving velocity, such as

Refh2 =
ρUrefLref

µ
=

UrefLref

ν
=

2πfhac

ν
(2.3)

where f is the flapping frequency, ha is the heaving amplitude, and c is the airfoil chord length.

In forward flight, for both 2D and 3D applications, the forward velocity U is often used as the
reference velocity Uref and the mean chord length cm as the reference length Lref , hence eq. 2.1
is solely used to obtain the forward flight Reynolds number Re. Compared with the hovering
flight Reynolds number, which is proportional to R2, the forward flight Reynolds number is pro-
portional to R.

2.6 Strouhal Number and Reduced Frequency

A fundamental dimensionless parameter in flows showing an unsteady aerodynamic nature is the
Strouhal number (St), this number is well known for characterizing the vortex dynamics and
shedding behavior of unsteady flows. In some St ranges, the flapping airfoil produces thrust, and
the vortices in the wake are termed reverse von Karman vortices. In general, for flapping flight,
the dimensionless parameter St is normally defined as

St =
fLref

Uref
=

2fha

Uref
(2.4)

where f is the stroke (flapping) frequency in flapping flight, ha is the stroke (flapping) amplitude,
and U is the forward velocity. This definition describes a ratio between the oscillating (flapping)
speed (fha) and the forward speed (U), which offers a measure of propulsive efficiency in flying
and swimming animals. In the study of natural flyers and swimmers in cruising condition it is
found that the Strouhal number, as defined by eq. 2.4, is often within a region of 0.2 < St < 0.4;
in this range of St, the propulsive efficiency (see eq. 2.20) is high, with an optimal St value of 0.3
[136, 182, 192].

Another dimensionless parameter that characterizes the unsteady aerodynamics of pitching and
heaving airfoils is the reduced frequency, which is a measure of the residence time of a particle
convecting over the airfoil chord compared to the period of motion. The reduced frequency k is
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defined as

k =
2πfLref

2Uref
=

πfcm

Uref
=

ωcm

2Uref
(2.5)

where ω is equal to 2πf . In hovering 3D flight, for which there is no forward speed, the reference
speed Uref is defined as the mean wingtip velocity 2ΦfR; then the reduced frequency kfh3 can
be formulated as

kfh3 =
πfcm

Uref
=

πcm

2ΦR
=

π

ΦAR
(2.6)

where the AR is introduced here again as in eq. 2.2. For the special case of 2D hovering airfoils, the
reference velocity Uref is the maximum flapping velocity (see eq. 2.3), and the reduced frequency
kfh2 is defined as

kfh2 =
πfc

Uref
=

c

2ha
(2.7)

which is simply related to the normalized stroke amplitude.

The Strouhal number St (eq. 2.4), may be related to the reduced frequency k (eq. 2.5) as follows

St =
fLref

Uref
=

2fha

Uref
=

1
π

ωcm

2Uref

2ha

cm
=

k

π

2ha

cm
=

2
π

kha

cm
=

2
π

kh (2.8)

where h is the nondimensional heaving amplitude equal to ha/cm and where the product kh is
defined as the maximum nondimensional heaving velocity.

In the case of forward flight, another dimensionless parameter is the advance ratio J . In a general
2D or 3D framework, J is defined as

J =
Uref

2πfha
(2.9)

which is related to St, specifically, J = 1/ (πSt). In eq. 2.9, the reference velocity Uref is the
forward-flying velocity U .

2.6.1 Strouhal Number as the Fundamental Aerodynamic Parameter in Flap-
ping Flight

In studying natural flyers and swimmers and in designing a lifting and/or propulsive man-made
vehicle based on flapping wings, an immediate question is the range of flapping parameters that
may be chosen to optimize the design thrust, efficiency, or other criteria. Evolution is not guar-
anteed to find a solution that is globally optimized among the range of available parameters,
and nature may be more limited in the range of parameters to change. However, a thorough
examination of nature’s techniques is a logical starting point in defining guiding principles.

Taylor et al. [182] performed a study of published wing beat frequencies and amplitudes and cruise
speeds, across a range of birds, bats and insects, to determine Strouhal numbers in cruising flight.
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They found 75% of the 42 species considered to fall within a narrow range of 0.19 < St < 0.41,
with a mean value of St = 0.29. They made the point that whilst similar species might be
expected to exhibit similar Strouhal number due to similar morphological and physiological char-
acteristics, the disparate variety of species used in their study (spanning five orders of magnitude
of body mass) strongly implies that the narrow Strouhal number range is due to aerodynamic
principles alone.

Triantafyllou et al. [193], provided a graph of measured Strouhal numbers for a range of fishes,
sharks and cetaceans, with all falling largely within the Strouhal number range of 0.25 < St <
0.35. In a later study, Triantafyllou et al. [191] expanded on these results, showing that this nar-
row range of selected Strouhal number holds over a Reynolds number range of 104 < Re < 106,
with the Re based on the averaged length of the caudal fin (tail) in the specimens examined. The
velocities used in the calculation were stated to be at or near maximum velocity range for each
species.

Nudds et al. [136], proposed a simple and accurate empirical model for predicting wing-beat
frequency in birds, based on the Strouhal number. The proposed aerodynamic model predicted
wing-beat frequency better than any other relationship proposed, explaining 90% of the observed
variance in a sample of 60 birds species. In the results presented by Nudds et al., they found that
their calculations were consistent with the hypothesis that birds have converged upon a narrow
optimum range of St in cruising flight. The best estimates of St for the empirical data given by
them fell within the range of 0.2 < St < 0.4 associated with high propulsive efficiency in other
theoretical and experimental studies [152, 193]. These results lead Nudds et al. to conclude,
“Avian wing kinematics therefore appear to have been tuned by natural selection for high aerody-
namic efficiency”.

These results all support the proposition that the Strouhal number is the single, or at least the
dominant parameter that controls the aerodynamics of flapping flight, insofar as high efficiency
propulsion is concerned [108, 136, 182, 191, 192, 193, 207]. As stated by Taylor [182], “The exact
mechanism by which St controls the efficiency of force production has yet to be fully elucidated,
but is generally thought to reflect the role of St in governing the time-scales of vortex growth and
shedding”.

Hence, throughout this dissertation the Strouhal number St (or equivalently the product kh ac-
cording to eq. 2.8) will be used as the fundamental aerodynamic parameter when characterizing
the flapping motion, unless otherwise specified.

2.7 Flapping Airfoils Performance Parameters

In the study of flapping airfoils, several parameters may be used to quantify the flow characteris-
tics. Hereafter, we present the most representative ones. Two parameters that provide important
information in the study of flapping wing propulsion are drag and lift coefficients, which are de-
fined as follow

cd =
D

1
2ρU2c

(2.10)
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cl =
L

1
2ρU2c

(2.11)

Since we are studying flapping wing propulsion, it is more convenient to think in terms of thrust
instead of drag. Hence, thrust can be seen as the opposite in direction to the drag force (but
equal in magnitude), therefore we obtain

ct = −cd =
T

1
2ρU2c

(2.12)

In equations 2.10, 2.11 and 2.12; D, L and T are the drag forces, lift forces and thrust forces
(same as drag forces but opposite in sign), respectively; ρ is the fluid density, U is the forward
velocity and c is the airfoil chord.

The instantaneous power input P , can be defined as the amount of energy imparted to the airfoil
for it to overcome the fluid forces and is equal to

P (t) = −L(t)× ẏ(t)−M(t)× α̇(t) (2.13)

where ẏ(t) is the vertical velocity of the airfoil pivot point (ẏ(t) = d
dty(t)), y(t) is the plunging

motion of the airfoil pivot point, α̇(t) is the angular velocity of the airfoil about the pivot point
(α̇(t) = d

dtα(t)), α(t) is the pitching motion of the airfoil about the pivot point, and M(t) is the
moment created by the lift and drag forces at the pitching axis and is nondimensionalized by

cm =
M

1
2ρU2c2

(2.14)

In eq 2.13, the sign of both terms is negative as the lift force and the moment are reaction
forces created by the fluid as the airfoil moves through it, where the products L(t) × ẏ(t) and
M(t)× α̇(t) are the instantaneous supplied energy for vertical translation motion (heaving) and
angular motion (pitching), respectively. The input power can be also nondimensionalized as
follows

cP =
P

1
2ρU3c

(2.15)

Power, thrust, lift and moment coefficients can be also averaged over time as

cPmean = cP =
1
T

∫ t+T

t
CP (t)dt (2.16)

ctmean = ct =
1
T

∫ t+T

t
CT (t)dt (2.17)

clmean = cl =
1
T

∫ t+T

t
CL(t)dt (2.18)

29



CHAPTER 2. AERODYNAMICS OF FLAPPING FLIGHT

cmmean = cm =
1
T

∫ t+T

t
CM (t)dt (2.19)

where T is the period of flapping motion and is equal to T = 2π/ω. Finally, the propulsive
efficiency can be seen as a measure of the energy lost in the wake versus the energy used in
creating the necessary thrust, and is given by

η =
TmeanU

Pmean
=

ctmean

cPmean

=
ct

cP
(2.20)

2.8 Airfoil Geometry and Flapping Kinematics

For a generic 2D case, the airfoil geometry and airfoil motions are shown in figure 2.19. Vertical
(heaving) and rotational (pitching) motions are shown. Horizontal motion (lagging or surging)
will be not considered for 2D cases. Note that throughout this dissertation single-mode motions
will be referred to as pure pitching or pure heaving, whereas the term flapping will imply a com-
bination of heaving-and-pitching in 2D.

Figure 2.19: Airfoil geometry and airfoil motion. In the figure, heaving motion y(t) of the pivot point,
pitching motion α(t) of the airfoil about the pivot point, maximum heaving amplitude ha, maximum pitching
amplitude αa, airfoil chord c, pivot point xp and free-stream velocity U∞ are shown.

In figure 2.19, c is the airfoil chord, xp is the distance from the leading edge to the pivot point
which simultaneously translates vertically (heave), ha is the maximum heaving amplitude, αa is
the maximum pitching amplitude, y(t) is the heaving motion and α(t) is the pitching motion.

The 2D kinematics of the airfoil undergoing a combination of time-dependent heaving (y(t)) and
pitching (α(t)) motions, can be describe by symmetric, periodic, harmonic functions as follows

y(t) = hacos(ωht + ϕh) = hacos(2πfht + ϕh) (2.21)

α(t) = αacos(ωαt + ϕα) = αacos(2πfαt + ϕα) (2.22)
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where ha is the heaving amplitude and is defined positive upwards, αa is the pitch amplitude and
is defined positive clockwise, ωh is the heaving angular frequency (ωh = 2πfh), fh is the heaving
oscillating frequency, ωα is the pitching angular frequency (ωh = 2πfα), fα is the pitching oscil-
lating frequency, ϕh is the phase angle of the heaving motion and ϕα is the phase angle of the
pitching motion.

Based on the definition of reduced frequency eq. 2.18, the airfoil kinematics eq. 2.21 and eq. 2.22
can be rewritten as

y(t) = hacos(2kt̃ + ϕh) (2.23)

α(t) = αacos(2kt̃ + ϕα) (2.24)

where t̃ is the dimensionless time and is equal to t̃ = tref Uref

Lref
.

Natural flyers generally use a combination of pitching and heaving motion rather than a sin-
gle degree of freedom pitch or heave motion. With combined pitching and heaving motions the
parameter space becomes larger, in addition to the pitch and heave amplitudes and oscillating
frequencies, one now has to consider the phase angle between the pitch and heave motions. In
figure 2.20, this situation is illustrated. Cases (a) and (b) represent the pure heave and pitch
modes. In case (c) the airfoil is both pitching and heaving with a phase angle of 90 degrees (pure
feathering). In case (d) and (e), the motion of case (c) is duplicated, but with a phase angle
different that 90 degrees between the pitch and heave motions.

Above, we just presented the general 2D case. For 3D cases [9, 167], the scenario is far more
complex as shown in figure 2.21. The wing-beat kinematics can be described by three positional
angles within the stroke plane: (i) flapping about the x axis (rolling or flapping motion) in the
wing-fixed coordinate system described by the positional angle φ, (ii) rotation of the wing about
the z axis (lagging motion) described by the elevation angle θ, and (iii) rotation of the wing about
the y axis (feathering motion) described by the angle of attack α. The angle of attack α is used to
describe the orientation of a chordwise strip of a beating wing relative to the stroke plane, which
may change significantly in the spanwise direction because of the wing torsion often observed in
birds and insect flapping flight.

For a general 3D case, definitions of the positional angle, the elevation angle, and the angle of
attack, all in radians, are

φ(t) =
3∑

n=0

[φcncos(2nπft) + φsncos(2nπft)] , n = integer (2.25)

θ(t) =
3∑

n=0

[θcncos(2nπft) + θsncos(2nπft)] , n = integer (2.26)

α(t) =
3∑

n=0

[αcncos(2nπft) + αsncos(2nπft)] , n = integer (2.27)
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Figure 2.20: Different possible combination of motions and effect of phase angle in 2D.

Note that t is the time and f is the flapping frequency. The Fourier coefficients φcn, φsn, θcn, θsn,
αcn and αsn, are determined from empirical kinematic data [114, 188, 213]. Based on the Fourier
coefficients gathered by analysis of the kinematics of a hovering hawkmoth [114], the positional,
elevation and feathering angle variation for one period are plotted in figure 2.22.

Equations 2.25, 2.26 and 2.27, represent the general 3D case, where most if not all of the coef-
ficients must be obtained from experimental data. However, simpler kinematics can be consider
when dealing with 3D cases, which are very similar or analogous to the kinematics in 2D cases.
Examples of such kinematics can be, a pure pitching wing, a pure heaving wing, a wing under-
going heaving-and-pitching motions, a wing undergoing lagging (or surging) and pitching motion
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Figure 2.21: 3D flapping wing kinematics.

Figure 2.22: Positional, elevation and feathering angle variations for one period for a hovering hawkmoth
[167].

or a wing rolling about the traveling axis, among others.

Even though 3D effects are important for predicting low Reynolds number flapping wing aerody-
namics, 2D experiments and computations do provide important insight into the unsteady physics
related to flapping wings, that is why a lot of research has been done and is being actively done
in the field of 2D flapping airfoils aerodynamics [108, 140, 196, 198, 207, 216].
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