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a b s t r a c t

The assessment procedures for masonry arches and columns usually assume homogeneous constitutive
models for which strength and stiffness parameters are described in terms of a uni-axial constitutive law.
The limits of such an approach are seldom discussed and related to the brickwork inhomogeneity, i.e. to
the brick size and to the masonry bond. In this paper, a first theoretical and experimental approach to
concentric and eccentric loading of solid clay brickwork are developed and discussed, investigating the
failure modes and the compressive strength of masonry and their dependence on the strength, on the
geometry of the constituents and on the loading conditions. A mechanical model for the load carrying
capacity of eccentrically compressed brickwork prisms, based on the Static Theorem of Limit Analysis,
is proposed allowing: (i) the compressive strength to be related to the size of bricks and mortar joints,
showing that edge effects at the free edges do not significantly affect the global behaviour of thematerial;
(ii) the limit domains in the axial force-bending moment space to be derived. Moreover, a series of
brickwork prisms have been testedwith different load eccentricities; the comparisonwith the theoretical
approach provides upper and lower bounds to the load carrying capacity of the material and shows
that: (i) brickwork exhibits limited inelastic strains that need to be taken into account to explain the
experimental data; (ii) plastic models for masonry overestimate the actual load carrying capacity. On the
basis of these results, one-dimensional homogenized constitutive models, suitable for applications, are
formulated and their effectiveness supported by the experimental results.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Masonry structures are usually designed to sustainmainly axial
forces; unfortunately, due to the variety of loading conditions,
eccentricity of the axial thrust is unavoidable. The assessment
procedures for eccentrically loaded masonry elements, i.e. arches,
pillars and veneer walls are usually simplified and refer to
homogeneous beam models for which the stress–strain response
of the material is described in terms of uni-axial constitutive
laws with reduced number of parameters. The reliability of such
an approach, directly derived from the r.c. design procedures, is
seldom discussed; instead, it should be carefully addressed since
masonry is a heterogeneousmaterial for which the size of the units
(bricks) is of the same order ofmagnitude as the relevant structural
size (cross section).
The homogeneous beam approach implicitly neglects the actual

stress state in the material and the effect of the internal structure
of masonry, considering average quantities only, i.e. axial thrust,
shear force and bending moment. According to the classical beam
theory, a compressive strength for masonry is also defined; it has
to be considered as a parameter of the model rather than a local
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limit stress since the beam approach is in itself global and does not
consider any local phenomenon.
At the scale of the brick units, instead, the stress and strain

states are inhomogeneous and may exhibit stress concentrations;
consequently, the constitutive models need to be related to the
mechanical properties of the constituents (bricks and mortar), to
the geometry of the brickwork bond, to the ratio of the component
size (brick size andmortar joint thickness) to the overall size of the
structural element (essentially the size of the cross section) and to
the load eccentricity. To this aim, while an overall elastic modulus
may be defined on the basis of appropriate homogenization
techniques [1], the load carrying capacity of masonry should
be estimated taking into account the stress localizations in the
constituents and the edge effects, i.e. representing masonry as a
two-phase composite material [2].
The first proposedmodels [3–6, among the others] refer to brick

walls subjected to uniform compressive stresses and represented
as an unbounded layered medium. Interlayer compatibility of
elastic strains results in a tensile-compressive stress field in
the brick governing the collapse of the brick layer and, as a
consequence, of the masonry wall. Despite the clear interpretation
of compressive failure provided by this approach, the assumption
of layered material ignores the mortar head joints and the free
boundaries [7] while the assumption of uniform stress neglects the
effect of the stress gradient, due to eccentric loading, on the load
carrying capacity of brickwork. Improvements to these models
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Fig. 1. (a) Eccentrically compressed column; (b) unit cell; (c) representative volume element.
have been developed for compressed brick masonry walls in [8,
9] based on an application of the Static Theorem of the Limit
Analysis to a prescribed local stress field in the representative
volume element. Nevertheless, since the analysis was devoted to
large walls, these models ignore boundary effects and/or eccentric
loading.
In the last thirty years, experimental research was carried

out on this issue [10–19] but some aspects of the response of
eccentrically loaded masonry seem to be not yet fully understood.
Bearing in mind the homogeneous beam approach, assuming on
the cross section a linear distribution of strains (Navier–Bernoulli),
a vanishing tensile strength and an elastic brittle response in
compression, recalling the pioneering work by Castigliano [20],
some authors report an increase of the masonry compressive
strength, up to twice the value measured for concentric loading
(and uniform stress state), as the load eccentricity is raised [10–
16]: this would imply that the compressive strength depends not
only on the material properties but also on the eccentricity of the
load. On the basis of other experimental data, taking into account
a non linear compressive response [17,21,22] other authors [17–
19] argue that this strength increase is only apparent and is due
to the inelastic response of masonry as it approaches its ultimate
strength. This controversial approach is reflected also in masonry
codes: the UIC code allows a strength increase for eccentric loading
[23], with an increase up to 60% of the concentric value, while Euro
Code 6 [24] assumes the compressive strength as independent on
the loading conditions.
In this paper, a first contribution to the compressive strength

of solid clay brickwork is provided from both a theoretical and
experimental approach. An inhomogeneous stacked perfectly-
plastic periodic material is assumed for brickwork, for which
proper stress functions, in the brick and in the mortar, allow
statically admissible stress fields to be defined; the mathematical
structure of the stress functions allows the free edges conditions to
be represented. On the basis of the Static Theoremof Limit Analysis,
assuming a Mohr–Coulomb type limit condition for both clay and
mortar, the load carrying capacity of brickwork is addressed by
means of the limit domain in the axial thrust-bending moment
space, where the strength properties of masonry are better and
unambiguously represented. The effect of the perturbation of the
stress field, due either to the free edges and to the elasticmismatch
between the bricks andmortar, on the collapse mechanism and on
the ultimate load is taken into account.
Concentrically and eccentrically loaded prisms have also been

tested for a direct comparison between theoretical previsions
and experimental outcomes. The assumption of perfectly-plastic
periodic material, unavoidable in the frame of a Limit Analysis
approach, is showed to overestimate the actual load carrying
capacity of solid clay brickwork.
Simplified homogeneous beam-like models are also discussed

and their reliability for engineering applications in the assessment
of masonry arch-type structures is analysed. Since these models
are characterized by low levels of detail because of their
phenomenological origin, they provide simple formulas for the
limit strength domains in the axial force N , bending moment M
plane that are compared to the experimental results, showing that
the actual response of brickwork is in-between that of a perfectly
brittle material and of a perfectly plastic one.
The theoretical approach discussed in this paper relies on the

Static Theorem of Limit Analysis; therefore, it provides lower
bounds to the load carrying capacity of solid clay brickwork. Since
Limit Analysis is based on the assumption of a perfect plastic
material response and plain strain conditions, and since bricks
and mortar are quasi-fragile, the presented theoretical approach
provides overestimations of the load carrying capacity if compared
to the experimental values. The comparison of the theoretical
results with a wide set of experimental results allows detailed
discussion including a simple and conservative approach to the
assessment of eccentrically loaded masonry structures.

2. Limit analysis of eccentrically compressed prisms

Let us consider the stack bond masonry prism of Fig. 1a
consisting of clay brick units (width: d, height: hb) and mortar
joints (height: hm). The prism is eccentrically compressed with
axial force N (N < 0 in compression), bending moment M and
eccentricity e = M/N; the weight of the prism is neglected.
The finite width d is the relevant aspect of this model in

comparison to the unbounded layered medium of the Hilsdorf
model [3] and other similar approaches. While in the latter case
the stress state at the limit state (collapse) is homogeneous
in each of the two phases (brick and mortar), the finite
width assumption requires edge effects to be considered, thus
leading to an inhomogeneous stress state in both the phases. In
particular, the stress field in bricks and mortar can be assumed
as the superposition of an homogeneous stress field (as for the
unbounded model) and a perturbed stress field due to the free
edges boundary conditions.
For Limit Analysis to be applicable, a perfect plastic response

of the materials needs to be postulated, which is quite a relevant
assumption for quasi-brittle materials such as clay brickwork and
mortar. Besides, for the Static Theorem to be applied, statically
admissible stress fields need to be considered taking into account
the periodic arrangement of the brick units and the mortar layers
through a representative unit cell, Fig. 1b. Because of the symmetry
at mid-height of both the brick units and the mortar layer, a
reduced domain can be considered, Fig. 1c, where Bb and Bm
represent the brick unit and the mortar layer, respectively. The
brick-mortar interface S is given a unilateral frictional contact
constitutive model with associated Coulomb frictional sliding-
dilatancy. The assumption of vanishing tensile strength of the
interface allows to include the no-tension response into Limit
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Analysis since in the true collapse mechanism no internal dissip-
ation is considered in the interface opening mechanisms [25–28].
The residual source of approximation is the compressive

perfectly plastic response for materials that are, in fact, quasi-
fragile. Detailed discussion on this issue is carried out when
comparing the theoretical outcomes to the experimental results.
For both the brick units and the mortar layers the Mohr–

Coulomb criterion is the assumed limit condition, thus taking into
account the multiaxial stress state in the brick unit and in the
mortar layer. Plane strain conditions are considered referring to
a slice of unitary depth; this constitutive assumption provides an
overestimation of the load carrying capacity since it represents the
limit conditions at the centre of a thick prism [2].
Equilibrated stress fields σ =

{
σxx σyy σxy

}T are obtained
by defining two Airy stress functions [29], Φm, Φb, referred to the
mortar and the brick domains, respectively; the stress field takes
the usual form σ =

{
Φ,yy Φ,xx −Φ,xy

}T, where the subscripts
represent the derivatives.
The internal forces on each section are given as:

N =
∫ d

2

−
d
2

Φα
,xxdx, α = b,m, (1a)

M = Ne =
∫ d

2

−
d
2

Φα
,xxxdx, α = b,m, (1b)

V =
∫ d

2

−
d
2

Φα
,xydx = 0, α = b,m, (1c)

where V is the shearing force. The symmetry of the normal stress
components σxx and σyy and the antisimmetry of the shear stresses
σxy in the brick andmortar domainswith respect to the boundaries
∂Bu and ∂Bd, respectively, imply the boundary conditions:

Φb,xxy = Φ
b
,yyy = 0, Φb,xy = 0 on ∂Bu, (2a)

Φm,xxy = Φ
m
,yyy = 0, Φm,xy = 0 on ∂Bd. (2b)

Moreover, the condition of free lateral edges σxx = σxy = 0 on ∂Br
and ∂Bl, togetherwith the local equilibriumequationσxx,x+σxy,y =
0 lead to:

Φα
,yy = Φ

α
,xy = Φ

α
,xyy = 0 on ∂Br and ∂Bl, α = b,m. (3)

At the interface S the stress functions have to guarantee the
continuity of the stress field, i.e. the vanishing of stress jump
[[σyy]] = 0, [[σxy]] = 0:

Φm,yy = Φ
b
,yy, Φm,xy = Φ

b
,xy on S. (4)

The stress fields may be represented assuming the stress function
in the form:

Φα (x, y) = z0
[
f e0 (x)+ ρf

o
0 (x)

]
+

R∑
r=1

S∑
s=1

zαrsfr (x) g
α
s (y) ,

α = b,m (5)

requiring a set of 2 + R + S functions, coefficients z0, ρ, and a set
of 2(1 + RS) coefficients zαrs to be selected. The form (5) for the
stress functionsmakes use of the standard choice of separating the
variables x and y and satisfies the static boundary conditions on the
cross section (1c), on the upper and lower surfaces (2) and on the
left and right borders (3). Besides, conditions (3) and (4) ask:

(i) functions f e0 (x) and g
α
s (y) (α = b,m, s = 1, S) to be even;

(ii) function f o0 (x) to be odd;
(iii)

fr = (fr)′ = 0 on ∂Br and ∂Bl, (6a)
(iv) (
gms
)′
=
(
gms
)′′′
= 0 on ∂Bd, (6b)

(v) (
gbs
)′
=
(
gbs
)′′′
= 0 on ∂Bu, (6c)

where superscripts ′ and ′′′ stand for the first and third derivatives.
Moreover, the stress continuity condition (4) at the interface S

implies further restrictions involving the coefficients in the form of
homogeneous linear equations:
S∑
s=1

zmrs g
m
s

∣∣
S
=

S∑
s=1

zbrsg
b
s

∣∣
S
;

S∑
s=1

zmrs
(
gms
)′∣∣∣

S
=

S∑
s=1

zbrs
(
gbs
)′∣∣∣

S

for r = 1, . . . , R. (7)

It follows that the coefficients z0 and ρ are obtained from Eqs.
(1a) and (1b):

z0 = N/
∫ d

2

−
d
2

(
f e0 (x)

)′′ dx,
ρ =

(∫ d
2

−
d
2

(
f e0 (x)

)′′ dx/∫ d
2

−
d
2

(
f o0 (x)

)′′ xdx) e, (8)

and depend on the axial force N and eccentricity e, respectively.
The stress function at a point in the domain Bm ∪ Bb can be
expressed in the linear form Φ (x, y) = 8Tz, where 8 ={
Φ0 Φ

m
11 . . .Φ

m
RS Φ

b
11 . . .Φ

b
RS

}T is the vector collecting the set of
assumed stress functionsΦ0 = f e0 (x)+ ρf

o
0 (x),Φ

α
rs = fr (x) g

α
s (y)

and z =
{
z0 zm11 . . . z

m
RS z

b
11 . . . z

b
RS

}T is the vector collecting the
1 + 2RS unknown coefficients, where gms (y) = 0 in Bb and
gbs (y) = 0 in B

m. The stress field in the brick and mortar domains
can be represented in the compact form σ = L8Tz, being L ={
∂2

∂y2
∂2

∂x2
−

∂2

∂x∂y

}T
a differential operator, together with the

linear homogeneous equations from conditions (7) written in the
form Sz = 0, S being a proper matrix.
To obtain a Linear Programming (LP) formulation the

Mohr–Coulomb limit domain for plane strain condition is approx-
imated according to Sloan [30] with a inner polytope having K
planes in the space of the stress components so that the unknown
vector z is subjected to the following inequalities:

mαT
k L8Tz ≤ Dα, k = 1, . . . , K , α = m, b, (9)

mα
k =

{
Aαk Bαk Cαk

}T
.

Being:

Aαk = sinϕ
α cos (π/K)+ cos (2πk/K) ,

Bαk = sinϕ
α cos (π/K)− cos (2πk/K) ,

Ck = 2 sin (2πk/K) ,
Dα = 2c cosϕα cos (2πk/K) ,

ϕα and cα the friction angle and cohesion of the phase α,
respectively (depending on the compressive f mc , f

b
c , and the tensile

f mt , f
b
t , strength of mortar and brick).
The unilateral frictional contact conditions σyy ≤ 0 and

∣∣σxy∣∣+
µσyy ≤ 0 assumed at the interface S imply the linear inequalities:

Qσ = QSL8
Tz ≤ 0, (10)

involving the unknown vector z of the unknown variables and
matrix QS that depends on the friction coefficient µ.
The plastic admissibility conditions (9) and (10) are approxi-

mately imposed at a finite number (2P ×Q ) of points defined on a
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Fig. 2. Stress components at the limit state.

regular orthogonal grid having P rows and Q columns in both the
mortar and the brick domain; inequality (10) is imposed to the cor-
responding Q points at the interface S. Lower bound approxima-
tions Nc of the limit axial force for given eccentricity e are obtained
as solutions of the LP problem
Nc = maxN = max

(
cTz
)
= max

(
z0

∫ d
2

−
d
2

f
′′

0 dx

)
Sz = 0
Mz ≤ d
Qz ≤ 0,

(11)

where matrices S, M and Q are related to the conditions of stress
continuity at the interface S, plastic admissibility according to
the piecewise linearization of the Mohr–Coulomb limit domain
and unilateral frictional contact at the interface S, and vector c is
defined in (11)a [31].
The procedure is applied to the case of concentric loading

assuming a brick stack with d = 250 mm, hb = 55 mm, hm =
10 mm. Non-dimensional polynomial functions are assumed as:

gms (y) =
(
2y
hm

)2(s−1)
, s = 1, . . . , Sα, (12a)

gbs (y) =
(
2 (hm + hb − y)

hb

)2(s−1)
s = 1, . . . , Sα, (12b)

and

fr (x) =
(
2x
d

)r−1 [
cos

(
2π
d
x
)
+ 1

]
, r = 1, . . . , R. (12c)

As the result of a convergence analysis to limit the error within
0.1%, parameters R, S, K , P and Q have been given the values: R =
16, S = 6, K = 30, P = 240, Q = 20. The material strength
is chosen in the typical range for brittle materials, f bt /f

b
c = 1/10,

f mt /f
m
c = 1/10, f

m
c /f

b
c = 1/4, µ = 0.2, resulting in a brickwork

compressive strength fM = 0.848f bc .
The stress field at the limit state is shown in Fig. 2. The

typical stress field of the unbounded layered model is obtained in
the central region, with a uniform compressive horizontal stress
(σ axx < 0) in the mortar and tensile horizontal stress (σ

b
xx > 0) in

the brick, while close to the edges a perturbation of the stress field
components is observed both in the bricks and in the mortar. The
collapse condition attained in Fig. 2 is that of transverse traction
in the brick but no collapse mechanism can be identified since this
would ask the problem to be solved also in terms of displacements,
which is beyond the scope of this work.
The relevance of the edge effects can be discussed comparing
the compressive strength fM for prisms of finite width, discussed in
the previous parts of this section, in the case of concentric loading,
to the strength f̃M of an unbounded layered material. The standard
assumptions of Limit Analysis [3] are postulated, i.e. that, in the
unbounded layered material:

(i) both the materials are in Limit condition, the mortar layer
being in a three-axial compressive stress state and the brick
in a three-axial tensile-tensile-compressive state; besides,
Mohr–Coulomb limit conditions are attained simultaneously
in both the materials;

(ii) compatibility is guaranteed, i.e. no sliding takes place at
the brick/mortar interface, since no shear stresses need to
be postulated in an unbounded layered material, as already
discussed;

(iii) plain strain conditions.

On these bases, a generalized expression of the Hilsdorf formula
[3] can be obtained assuming for the mortar the limit condition:

σv = −f mc +
f mc
f mt
σh, (13)

being σv the mean component (vertical) of the compressive stress,
σh the horizontal confining stresses, and f mc and f

m
t the mortar

uniaxial compressive and tensile strength:

f̃M =
hb
fmc
fmt
f bt + hmf

m
c

hb
fmc
fmt
f bt + hmf bc

f bc , (14)

where the symbols have been already defined in the previous
paragraphs. The Hilsdorf formula can be obtained as a specific case
assuming f mc /f

m
t = 4.1 [3]. Eq. (14) does not depend on the friction

coefficient at the interface because of the assumption (ii).
With respect to the unbounded layered material, the perturba-

tion in the stress field is due, in general, to a couple of reasons:
(i) the head joints; (ii) to edge effects. In the considered brickwork
prisms, the first issue is not dealt with, while the effect of the lat-
ter appears to be rather limited; Fig. 3 shows that the difference
due to the edge effects never exceeds 3.5% for brickwork prisms
of ordinary width (d ≥ 100 mm) and approximates 10% only for
unrealistic narrow prisms (d ≤ 50 mm).
Fig. 3 shows a comparison between the two approaches for the

ratios of the material strength previously discussed, that might be
unfit for some kinds of brickworks, and for increasing width d of
the specimen. The brick height hb is 55 mm, so that, varying the
width d, Fig. 3 also shows the effect of the ratio hb/d.
The effects of themechanical and geometrical parameters of the

model herein developed are showed in Figs. 4 and 5, where it is
showed that the same conclusions can be derived also for different
values of the mechanical and geometrical parameters.
A sensitivity analysis of the model for e = 0 has been carried

out. Different values of the friction coefficient in the range µ ∈
[0.05, 0.6] have shown no effect on the axial strength, showing
that sliding at the brick/mortar interface: (i) is locked on the
average by the high vertical stresses; (ii) might be activated in
some areas, due to some stress concentrations, but plays a minor
role on the global collapse phenomenon.
The evaluation of lower bounds to the limit axial strength

Nc (e) for given eccentricity e have been carried out for the same
specimen. Different values of the eccentricity has been considered
showing the edge effects on the stress field at the limit state; the
distribution of the vertical stresses σyy is shown, Fig. 6.
The dependence of the limit axial strengthN on the eccentricity

is represented in the non-dimensional domain of Fig. 7 in terms
of the ratios N/N0 and M/M0, where N0 is the concentric limit



A. Brencich et al. / Engineering Structures 30 (2008) 3629–3643 3633
Fig. 3. Non-dimensional limit concentric axial strength fM/f bc for varying the stack
width (concentric loading, e = 0).

Fig. 4. Compressive strength of brickwork as a function of the mechanical
parameters. (a) prisms of finite width; (b) unbounded layered model (concentric
loading, e = 0).

load for unit thickness (N0 = dfM) and the conventional bending
moment M0 = N0d/4, the black squares in the diagram defining
the limit states obtained by the present analysis. In the same
diagram the limit states obtained for the homogeneous rectangular
Euler-Bernoulli beam made up with no-tensile resistant (NTR)
and elastic-perfectly plastic in compression material are shown,
corresponding to the parabola M/M0 − 2N/N0(1 + N/N0) =
0. The comparison highlights negligible differences between the
results provided by the two models, thus suggesting that no
overstrength can be postulated in case of eccentric loading, i.e. that
the brickwork strength does not depend on the loading conditions.
Fig. 5. Compressive strength of brickwork as a function of the geometrical
parameters. (a) prisms of finite width; (b) and (c) unbounded layered model
(concentric loading, e = 0).

Similar results have been obtained for varying both the value of the
ratio (hb + hm)/d ∈ [0.2, 2].
The obtained results, referred to both concentric and eccentric

axial compression, show that, under the aforementioned assump-
tions: (i) the free-edge effects do not affect the concentric axial
strength provided by the simple unbounded layeredmodel; (ii) the
limit eccentric axial load can be evaluated by the homogeneous
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Fig. 6. Vertical stresses σyy component for varying eccentricity e.

Fig. 7. Limit domains in the non dimensional plane N/N0 , M/M0 . Dots: points on
the limit domain calculated according to the proposed model; dotted line: limit
domain for a No Tensile Resistant – Elastic Perfectly Plastic (NT-EPP) homogeneous
equivalent beam.

beam model assuming a no-tensile resistant material with ideal
plastic compressive response with compressive strength deduced
from concentric tests. This outcome has to be considered as a first
result to be compared with others referred to more complex con-
stitutive models since it relies on the assumption of perfect plas-
ticity in compression, which is necessary for Limit Analysis to be
applied but is somewhat strong for quasi-brittle materials such as
clay bricks and mortar.

3. Tests on compressed prisms

3.1. The experimental program

Two types of specimens have been tested: (i) type 1: 110 ×
250 × 270 mm, four bricks layers and five mortar joints; (ii) type
2: 250 × 250 × 345 mm, five brick layers and six mortar joints,
the central level being a symmetry plane, Fig. 8. The materials
Fig. 8. Tested specimens.

have been characterized according to [32,33], Table 1, showing the
dispersion of the data typical of brickwork, somewhere in-between
15% and 20% of the average value [34–36]. Mortar 1 is a cement-
lime mortar and mortar 2 is a ‘‘white cement’’-lime-mortar, that
are industrial pre-mixed products for which the producer did
not give the exact proportions, both representing medium-high
strength mortars. Brickwork 1 and Brickwork 2 originate from the
corresponding mortars.
The brickwork specimens have been tested with a load

eccentricity of 0, 40, 60 and 80 mm (e/d = 0, 4/25, 6/25, 8/25),
Fig. 9, repeating each test two or three times. Fig. 9 shows also the
position where displacements have been measured for both the
specimen types.
The standard tests [32,33] for the compressive and tensile

strength of brick and mortar, f mc , f
b
c , f

m
t and f

b
t , make use of an

experimental setup where friction between the specimens and
the testing machine is not removed. Since friction between the
specimens and the testing machine is not vanishing, in standard
tests the stress state in the specimen is not uniaxial. On the
contrary, the values for f mc , f

b
c , f

m
t and f bt used for both the

compressive strength of brickwork, according to relationships like
Eq. (14), and for characterizing the materials refer to a uniaxial
stress state: therefore, the standard tests do not directly provide
the uniaxial tensile and compressive strengths of the tested
materials and some correction factor needs to be applied.
The application of the Limit Analysis procedure discussed in

Section 2 to the compressive tests and of FEM procedures to
the Three Point Bending (TPB) tests shows that the measured
values are approximately 30% higher than the values that would
be obtained in frictionless tests [31]; similar results would be
obtained by means of 3D FEM models. Table 1 shows the uniaxial
strengths of bricks and mortars.

3.2. The experimental setup

The testing setup is represented in Fig. 10. The load is applied
to the specimens by means of 60 mm thick steel plates and to the
plates by cylindrical hinges, and is measured by means of a C5
classHBM-RTN load cell with a 0.01% precision located in-between
the upper plate and the testing frame (not represented in Fig. 10).
The cylindrical hinges allow the load path inside the specimen to
be precisely identified; different loading systems may originate
undesired and not constant eccentricities of the load leading to
results that are difficult to be interpreted [22].
The relative displacements between the steel plates are

measured by MACH B10 Solartron r© LVDTs with a 1/1200 mm
precision. The displacement of the upper plate ismeasured directly
under the load line, while the lateral ones are recorded close to
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Table 1
Mechanical characteristics of bricks and mortars

Av. value (MPa) N. of samples C.o.V. (%) Char. valuea (MPa) Char. / average

Brick

Compressive strength – direct 13.8 20 17 9.9 0.72
Elastic modulus (compression) 1530 20 30 765 0.50
Tensile strength – TPB 3.3 10 10 2.7 0.83
Elastic modulus (tensile) 920 10 25 535 0.58

Mortar 1

Compressive strength – direct 9.2 20 18 6.4 0.70
Elastic modulus (compression) 1545 20 16 1130 0.73
Tensile strength – TPB 2.4 10 15 1.8 0.75
Elastic modulus (tensile) 1120 10 19 765 0.68

Mortar 2

Compressive strength – direct 7.0 20 16 5.1 0.73
Elastic modulus (compression) 1365 20 22 865 0.63
Tensile strength – TPB 1.9 10 12 1.5 0.80
Elastic modulus (tensile) 870 10 23 535 0.62
a Assuming a Gaussian distribution.
Fig. 9. Testing program.

Fig. 10. Test setup (testing frame not represented).

the ends of the specimen in order to derive the plates rotation. All
the displacements are measured on both the sides of specimen in
order to control undesired lateral eccentricity of the load due to
imperfect bases of the specimen.
The tests are displacement controlled — lower (fixed) hinge

connected to the testing frame andupper part of the reaction frame
(above the load cell) moved by a mechanical device. The load cell
can be considered a stiff spring; up to the limit load this does not
affect the results and could be somehow relevant only far after the
material collapse, at a point when the softening curve has already
lost anymechanicalmeaning. A 2mm thick lead sheet between the
specimen and the loading plateswas used to smoothen the bases of
the specimens. Friction between the bases and the loading plates
could not be removed because eccentric loading without friction
would result in unstable tests.
For type 2 specimens, due to the higher loads expected, the tests

have been force-controlled by means of an hydraulic press with
0.7% precision. In these cases, the post-peak parts of the diagrams
have been obtained stopping the oil pump and waiting till equilib-
rium was reached again. The displacements have been measured
with the same LVDTs already described and the load through the
pressure of the hydraulic system. Other minor details can be found
in previously published works of the authors [17,22,31].

3.3. Test results

Figs. 11 and 12 show the load–displacement diagrams for
concentric (e = 0) and eccentric load tests. Concentric tests show a
typical response that can be divided into 4 different phases: phase
(1) up to approximately 80% of the peak load the response is linear
elastic; phase (2) a non linear phase is activated up to the peak
load; phase (3) inelastic strains are developed at almost constant
load, this phase being almost vanishing or relatively long according
to the specimen type and the testing conditions; phase (4) a long
softening branch lasting till the specimen crushes in several pieces,
Fig. 13.
The dispersion of the data, Table 2, is reduced and well inside

the known limits for brickwork [34–37]. Type 1 specimens show
a more dispersed response than type 2 ones, probably because of
the mortar joints of the brickwork. In type 1 specimens the joints
are difficult to be completely filled since mortar leaks during the
construction of the specimens; for type 2 prisms, the vertical joints
help in filling the horizontal ones so that the leakage takes place
close to the outer surface of the bricks only.
Figs. 14 and 15 show the moment–curvature diagrams for

the eccentrically loaded specimens. Comparing these data to the
load–displacement curves we can observe that: (i) the softening
branch is more regular if referred to the curvature rather than to
the displacements; (ii) the curvature at peak load is less dispersed
than the displacement at peak load.
Fig. 16 shows the crack pattern at the end of the tests for type 1

and type 2 specimens which suggests a collapse mechanism under
concentric loading that is different for the two bonds.
Type1: the collapsemechanism is first activated by the detachment
of 10 mm thick layers of the brick from the outer surface (phase 2,
Fig. 13); only in a further phase the transversal tractions make the
brick split into several parts (phase 3, Fig. 13).
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Fig. 11. Load–displacement diagrams for type 1 specimens: (a) concentric loading; eccentric loading with: (b) e = 40 mm (e/d = 1/6); (c) e = 60 mm (e/d = 1/4); (d)
e = 80 mm (e/d = 1/3).
Table 2
Summary of the experimental data – concentric loading

Specimen type-n f cM (MPa) εel (%) εu(%) ηav = εu/εel E (MPa)

Brickwork 1

Type 1—a 12.5 0.64 0.71 1.27 1990

Type 1—b 14.5 0.60 0.79 1.51 2080
Type 1—average 13.5 0.62 0.75 1.39 2035

Type 2—a 12.4 0.47 0.65 1.42 2210

Type 2—b 12.7 0.56 0.64 1.34 2550
Type 2—average 12.5 0.51 0.64 1.38 2380

Brickwork 2

Type 1—a 12.8 0.82 0.95 1.16 1610

Type 1—b 13.7 0.56 0.70 1.16 2200
Type 1—average 13.2 0.69 0.83 1.16 2085

Type 2—a 12.6 0.55 0.71 1.31 2120

Type 2—b 12.2 0.49 0.58 1.44 2500
Type 2—average 12.4 0.52 0.64 1.37 2310
Type 2: the first cracks appear along the interface between the
vertical joints and the bricks, propagate into the bricks so that the
prism is first separated into four equal brickwork pillars (each one
is 1/4th of the original specimen) at approximately 50% of the limit
load; then the brickwork splits in several pieces for transversal
tractions in the bricks but without the detachment of external
layers as for type 1 tests. These differences almost disappear for
eccentric loading, for which the compressed part of the prism
progressively crushes in both the cases.
In all the tests, since the friction between the plates and the
specimens could not be removed, the upper and lower bases
showed signs of confinement due to the friction between the
specimen and the testing machine. The collapse of the specimen,
being activated in the central section of the brickwork prism, is
expected not to be affected by these phenomena even though the
prisms are relatively short (usually 5 horizontal mortar joints are
suggested for testing brickwork, but also 3 joints are considered
acceptable).
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Fig. 12. Load–displacement diagrams for type 2 specimens: (a) concentric loading; eccentric loading with: (b) e = 40 mm (e/d = 1/6); (c) e = 60 mm (e/d = 1/4); (d)
e = 80 mm (e/d = 1/3).
Fig. 13. Typical load–displacement response of concentrically loaded brickwork.

Aiming at the assessment of eccentrically loaded structures, the
experimental data are best represented in a N/N0–M/M0 plane,
being the normalising quantities N0 and M0 the ultimate load for
concentric loading and M0 = N0 · d/4 respectively. The model
discussed in the previous paragraph, based on Limit Analysis and
on the assumption that clay and mortar may be represented by
Elastic–Perfectly-Plastic models with unbounded ductility, led to
a limit domain represented by the parabola in the N/N0–M/M0
plane of Fig. 17 that includes almost all the experimental points.
The normalising quantity N0 of Fig. 17, that is conceptually

‘‘exact’’ if we knew the ‘‘real’’ brickwork compressive strength, is
defined as the average experimental value; since different types
of masonry have been tested, part of the dispersion is due to the
choice of one normalising quantity only, which is necessary for
direct comparison of the test data.

4. Simplified homogeneous models

The beam-like approach to the assessment of eccentrically
loaded masonry asks uni-axial homogeneous models to be
formulated. On the basis of the Navier hypothesis of plane
section, experimentally verified for some kind of solid clay
brickwork [8], several constitutive models can be formulated.
Assuming a vanishing tensile strength (No-Tensile-Resistant
material, NTR), several different constitutive models may be
considered in compression: (i) Perfectly-Brittle (NTR-PB), Fig. 18a,
or (ii) Elastic–Perfectly-Plastic (NTR-EPP), Fig. 18b, in compression.
These models are simple in the sense that they require only one
parameter, the compressive strength fM , to be defined.
The Navier hypothesis of plane section and the mono-axial

constitutive law make the stress distribution on the section
known; the internal forces, calculated by integration of the
stress distribution, therefore depend of the assumed constitutive
parameters: the shape of the stress–strain response and the
compressive strength fM . In ultimate conditions, i.e. when the
maximum compressive strain attains its ultimate value, a limit
domain can be derived in the axial thrust-bending moment space
(N–M space) that is used for the safety assessment of eccentrically
loaded structures, assuming safe all the states that lie inside the
domain. Since the assessment refers to the internal forces, i.e. to
global quantities, the homogeneous beam-like approach does not
allow the actual stress state on the cross section to be reproduced
and the compressive strength fM needs to be considered as a
global strength parameter, not a local limit stress; being its
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Fig. 14. Moment–curvature diagrams for type 1 specimens; eccentric loadingwith:
(a) e = 40 mm (e/d = 1/6); (b) e = 60 mm (e/d = 1/4); (c) e = 80 mm
(e/d = 1/3).

correlation to the mechanical properties of bricks and mortar not
straightforward and somehow troublesome, it is defined on the
basis of compressive (concentric) tests. In fact, the concept of
compressive strength is not strictly necessary, since the ultimate
load for concentric loading, N0, could be only a parameter needed
for the limit domain to be drawn.
The diagrams of Figs. 11 and 12 show that neither a brittle NTR-

PBnor a ductileNTR-EPPmodel fit the actual response of brickwork
and that they appear to be lower and upper bounds to the actual
load carrying capacity of the cross section: the first one because it
does not represent the inelastic response of brickwork, the latter
model because the experimental evidence shows a rather limited
inelastic capacity for masonry. On the basis of this observation, an
NTR-EPP model might still be considered provided a limit is set
to the inelastic strains. To this aim, two relevant parameters can
be defined: the ultimate displacement δu just at the end of phase
3 and the elastic limit δel at the intersection between the linear
Fig. 15. Moment–curvature diagrams for type 2 specimens; eccentric loadingwith:
(a) e = 40 mm (e/d = 1/6); (b) e = 60 mm (e/d = 1/4); (c) e = 80 mm
(e/d = 1/3).

elastic phase and the inelastic plateau, Fig. 13. The ratio between
the ultimate displacement δu and the value at the end of the elastic
limit δel [17] is defined as ‘‘available ductility’’ ηav = δu/δel and can
be assumed as a measure of the material inelastic capacity. Such a
definition is the same as the more common definition of ductility
referred to the ultimate and elastic mean strain in the specimen,
ηav = εu/εel. The meaning of the available ductility ηav is that
of a global parameter representing the first part of the inelastic
response, depending on several parameters such as the properties
of the constituents, their geometry (unit size and joint thickness)
and on the masonry bond. This inelastic parameter, ηav , can be
deduced from concentric tests, Table 2.
Since the inelastic plateau is not always easy to identify, Fig. 13,

the definition of available ductility leaves room for uncertainty.
Even though this is an undesirable feature of a mechanical model,
the practical effect of such an uncertainty remains far below the
approximation of the simplified model. This constitutive model is
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Fig. 16. Collapse mechanism for type 1 and type 2 specimens under concentric and eccentric loading.
given the name of No Tensile Resistant – Elastic Plastic – Limited
Available Ductility model (NTR-EP-LAD), Fig. 18c and dashed line
of Fig. 13.
Fig. 19 shows the limit domains in the N/N0–M/M0 plane

obtained for: (i) the NTR-PB model, Fig. 18a, inner solid curve
(ηav = 1); (ii) the NTR-EPP model, Fig. 18.b, and the Limit Analysis
approach of paragraph 2, outer solid parabola (ηav →∞); (iii) the
NTR-EP-LAD model for some values of ηav (ηav = 1.2, ηav = 1.5,
ηav = 2). The vastmajority of the experimental points lie inside the
two extreme models; some points lie slightly outside these limits
but this is due to the variability of the concentric compressive
strength, which is the normalizing quantity. Taking into account
a +10% and −10% variation of the compressive strength, i.e.
somehow taking into account the material inhomogeneity, we
obtain the outer dashed and inner dotted lines, that contain all the
experimental points.
The limit domain for the NTR-PB model, on principle, cannot

be considered a lower bound to the brickwork strength since local
stress concentrations in masonry and the quasi-brittle response
of the constituents and interfaces might lead to failure domains
also more restricted than the ones predicted by this model.
Nevertheless, for the considered cases, no experimental test falls
inside the NTR-PB safe area, Fig. 19, so that it can be assumed,
for practical applications, as a lower bound to the brickwork load
carrying capacity under eccentric loads.
Several points show very limited ductility, while the majority

of the experimental tests would be interpreted by an NTR-EP-
LAD model assuming the available ductility ηav in the range [1.2,
1.5], as deduced from the concentric tests of Table 2. For different
mortar types and thicker mortar joints, ductility may be as large
as 2 [22,38].

5. Discussion

In this paper a first approach to solid clay brickwork has
been discussed, assuming for brickwork masonry a simple stacked
model with finite width. This model, whatever simple, allows the
edge effects to be taken into account as opposed to other models
classical models [3] that consider brickwork as an unbounded
layered material. Static Limit Analysis has been applied to derive
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Fig. 17. Limit domain of the NTR–EPP model and experimental points in the
N/N0–M/M0 plane.

the load carrying capacity of the material for both concentric and
eccentric loading, Fig. 7; the obtained limit domain and the limit
curve for a simplified homogeneous perfectly-plastic model are
almost coincident showing that the edge effects seem to play a
minor role (not more than 3.5%) on the collapse of solid clay
brickwork.
The test data and the comparison with the theoretical

results show that the Limit Analysis approach of paragraph 2
overestimates the actual load carrying capacity of the material,
which is likely to be due to the damage and fracture inelastic
phenomena taking place in clay and mortar and/or at their
interface prior and close to the peak load; these phenomena
are not taken into account by Limit Analysis Procedures. In fact
this outcome is not completely unexpected since masonry and
its constituents are not ductile materials, while Limit Analysis
assumes the materials to be ductile in order to reach the limit
conditions in all the materials of the model.
The latter conclusion is relevant to assessment procedures:

since assessment asks no permanent strain (damage) to be
admitted, the limit domain considered for assessment should be
the brittle one, i.e. the inner curve of Fig. 19, calculated with the
NTR-Perfectly Brittle model of Fig. 18a.
Type 1 specimens, with horizontal joints only, allow a direct

comparison between the theoretical estimate of the limit load
under concentric loading, Eq. (14), and the experimental value,
Table 3, showing good agreement between theoretical and test
data, with differences falling inside the scattering of experiments
[35,36]. Similar results are obtained also for type 2 specimens that,
due to the head joints, do not exactly fit the assumptions of the
previously discussed model.
TheHilsdorfmodel [3] differs fromEq. (14) because: (i) the ratio

f mc /f
m
t is assumed constant and equal to 4.1; (ii) a reducing factor

1/U is introduced (1/1.5 for solid brickwork) to take into account
the inhomogeneity of the stress field. In fact, if the uniaxialmaterial
strength is considered in Hilsdorf formula, no correction factor U
needs to be used to fit the experimental data; the difference in the
compressive-to-tensile strength ratios plays a minor role.
The limit domain is usually deduced from simplified ho-

mogenised beam-like models that assume for the material the
uniaxial constitutive laws discussed in Section 4 or other similar
models. In this case, the compressive strength is considered a ma-
terial parameter either measured through concentric load tests or
provided by theoretical approaches, in both the cases assuming a
uniform distribution of compressive stresses. The UIC railway code
[23], on the contrary, assumes a NTR-PB model for the assessment
of masonry bridges providing the compressive strength under ec-
centric loading f eccentricM as a function of the value for concentric
Fig. 18. Uniaxial constitutive models for masonry; (a) NTR-PB, (b) NTR-EPP; (c) NTR-EP-LAD models.
Fig. 19. Limit domain of the NTR-PB, NTR–EPP and NTR-EP-LAD models and experimental points in the N/N0–M/M0 plane.
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Table 3
Compressive strength fM of the tested brickwork: experimental and theoretical values [MPa]

Brickwork 1—type 1 prism Brickwork 2—type 1 prism

Exp. Eq. (14) Limit analysis Section 2 Exp. Eq. (14) Limit analysis Section 2
12.5 13.0 12.5 12.8 12.6 12.214.5 13.7
Table 4
Ultimate load and compressive strength of all the specimens for different constitutive models

Brickwork 1

Eccentricity 0 mm 40 mm 60 mm 80 mm
Eccentr. /brick height e/d = 0 e/d = 1/6 e/d = 1/4 e/d = 1/3
Specimen a b a b a b c a b c
Nexpu (kN) 375 436 251 242 221 199 150 117 131 119

16.4 15.8 18.9 17.0 12.8 14.4 16.2 14.7
f NTR−PBM (MPa) 12.5 14.5 Average: 16.1 Average: 16.2 Average: 15.1

14.4 13.9 16.6 14.9 11.2 12.7 14.2 12.9
f NTR−EP−LADM (MPa) (ηav = 1.2) Average: 13.5 Average: 14.1 Average: 14.2 Average: 13.3

Brickwork 2

Eccentricity 0 mm 40 mm 60 mm 80 mm
Eccentr. /brick height e/d = 0 e/d = 1/6 e/d = 1/4 e/d = 1/3
Specimen a b a b a b a b c
Nexpu (kN) 384 410 214 206 158 181 102 115 111

14.9 13.4 13.5 15.5 12.6 14.2 13.7
f NTR−PBM (MPa) 12.8 13.7 Average: 14.2 Average: 14.5 Average: 13.5

11.6 11.1 11.2 12.8 10.4 11.7 11.3
f NTR−EP−LADM (MPa) (ηav = 1.4) Average: 13.2 Average: 11.3 Average: 11.5 Average: 11.1

Type 1 specimens.
loading f concentricM and of the load eccentricity e:

f eccentricM =

[
1.8− 1.2

(
1− 2

e
d

)]
f concentricM ,

provided
e
d
∈

[
1
6
,
5
12

]
, (15)

being d the section height. Eq. (15) accounts for a 60% increase
of the compressive strength for the highest values of the load
eccentricity. The subsequent limit domain in the N/N0–M/M0
plane is showed in Fig. 20 where, for high values of load
eccentricity, the limit domain turns out to be enlarged. The
comparison with the experimental data of this research and from
other works [10–14,17–19,22] shows that several collapse points
(highly eccentric loads) lie inside what the UIC approach assumes
as a safe area. Since high eccentricities of the axial thrust are
to be expected close to the collapse of masonry arches and arch
barrels, Eq. (15) is found to be unconservative for these structures.
It is worthwhile noting that Euro Code 6 [24] does not allow any
strength increase at all.
Table 4 summarizes part of the data of this research and the

values of the compressive strength derived from the homogeneous
NTR-PB model (f NTR-PBM ), Fig. 18a, and for the NTR-EP-LAD model
(f NTR-EP-LADM ) of Fig. 18c; only type 1 specimens are considered
due to the assumption of stacked periodic material on which the
theoreticalmodel is based. In spite of the data scattering, a strength
increase seems to be found in the first case (brittlemodel)while the
latter model, taking into account the available ductility measured
in concentric tests, Table 2, does not need any strength increase.
Assuming a NTR-EP-LAD model, brickwork 1 would be given a
compressive strength of 12.9 N/mm2 and C.o.V. = 12%, while for
brickwork 2 of 12.0 N/mm2 and C.o.V. = 7%.
The difference between these two constitutive models is due

to some intrinsic features of concentric and eccentric tests: (i)
concentric tests produce a uniform stress distribution in the
specimen, leading to a statically determinate problem for which
the average compressive strength fM may be easily defined; (ii)
eccentric loads induce a stress distribution which is unknown,
leading to a statically indeterminate problem that allows the
compressive strength to be calculated only if compatibility
conditions for the strains of the section and a constitutive model
for the material are assumed. The NTR-PB model, neglecting the
inelastic strains, needs an increase of compressive strength f NTR−PBM
to be postulated; the mechanical origins of such an increase would
remain unexplained.

6. Concluding remarks

The assessment of eccentrically loaded masonry structures,
such as arches and pillars, is usually performed assuming simpli-
fied homogenised constitutive models for masonry according to
the standard approach to r.c. elements. Since masonry is a hetero-
geneous material, the validity limits of such an approach need to
be carefully investigated.
In this paper a first approach to this problemhas been discussed

on the basis of a theoreticalmodel for periodic solid clay brickwork.
It is showed that, in the frame of the considered brick stacked
prisms/geometry, the local perturbations of the stress field, due
to free edge effects, seem to play a minor role on the brickwork
collapse, making the compressive strength to be related to the
mechanical properties of brickwork constituents and to the size
of bricks and mortar joints only. These outcomes are affected by
the basic assumption needed for Limit Analysis to be applied, such
as the perfect plastic compressive response of the materials, that
is somewhat questionable for quasi-brittle materials such as brick
and mortar. Nevertheless, such an approach provides a first deep
insight into the phenomena leading to the collapse of solid clay
brickwork and into the free edge effects.Whatever the objection in
principle, such an approach is substantiated by the experimental
data collected from a series of eccentric load tests on brickwork
prisms.
The experimental results provide information on the failure

mechanism and on the reliability of simplified homogenised
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Fig. 20. Limit domains of the NTR–models, experimental data and enlarged UIC [23] domain.
models for masonry. In spite of the data scattering, which is
typical of masonry structures, the NTR homogenised approaches
are showed to be a practical tool for the assessment of eccentrically
loaded brickwork.
Even though the theoretical approaches needs to be extended to

other brickwork bonds, taking into account also the vertical head
joints, and the experimental data base needs to be widened, it can
be argued that the strength increase related to load eccentricity,
that needs to be postulated in a NTR-PBmodel to fit the test results,
is not a physical phenomenon but an analytical outcome due to
excessively simplified approaches to eccentrically loaded sections.
Similar conclusions have been derived on solid clay brickwork [17,
18,22] and by Cavaleri et al. [19] on tuff stone brickwork. According
to this result, a conservative approach to the assessment of arch-
type structures, and any design code provision, should neither
consider a strength increase for eccentric loads nor should allow
any inelastic strain to be developed.
The extension of the present analysis to other brickwork

bonds, not considered by the present theoretical and experimental
work, is needed to estimate the influence of bricks and mortars
(geometrical and mechanical properties), of the bond pattern
and of the load eccentricity on the load carrying capacity of the
masonry prisms. These outcomes will be able to evaluate and
possibly confirm the reliability of the simplified homogenised
models to massive brickwork elements, such as the arch barrels
and piers of masonry bridges and thick arches and vaults.
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