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We develop an efficient and versatile numerical model for carrying out high-resolution simulations of
turbulent flows in natural meandering streams with arbitrarily complex bathymetry. The numerical
model solves the 3D, unsteady, incompressible Navier-Stokes and continuity equations in generalized
curvilinear coordinates. The method can handle the arbitrary geometrical complexity of natural streams
using the sharp-interface curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos
(2007) [1]. The governing equations are discretized with three-point, central, second-order accurate
finite-difference formulas and integrated in time using an efficient, second-order accurate fractional step
method. To enable efficient simulations on grids with tens of millions of grid nodes in long and shallow
domains typical of natural streams, the algebraic multigrid (AMG) method is used to solve the Poisson
equation for the pressure coupled with a matrix-free Krylov solver for the momentum equations.
Depending on the desired level of resolution and available computational resources, the numerical model
can either simulate, via direct numerical simulation (DNS), large-eddy simulation (LES), or unsteady
Reynolds-averaged Navier-Stokes (URANS) modeling. The potential of the model as a powerful tool for
simulating energetic coherent structures in turbulent flows in natural river reaches is demonstrated by
applying it to carry out LES and URANS in a 50-m long natural meandering stream at resolution
sufficiently fine to capture vortex shedding from centimeter-scale roughness elements on the bed. The
accuracy of the simulations is demonstrated by comparisons with experimental data and the relative

performance of the LES and URANS models is also discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural streams and rivers are characterized by arbitrary geo-
metrical complexity that spans a wide range of scales: from the
scale of a stream or river meander, to the scale of transverse bathy-
metric variabilities, down to the scale of boulders, small rocks, and
sand grains typically found in river beds. The presence of natural
and/or man-made structures, such as riffles and pools, tree trunks,
root wads, bridge foundations and stream restoration structures,
and dynamically evolving boundaries (water surface and erodible
bed) further add to the difficulty of the problem. These difficulties
are daunting and render attempts to simulate turbulence in natural
aquatic environments a rather challenging undertaking for even
the most advanced numerical methods available today. Modeling
difficulties are especially exacerbated when one is interested
in resolving directly, rather than modeling with statistical
approaches, the dynamics of energetic coherent vortical structures
that dominate flows in natural waterways. Coherent vortical
structures in such flows are induced by the aforementioned
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geometrical complexities and range from large-scale, slowly evolv-
ing eddies in regions of recirculation and flow stagnation to ener-
getic shear layers, tornado and whirlpool type vortices, horseshoe
vortices, and curvature-induced streamwise vortices. It has already
been shown [2,3] that slowly evolving, large-scale vortical struc-
tures can be the primary mechanism for producing turbulence in
flows past wall-mounted hydraulic structures. As such, being able
to accurately simulate unsteady coherent structures in natural
aquatic environments is a critical prerequisite not only for under-
standing scalar and particulate transport processes but also for
facilitating a number of important engineering objectives. Exam-
ples include, among others, improved design of bridge foundations
that are not susceptible to scour, stabilization of stream banks,
quantification of nutrient residence times to evaluate denitrifica-
tion potential, and the enhancement of aquatic habitat quality in
stream restoration projects.

Due to the enormous geometrical complexity of natural water-
ways and the wide variability of spatial and temporal scales of the
various coherent structures, accurate numerical simulations
require fine computational meshes, small time steps and numerical
algorithms that are versatile and efficient enough to handle all
underlying complexities. A related major numerical difficulty
stems from the fact that typical streams or rivers are very long,
wide and shallow giving rise to computational domains with large
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aspect ratios. Unsteady flow simulations on fine computational
grids in such large-aspect ratio domains can be plagued by numer-
ical stiffness greatly degrading the efficiency of iterative solvers
and rendering numerical simulations within reasonable computa-
tional times unlikely if not impossible even on powerful, massively
parallel computational platforms. In this paper we report progress
toward the development and demonstrate the potential and pre-
dictive capabilities of a numerical method that can tackle several
of these challenges.

Numerical simulation of turbulent flows in natural rivers and
streams has been the subject of intense research for well over 15
years. One of the first 3D models of flow in a natural reach was re-
ported by Sinha et al. [4] who employed a multi-block approach
with generalized curvilinear coordinates to simulate the flow in a
2.5 mile reach of the Columbia River downstream of the Wanapum
Dam. They carried out steady Reynolds-averaged simulation
(RANS) with the standard k-¢ model with wall-functions and re-
ported good agreement between the simulations and the results
of a laboratory-scale model study. Wilson et al. [5] also employed
RANS with the k-¢ model to simulate the flow through a pseudo-
natural meandering reach that was created in a laboratory environ-
ment and also reported good agreement between measured and
computed mean velocity fields. Rodriguez et al. [6] reported RANS
simulations of the flow in the 60-m reach of the Embarras River
using Flow-3D™ software with the k-¢ RNG model for turbulence
closure. The numerical model was able to capture the secondary
flow patterns developing in this highly sinuous reach. Lai et al.
[7] solved a laboratory scale meandering open channel flow using
the k-& model and obtained mean streamwise and transverse
velocities that agree well with the measured data. Zeng et al. [8]
solved the flowfield and the transport of sediment in a sharp open
channel bend using the Spalart-Allmaras model [9] and the SST
model [10] and compared the computed velocities and bed eleva-
tion with measurements.

Steady RANS models, such as those discussed above, are effi-
cient engineering simulation tools and have been shown to capture
with reasonable accuracy the mean flow characteristics in natural
rivers. However, such models are inherently incapable of resolving
the dynamics of large-scale coherent structures and their impact
on turbulence production and scalar and particulate transport. Un-
steady RANS (URANS) models, which solve the RANS equations in a
time accurate manner, can in principle capture large-scale, orga-
nized vortex shedding and such models have also been applied
to simulate turbulence in natural waterways. Ge and Sotiropoulos
[11], for instance, simulated the flow through a reach of the Chata-
chochee River near Cornelia, Georgia, with an embedded bridge
foundation using an overset grid approach with the standard k-¢
model in URANS mode. The model could capture large-scale vortex
shedding from the bridge piers and the simulated mean velocity
field was in good agreement with laboratory scale measurements
[12]. In spite of encouraging results, however, the model yielded
an essentially steady horseshoe vortex system in the vicinity of
the bridge foundation, which is in contrast with experimental
observations of Devenport and Simpson [2] and a direct conse-
quence of the inherent excessive diffusivity of URANS type models.

Large-eddy simulation (LES) models and hybrid URANS/LES
models can simulate the dynamics of coherent vortical structures
and have been applied extensively to a wide range of engineering
and hydraulic engineering flows. Hodges and Street [13] carried
out LES for turbulent open channel flow with presence of free
surface and Zedler and Street [14] carried out LES for flow over
periodic ripples to study flow dynamics of the sediment transport.
McCoy et al. [15] carried out LES for flow around multiple groynes
in a straight, rectangular open channel. They obtained good
agreement between computed and measured mean velocities
and velocity variances. Recently Stoesser et al. [16] carried out both

steady RANS simulation and LES to simulate turbulent flow in a
meandering open channel consisting of two 180° bends and com-
pared the computed mean velocity profile with laboratory mea-
surements. The computed results correctly reproduced the
presence of the secondary cells in the bend. Paik and Sotiropoulos
[3] and Paik et al. [17] have successfully applied Detached Eddy
Simulation (DES) [18], a hybrid URANS/LES model, to simulate
the rich dynamics of coherent vortical structures past abutment
and bridge-pier like structures mounted in straight rectangular
open channels and reported good agreement between the simula-
tions and experiments.

LES and hybrid URANS/LES models have been successful in
resolving dynamically rich coherent vortices in open channels with
complex hydraulic structures. However, such models typically re-
quire much finer computational grids than RANS and URANS models
and thus drastically increase the computational cost. It is presum-
ably due to this limitation that most previous attempts to simulate
open channel flows with coherent-structure resolving turbulence
models have been restricted to channels of simple topography or fo-
cused on the flow in the immediate vicinity of the in-stream struc-
tures. To the best of our knowledge, coherent-structure resolving
simulations of flows in geometries exhibiting the complexities that
characterize natural waterways, as discussed in the beginning of this
section, have yet to be reported in the literature.

In this paper we report the development of a novel computa-
tional model that can carry out high-resolution simulations in open
channel with arbitrarily complex bathymetry and multiple embed-
ded in-stream structures. To tackle problems associated with the
inherent geometric complexity of the problem, we extend the curvi-
linear immersed boundary (CURVIB) method [1] to carry out effi-
cient URANS and LES simulations in meandering open channels.
The efficiency of the original fractional-step solver [1] is improved
by over one order of magnitude to enable practical simulations in
large-aspect ratio computational domains discretized with fine
computational grids. This is accomplished by employing the alge-
braic multigrid (AMG) method as a preconditioner for Krylov sub-
space method to solve the Poisson equation for the pressure field.
Wall models are also incorporated into the method to facilitate both
LES and URANS simulations in the context of the CURVIB method.
The new method is validated by applying to simulate model flows
in relatively simple geometries. The potential of the method as a
powerful hydraulic engineering simulation tool is demonstrated
by applying it to carry out both URANS and LES for turbulent flow
in the natural-like meandering stream that is currently installed in
the St. Anthony falls Laboratory Outdoor StreamLab (OSL). The
stream bathymetry exhibits many of the complexities characteriz-
ing natural waterways and provides an excellent test-bed for dem-
onstrating the capabilities of the model. It is important to emphasize
that free-surface and streambed erosion effects are not considered
in this work. We focus exclusively on flows over arbitrarily complex
albeit rigid bed at relatively low Froude numbers for which the rigid
lid assumption can be invoked to simulate the free-surface.

The paper is organized as follows. First we present the governing
equations for the resolved flow and turbulence closure models. Sub-
sequently we describe the numerical method we employ to solve
these equations. This is followed by presentation of the results of
validation studies and the application of the model to the OSL
stream. Finally, we summarize our findings and discuss future work.

2. Governing equations and boundary conditions

2.1. Resolved flow equations

The equations governing the instantaneous, resolved flowfield
for three-dimensional, incompressible, turbulent flow are the time
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(Reynolds) or spatially-averaged (for URANS and LES, respectively)
continuity and Navier-Stokes equations. In the curvilinear
immersed boundary (CURVIB) method of Ge and Sotiropoulos [1]
employed in this work, the governing equations are first written
in Cartesian coordinates {x;} and then transformed fully (both the
velocity vector and spatial coordinates are expressed in curvilinear
coordinates) in non-orthogonal, generalized, curvilinear coordi-
nates {¢&;}. The transformed equations read in compact tensor nota-
tion (repeated indices imply summation) as follows (i,j = 1,2,3):

ou; _
o¢

10U, &( o 10 < gk 8u1> 10 (8p) 107
T =2 - Uu) +— aievel Bmiver-va bl - b
] ot J( o5 UM pag \F T ee) “pag\ ) pag
(2)

where | is the Jacobian of the geometric transformation given by
J=10(&1,&2,E3)/0(X1,X2,X3)|, & = 0E;/0x, are the transformation

J 0, (1)

metrics, u; is the ith Cartesian velocity component, U; = (g“in/]) U

is the contravariant volume flux, gi = c“{q“;‘ are the components of
the contravariant metric tensor, p is the pressure, p is the density, u
is the dynamic viscosity, and t;; is the sub-grid stress tensor for LES
models or the Reynolds stress tensor for RANS models.

2.2. Turbulence models

We employ both LES and URANS turbulence models in this
work implemented in the context of the CURVIB method so that
they can be applied to arbitrarily complex geometric configuration.
The governing equations for these models are described in this sec-
tion and the implementation of those models in the context of the
CURVIB method will be discussed in detail in Section 4.

2.2.1. LES model

The filtered Navier-Stokes equations (Egs. (1) and (2)) are ob-
tained by decomposing the velocity into resolved and unresolved
components and integrating the Navier-Stokes equations over
the spatial filter [19]. As a result, sub-grid stress terms appear in
the momentum equations (Eq. (2)), which are modeled using the
Smagorinsky sub-grid scale (SGS) model [20]

1 _
Tij = 3 Thkdj = —2/[4;Si, 3)
where the overbar denotes the grid filtering operation, and Sj is the
filtered strain-rate tensor. The eddy viscosity is given by

u, = CsA%|S), 4)

where C; is the Smagorinsky constant, A is the filter size, and
S| = 1/25;S;. The box filter [19] is employed in the present model,

which is given as follows:
A=]" (5)

In the above equation J~! represents the cell volume, and the filter
size is taken as the cubic root of the cell volume.

We employ the dynamic Smagorinsky model [21] as a sub-grid
model in which the model constant Cs evolves in spaces and time
as function of the flow. The optimal value of C; is selected to min-
imize the mean square error between the resolved stress at the
grid filter and the test filter [21] as follows:

_ LMy

* T (MuMu)’ ®

where
Ly = 0 ~ W, ()
My = 24°5,(S| — 24%S;S). (8)

In the above equations, 4 is the size of the test filter which is twice
larger than the grid filter for uniform grids and the hat denotes the
test filtering, which in three-dimensions involves the 27 grid nodes
surrounding a given grid node. () means averaging in the homoge-
neous directions. The homogeneous direction implies the direction
where the periodic boundary condition is employed. For problems
with no homogeneous direction present (fully three-dimensional
cases) this averaging can be replaced by local averaging around a
grid node.

It was pointed out in [22] that Eq. (6) is not invariant with re-
spect to a rotation of the frame of the reference in generalized cur-
vilinear coordinates. To remedy this, the following invariant
formulation [22] is employed in this work:

<LiIMimGlm>
Cy = i im2im/_ 9
* <MkpquGPq> ®

where G, is the covariant metric tensor.

In the present numerical implementation of the above SGS
model, the Smagorinsky constant and the eddy viscosity are com-
puted at the center of the cell using Egs. (9) and (4), respectively, at
the beginning of each time step. Subsequently the eddy viscosity is
interpolated from the cell center to the cell face and it is used to
calculate the SGS terms in Eq. (3).

2.2.2. URANS models

In URANS models the t;; tensor in Eq. (2) is the Reynolds stress
tensor, which is modeled using the Boussinesq hypothesis as
follows:

-~ 2
Ty = —2H4,Si + 5 pkdy, (10)

where SNU is the Reynolds averaged strain-rate tensor, 4, is the eddy
viscosity, k is the turbulence kinetic energy, and d; is the unit
tensor. To close the URANS equations, we employ both the k-w
model [23] and the SST model [10].

The governing equations for the k- model [23] are formulated
in generalized curvilinear coordinates as follows:

1o(pk) 0 iy S 1
ot g PR =Ty ge m pFpke
d gk 8k>
9 )& X 1
*ag;-((“*”‘f)] 2.’ (11
10p0) | 0 oy PO GO 1
J R T S I R L
O (s 800
e (wronf 52). (12)
e = pl/o, (13)

where the closure coefficients are given as o =5/9, f=3/40, p*=
9/100, ¢ =1/2, and ¢* = 1/2.

The governing equations for the SST model [10] in generalized
curvilinear coordinates read as follows:

alpk)

1 0 1
7ot Tag!

~ 1

0 gk ok
toE ((uwkut)Ta—ék), (14)
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Hy

where S = 1/25;S; is the invariant measure of the strain rate and P
is a limited production term given by the following equation:

P = min (ut % (6xj + OX,-)’]Oﬂ pkw). (17)
F; and F, are blending functions defined by
4
F; = tanh{ { min|max :/E 750;),u ,4'06“)25 : (18)
pod’ pd*w )’ CDy,d
2
F, = tanh | |max 2\@ 7502),u (19)
prod’ pd*wm
with
B 1 0k 0w | 10

CDyy = max(Zpawz6 (ij a—xj, 10 ) (20)

and d is the distance to the nearest wall.

The closure coefficients of the SST model are obtained by blend-
ing those of the k-« model, denoted as ¢, and the standard k-€
model, denoted as ¢,, via therelation ¢ = ¢1F; + ¢2(1 — F;). The coef-
ficients are given by a; =0.31, *=9/100, o; =5/9, p1 = 3/40, 041 =
0.85, 01 = 0.5, oy = 0.44, f, = 0.0828, 04 = 1, 02 = 0.856.

Third-order WENO [24] and second-order central differencing
schemes are used for the spatial discretization of advection and
diffusion terms in k and @ equations, respectively, and the second-
order backward differencing scheme is used for the time integration.
The k and w equations of k- and SST models are solved at every
time step after the velocity fields are obtained by the subsequently
described fractional step method. The values of eddy viscosity are
calculated at the center of the cell using Eq. (16), and they are inter-
polated to the face of the cell. The fully implicit Jacobian-free New-
ton’s method is employed for solving Egs. (11) and (12) or Egs. (14)
and (15) in order to enhance numerical stability. This implicit meth-
od alleviates the numerical instability caused by the presence of stiff
source terms in the k and w equations. The fully implicit Jacobian-
free Newton’s method is also used for solving the momentum equa-
tions and will be described in Section 3.2.

2.3. Boundary conditions near solid walls

In high Reynolds number flow simulations, applying the no-slip
boundary condition at the wall is often impractical as it results in
excessively fine meshes and long computational times. To address
this difficulty in this work we employ the wall model proposed in
[25,26]. The model solves the boundary layer equation in the fol-
lowing form:

lg ( + )% 71@_'_%4_(8“’”5)
p ol T pOs Ot os '

(21)

where | and s indicate the directions normal and tangential to the
wall, respectively. By neglecting the right hand side of the Eq.
(21), one obtains the equilibrium stress balance model [26]

10 OUs;
Sa(wrm %) —o (22)

The eddy viscosity is given by the mixing length model with the
near-wall damping as

f, = pKl" (1 — e /192, (23)

where " = pu.l/u and u, is the wall shear velocity. Eq. (22) is inte-
grated from the wall to the second off-wall node to obtain the
tangential velocity at the first off-wall node. The implementation
of this model in the context of the CURVIB method is discussed in
Section 4.1.

3. Numerical integration of the Navier-Stokes equations
3.1. The fractional step method

To solve the resolved flow equations, Eqgs. (1) and (2), we em-
ploy the implicit fractional step method proposed by Ge and Sotir-
opoulos [1]. During the first step, the momentum equations (Eq.
(2)) are discretized in a fully implicit manner using second-order
backward differencing in time:

130" —4U" +U"!

] oA = RHS(U",u), (24)

where n denotes the time level and RHS is the right hand side of Eq.
(2). Both advection and diffusion terms in the right hand side of Eq.
(24) are discretized using, three-point central, second-order accu-
rate finite-differencing.

The intermediate velocity field U* obtained by solving Eq. (24) is
not divergence-free and needs to be corrected to satisfy the conti-
nuity equation. This is accomplished by formulating and solving
the following Poisson equation for the pressure increment (or pres-

sure correction) ¢ = p™! — p™:

2 (Ld o (de)) _ 30U
Tog <p]6c“;<1>>2At o (25)

Following the solution of the above equation (see below), the pres-
sure and contravariant volume fluxes are obtained as follows:

pl=p"+¢, (26)

et e 2At18 0 (&¢
Uit =Ui -5 p]8§j<]>' (27)

The above fractional step algorithm is implemented discretely
in a hybrid staggered/non-staggered grid, which was originally
proposed by Gilmanov and Sotiropoulos [27] for Cartesian grids
and subsequently extended to curvilinear coordinates by Ge and
Sotiropoulos [1]. The formulation is such that it satisfies the dis-
crete divergence of the velocity field to machine zero in general-
ized curvilinear grids. For details the reader is referred to Ge and
Sotiropoulos [1].

3.2. Solution of the discrete momentum equation

The discretized momentum equation given by Eq. (24) is a non-
linear ordinary differential equation for U* that can be written as
follows:

F(U) =0, (28)

where F is a general functional involving both the time derivative
and the right hand side of Eq. (24) and the superscript * from
Eq. (24) is omitted for brevity. To linearize the functional F(U)
we expand it in a Taylor series about U=U* (where U* is the
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approximation to the final solution U* during the k iteration).
Neglecting the higher-order terms yields the Newton’s method

A(UNsU* = —F(U"), (29)
Uk+1 — Uk +5Uk, (30)

where A is the Jacobian matrix of F given by A(U¥) = F(U¥). During
each iteration k (denoted as outer iteration) the now linear system
given by Eq. (29) is solved by using the GMRES method [28]. The
procedure that solves the linear system is called the inner iteration.
When the GMRES method is used as a linear solver for the inner
iteration, the Jacobian matrix does not need to be stored since it
only requires matrix-vector products which can be approximated
by a simple finite difference method, as follows:

_FU+ex) - FU)
€

Ax , (31
where € is a small scalar perturbation. The method shown in [29] is
employed to compute €. Since Jacobian-free methods do not require
assembling and storing the Jacobian matrix, it is appropriate for
problems with large number of unknowns. At each time step, outer
and inner iterations are repeated until the residuals satisfy the fol-
lowing convergence criterion:

)1, = [JAUF)SU* + F(UN) [, < 1 IFUY) |l (32)

where 7, € (0,1) is a forcing term that controls the convergence of
the solution. Instead of using a constant value of the forcing term,
we employed the techniques proposed in [30] for computing #, at
each iteration, which significantly improves the convergence of
the iterative scheme.

It is important to emphasize, however, that the above Newton'’s
method converges only when the initial guess is sufficiently close
to the exact solution. To make Newton’s method globally conver-
gent, one often needs a globalization method that brings the initial
iterate into the radius of convergence of Newton’s method [31].
The line search method [32] is employed in this work for the glob-
alization of the Newton-Krylov method.

The GMRES method used in this study does not employ a pre-
conditioner. We found that the solution of the momentum equa-
tion by using the Jacobian-free method without a preconditioner
usually converges faster than the method with a preconditioner
because the computational cost for forming the preconditioner at
all inner iterations is significant.

The procedure described above solves the momentum equation
in a fully implicit manner which greatly improves the stability of
the numerical scheme and removes the CFL (Courant-Friedrichs-
Lewy) time step restriction. It is important to point out that for
LES the size of the time step is usually restricted by the smallest
of the time-scale of the smallest resolvable eddies on a given grid
and the viscous (diffusive) time scale but not by the CFL condition.
Therefore, implicit treatment of the viscous terms along with expli-
cit treatment of the convective terms is typically adequate for sta-
ble and efficient LES. In this study, however, we choose a fully
implicit formulation to enhance the generality of the method and
in particular its applicability to fine-mesh URANS simulations for
which the CFL condition could be quite restrictive.

3.3. Algebraic multigrid (AMG) method for the Poisson equation

As already discussed in Section 1, a major challenge for carrying
out reach-scale, high-resolution simulations of turbulence in natu-
ral waterways stems from the large aspect-ratio of the resulting
computational domains due to the large disparity in flow depth
the streamwise and lateral dimensions of the reach. Large domain
and grid cell aspect-ratios induce numerical stiffness and could
dramatically deteriorate the convergence rate of powerful iterative

algorithms such as the previously described GMRES method [28].
This is an especially critical issue for the solution of the Poisson
equation that needs to be satisfied to machine zero during every
time step in order to satisfy the incompressibility condition for
the velocity field. To improve the convergence of the Poisson equa-
tion in large aspect-ratio grids and domains, we employ the alge-
braic multigrid (AMG) as the preconditioner for the GMRES
method [28]. The multigrid (MG) method has been one of the most
successful methods for accelerating the convergence of elliptic
equation solvers, and particularly geometric multigrid (GMG)
methods have been popular for the simulation of incompressible
flows with structured grids [1,33]. In the GMG, the convergence
is accelerated by correcting the solution of the fine grid by solving
an error residual equation on the coarser grid. Often more than two
grid levels are employed, and the coarse grid usually is twice as
coarse as the grid spacing of the next finer level grid. More details
about the implementation of GMG can be found in [34]. The draw-
back of the GMG is that the convergence rate degenerates as the
grid becomes more stretched and cell aspect ratio increases. The
method with semi-coarsening has shown promise in simulations
involving stretched, large aspect-ratio grids [35,36,1] but conver-
gence could still be sluggish in generalized curvilinear grids and
large aspect-ratio domains. In fact our initial attempts to employ
GMG in this work were not successful as we found that the compu-
tational resources required to converge the Poisson equation were
so large that high-resolution simulations of turbulence in real-life
streams were impractical.

The AMG does not utilize the geometric information to build
coarse grids, instead the adjacency graph of the matrix to be in-
verted is used. For example, we say that the point i strongly de-
pends on j and vice versa if [37]

—a; > ocnli#a,x(—a,-k), (33)

where g;; is the component of a matrix at the ith row and the jth col-
umn and « € (0,1) is a strength threshold. The above criterion was
employed in the Ruge-Stiiben coarsening algorithm [37] for build-
ing the coarse grid matrix. Details can be found in [37,38]. The
underlying idea behind using the threshold « in Eq. (33) is very sim-
ilar to that of the semi-coarsening method of the GMG, which gen-
erates coarse grids by neglecting the geometrically stretched
directions, but is more general since it is not dependent on the geo-
metric shape of the grid. For this reason, the AMG is more appropri-
ate method for solving problems with complicated geometry and is
employed in this work. In the present solver we implement AMG by
employing the BoomerAMG package [38] with the parallel modified
independent set (PMIS) coarsening scheme [39].

To demonstrate the drastic efficiency improvements that can be
obtained with AMG, we employ the fractional step method
described above to simulate impulsively started laminar flow
through a very long square duct whose cross-section is intention-
ally discretized with highly stretched and distorted grids as shown
in Fig. 1. This unusual grid structure is employed in order to set up
a challenging numerical experiment combining a large-aspect ratio
domain (streamwise length to width ratio equal to 10®) with highly
stretched and skewed grids.

The length of the computational domain in the x-, y- and
z-directions is 1, 1 and 1000, respectively, and the number of grid
points in each direction is 65. The flow is directed along the posi-
tive z-direction. While uniform grid spacing with a size of
Az =15.625 is used in the z-direction, non-uniform, stretched grid
is employed in x- and y-directions. The maximum and minimum
grid spacing in x- and y-directions is 0.0761 and 0.001, respec-
tively. The maximum Az/Ax ratio and the ratio of the maximum
Ax to the minimum Ax are given by max(Az/Ax)= 15625 and
max(Ax)/min(Ax) = 76.1.
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(c) Cross sectional view at z=1000.

Fig. 1. Grid used for testing the efficiency of the AMG solver.

The Reynolds number based on the width of the duct and the

mean velocity is 100 and the Poisson equation is solved with four
different algorithms: AMG; GMG with 3-level semi-coarsening;
GMG with 6-level semi-coarsening; and no multigrid. Four proces-
sors are used for the computation. The convergence history is
shown in Fig. 2. It is evident that the no-multigrid option fails to
converge while the GMG algorithm does improve the convergence
rate somewhat especially when the number of grid coarsening lev-
els is increased. Even for the 6-level GMG algorithm, however, the
Poisson equation does not reach machine zero. Only with AMG the
iterative algorithm converges monotonically to machine zero in
just a fraction of a second of computational time. These results
clearly show that large aspect ratios, grid stretching in multiple
directions, and grid non-orthogonality cannot be easily treated
by the standard semi-coarsening method of the GMG and establish
the superior efficiency of the AMG over the GMG. The efficiency
gains documented in Fig. 2 become even more significant in the
context of applying AMG to solve the Poisson equation in a LES
when several thousands of time steps need to be realized compu-
tationally to obtain statistically converged flowfields.

4. The CURVIB method for simulating turbulence in open
channel flows

The CURVIB method [1] was originally proposed for cardiovas-
cular flow applications in which a moving immersed boundary,
e.g. a mechanical heart valve, is embedded in a background domain
that can be efficiently discretized with a boundary-fitted curvilin-
ear mesh (e.g. a curved blood vessel). Rather than using a boundary
conforming mesh to describe the immersed moving boundary, the
CURVIB methods treat the boundary as a sharp interface and
boundary conditions are re-constructed at curvilinear grid nodes
in the immediate vicinity of the boundary using interpolation
along the local normal to the boundary direction [1,27]. So far
the method has been applied to carry out direct numerical simula-
tions of cardiovascular flows involving fluid structure interaction
[40] and swimming of fish and planktonic organisms [41,42]. The
CURVIB framework, however, is ideally suited for simulating flows
in natural meandering streams with arbitrarily complex bed topog-
raphy and in-stream structures. A schematic illustrating the appli-
cation of the CURVIB method for a meandering stream is shown in
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Fig. 2. Convergence of the Poisson equation.

Fig. 3. The immersed boundaries (bathymetry and in-stream struc-
tures) are discretized with a triangulated surface mesh and embed-
ded in a curvilinear domain that follows the meandering outline of
the stream but has a regular (prismatic) cross-section that contains
fully the actual stream everywhere. In this section we describe the
details of the method by emphasizing the new algorithmic devel-
opments implemented in this work to extend it to turbulent flow
simulations.

The standard CURVIB method [1] employs wall normal interpo-
lation for calculating the velocity components at near-wall grid
nodes - referred to as immersed boundary (IB) grid nodes - under
the hybrid staggered/non-staggered grid layout proposed by Gil-
manov and Sotiropoulos [27]. Fig. 4 illustrates the wall normal
interpolation for a velocity component or a turbulence quantity.
At a given node (B in Fig. 4) immediately adjacent to the immersed
boundary, a straight line is drawn normal to the nearest wall (A in
Fig. 4) until it intersects with the grid line (or plane in 3D) which
connects two (three in 3D) neighboring internal nodes. The point

i

Fig. 3. Schematic description of applying the CURVIB method for the natural
stream.

Cin Fig. 4 is called the interception point. The values of flow vari-
ables at the point C are obtained by linear interpolation from com-
puted values at internal grid nodes « and p. Gilmanov and
Sotiropoulos [27] used the above approach to compute the velocity
at the IB nodes in a manner such that the no-slip boundary condi-
tion is exactly satisfied at the wall. They used linear and quadratic
interpolation which for turbulent flows would work well only if the
grid spacing in the vicinity of the immersed boundary is suffi-
ciently fine to resolve the laminar sublayer region and directly im-
pose the no-slip condition on the solid immersed boundary. When
the mesh is not sufficiently fine (as is often the case for high Rey-
nolds number turbulent flows), however, the wall model described
in Section 2.3 is used to reconstruct the boundary conditions. In
what follows we describe the implementation of boundary condi-
tions in the CURVIB method for both velocity components and tur-
bulence quantities.

4.1. Velocity boundary conditions

As discussed above, the no-slip boundary condition is employed
when the near wall grid spacing is fine enough to resolve the vis-
cous sublayer. Assuming the velocity component at the solid wall
(point A) is uf, which is zero when the wall is not moving, and
its distribution along the points A, B and C is linear, the Cartesian
velocity components at the IB node is given as follows:

- (2-’2) (uf — )+, 34
where i=1, 2, and 3, and AB and AC denote the distance between
the points A and B and the points A and C, respectively.

When the near wall grid spacing is not fine enough to resolve
the viscous sublayer, the velocity boundary condition is obtained
by the wall modeling approach. Integration of Eq. (22) from the
surface of the wall at [=0 to the second off-wall node at [ =6 (C
in Fig. 4) yields the following nonlinear equation:

O B 1
T

HH
o2 = Ty, (36)

us(0)), (35)

where &, is the distance from the wall to the node C and 7,, is the
wall shear stress component in the tangential direction to the wall.

Fig. 4. Schematic description of the wall normal interpolation at the IB node (circles
filled with red color: IB nodes, circles without fill: internal nodes, square filled with
blue color: interception node, triangles: cell faces where the volume flux is stored).
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The tangential direction s is determined from the velocity vec-
tor at the second off-wall node. The unit vector tangential to the
wall is given by

llic — (uflj> l,'
= )]

where n; is the unit vector normal to the wall. The tangential veloc-
ity component at the wall is given by

Si = , 37)

us(0) = uf's;, (38)

which is zero when the wall is stationary.

Eq. (35) is solved iteratively for u, using Newton’s method. Usu-
ally 4 or 5 iterations are sufficient to get the converged solution.
Once u, is computed, the tangential velocity component at the first
off wall node (B in Fig. 4) is obtained by

fgb ulm dl

fgc ulut dl

where J, is the distance from the wall to the node B. The normal
velocity component at the IB nodes is obtained by the wall normal
linear interpolation method. The above procedure is employed both
for RANS and LES models. Although in this work the wall modeling
method will be applied to solve problems involving only stationary
immersed bodies, it is designed to be readily applicable to flow
problems involving moving immersed bodies such as those encoun-
tered in fluid-structure interaction problems.

Us(0p) = (us(d¢) — us(0)) + ug(0), (39)

4.2. k and w boundary conditions

The low Reynolds number wall boundary conditions for k and w
are [43]

k=0, (40)

6
0= (1)

where d is the wall distance at the first off-wall grid which is AB in
Fig. 4. The above boundary conditions are adopted when the first off
wall grid point is located inside the viscous sublayer. To impose the
boundary condition given by Eq. (40) at the wall (A in Fig. 4), the lin-
ear interpolation along the line normal to the wall is employed.
Assuming k =0 at the node A one obtains the value of k at the IB
node (B in Fig. 4)

K= (AB> KE. (42)
AC

The high Reynolds number wall boundary conditions for k
and w are [43]

ke (43)
VB
U
- (44)

where k = 0.4 is the von Karman constant and u, is the wall shear
velocity calculated by solving Egs. (35) and (36). The above bound-
ary conditions are adopted when the first off wall grid point is lo-
cated inside the logarithmic layer. The boundary conditions given
by Eqgs. (41)-(44) are directly imposed at the IB node after wall
shear velocity has been obtain from the previously described itera-
tive procedure for obtaining the velocity boundary conditions.

, Immersed ‘
A

: volume flux

|

A;: face area

Fig. 5. Schematic description of the flux correction at the IB nodes.

4.3. Correction of velocity boundary conditions for global mass
conservation

The previously described reconstruction techniques are used to
specify velocity boundary conditions for the intermediate velocity
field U* in order to solve the momentum equation (Eq. (2)). The so
resulting velocity field U* does not satisfy the integral global mass
conservation condition since this condition is not imposed either in
the reconstruction of boundary conditions or in the solution of the
momentum equation. As such, the pressure Poisson equation in Eq.
(25) is ill posed, the so-called compatibility condition for Poisson
equations is violated, and any attempt to solve it numerically will
not converge. To remedy this situation, we propose a correction of
the velocity boundary conditions at the IB nodes based on an area
weighted volume flux approach. Fig. 5 illustrates in a schematic
how this correction is implemented. The light gray areas denote
the IB nodes, and the arrows denote the contravariant volume flux
adjacent to both an IB node and a fluid node. To satisfy the global
mass conservation the sum of all volume fluxes over a closed sur-
face that surrounds a solid boundary, as shown in Fig. 5, must be
zero. To satisfy this condition, the sum of the volume fluxes
weighted by the ratio of the local face area (blue? areas in Fig. 5)
to the total area is subtracted from the individual volume fluxes.
Mathematically, this correction is formulated as follows:

T ) ZkUZ
U, =U; —A,(ZI(AI{ , (45)

where i denotes the cell face whose volume flux is being corrected,
A; is the area of the cell face adjacent to an IB node and a fluid node
(blue areas in Fig. 5), U is the contravariant volume flux before cor-
rection, the index k spans all cell faces (all blue areas in Fig. 5) adja-
cent to both an IB node and a fluid node, and U" is the corrected
boundary flux used to calculate the right hand side of Eq. (25).

5. Results and discussion

In this section, we present results aimed at: (1) validating the
numerical method; and (2) demonstrating its ability to carry out
reach-scale, coherent-structure resolving simulations in water-
ways of arbitrarily complex bathymetry. To demonstrate the accu-
racy of the various facets of the method we first present
simulations for three model problems solved using DNS, RANS,
and LES, respectively. Subsequently we carry out URANS and LES
for flow in a natural stream, compare the results with measure-
ments and discuss the relative performance of the various models.

2 For interpretation of color in Figs. 3-16, the reader is referred to the web version
of this article.
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Fig. 6. Computed flow statistics for channel flow at Re; = 180. The solid line and the symbol denote the present computation and the computation by Moser et al. [44],

respectively.

5.1. DNS of fully developed turbulent flow in a channel

DNS of turbulent flow in a plane channel presents an excellent
case for testing the spatial and temporal resolution of the method
in a simple computational domain that can be handled in a
straightforward manner using a body-fitted Cartesian grid.

DNS was carried out for turbulent channel flow at Re; = 180.
Re; =u:h/v is Reynolds number based on the mean wall shear
velocity and the channel half height (h), and v is the viscosity.
The size of the computational domain non-dimensionalized by
the channel half height is 6.4, 3.2, and 2 in streamwise (z), span-
wise (x), and vertical (y) directions, respectively, and a grid with

193 x 129 x 161 is used to discretize the computational domain
along these directions. The grid spacing in the spanwise and
streamwise directions are 4.5 and 6 wall units, respectively. The
minimum and maximum grid spacing in the vertical direction is
0.8 and 4.3 wall units, respectively. Periodic boundary conditions
are employed in the streamwise and spanwise directions and the
flow is driven by the constant pressure gradient imposed in the
streamwise direction. The time step non-dimensionalized by the
mean wall shear velocity and the viscosity is At" = uAt/v =
0.07, which corresponds to the CFL number of 0.1. A parabolic
streamwise velocity profile with superimposed random fluctua-
tions is prescribed as the initial condition. The simulation was first

doi:10.1016/j.advwatres.2010.09.018
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(a) 201x201 grid (every four grid lines are
shown).
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the immersed boundary).

Fig. 7. Grids for the turbulent pipe flow computation.

run until the total kinetic energy of the computational domain
reached steady-state. Following this, the simulation was continued
and the solution was averaged for t =20, which corresponds to
about 48 flow through times. The computed mean flow and turbu-
lence statistics are compared with those of the spectral DNS by
Moser et al. [44] (Fig. 6). Even though the accuracy of the spatial
discretization method of the present model is second-order, the
agreement between the results of our computation and the spec-
trally accurate results of Moser et al. [44] is excellent.

5.2. RANS simulation of fully developed turbulent pipe flow

We simulate fully developed turbulent flow in a straight circu-
lar pipe using RANS models for turbulence closure. The objective of
this test case is to demonstrate the accuracy of the boundary con-
dition reconstruction approach in the CURVIB method described in
Section 4. For that, we carry out simulations using both a curvilin-
ear, near-wall resolving, boundary-fitted grid and the CURVIB ap-
proach with a wall model to apply boundary conditions on the
pipe wall and compare the results of the two simulations. For both
simulations, we employ the SST RANS model. The Reynolds num-
ber of the flow based on the bulk velocity and the diameter of
the pipe is Re = 4 x 10%. The Navier-Stokes and turbulence closure
equations are solved in a time accurate manner until the solution
becomes steady state with periodic boundary condition specified
in the streamwise direction.

The wall resolving RANS computation is carried out using the
boundary-fitted, curvilinear grid shown in Fig. 7a to discretize
the pipe cross-section. 201 x 201 grid points are employed and
the near-wall grid spacing is about 1 wall unit. The no-slip bound-
ary condition for the velocity and the low Reynolds number bound-
ary conditions for k and  are prescribed at the wall of the pipe.

The second simulation is carried out by immersing the wall of
the pipe, discretized with a triangular mesh, in a uniform Cartesian
grid with 71 x 71 grid points as shown in Fig. 7b. The pipe is
treated as an immersed boundary and boundary conditions are
specified using CURVIB method. The near-wall grid spacing for this
case is about 40 wall units and is much coarser than the wall-
resolving case. Therefore, velocity and turbulence quantities
boundary conditions are reconstructed using the wall model
described in Section 4.1.

In both simulations, four grid points are used in the streamwise
direction and a constant streamwise pressure gradient is specified.

The computed non-dimensional streamwise mean velocity pro-
files for the two cases are shown in Fig. 8a and b and compared
with the experimental results [45]. In the figure, r* implies the dis-
tance from the wall in wall units and W* is the mean streamwise
velocity normalized by the mean shear velocity. For both cases
excellent agreement is observed between calculations and mea-
surements. As one would expect, the wall-resolving simulation
captures the logarithmic, buffer and laminar sublayer regions of
the velocity profile while the CURVIB wall-model simulation can
only capture the outer part of the logarithmic region. The agree-
ment between the computation and measurements is very good
and demonstrates the correct implementation of the CURVIB
wall-model in RANS mode.

5.3. LES and URANS of turbulent flow in a natural stream

To demonstrate the ability of the method to carry out high res-
olution simulations of flow in a natural stream with arbitrarily
complex bathymetry, we apply it to carry out LES and URANS
simulations of turbulent flow in the meandering stream currently
installed in the St. Anthony Falls Laboratory Outdoor StreamLab
(OSL), University of Minnesota, Minneapolis, MN, USA. This
research facility (Fig. 9) is a 40-m by 20-m basin which has been
configured into a sand-bed meandering stream channel that was
approximately 50-m long, 2-m wide, and 0.1-m deep at base flow.
Native riparian seedings were planted along the streambank
during the first year of operation (2008) along with biodegradable
coconut-fiber bank stabilization matting. By 2009, the vegetation
had established stable root systems that, along with the remains
of the initial coconut fiber matting, stabilized the bank position.
The floodplain was seeded with a mixture of native prairie grass
seed. Entrance conditions for the OSL allow accurate control and
measurement of water and sediment discharge rates, and the facil-
ity is outfitted with a sedimentation basin at its downstream end
where sediment is collected and stockpiled for recirculation. Sim-
ulations and measurements reported herein were performed for
a flow rate of 4.45 x 1072 m>[s, which yields Reynolds and Froude
numbers, based on average values of depth (0.1 m), velocity
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Fig. 8. Comparison of the non-dimensional mean streamwise velocity (solid line: computation, symbol: Laufer [45]).

Fig. 9. Outdoor StreamLab.

(0.23 m/s) and viscosity of the water (10~® m?/s), approximately
equal to 2.3 x 10% and 0.23, respectively.

Three-dimensional mean velocity and turbulence statistics
measurements in the OSL were obtained using acoustic Doppler
Velocimetry (ADV; Nortek Vectrino and Sontek MicroADV) at
50 Hz for 5 min at each location. The ADV probes were mounted
to a channel-spanning portable traverse enabling lateral and verti-
cal positioning. At each cross-section, the position of this traverse
was recorded using a total station (Sokkia X30RK), enabling regis-
tration of each sampling location within a common coordinate
system. ADV measurements were obtained at 12 channel cross-
sections located throughout the length of the stream: one directly
upstream of the first riffle section, one across the midpoint of each
riffle section, eight evenly spaced throughout the middle meander
bend, and one spanning the apex of the downstream meander
bend. At each cross section, vertical profiles were sampled every
0.25-m laterally at 0.05-m vertical spacing between sampling
positions.

Bed and water surface topography in the OSL were collected on
a 1-cm horizontal grid at sub-millimeter vertical accuracy using
instruments mounted to a separate channel-spanning portable car-
riage, the position of which was registered using the total station. A
laser distance sensor (Keyence LK-G series) was used for collecting
subaerial bank topography, while a pulser and ultrasonic submer-
sible transducer system (JSR Ultrasonics) documented subaqueous

Elevation[m]
239.15
239.12
239.10
239.07

| 239.04

239.01

Fig. 10. The immersed body and the boundary of the background mesh for the OSL
(the solid lines denote the boundary of the background mesh). The circles denote
ADV measurement locations.
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Fig. 11. The immersed body showing the bed roughness.
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Fig. 12. Comparison of the mean streamwise velocity (the first row), the mean transverse velocity (the second row), and the turbulence kinetic energy (the third row) with
the measurement (black solid line: LES, red dashed line: k-, blue dash dotted line: SST, symbol: measurement).

topography. Mean water surface elevation measurements were
sampled at 50 Hz over a centimeter-scale spaced grid using an
ultrasonic distance sensor (Massa).

The high-resolution scanned bathymetry of the OSL is shown in
Fig. 10. The flow direction is from the right to the left and key fea-
tures of the stream bathymetry include the two riffle zones, which
occupy the straight parts between successive curved sections, and
one pool zone in between. The measured bathymetry in one of the
riffles is shown in Fig. 11 to illustrate the level of resolution of the
various bed features. It is evident from this figure that the mea-
surements resolve individual, centimeter-scale roughness ele-
ments on the bed. The measured bathymetry is discretized with
an unstructured triangular mesh and embedded in an approximate
meandering channel of rectangular cross-section as required by
the CURVIB method. The outline of the background curvilinear do-
main is marked with the two black lines in Fig. 10.

The free surface is treated as a sloping rigid lid on which slip
boundary conditions are imposed. This assumption is justified by
the relatively low Froude number of the experimental flow. The
shape of the free-surface boundary is prescribed from measure-
ments of the mean water surface elevation.

The background curvilinear mesh discretizing the approximate
meandering channel consists of 67 million grid nodes, with
3650 x 301 x 61 nodes in the streamwise, lateral, and vertical
directions, respectively. The grid spacing in the three directions
is about 10 mm, 9 mm and 1 mm or approximately 100, 90 and
10 wall units in streamwise, transverse and vertical directions,
respectively. The same grid is employed both for LES and URANS
simulations. The wall modeling is used to compute the velocity
boundary conditions at the IB nodes since the present simulation
does not resolve the viscous sublayer. It is important to emphasize
that the present wall model does not incorporate any roughness ef-
fects. This is because in the present geometry roughness elements
are almost exclusively found in the two riffles where the computa-
tional grid we employ is sufficiently fine to directly resolve most of
the key geometric features of the bed. As such, we treat the com-
plex bed bathymetry as smooth wall and the presence of roughness
is incorporated by resolving directly flow structures around indi-
vidual, small scale obstacles, e.g. small rocks, on the stream bed.

For the LES at the inlet of the flow domain we feed instanta-
neous velocity fields obtained from a separate LES of fully devel-
oped flow in a straight open channel with the same cross-section
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(a) At the freesurface

(b) Near the bed

Fig. 13. Instantaneous velocity magnitude computed by the LES model (flow
direction: from the right to the left).

as that of the inlet OSL cross-section at the same Reynolds number.
For the URANS simulations, which are carried out using both the
k- and SST models, we prescribed a plug flow mean velocity
profile corresponding to the measured flow rate. For all simula-
tions, the time step is chosen as 0.001 s which is equivalent to
the CFL number of 0.5. The simulations were performed on a Linux
cluster composed of 512 AMD Opteron 2.53 GHz processors and
160 processors were used for the simulations. The LES and RANS
simulations were first run until the total kinetic energy in the
computational domain reached steady-state and subsequently
the flowfields were averaged for approximately t=40s and 5s,
respectively. The wall-clock time for the LES of t =40 s (or 40,000
time steps) was about 10 days.

Fig. 10 shows few selected locations within the pool region
where measured velocity and TKE profiles are compared with the
computed results in Fig. 12. All models capture the mean stream-
wise (Fig. 12a-e) and transverse (Fig. 12f-j) velocity profiles with
reasonable accuracy. This level of agreement is overall consistent
with the reasonable agreement between the mean velocity
contours at the water surface predicted by all three models in
the region between the two riffles as shown in Fig. 14. The counter-
clockwise secondary flow (the positive transverse velocity is
toward the outer bank) is observed both in the computed and mea-
sured transverse velocity profiles suggesting that all three models
capture correctly the magnitude of the secondary motion at least in

(a) LES model

(b) SST model

(¢) k-w model

Fig. 14. Computed mean velocity magnitude at the free surface.

the region where measurements were carried out. The agreement
between the computed and measured TKE profiles (Fig. 12k-o) is
not as good as that for the mean velocities but the LES and UR-
ANS-SST results are in better overall agreement with the measure-
ments than the k-w model, which over-predicts significantly the
TKE magnitude near the bed.

Overall the agreement between the LES and URANS-SST com-
puted results with the measurements is reasonable. This finding
is especially encouraging when one takes into account the inherent
uncertainties in carrying out measurements in a field scale stream
like the OSL and the fact that all simulations were carried out with-
out any calibration against the measured data.
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(¢) k-w model

Fig. 15. Computed turbulence kinetic energy at the free surface.

Snapshots of the calculated instantaneous flow fields at the free
surface and near the bed in the riffle region obtained by the LES are
shown in Fig. 13. It is evident from the figure that the LES resolves
very complex flow features at the free-surface that are the result of
the complex and highly heterogeneous bed bathymetry in the riffle
region, including intense shear layers and regions of recirculation.
The snapshot of the flow at the plane near the bed clearly demon-
strates the ability of the method to simulate flow patterns around
discrete roughness elements, such as high velocity streaks and vor-
tex shedding around small-scale bed roughness.

Contours of mean velocity magnitude at the water surface com-
puted by the LES and URANS models are shown in Fig. 14. The
velocity magnitudes in the riffle zones predicted by the LES and

(a) LES model

(c) k-w model

Fig. 16. Computed 2D streamlines of the mean flow at cross-sections near the bend
(looking downstream).

the SST models are very similar to each other, while the k-« model
predicts overall higher velocity magnitudes. Some important dif-
ferences among the three models are also observed in the pool re-
gion between the two riffles. The LES predicts the existence of a
thin shear layer emanating from the inner bank and ultimately dif-
fusing along the outer bank just upstream of the second riffle. This
shear layer is presumably formed due to the sudden expansion of
the cross-sectional area between the riffle and pool regions and
the strong curvature of the bend. This feature of the flow is not cap-
tured by either URANS model.
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The turbulence kinetic energy (TKE) contours at the surface
computed by the LES and the two URANS models are shown in
Fig. 15. The LES and the SST models yield qualitatively similar re-
sults and overall similar levels of TKE. A strikingly different predic-
tion is obtained, however, by the k-« model with the overall TKE
levels in the two riffle regions being nearly one order of magnitude
higher than those obtained by the LES and the SST model. Consid-
ering that the maximum measured TKE in the riffle zones was in
the range of 0.01-0.02 m?/s?, the k-w model significantly over-
predicts the magnitude of the turbulence kinetic energy while
the values predicted by the LES and the SST model are qualitatively
correct. Durbin [46] pointed out that two equation models predict
an anomalously large growth of TKE in stagnation point flow. Since
the spatial resolution of the present simulations in the riffle zones
is high enough to resolve discrete roughness elements, there are
many stagnation regions in the flow (e.g. around each roughness
element) where the non-physical TKE is produced. Since the SST
model employs a limiter for the production term (Eq. (17)), its pre-
dictions do not suffer from this anomaly.

Fig. 16 shows the computed mean flow streamlines at selected
2D cross-sections near the bend. The LES result clearly shows the
formation of the counter-clockwise secondary cells along the thal-
weg of the channel bed. The streamlines of the RANS models also
show the secondary cells but they do not clearly show the exis-
tence of the helical motion.

6. Conclusions

A versatile numerical model for carrying out coherent-structure
resolving simulations (URANS or LES) of turbulent flows in real-life
natural streams has been developed and validated. A major feature
of the model is that it employs a sharp-interface immersed bound-
ary modeling framework, the CURVIB method developed in our
group, and can thus handle the arbitrarily complex bathymetry
of natural streams resulting from roughness elements and/or
embedded natural and man-made structures. Wall modeling was
incorporated in the context of the CURVIB method to enable LES
and URANS simulations on grids that are not sufficiently fine to re-
solve the laminar sublayer. An important feature of the method is
its computational efficiency, which made high-resolution 3D un-
steady simulations in long and shallow open channels discretized
with stretched, high-aspect-ratio meshes feasible. The efficiency
of the method is derived from the fractional step approach em-
ployed to solve the incompressible Navier-Stokes equations in
conjunction with the algebraic multigrid strategy implemented
to accelerate the convergence of the Poisson equation for the
pressure.

High resolution measurements of the SAFL OSL streambed were
collected and used to construct a computational grid that resolves
centimeter-scale roughness elements on the bed. No attempt was
made to calibrate the numerical model for roughness since the
simulations were able to resolve directly vortex shedding from
individual small-scale roughness elements in the two riffle zones.
Even though both URANS and LES yielded overall similar results
for the mean velocity field some important discrepancies were ob-
served in the predicted TKE fields. Namely, the k- model yielded
TKE levels at the water surface in the riffle zones nearly one order
of magnitude higher than those measured and calculated with LES
and the SST model. This striking finding is attributed to the inher-
ent limitation of two-equation, isotropic eddy-viscosity models in
flows with regions of flow stagnation - the so-called stagnation
point anomaly. The SST model does not suffer from this anomaly
since it incorporates a limiter in the TKE production term. In the
pool region in between the two riffles the LES and URANS models
yielded overall similar results but the LES did predict the existence

of a sharp shear layer emanating from the inner bend and spread-
ing toward the outer bend, which was not evident in the two UR-
ANS predictions. Comparisons with mean velocity and turbulence
statistics measurements obtained in the pool region showed that
all three models yielded similar results for the mean velocity pro-
files but the k-« model over-predicted the TKE near the bed. Over-
all, however, and given the uncertainties involved in obtaining
measurements in a field-scale facility such as the OSL and the fact
that no calibration of any of the three turbulence models was at-
tempted the computed results were in reasonable agreement with
the measurements.

Further algorithmic advances of the present model are currently
under way. We have recently extended the numerical model to
incorporate sediment transport modeling capabilities to enable fu-
ture geomorphodynamics simulations (see [47]). Finally, we have
also developed a coupled, nonlinear modeling framework using a
two-phase flow, level-set approach for simulating water surface
deformation. This new algorithm, which will be reported in a fu-
ture communication, will enable us to eliminate the rigid-lid sim-
plification incorporated in the present model and also do away
with the need for prescribing the shape of the air-water interface
from experimental data.

The numerical method we have developed herein is a powerful
tool both for obtaining fundamental insights into the structure of
turbulence in natural waterways and for improving the designs
of hydraulic structures, such as bridge foundations and stream-res-
toration structures. In our future work we will carry out simula-
tions for different flow conditions and for various embedded in
stream structures to further validate the numerical model using
measurements to be collected in the OSL. We will also analyze
the LES flowfields to understand a number of complex phenomena
in natural waterways, such as, among others, the dynamics of
large-scale coherent vortices, the complex, multi-cellular structure
of secondary motion in meander bends, and the effects of rough-
ness transition regions such as those observed at pool-riffle
interfaces.
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