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We develop a coupled hydro-morphodynamic numerical model for carrying out
large-eddy simulation of stratified, turbulent flow over a mobile sand bed. The method
is based on the curvilinear immersed boundary approach of Khosronejad et al. (Adv.
Water Resour., vol. 34, 2011, pp. 829–843). We apply this method to simulate sand
wave initiation, growth and evolution in a mobile bed laboratory open channel, which
was studied experimentally by Venditti & Church (J. Geophys. Res., vol. 110, 2005,
F01009). We show that all the major characteristics of the computed sand waves,
from the early cross-hatch and chevron patterns to fully grown three-dimensional
bedforms, are in good agreement with the experimental data both qualitatively
and quantitatively. Our simulations capture the measured temporal evolution of
sand wave amplitude, wavelength and celerity with good accuracy and also yield
three-dimensional topologies that are strikingly similar to what was observed in the
laboratory. We show that near-bed sweeps are responsible for initiating the instability
of the initially flat sand bed. Stratification effects, which arise due to increased
concentration of suspended sediment in the flow, also become important at later stages
of the bed evolution and need to be taken into account for accurate simulations. As
bedforms grow in amplitude and wavelength, they give rise to energetic coherent
structures in the form of horseshoe vortices, which transport low-momentum near-bed
fluid and suspended sediment away from the bed, giving rise to characteristic ‘boil’
events at the water surface. Flow separation off the bedform crestlines is shown
to trap sediment in the lee side of the crestlines, which, coupled with sediment
erosion from the accelerating flow over the stoss side, provides the mechanism for
continuous bedform migration and crestline rearrangement. The statistical and spectral
properties of the computed sand waves are calculated and shown to be similar to
what has been observed in nature and previous numerical simulations. Furthermore,
and in agreement with recent experimental findings (Singh et al., Water Resour. Res.,
vol. 46, 2010, pp. 1–10), the spectra of the resolved velocity fluctuations above the
bed exhibit a distinct spectral gap whose width increases with distance from the bed.
The spectral gap delineates the spectrum of turbulence from the low-frequency range
associated with very slowly evolving, albeit energetic, coherent structures induced by
the migrating sand waves. Overall the numerical simulations reproduce the laboratory
observations with good accuracy and elucidate the physical phenomena governing the
interaction between the turbulent flow and the developing mobile bed.
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1. Introduction
In fluvial and coastal environments, sediment transport processes induced by

energetic coherent structures in a turbulent boundary layer developing over a
mobile sediment bed result in the formation of different types of sand waves or
bedforms, which can grow and migrate. Such bed features, which also occur in
aeolian sediment transport by the atmospheric boundary layer (Nishimori & Ouchi
1993), are dynamically rich and topologically complex and occur across a wide
range of scales and flow regimes. Depending on their size, sand waves can be
classified into three broad categories: (i) large-scale dunes and bars with amplitudes
∆ ∼ O(1 m) and wavelength λ ∼ O(10 m); (ii) intermediate-scale bedforms with
∆ ∼ O(0.1 m) and λ ∼ O(1 m); and (iii) small-scale ripples with ∆ ∼ O(0.01 m)
and λ∼O(0.1 m). This classification is based on the analysis of bedforms observed
in various environments, including: small-scale experimental flumes (e.g. Seminara,
Colombini & Parker 1996; Hansen et al. 2001; Venditti & Bauer 2005; Venditti
& Church 2005; Venditti, Church & Bennett 2005a,b, 2006; Raudkivi 2007; Chou
& Fringer 2010; Dreano et al. 2010; Escauriaza & Sotiropoulos 2011a); mid-size
streams (e.g. Lacy et al. 2007; Kang et al. 2011; Palmsten et al. 2011); and large
rivers in nature (e.g. van Rijn 1993; Venditti & Bauer 2005; Nittrouer, Allison &
Campanella 2008; Nittrouer, Mohrig & Allison 2011). The study of sand wave
dynamics in fluvial environments has been the subject of intense research over many
decades (Kennedy 1969; Fredsoe 1974; Jain & Kennedy 1974). Studies have sought
to understand the fundamental mechanisms that lead to the initiation of sand wave
formation (Besio, Blondeaux & Vittori 2006) and to elucidate the profound impact
that migrating bedforms have on the turbulent flow and sediment transport processes
that create them. The latter become especially apparent during flooding events, during
which bedform migration provides the primary mechanism for transporting large
amounts of sediment through riverine systems (Blondeaux 2001), impacting both
the morphology and ecology of waterways (MacVicar, Parrott & Roy 2006). The
continuous migration of bedforms gives rise to a turbulent open channel flow over a
bed with dynamically evolving roughness. The evolving shape of the sediment–water
interface gives rise to low-frequency, albeit very energetic, coherent structures (van
Rijn 1993; Hansen et al. 2001; Venditti & Church 2005; Dreano et al. 2010), and
leaves a distinct and persistent signature in the flow velocity spectra in the form of a
spectral gap that delineates the spectrum of turbulence from that of slowly evolving
energy-containing eddies associated with bedform migration (Singh, Porté-Agel &
Foufoula-Georgiou 2010). In spite of significant recent progress, however, many of
the complex flow, sediment transport and bed morphodynamic phenomena associated
with the initiation, growth and migration of bedforms remain poorly understood. This
paper seeks to advance fundamental understanding of these phenomena by reporting
and analysing the results of a high-fidelity coupled hydro-morphodynamic large-eddy
simulation (LES) of turbulent open channel flow over a mobile sand bed.

Because of the complexity of the problem, most of what we know today about
the coupled interaction of a turbulent flow with a mobile bed has been derived
from laboratory experiments and field studies (e.g. Raudkivi 1966; Allen 1968, 1971;
Hino 1968; van Rijn 1984, 1993; Gyr & Schmid 1989; Khelifa & Ouellet 2000;
Venditti & Bennett 2000; Hansen et al. 2001; Venditti & Church 2005; Venditti
et al. 2005a, 2006; Raudkivi 2007; Mazumder et al. 2009; Dreano et al. 2010;
Sarkar & Dey 2010). Theoretical approaches, relying on linear stability theory, have
also contributed important insights into the mechanisms that destabilize an initially
flat mobile bed and give rise to sand waves. Such linear models incorporate a
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number of simplifying assumptions, which render their results applicable only to
microscale sand waves with amplitudes smaller than 1.0 cm. For instance, in their
pioneering stability theory-based models, Kennedy (1969), Hayashi (1970) and Jain
& Kennedy (1974) assumed quasi-steady potential flow to simulate the bed evolution
mechanism of microscale sand ripples. Others, including Fredsoe (1974), Richards
(1980), Coleman & Fenton (2000), Colombini (2004), Coleman et al. (2006) and
Colombini & Stocchino (2012), have also used a similar modelling framework to
analyse microscale ripples. The assumptions inherent in linear stability models are
valid only during the initial stages of sand wave formation during which the amplitude
of sand waves is very small and rolling of sediment particles within the bedload layer
is the major mechanism for transporting sediment and destabilizing the initially flat
bed. This initial period, however, is very brief compared to the time scale of a typical
bedform life cycle. Once the initiated sand waves grow sufficiently in wavelength
and amplitude, increased shear stress due to flow acceleration over crestlines along
the stoss side coupled with flow separation off the lee side of crestlines provide the
primary mechanisms for continuous particle entrainment and deposition, leading to
the evolution of the geometry of sand waves. Naturally, as soon as this state emerges,
the validity of linear models breaks down (Chou & Fringer 2010). Based on the
simulation results we will report in this work, and also in experimental and analytical
findings (see e.g. Venditti & Church 2005; Andreotti et al. 2011; Niemann, Fredsøe
& Jacobsen 2011; Charru, Andreotti & Claudin 2013; de Moraes Franklin 2013), the
initial stage occurs during the first few minutes of the process, while the sand wave
life cycle, depending on the availability of bed material, flow condition and waterway
condition, can last up to hours and even days.

With increasing computing power and advances in computational fluid dynamics
(CFD) algorithms, it has now become possible to computationally investigate turbulent
flows over sand waves. Existing computational models can be broadly classified into
two groups: (i) decoupled models that simulate the turbulent flow over synthetic
stationary sand waves; and (ii) coupled, hydro-morphodynamic models that can
simulate the co-evolution of turbulence, sediment transport and bedform growth
and migration in open channels. Decoupled models, which employ direct numerical
simulation (DNS), LES, or Reynolds-averaged Navier–Stokes (RANS) models, have
been extensively applied to investigate the dynamics of turbulent flow over stationary
sand wave geometries (Blondeaux & Vittori 1991; Angelis, Lombardi & Banerjee
1997; Henn & Sykes 1999; Scandura, Vittori & Blondeaux 2000; Zedler & Street
2001, 2006; Chang & Scotti 2003, 2004; Barr et al. 2004; Best 2005; Yue, Lin &
Patel 2005; Zou, Liu & Lu 2006). Recently, Chau & Bhaganagar (2012) carried out
a DNS to simulate the turbulent flow over mobile microscale sand waves that were
randomly generated, whereas Nabi et al. (2012) carried out LES of turbulent flow
over frozen two-dimensional (2D) and three-dimensional (3D) dunes (see also Giri &
Shimizu 2006, 2007). In the most recent of such studies, Omidyeganeh & Piomelli
(2013a,b) also performed a LES to investigate the formation and downstream transport
of vortical structures over a series of frozen 3D dunes at laboratory scale. Although
simulations of turbulent flow over stationary bedforms have yielded significant insights
into the dynamics of coherent structures that emerge as the turbulent flow interacts
with the complex bed shape, such studies are inherently incapable of simulating
phenomena associated with the coupled interactions between the emerging, growing
and migrating sand waves and the turbulent flow.

There are several numerical investigations attempting to simulate sand wave
evolution using RANS models (e.g. Roulund et al. 2005; Tjerry & Fredsøe 2005;
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Niemann et al. 2011). However, to our knowledge, only two studies have employed
LES to undertake a fully coupled numerical simulation of the underlying hydro-
morphodynamic processes that give rise to sand waves. Chou & Fringer (2010)
employed an arbitrary Lagrangian–Eulerian (ALE) scheme to simulate small-scale
ripples (O(6 2 cm)) arising in an open channel as a result of the action of a turbulent
oscillatory flow induced by waves. They carried out LES, solving the spatially
filtered Boussinesq equations to account for local stratification effects that arise in the
sediment–water mixture. Their model incorporated both suspended sediment transport,
with a pick-up function at the sediment–water interface for sediment entrainment,
as well as transport in the bedload layer, by solving a mass-balance equation to
simulate the instantaneous bed elevation field. Chou & Fringer (2010) demonstrated
good agreement between the computed and measured sand wave characteristics
and elucidated the impact of the migrating sand waves on the near-bed coherent
structures in the turbulent boundary layer. They also showed that taking into account
density stratification effects is a critical prerequisite for bedforms to emerge in their
simulations. They argued that this is because neglecting stratification yields spuriously
high levels of near-bed turbulence, which effectively acts to destroy the bedload layer
within which ripples will first originate. In another study, Escauriaza & Sotiropoulos
(2011a) also employed the ALE technique to simulate the initial stages of microscale
sand wave (O(6 1 cm)) dynamics inside the scour hole that grows around a cylinder
mounted on a mobile sand bed. They used detached eddy simulation (DES), a hybrid
RANS–LES method, to resolve the dynamics of the turbulent horseshoe vortex at the
junction of the cylinder with the bed, which initiates sediment transport for this case
under clear-water conditions. Their model included only bedload sediment transport by
solving the Exner equation coupled with the flow to simulate the evolution of the bed
and naturally could not account for stratification effects. Escauriaza & Sotiropoulos
(2011b), however, proposed and employed in their model a new transport equation
for calculating the distribution of the instantaneous velocity field of computational
sediment particles within the bedload layer derived from Lagrangian considerations
and incorporating most of the relevant forces imparted on the sediment grains by
the fluctuating turbulent flow in the vicinity of the bed. They showed that in their
simulation small-scale ripples appear spontaneously at approximately the same time
as observed in laboratory experiments (Dargahi 1990), grow and merge to form larger
slowly travelling sand waves that migrate continuously with speeds also similar to the
experimental observations (Dargahi 1989, 1990). Escauriaza & Sotiropoulos (2011a)
analysed the statistical properties of the calculated sand waves and showed that they
exhibit all the features of sand waves occurring in nature, including, among other
things, the f−1 rate of decay in the spectra of bed elevation fluctuations. A limitation
of the studies of both Chou & Fringer (2010) and Escauriaza & Sotiropoulos (2011a)
is that they employ the ALE formulation, which requires that the grid conforms to
the boundary shape at all times. This requirement restricts the application of such
methods to simulations of small-amplitude bedforms for which the mesh deformation
remains small at all times.

In a very recent work, Kidanemariam & Uhlmann (2014) carried out DNS of flow
over a thick bed of mobile spherically shaped particles, resolving particle–particle
and particle–flow interactions, and were able to simulate realistic small-scale sand
waves (amplitudes of O(∼ 2 mm)) from first principles. This approach, however, is
computationally very costly (Kidanemariam & Uhlmann 2014) and not feasible for
simulating high-Reynolds-number flows and long-term evolution of large-amplitude
bedforms.
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In this paper, we report a new numerical method, which is able to carry out LES
of bed morphodynamics in turbulent open channel flows and to simulate bedforms of
arbitrarily large amplitude. We subsequently demonstrate that this method can yield
results that are quantitatively and qualitatively similar to experimental observations,
and we provide insights into the physics of bed evolution and associated impact on
the turbulent flow that drives sand wave formation that go considerably beyond what
can be documented experimentally.

We develop a fully coupled hydro-morphodynamic formulation, which is based
on the curvilinear immersed boundary (CURVIB) framework of Khosronejad et al.
(2011), Khosronejad, Kang & Sotiropoulos (2012) and Khosronejad et al. (2013),
and is able to carry out LES of stratified turbulent flows in arbitrarily complex
domains under live-bed sediment transport conditions incorporating both suspended
load and bedload sediment transport processes. The dynamically evolving geometry
of the sediment–water interface is simulated by solving the non-equilibrium sediment
mass-balance equation (Khosronejad et al. 2011) coupled with the near-bed velocity
fluctuations resolved by the LES. The hydrodynamic module of the proposed method
has undergone extensive validation by applying it to carry out LES of turbulent
flow through a rigid-bed natural meandering stream (Kang et al. 2011; Kang &
Sotiropoulos 2011, 2012). The coupled hydro-morphodynamic model has been
validated under clear-water sediment transport conditions by carrying out LES of
turbulent flow through a mobile bed straight laboratory flume with various in-stream
rock structures (Khosronejad et al. 2013). In this work, we apply our computational
model to carry out LES of turbulent flow and sand wave dynamics in a straight
laboratory flume with a mobile sand bed, which was studied experimentally by
Venditti & Church (2005) and Venditti et al. (2005b). The specific test case is selected
because it presents one of the most well-documented experiments of sand wave
dynamics under the action of a turbulent open channel flow, including quantitative
experimental measurements that allow for the comprehensive characterization of
the spatio-temporal characteristics of the sand waves during various stages of their
evolution. Namely, the experiments of Venditti and co-workers have documented and
quantified the very early stages of sand wave formation, their subsequent growth
and organization to form 2D ripples, and their transition into a 3D state, which is
accompanied by the emergence of sand waves of complex, multi-connected topology.
We carry out simulations on four successively finer grids, with total grid nodes
ranging from 22 to 80 million, and show that our numerical simulations resolve most
features of the experiments both qualitatively and quantitatively. We further analyse
the simulated flow fields in tandem with the evolving sand waves to elucidate the
complex physics of the problem, and gain new physical insights into the mechanisms
that govern the coupled interaction of the turbulent flow with the initiating and
subsequently migrating sand waves.

This paper is organized as follows. First, we introduce briefly the hydrodynamic
and morphodynamic models, followed by the description of the coupling approach
that we employ. Subsequently, we present the hydrodynamic and morphological results
of the simulated sand waves and compare them with the laboratory experiments of
Venditti & Church (2005) and Venditti et al. (2005b). Then we analyse the calculated
instantaneous and time-averaged flow fields and discuss the physics of the flow as it
emerges from our simulations. Next, we report a statistical analysis of flow and bed
fluctuations and link our findings with the dynamics of the resolved sand waves and
flow structures. Finally, we summarize the main contribution and conclusions from this
work and discuss areas for future research.
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FIGURE 1. (Colour online) Schematic of the proposed CURVIB approach. The channel
side walls and mobile bed are discretized with an unstructured triangular mesh and treated
as a sharp-interface immersed body embedded in the background domain discretized with
a structured curvilinear mesh. For the simulations reported in this paper, the background
grid is non-uniform and Cartesian, but the ability of the method to handle curvilinear
domains facilitates the simulation of bedforms in meandering channels. The nodes of the
structured curvilinear mesh located in the sediment layer and side walls are blanked out
of the simulation.

2. The coupled hydro-morphodynamic model
2.1. The hydrodynamic model

We consider incompressible stratified turbulent flow of dilute water–sediment mixture,
which is governed by the spatially filtered (for LES) continuity and Navier–Stokes
equations with the Boussinesq assumption to account for density variations due to the
suspended sediment concentration in the water column. In the CURVIB method that
we employ herein (see figure 1), the governing equations are first written in Cartesian
coordinates {xi} and then transformed fully (both the velocity vector and spatial
coordinates are expressed in curvilinear coordinates) in non-orthogonal generalized
curvilinear coordinates {ξ i} (Ge & Sotiropoulos 2007). The transformed equations
read in compact tensor notation (repeated indices imply summation) as follows
(i, j, k, l= 1, 2, 3):

J
∂Uj

∂ξ j
= 0, (2.1)
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, (2.2)

where J = |∂(ξ 1, ξ 2, ξ 3)/∂(x1, x2, x3)| is the Jacobian of the geometric transformation,
x3 is the vertical coordinate, ξ i

l = ∂ξ i/∂xl are the transformation metrics, ui is the
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ith Cartesian velocity component, Ui = (ξ i
m/J)um is the contravariant volume flux,

Gjk = ξ j
l ξ

k
l are the components of the contravariant metric tensor, p is the pressure,

µ is the dynamic viscosity, τij is the subgrid stress tensor for the LES model, ρo is
the background density (the density of water in our case), ρ is the density of the
sediment–water mixture, g is the gravitational acceleration and δ is the Kronecker
delta. The density of the sediment–water mixture ρ is modelled as

ρ = ρo(1−ψ)+ ρsψ, (2.3)

where ψ is the volume fraction of suspended sediment concentration and ρs is the
density of sediment particles. The volume fraction of suspended sediment ψ is
calculated by solving an advection–diffusion equation for the suspended sediment,
which is described in the subsequent section. The sediment particles in suspension are
assumed to have negligible effect on the momentum of fluid flow, which is a common
assumption in the Eulerian framework of simulating flow and low-concentration
sediment particles (see Wu, Rodi & Wenka 2000; Chang & Scotti 2004; Zedler &
Street 2006; Chou & Fringer 2010). However, the impact of the stratification and
bulk of suspended sediment material on the resolved flow field is taken into account
with the Boussinesq term in the momentum equation (the last term on the right-hand
side of (2.2)). The subgrid-scale (SGS) stresses are modelled using the dynamic
Smagorinsky model (Smagorinsky 1963; Germano et al. 1991),

τij − 1
3τkkδij =−2µtSij, (2.4)

µt =Cs∆
2|S|, (2.5)

where the overbar denotes the grid filtering operation, Sij is the filtered strain-rate
tensor, µt is the eddy viscosity, Cs is the Smagorinsky constant, ∆ is the filter size

and |S| =
√

2Sij Sij. The box filter (Sagaut 1988) is employed in the present model,
which is given as follows:

∆= J−1/3. (2.6)

In the above equation, J−1 represents the cell volume, and the filter size is taken
as the cubic root of the cell volume. We employ the dynamic Smagorinsky model
(Smagorinsky 1963) as a subgrid model in which the model constant Cs evolves in
time and space as a function of the flow field. The optimal value of Cs is selected to
minimize the mean square error between the resolved stress at the grid filter and the
test filter as follows (Germano et al. 1991):

Cs = 〈LijMij〉
〈MklMkl〉 , (2.7)

where

Lij = ûi uj − ûi ûj, (2.8)

Mij = 2∆2Ŝij|S| − 2∆̂2Sij|Ŝ|. (2.9)

In the above equations, ∆̂ is the size of the test filter, which is twice as large
as the grid filter for uniform grids, and the ̂ denotes the test filtering, which in
three dimensions involves the 27 grid nodes surrounding a given grid node. Here,
〈 〉 indicates averaging in the homogeneous directions implying the direction where
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the periodic boundary condition is employed. For problems with no homogeneous
direction present (fully 3D cases), this averaging can be replaced by local averaging
around a grid node. In the present numerical implementation of the above SGS
model, the Smagorinsky constant and the eddy viscosity are computed at the centre
of the cell using (2.7) and (2.5), respectively, at the beginning of each time step.
Subsequently, the eddy viscosity is interpolated from the cell centre to the cell face
and it is used to calculate the SGS terms in (2.4) (for more details see Kang &
Sotiropoulos 2011).

In accordance with the CURVIB formulation (Kang et al. 2011; Khosronejad et al.
2011), we employ wall functions to reconstruct boundary conditions for the resolved
velocity components at grid nodes located near rigid walls and the mobile sediment–
water interface as follows:

u
u∗
=
y+ y+ 6 y+o ,

1
κ

ln(Ey+) y+ > y+o ,
(2.10)

where u is the velocity magnitude at the nearest node to the wall boundary (located
at distance y from the wall), y+ (= yu∗/ν) is the non-dimensional distance from the
wall in wall units, u∗ is the shear velocity, κ is the von Kármán constant, y+o = 11.53
and E is the roughness parameter, which is related to the roughness Reynolds number
k+s = u∗ks/ν as (Khosronejad et al. 2011)

E= exp[κ(B−1B)], (2.11)

where ks is the effective roughness height of the wall boundary and B = 5.2. Here,
1B is a function that depends on the bed roughness and is formulated in terms of
the roughness Reynolds number as follows (Khosronejad et al. 2011):

1B=


0 k+s < 2.25,[

B− 8.5+ 1
κ

ln(k+s )
]

sin[0.4258(ln k+s − 0.811)] 2.25< k+s < 90,

B− 8.5+ 1
κ

ln(k+s ) k+s > 90.

(2.12)

For hydraulically smooth wall boundaries, k+s is less than 2.25, and based on (2.12)
the roughness function 1B is zero. For a stationary flat bed covered with sand material
with median grain size d50, ks is assumed to be equal to d50 (Wu et al. 2000). In
practice, however, for mobile beds, somewhat higher values are adopted (Wu et al.
2000). In the present simulations, we employ a value of ks= 3d50 for the mobile beds
and treat the stationary rock structures and side walls as hydraulically smooth surfaces.

The details of the numerical method for solving numerically the hydrodynamic
governing equations have already been documented extensively elsewhere (Ge &
Sotiropoulos 2007; Borazjani, Ge & Sotiropoulos 2008; Kang et al. 2011; Kang &
Sotiropoulos 2011) and only a brief summary of the key elements of the method will
be given here.

The governing equations are discretized in space on a hybrid staggered/non-
staggered grid arrangement using second-order accurate central differencing for the
convective terms along with second-order accurate, three-point central differencing for
the divergence, pressure gradient and viscous-like terms (Gilmanov & Sotiropoulos
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2005; Ge & Sotiropoulos 2007). The time derivatives are discretized using second-
order backward differencing (Kang et al. 2011).

The discrete equations are integrated in time using an efficient second-order accurate
fractional step methodology coupled with a Jacobian-free Newton–Krylov solver for
the momentum equations and a GMRES solver enhanced with multi-grid method as
preconditioner for the Poisson equation. For additional details, the reader is referred
to Ge & Sotiropoulos (2007), Borazjani et al. (2008), Kang et al. (2011) and Kang
& Sotiropoulos (2011).

Geometrically complex computational domains are handled using the sharp-interface
CURVIB method (Ge & Sotiropoulos 2007). For the present case, the computational
domain is a straight open channel that outlines the actual channel under consideration
and is sufficiently deep to contain the entire sediment–water interface at all times. The
computational domain is discretized with a boundary-fitted Cartesian (or curvilinear
for curved channels) mesh, while the sediment–water interface and channel side
walls are discretized with an unstructured grid, which is immersed in the background
domain and treated as sharp interfaces in accordance with the CURVIB formulation.
The governing equations are solved at the background grid nodes in the fluid phase
(fluid nodes) with boundary conditions specified at fluid nodes in the immediate
vicinity of the sediment–water interfaces (denoted as immersed boundary (IB)
nodes). All nodes inside the sediment layer are blanked out from the computations.
Boundary conditions for the velocity components, turbulence quantities and sediment
concentration are reconstructed at all IB nodes using the wall functions presented
above implemented in a manner consistent with the CURVIB method (Kang et al.
2011; Khosronejad et al. 2011).

A critical issue for the successful application of the CURVIB method to problems
with moving IBs is the efficient classification of the background grid nodes into fluid,
IB and external nodes whenever the shape and/or location of the IB are modified as
the evolving sand waves migrate. Herein we employ the efficient ray-tracing algorithm
developed by Borazjani et al. (2008) to re-classify the grid nodes every time the bed
shape and location are updated.

The flow solver is also fully parallelized using the message passing interface (MPI)
communication standard to run on parallel high-performance clusters.

2.2. Suspended sediment transport equation

For dilute sediment–water mixture (the volumetric sediment concentration does not
exceed O(0.01)), the suspended sediment is modelled as an active scalar whose
transport is governed by the following advection–diffusion equation (e.g. Wu et al.
2000; Zedler & Street 2001, 2006; Chou & Fringer 2008, 2010; Kraft, Wang &
Oberlack 2011):

1
J
∂(ρψ)

∂t
+ ∂

∂ξ j
(ρψ(Uj −W jδi3))= ∂

∂ξ j

(
(µ+ σ ∗µt)

Gjk

J
∂ψ

∂ξ k

)
, (2.13)

where W j= (ξ j
3/J)ws is the contravariant volume flux of suspended sediment, σ ∗ is the

Schmidt number (= 0.75) (Khosronejad 2006; Khosronejad, Salehi & Rennie 2008)
and ws is the settling velocity of non-spherical sediment particles, which is computed
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by van Rijn’s formula (van Rijn 1993):

ws =



(ρs − ρo)gd50

18µ
1< d50 < 100 µm,

10ν
d50

〈(
1+

0.01
(ρs

ρo
− 1
)

gd3
50

ν2

)1/2

− 1

〉
100< d50 < 1000 µm,

1.1
〈(

ρs

ρo
− 1
)

gd50

〉1/2

d50 > 1000 µm,

(2.14)

where d50 is the median sediment particle size and ν is the kinematic viscosity of
water.

At the mobile sediment–water interface, we employ the approach proposed by
Chou & Fringer (2008) to specify boundary conditions for ψ using van Rijn’s
pick-up function (van Rijn 1993). At rigid walls and the outlet of the flow domain,
we employ a Newman zero-gradient boundary condition, while for the free surface
boundary we assume no-mass flux condition as follows (van Rijn 1993):

wsψ + (µ+ σ ∗µt)
∂ψ

∂x3
= 0. (2.15)

Third-order weighted essentially non-oscillatory (WENO) (Jiang & Shu 1996) and
second-order central differencing schemes are employed for the spatial discretization
of advection and diffusion terms in the sediment concentration transport equation
(2.13), respectively. Additionally, the second-order backward differencing scheme is
used for the time integration. The sediment concentration equation is solved using
the fully implicit Jacobian-free Newton’s method at every time step after the velocity
fields are obtained by the fractional step method (for more details see Kang et al.
2011).

2.3. Bed morphodynamics model
In this section we outline the mathematical equations that govern the temporal
variation of the mobile sediment–water interface and describe the numerical method
that we have developed for solving them. Our numerical methodology under
equilibrium conditions has been described in detail in Khosronejad et al. (2011),
and thus only a brief description of the numerical formulation under non-equilibrium
conditions and for live-bed sediment transport is given herein.

Under live-bed conditions sediment transport occurs as both suspended load and
bedload. Bedload transport occurs within the bedload layer (i.e. a layer of thickness
‖δBL‖ set to 2d50 immediately above the bed), while the suspended load is advected
by the flow and interacts with the bedload layer. This interaction occurs in the
form of sediment particle entrainment and deposition from and into the bed surface,
respectively, across the sediment–water interface (see face ‘S’ in figure 2). The
temporal variation of the bed elevation is governed by the following non-equilibrium
sediment continuity equation, the so-called Exner–Polya equation (Paola & Voller
2005):

(1− γ )∂zb

∂t
+∇ · qBL =Db − Eb, (2.16)
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FIGURE 2. Schematic of a triangular element in the bedload layer and definition of the
cell area (Ah), top face (S) and unit normal vector (n).

where γ is the sediment material porosity, zb is the bed elevation, ∇ denotes the
divergence operator, qBL is the bedload flux vector, Db is the net deposition onto the
bed and Eb is the net entrainment from the bed cell.

In the CURVIB method, the sediment–water interface is discretized with an
unstructured triangular grid and (2.16) is discretized and solved using a finite volume
method suitable for unstructured grids. Using the divergence theorem, the left-hand
side of (2.16) can be discretized at a given triangular element on the bed as follows
(Khosronejad et al. 2011):

(1− γ )1zb

1t
+ 1

Ah

∑
ie=1,2,3

[qBL · (ds× δBL)]ie = (1− γ )
1zb

1t
+ 1

Ah

∑
ie=1,2,3

[qBL · n]ie, (2.17)

where 1zb is the bed elevation change over time step 1t and Ah is the projection
of the triangular bed cell area onto the horizontal plane or horizontal projected area
of the cell face. The summation is carried out over the three edges of the triangular
element (ie= 1, 2, 3), ds is the vector along a cell edge with length equal to the edge
length, δBL is the vertical vector along the z-axis with length equal to the bedload layer
thickness ‖δBL‖ and n (= ds × δBL) is the unit normal vector to the cell face edge
(see figure 2 for a schematic description). The bedload flux vector, qBL, is calculated
as follows (Khosronejad et al. 2011):

qBL =ψb‖ds‖‖δBL‖uBL, (2.18)

where ψb is the local sediment concentration on the bed, ‖ds‖ is the length of edge
ie and uBL is the flow velocity vector parallel to the bed surface at the edge of
the bedload layer. The instantaneous resolved velocity vector and bed shear stress
calculated from the hydrodynamic model are projected onto the cell centroid at the
edge of the bedload layer by applying the law of the wall (equation (2.10)). The
sediment concentration within the bedload layer ψb is computed at each cell centre
on the bed using the deterministic equation of van Rijn (1993) as follows:

ψb = 0.015
d50

δb

T3/2

D3/10
∗

, (2.19)
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where

D∗ = d50

[
(ρs − ρ)g
ρν2

]1/3

, (2.20)

T = τ∗ − τ∗cr

τ∗cr
, (2.21)

where T is the non-dimensional excess bed shear stress (van Rijn 1993), τ∗ is the
bed shear stress, which is calculated using the wall model (2.10), and τ∗cr is the
critical bed shear stress. The critical bed shear stress is computed using Shield’s
criterion (using the parametrized relation of Shield’s curve (van Rijn 1993)) for the
flat bed critical bed shear stress (τ∗c0) and then corrected for a bed with transverse
and longitudinal bed slopes (Khosronejad et al. 2007; Chou & Fringer 2010) as
follows:

τ∗cr = τ∗c0

[
sin(φ + α)

sin(φ)

]
, (2.22)

where φ is the sediment material’s angle of repose and α is defined as the local bed
slope at the bed cell centroid. The local bed slope for a fully 3D bed geometry is then
calculated along the direction of the bed shear stress vector as follows (Khosronejad
et al. 2007, 2011):

α = sin−1

u1,BL sin α1 + u2,BL sin α2√
u2

1,BL + u2
2,BL

 , (2.23)

where ui,BL is the velocity component at the top of bedload layer and αi is the local
bed slope along corresponding coordinates (i= 1, 2).

Once all the required variables have been computed at the cell centroid, the bedload
flux qBL at the cell face is calculated using an appropriate convective scheme. In this
study we employed the second-order GAMMA differencing scheme (for more details
see Khosronejad et al. 2011).

Now we focus our attention on the right-hand side of (2.16), which represents the
net flux of sediment across the interface between the flow and the bedload layer. The
deposition rate at this interface is modelled as follows (Celik & Rodi 1988):

Db =wsψb, (2.24)

where ψb is the instantaneous sediment concentration immediately above the bedload
layer. Since the deposition rate involves sediment materials that are vertically
transported from the flow domain onto the bed surface, we use a quadratic
interpolation procedure to compute ψb from the calculated ψ in the flow domain
(i.e. IB and fluid nodes immediately above the bedload layer); for more details on
the interpolation method see Gilmanov & Sotiropoulos (2005). The entrainment rate
is also modelled by assuming equilibrium conditions under which the Eb would be
equal to Db and therefore it reads as follows (Celik & Rodi 1988; van Rijn 1993):

Eb =wsψb. (2.25)

Note that the modelled entrainment rate (Eb) in this equation is calculated using the
instantaneous bedload concentration (ψb) obtained by applying (2.19) at the edge of
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the bedload layer. Thus, both the entrainment and deposition rates in the mass-balance
equation (2.17) are calculated at the top face of the bed cell (see figure 2) where
z= 2d50.

Therefore the non-equilibrium sediment continuity equation (2.16) can now be
rewritten as

(1− γ )1zb

1t
+ 1

Ah

∑
ie=1,2,3

[qBL · n]ie =ws[ψb −ψb]. (2.26)

In order to prevent the bed slope from exceeding the sediment material angle of
repose, a mass-conservative sand-slide algorithm has been developed and incorporated
(for more details see Khosronejad et al. 2011; Khosronejad, Kozarek & Sotiropoulos
2014). After solving the Exner–Polya equation and computing the new bed elevations,
the entire bed is swept to identify bed cells at which the maximum bed slope (at
the centroid of triangular bed cells) is larger than the angle of repose. The local
slope correction procedure of the sand-slide model (see Khosronejad et al. 2011
for more details) is then applied only to the identified bed cells. Because a single
application of this algorithm may not be sufficient to identify and correct all cells
with excess slope, the algorithm is applied iteratively until all slopes are smaller than
the material angle of repose. The iterative process is declared converged when the
bed cell steepest surface angle is less than or equal to 0.99 of the angle of repose
of the bed material. To eliminate bias in the final solution, the iterative algorithm
is implemented through successive sweeps of alternating direction, from upstream
to downstream and reverse. For most time steps only two to four iterations are
required for the sand-slide algorithm to converge. Also it is important to mention
that the sudden avalanche of material in regions of steep slopes (e.g. along the steep
downslope of sand waves immediately downstream of the sand wave crest), which
can dislodge and set in motion a large mass of sediment (Khosronejad et al. 2012),
is not an instantaneous phenomenon. To be consistent with this physical condition,
and as soon as the present sand-slide model activates, within only one time step the
whole sediment mass is redistributed over other neighbouring cells until all slopes
are smaller than the material angle of repose.

2.4. Hydro-morphodynamic coupling approach
To simulate the coupling between the flow and morphodynamics, we employ a
partitioned fluid–structure interaction (FSI) approach (Borazjani et al. 2008). That
is, we partition the problem into the fluid and sediment domains and solve the
governing equations for the stratified flow and the bed morphodynamics separately in
each domain, accounting for the interaction of the two domains by applying boundary
conditions at the sediment–water interface. More specifically, to solve the equations
governing the flow, boundary conditions are specified on the bed in terms of the
bed surface location, rate of bed elevation change and sediment concentration on
the bed. On the other hand, to solve the bed evolution equation (2.16), the velocity
components, bed shear stress and sediment concentration from the stratified flow
domain are required to calculate: (i) the sediment fluxes on the left-hand side of
(2.16), and (ii) the net sediment flux at the interface of stratified flow and bedload
layer on the right-hand side of (2.16). For the details of how we prescribe the
boundary conditions in the two domains, see Khosronejad et al. (2011). In this work,
we found that the loose-coupling FSI approach in which the boundary conditions
at the sediment–water interface are obtained from the domain solutions from the
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previous time level (explicit in time) is robust enough for the problems considered
and thus we employ it in all subsequent simulations.

An important aspect of the coupled formulation arises from the need to conserve
global mass for the flow at each time step as the bed elevation and consequently the
domain geometry change. In order to impose global mass conservation, we calculate
the rate of volume change (∂∀/∂t) associated with the bed deformation (at each time
step). Subsequently we calculate the outlet boundary flux (Qout) such that global mass
conservation is satisfied (for more details see Khosronejad et al. 2011):

Qout =Qin + ∂∀/∂t. (2.27)

The velocity field at the outlet plane, which is obtained by Newman boundary
conditions, is then explicitly corrected to ensure that it yields an outflow flux equal
to Qout. Furthermore, the velocity boundary conditions that are reconstructed at the
IB nodes adjacent to the evolving mobile bed do not necessarily satisfy global mass
conservation, because the discrete continuity equation is not enforced at these nodes.
To address this issue at every time step, we also correct the reconstructed velocity
boundary conditions at the IB nodes such that the rate of volume change through the
entire lower boundary is equal to that imposed by the bed motion ∂∀/∂t.

The overall loose-coupling stratified flow–bed interaction method that we employed
in this study is summarized as follows. Assuming that the bed surface location, rate
of bed change, flow and sediment concentration field are known at time level n, the
steps are as follows.

(a) Compute the flow field at time level n+1 by solving the hydrodynamic equations
with the known bed position, rate of bed change and ψ from time level n.

(b) Compute ψ at time level n + 1 by solving the sediment concentration equation
with the known bed position and flow field from time levels n and n + 1,
respectively.

(c) Calculate the boundary conditions, i.e. bedload flux vector and net sediment
flux at the sediment–water interface, for the Exner–Polya equation (2.16) from
the solution of the flow and sediment concentration field at time level n+ 1 as
follows:

(i) find the bed shear stress, flow velocity components and sediment concentra-
tion ψb at the top of the bedload layer (at a distance of δb above the
bed). All the interpolated variables are stored at triangle cell centres of the
unstructured bed mesh.

(ii) For the given sediment material, bed shape (at time level n) and flow
velocity components (at time level n + 1), compute the critical bed shear
stress using (2.22) and (2.23).

(iii) Compute the sediment concentration ψb at the centre of each triangular cell
on the bed using the van Rijn (1993) formula (2.19).

(iv) Calculate the normal component of the bedload flux at each cell face edge
using a conservative formulation.

(d) Find the new bed elevation at each cell centre at time level n+ 1 by advancing
(2.17) in time using the following first-order forward-in-time discretization
scheme:

zn+1
b = zn

b −
1t

(1− γ )Ah

∑
ie=1,2,3

[qBL · n]ie +
1tws

(1− γ ) [ψb −ψb]. (2.28)
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Once the bed level at the cell centres has been updated, the related bed
change for the vertices of a cell are computed by weighted interpolation among
neighbouring cells.

(e) Apply the sand-slide model to ensure that the local bed slopes nowhere exceed
the material angle of repose; for more details on the sand-slide model see
Khosronejad et al. (2011).

(f ) Modify the shape of the sediment–water interface and calculate the rate of bed
change at the vertices of the cells to provide boundary conditions for the flow
field computation at the next time step.

3. Description of the experimental test case
We simulate flow and sediment transport in a straight laboratory flume studied

experimentally in a series of papers by Venditti & Church (2005) and Venditti et al.
(2005a,b, 2006). These experiments include detailed and systematic observations of
sand wave initiation, growth and transition from 2D to 3D geometry, as well as
quantitative measurements of the temporal variation of bedform characteristics, such
as amplitude, wavelength, celerity and arclength. In this section we present a brief
overview of the experimental set-up and flow conditions. The reader is referred to
Venditti & Church (2005) and Venditti et al. (2005a,b) for more details.

Venditti & Church (2005) employed a tilting flume with recirculating flow of water
and sediment. The flume dimensions were 15.2 m long, 1.0 m wide and 0.3 m deep.
A uniformly graded non-cohesive sand material with a median grain size of d50 =
0.5 mm and grain density of ρs = 2650 kg m−3 was used. Venditti and co-workers
carried out five experimental runs under various subcritical turbulent flows ranging
from a mean flow velocity of 0.36 to 0.5 m s−1 and a flow depth of approximately
0.15 m. In their experiment, Venditti & Church (2005) first flattened the bed and then
carefully filled up the flume to 0.152 m of water depth and eventually ramped up the
flow rate from 0.0 to a discharge of 0.0759 m3 s−1. The required time to reach the
desired discharge is 60 s (for more details see Venditti et al. 2005b). Instantaneous
images of the evolving bedforms were captured at 10 s time intervals using a high-
resolution video camera mounted above the flume and focusing on an observation
window that covers an area of 1.0 m (streamwise)× 0.92 m (spanwise) and centred
at ∼10.3 m downstream of the channel’s inlet. Two acoustic echo sounders were also
used to measure the celerity of sand waves. Once the bedforms reach equilibrium
(after approximately 1.5 h), the average sand wave amplitude is between 19.7 and
47.7 mm and the average sand wavelength ranges between 0.3 and 1.2 m (Venditti
& Church 2005).

It is important to note that the flow discharge in the experimental flume is ramped
up from zero to the desirable discharge of 0.0759 m3 s−1 within a time period of
60 s, during which the bed undergoes deformations from flat to a chevron-shaped
geometry. In our simulations, we start with flat bed geometry but the initial flow
condition corresponds to fully developed turbulent open channel flow pre-computed
from a separate LES (see below). This difference in the initial flow conditions
between the simulations and the experimental set-up should be kept in mind in
the subsequently presented comparisons of the numerical simulations with the
experimental observations, as it is responsible for some discrepancies observed during
the initial stages of the bed evolution. Finally, it is important to mention that the
non-dimensional critical Shield’s parameter (van Rijn 1993) for flat bed condition (at
the beginning of experiment and simulations) is ∼0.031, while the Shield’s parameter
during the coupled simulation varies between 0.03 and 0.15.
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4. Computational details
We simulate the flow condition denoted as Case A by Venditti & Church (2005), for

which the mean flow depth is 0.152 m and the mean flow velocity is 0.501 m s−1.
The corresponding values of the Reynolds number and Froude number, based on
the mean flow depth H and the bulk velocity U, are Re = 75 936 and Fr = 0.411,
respectively (see Venditti & Church 2005 for more details). We carry out coupled
hydro-morphodynamic LES of this case using the numerical method described in § 2.3
above. The computational domain is a 3.5 m long rectangular channel with vertical
and spanwise dimensions identical to those of the laboratory flume and containing a
10 cm thick sediment layer at its bottom (see figure 1). The bed is treated as rigid
for the first 0.5 m from the inlet to enable the implementation of inflow conditions
as described below.

At the inlet of the computational domain we prescribe fully turbulent open channel
flow, which is obtained by carrying out a separate LES for a rigid-bed channel
with identical cross-section and flow conditions as in the experiment and using
periodic conditions in the streamwise direction. Once this LES reaches its statistically
stationary turbulent condition, we store a sufficiently long sample of the instantaneous
velocity fields in order to use them as instantaneous inflow conditions for the coupled
hydro-morphodynamic LES. This pre-simulated turbulent inflow is developed over
a flat bed and therefore needs to be fed at the inlet, which should be flat. Hence,
we assume that the channel inlet for a very short distance is rigid (∼10 cm). This
assumption is reasonable, as there are many laboratory experiments in which the
initial flume section has been kept flat and rigid (Khosronejad et al. 2008, 2012,
2013). The rigid part is usually the transitional distance between the water supply to
the flume and the mobile bed part of the flume (downstream of the stilling basin in
the channel).

At the downstream end of the domain, the Newman outlet boundary condition is
employed for all three velocity components, and suspended sediment concentration.
The free surface boundary is treated as a rigid lid, while at the solid side walls
and mobile bed the wall functions approach is employed as described in § 2.1. For
the mobile bed the effective roughness height is set to ks = 3d50, while for the
channel side walls we use ks = d50 (Wu et al. 2000). For the bed morphodynamic
model, the inflow bedload flux at the inlet is set equal to the outflow bedload flux
to emulate the recirculation of sediment material used in the laboratory experiment
(Venditti & Church 2005). Boundary conditions for the pressure are not explicitly
required in the hybrid staggered/non-staggered grid CURVIB formulation. Newman
boundary conditions are employed for the pressure correction variable, however, at
all boundaries of the computational domain; for more details, see Ge & Sotiropoulos
(2007), Borazjani et al. (2008) and Kang et al. (2011). We also note that in all our
simulations the discrete continuity equation is satisfied to machine zero at every time
step. To ensure such level of convergence, we need to have a well-posed discrete
Poisson problem, which is ensured by correcting the velocity boundary conditions to
satisfy global mass using the procedure we described in § 2.4 above for a domain
with a dynamically deforming boundary.

The sediment–water interface is discretized with an unstructured triangular mesh
and treated as a dynamically evolving IB using the CURVIB method (Khosronejad
et al. 2011). The channel, within which the sediment–water interface is immersed, is
discretized with a Cartesian grid. To investigate the sensitivity of the computed
solutions to grid density, we carry out simulations on four, successively finer,
background grid systems, which are denoted as grids A (22.6 million nodes),
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Nx ×Ny ×Nz

Grid A Grid B Grid C Grid D
1101× 281× 73 1201× 301× 85 1353× 325× 97 1649× 429× 113

Nb 7.27× 104 1.04× 105 1.51× 105 2.31× 105

1x (m) 2.76× 10−3 2.53× 10−3 2.25× 10−3 1.82× 10−3

1y (m) 3.55× 10−3 3.32× 10−3 3.08× 10−3 2.33× 10−3

1zbed (m) 1.42× 10−3 1.08× 10−3 8.12× 10−4 7.48× 10−4

1zfs (m) 3.05× 10−3 2.88× 10−3 2.64× 10−3 2.52× 10−3

1z+ 40 30 23 20
1t∗ 10−2 8× 10−3 5× 10−3 2× 10−3

TABLE 1. The computational grids and the time steps used for each grid system. Here,
Ni and 1i indicate the number of grid nodes and the grid spacing in the i direction,
respectively; Nb is the number of nodes used to discretize the unstructured triangular mesh
at the sediment–water interface; and t∗ is the non-dimensional time defined as t∗= t(U/H).
Grid systems are uniform in streamwise (x) and spanwise (y) directions, while they are
stretched in the vertical (z) direction. Here, 1zbed is the grid spacing in the vertical
direction and in a zone 3.5 cm below and 3.5 cm above the initial flat bed. The vertical
grid spacing in the near-bed zone is uniform, while above this zone (which is 11.7 cm
thick) it is stretched in the vertical direction with a tanh function. Here, 1zfs is the grid
spacing in the vertical direction at the water surface. Thus, the vertical grid spacing varies
from a minimum of 1zbed to a maximum of 1zfs at the water free surface. Finally, 1z+
is the minimum grid spacing in the vertical direction scaled in inner wall units.

B (30.7 million nodes), C (42.7 million nodes) and D (79.9 million nodes); their
details are summarized in table 1.

For each background grid (table 1), the grid nodes are spaced uniformly along
the streamwise and spanwise directions in order to ensure that the emergence and
evolution of sand waves in the simulation are not affected by spatially heterogeneous
resolution on the horizontal plane due to aspect ratio effects. In the vertical direction
the grid spacing is kept constant within a 7.0 cm deep vertical layer that is centred
around the initially flat bed. Above this layer, however, the grid in the remaining
11.7 cm deep outer region is stretched in the vertical direction using the hyperbolic
stretching function (see table 1). As required by the CURVIB method (Khosronejad
et al. 2011), for each grid system the resolution of the unstructured mesh, i.e. the
triangular grid that covers the sediment–water interface, is adjusted so that it is
consistent with the resolution of the structured background mesh. Also, for each grid
system, an appropriate non-dimensional time step (1t∗ = 1t(U/H)) is selected such
that the maximum Courant–Friedrichs–Lewy number (CFL) is less than 1.0. Note
that such a requirement is dictated by the need for temporal accuracy rather than
stability of the numerical approach. The convective and viscous terms in our flow
solver are treated implicitly and therefore the algorithm will be stable for CFL> 1.0.
Large time steps, however, will degrade the accuracy of the resolved flow structures
in the LES, and for that we restrict the CFL number on each grid to be less than
unity. The parameters of the various grids along with the time step used for each
grid are summarized in table 1.

Note that the number of grid nodes along each of the three spatial directions
has been increased by ∼1.5 from grid A to grid D, which is a reasonable grid
refinement for such a complex coupled problem. It is important to mention that
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such coupled simulations on very fine grids are extremely expensive, and to the best
of our knowledge the coupled simulation on grid D is by far the finest coupled
hydro-morphodynamic simulation that has been reported to date. As an indication
of the computational requirements, we note that the coupled simulation on grid D
required 55 days of execution time on 320 CPUs for simulating 200 s of physical
time. For that we have continued the simulations on grid D for only the first 200 s
of bed evolution for grid sensitivity analysis.

5. Results and discussion
In this section we discuss the computed results and analyse the physics of the

coupled turbulent flow and bed evolution as they emerge from our simulations.
We begin by validating our hydrodynamics computations against the flow field
measurements of Venditti & Church (2005) over a rigid bed in the same flume
they used later for their live-bed measurements. Next we continue by presenting
and discussing in detail the evolution of the computed sand waves through the
various stages of development as observed by Venditti & Church (2005), from
the early instability patterns of the bed to fully grown 2D and 3D migrating
sand waves. We also compare various calculated quantitative characteristics of the
sand waves, including celerity, wavelength and amplitude, and measures of their
degree of topological complexity, with the experimental measurements to show that
the simulations reproduce with good accuracy the experimental observations both
qualitatively and quantitatively. Subsequently we analyse the calculated instantaneous
flow fields in tandem with the bed evolution and discuss a number of novel physical
insights that arise from the rich dataset we obtain from the simulation results.

5.1. Flow field validation for the rigid bed case
In this section we seek to demonstrate the ability of our method to accurately simulate
the mean flow and turbulence characteristics of the fully developed turbulent flow
in the rigid open channel in which we subsequently study sand wave dynamics. As
mentioned above, such simulations need to be carried out anyway for each of the
computational grids that we employ in order to obtain inflow conditions for the
coupled LES. Venditti & Church (2005) reported mean flow and turbulence statistics
measurements for their rigid bed flume to quantify the state of the flow prior to the
start of the bed deformation.

In figure 3 we compare the measured and computed, on all four grids, mean
streamwise velocity, primary Reynolds stress and streamwise turbulence intensity
profiles at the centre of the channel. It is evident that the two finest grids capture the
experimental profiles with good accuracy. The convergence is almost monotonic for
all quantities as the grid is refined. As one would anticipate, the turbulence statistics
are somewhat more sensitive to grid refinement than the mean flow, but even so the
results obtained on the two finest meshes for the turbulence quantities are in good
agreement with each other and the measurements.

5.2. Bed surface morphology
It is well known that sand wave development takes place in three stages: initiation,
growth and migration (Chou & Fringer 2010; Escauriaza & Sotiropoulos 2011a).
During the initiation stage, sand waves are relatively small features of the bed and
are mostly composed of linear striations with an amplitude of approximately 2d50
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FIGURE 3. Fully developed turbulent flow in the rigid-bed open channel of Venditti &
Church (2005) at Re = 75 936 corresponding to the flow prior to the start of the bed
deformation. Profiles of (a) mean streamwise velocity (non-dimensionalized by the shear
velocity u∗), (b) Reynolds shear stress τuw (Pa) and (c) streamwise turbulence intensity Iu
at the channel centre. The experimental data of Venditti & Church (2005) (open circles)
are compared with LES on grids A (dotted line), B (dot-dashed line), C (dashed line) and
D (solid line).

(Venditti & Church 2005). The growth stage is mostly associated with a transition
from 2D spanwise features to less regular and larger size 3D bedforms, as discussed
by Venditti & Church (2005) and Venditti et al. (2006). Once the sand waves reach
their 3D stage, they mainly migrate with the main flow, only slightly increasing
in size. At their 3D stage, however, the bedforms are sufficiently large to interact
with the flow field and substantially modify the dynamics of the turbulent flow
field that triggered their onset. In this section we report the results of the coupled
hydro-morphodynamic simulations, and the various stages of sand wave evolution are
presented, discussed and compared with the experimentally observed results.

5.2.1. Initiation of sand wave development
Starting from the flat bed condition and during the first 160 s of the experimental

run, Venditti & Church (2005) (see also Venditti et al. 2006) reported the emergence
of various, progressively larger and more complex features on the bed. In the sequence
they appeared in the experiment, these include: (i) spontaneously occurring cross-hatch
patterns over the entire bed surface; (ii) chevron-shaped features at the nodes of the
cross-hatch; (iii) incipient sand wave crestlines arising as the result of chevron
migration; (iv) quasi-2D sand waves forming as crestlines become more organized
in the spanwise direction; (v) growth of sand waves in length and amplitude; and
(vi) transition to fully grown 2D bed features. As we will show in this section, most
of these features were also captured by our simulations.

As reported by Venditti & Church (2005), the cross-hatch pattern appeared
spontaneously covering the entire bed surface and consisted of oblique linear striations
with an amplitude of ∼2d50 and wavelength of ∼4–7 cm. They also reported that the
angles observed between the oblique striations and the centreline of the flume varies
between 10◦ and 70◦, with an average value of 35◦–45◦. The emergence of cross-hatch
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FIGURE 4. Experimental observations of (a) cross-hatch patterns, (b) chevron-shaped
features and (c) incipient crestlines in the centre of the channel. The distance between
the grid lines in these figures is 0.115 m along both directions, and the flow is from left
to right. The clarity of the observed patterns has been enhanced by white lines. (Courtesy
of Venditti & Church (2005).)

patterns in the experiment (see figure 4a) was followed by downstream migration
and subsequent formation of chevron-shaped defects at the nodes of the cross-hatch
features (see figure 4b). Early bed features very similar to those reported by Venditti
& Church (2005) have also been observed by Gyr & Schmid (1989). Describing
their observations of bedform initiation, Venditti & Church (2005) mention that, soon
after the chevron-shaped features form, they start to migrate and grow rapidly in
the spanwise direction to form incipient crestlines, which are span-long bed features
roughly perpendicular to the centreline of the flume (see figure 4c). The incipient
crestlines grow in length and amplitude, ultimately giving rise to well-defined 2D
ripples, with quasi-equilibrium wavelength and amplitude of nearly 20 cm and 2 cm,
respectively. As reported by Venditti et al. (2006), the entire process starting from
the flat bed state to the growth of organized 2D bedforms occurs within 160 s (i.e.
100 s after full flow discharge of 0.0759 m3 s−1 is established), with the initial
cross-hatch and chevron features appearing early on during the ramping-up period of
flow discharge.

In figure 5 we plot instantaneous snapshots of the simulated initial sand waves in
the form of contour plots of the sediment–water interface elevation along the full
length of the channel during several instants in time, t= 5, 30, 50 and 100 s.

In spite of the previously discussed differences in the initial flow conditions
between simulations and experiment – recall that in the latter the flow starts from
zero discharge and required ∼60 s to establish the statistically stationary turbulent
flow at Re = 75 936 – the simulated bedforms during the initial stages of bed
evolution exhibit essentially all the features observed in the experiment. For the first
15 s of the simulation (figure 5a), the experimentally observed cross-hatch patterns
emerge and cover the entire bed surface. The simulated oblique striations are ∼2d50
high and ∼1–4 cm long, and their angles with the centreline of the channel are in
the range of 40◦–60◦. These values are well within the range of the experimental
observations. After approximately 10 s, the cross-hatch patterns have grown in length
and amplitude sufficiently to start forming more organized linear striations with small
nodes of cross-hatch (figure 5b). The nodes grow in size as the striations migrate
downstream (figure 5c), ultimately forming well-defined chevron-shaped features on
the bed. Once the chevrons appear, they grow quickly and form span-long bedforms
∼1.5 cm high and ∼3–10 cm long (figure 5d). It is important to note that the
growth rate of these initial striations for t> 10 s was found to be at least one order
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FIGURE 5. Simulated sand wave initiation in 3D contours of bed elevation (cm)
corresponding to (a) t= 5 s, (b) 30 s, (c) 50 s and (d) 100 s, and on grid C. The distance
between the grid lines in these figures is 0.115 m along both directions, and the flow is
from left to right. The window covers the entire width of the channel (1.0 m in spanwise
direction) for the last 2.415 m of the channel. Blown up regions of the bed are inset in
each panel to better clarify sand wave patterns.

of magnitude faster than the growth rate observed within t < 10 s. We will return
to the temporal variation of sand wave growth rate in the next section, where we
discuss in more detail the dynamics of the simulated sand waves.

The evolution of the bed elevation during the initiation of bedforms over the
entire bed surface shown in figure 5 illustrates that the calculated bed evolution is
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quite similar to that described by Venditti & Church (2005) regarding both the time
sequence in which various bed features appear and their sizes. A discrepancy between
experiments and simulations, however, is observed in the calculated time scale of the
initial stage of bed evolution, which appears to be somewhat faster than in the
experiment. More specifically, in the simulations the initial stage of bed evolution is
completed within 120 s while the same stage requires nearly 160 s in the experiment.
Recall, however, that in our simulation the initial flow condition was prescribed
as the statistically stationary turbulent flow corresponding to the final discharge of
0.0759 m3 s−1. In the experiment, on the other hand, the discharge was gradually
increased from zero to the full discharge of 0.0759 m3 s−1 within the first 60 s of the
experimental run (Venditti et al. 2006). Therefore, the statistical state of the turbulent
flow above the bed is quite different between the experiments and the simulations
during their initial phases, which could account for the observed discrepancy in the
time scale of the initial stage of bed evolution. Another possible explanation for this
discrepancy between experiments and simulations could be the empirical formula
used to calculate the bed concentration ψb, which has been derived and calibrated
with mean flow quantities. These quantitative discrepancies notwithstanding, however,
our simulations capture the process of bedform initiation throughout the bed surface
in good overall agreement with Venditti & Church (2005).

To assess the effect of grid refinement on the simulated bed evolution, in figure 6
we compare instantaneous bed geometry computed on the four grids at three instants
in time. While the broad trends of the bed evolution are similar on all four grids,
it is evident that the coarsest grid (grid A) is not able to capture the fine-scale bed
features, and especially the early cross-hatch patterns, and the rate at which the sand
waves grow in size with the clarity and accuracy of the two finer mesh simulations. It
is evident from figure 6, for instance, that, while on grids B, C and D well-developed
chevron-shaped patterns and incipient crestlines are already established by t = 50 s,
such features become visible on grid A in figure 6 only for t > 100 s. It should be
noted that the bed in the grid A simulation has already been destabilized by t= 50 s
via a similar sequence of events as on the two finer meshes, but the amplitude of
cross-hatch and chevron patterns simulated on grid A is too small to be visible in the
bed elevation contour scale we use in figure 6. In general, comparing the simulated
results for the bed morphology on grid D with those on grid A during the initial stages
of the simulation, the growth rate of bed features on grid A exhibited a consistent time
lag of approximately 100 s. On the other hand, the simulations on grid B yielded
a sand wave growth rate more similar to those obtained on grid D. Eventually, the
simulation results on grid C are quite similar to those on grid D in terms of both
sand wave characteristics and overall sand wave shape. In summary, the comparisons
between the four grids we have employed herein show that grid A cannot resolve the
early stages of bed evolution with regard both to the time scales and to the sharpness
and clarity of bed features observed in the experiments. Grid B is also not fine enough
to capture the details of the sand wave initiation. However, simulations on grids C and
D yielded quite similar results for the initial stage of sand wave development. The
sensitivity of the computed bed patterns to grid refinement will be further examined
in a quantitative manner in subsequent sections. Unless otherwise indicated, the results
we present in the remainder of this paper have been obtained on grid C, since, and
as already discussed above, the simulations on the finest grid D were continued only
for the first 200 s of bed evolution.

An important question that continues to be a subject of debate in the literature
is with regard to the mechanism that triggers the initial bed instability and
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FIGURE 6. Computed bed morphology at various instants in time on grids A, B, C and D.
Three-dimensional contours of bed elevation are in centimetres. The selected windows are
located at the centre of the channel. The distance between the grid lines in these figures
is 0.115 m along both directions, and the flow is from left to right.

gives rise to the early cross-hatch and chevron-shaped sand waves. Early theories
(Bucher 1919; von Kármán 1947; Liu 1957) attributed the onset of the initial bed
instability to interfacial Kelvin–Helmholtz (KH) type waves in the stratified near-bed
sediment–water layer induced by sediment suspended in the flow (Liu 1957; de Jong
1989). Another point of view is that the bed destabilization mechanism is linked to
near-bed coherent structures over the initially flat bed, which gives rise to variations
in velocity and shear stress. Venditti & Church (2005) provided evidence in support
of this idea by using velocity time-series measurements to estimate the average
or dominant size of the eddies near the bed before the bed was destabilized, and
showing that it is approximately equal to 7 cm, which is similar to the length scale
of the linear cross-hatch bed patterns (see figure 5a). Numerical simulations have also
yielded conflicting results regarding this issue. As we already discussed previously,
Chou & Fringer (2010), who simulated oscillatory flow over a mobile sand bed,
presented evidence pointing to the conclusion that density stratification effects near
the bed play a key role in triggering the initiation of bedforms. More specifically,
they carried out simulations on an identical grid using different models for the bed
elevation equation and the flow–sediment mixture and showed that, when density
stratification effects are neglected in the momentum equation, no ripples arise in the
numerical simulation. These results, therefore, provided support to theories linking
the initial destabilization of the bed to the instability of the near-bed stratified layer.
Escauriaza & Sotiropoulos (2011a), on the other hand, who considered the initial
stages of bed evolution inside the scour hole around a cylindrical pier, were able to
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FIGURE 7. Simulated sand wave evolution in 3D contours of bed elevation (cm)
corresponding to (a) t = 5 s, (b) 30 s, (c) 50 s and (d) 100 s, on grid C and with
Boussinesq term in (2.2) set to zero. Flow is from left to right. The grid lines are 0.115 m
apart along both directions. The window size, location and bed elevation scale are similar
to the selected window in figure 5.

simulate ripple formation starting from an initially flat bed, considering only bedload
transport and without incorporating stratification effects in their model. These results,
therefore, appear to support the findings of Venditti & Church (2005) regarding the
role of near-bed flow patterns over an initially flat bed.

All simulations we have reported thus far in this paper have been carried out
using the stratified flow model described in § 2 and thus stratified flow effects have
been taken into account. To elucidate whether stratification effects play a role in
destabilizing the bed for the case we consider herein, we also carried out simulations
on all four grids for the initial stage of the process by neglecting the Boussinesq
term on the right-hand side of (2.2) but retaining all other aspects of the coupled
hydro-morphodynamic model described in § 2. On the coarsest grid, grid A, and to
some extent on grid B, this numerical experiment failed to destabilize the bed, which
remained stable and flat throughout the simulation interval. On the two fine grids (C
and D), however, the bed was destabilized in a manner similar to that we obtained
using the full stratified flow model. In order to compare the simulated sand waves
with and without the stratification term, we plot in figure 7 the same snapshots of
the sand wave geometry for the simulation with no stratification on grid C as those
reported in figure 5. As seen in figures 5 and 7, the overall patterns of the bedforms
are similar for the two cases. However, the amplitudes of the simulated sand waves
start to diverge slightly apart between the stratified and unstratified models as time
increases. Even though not shown here, similar trends are also observed on grid D.

To quantify the effects of stratified flow on the destabilization of the bed at various
stages of the process, we plot in figure 8 contours of the difference between the bed
elevation simulated with the full stratified model (zstr) and that simulated with the
Boussinesq terms in (2.2) set equal to zero (znstr) at various instants in time (n). Both
stratified and unstratified model results shown in this figure were obtained on grid C,
and the differential bed elevation (1zrms) at each instant in time has been scaled with
the maximum amplitude of sand waves (|∆|) that is calculated by the stratified flow
model at that instant in time:

1zn
rms =

zn
str − zn

nstr

|∆n| × 100. (5.1)

It is seen from figure 8(a) that the computed results from the two simulations are
identical at t = 5 s when the calculated bed elevation difference is actually equal to
machine zero (see figures 5a and 7a). The bed elevation difference begins to grow
monotonically with time as the amplitude of the sand waves increases, but it is evident
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FIGURE 8. (Colour online) Contours of calculated (grid C) bed elevation difference
between the bed morphology obtained with stratified and unstratified flow simulations,
1zrms (see (5.1)), at (a) t = 5 s (|1zrms|max ∼ 10−6), (b) 30 s (|1zrms|max = 1.8), (c) 50 s
(|1zrms|max = 6.2) and (d) 100 s (|1zrms|max = 9.8). Flow is from left to right and the grid
lines are 0.115 m apart along both directions.

from the results of figure 8 that at least up until t = 30 s the effect of stratification
on the evolution of the bed is minimal (see also figures 5b and 7b). At later times,
however, the results from the two simulations start growing apart, with maximum
errors (|1zrms|max) approaching 10 at t = 100 s (see also figures 5d and 7d). These
results support the findings of Venditti & Church (2005) and suggest that near-wall
flow structures over the initially flat bed play a key role in destabilizing the bed.
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Presumably grid A is not sufficiently fine near the bed to adequately resolve the flow
at the scale of eddies that give rise to the linear cross-hatch patterns and for that
neglecting stratification effects for this case fails to destabilize the bed. It is interesting
to note, however, that for this case (grid A), even though the details of the flow and
early cross-hatch bed patterns cannot be resolved, stratification effects act to ultimately
trigger the bed instability, suggesting that instabilities in the near-bed stratified layer
also play a role in destabilizing the bed. Recall, however, that as we have already
discussed above the bed instability simulated on grid A exhibits a consistent time lag
of approximately 100 s compared to the grid D, C and B simulations. As shown in
figure 8, this is exactly the time when the stratified and unstratified simulations on
grid C begin to exhibit major differences, which further suggests that stratification
effects do become important but at later times after the bed has been destabilized and
a stratified layer has formed above the bed. This is also consistent with our finding
regarding the ratio of suspended load to bedload during the early and late stages of
sand wave evolution (see § 5.2.4).

Venditti & Church (2005) alluded to the possibility of different mechanisms
becoming important at different stages of the process by commenting that ‘there is
no reason that an instability that gives rise to well-organized variations in sediment
transport must continue to dominate the flow once a bed wave is established’. Our
results support this assertion and for that reason all subsequently presented results
have been obtained using the stratified formulation. The specific linkage between
near-bed flow structures over the initially flat bed and the early cross-hatch-shaped
sand waves will be further examined in § 5.3 below.

5.2.2. Transition from chevrons to two-dimensional bedforms
Two-dimensional sand waves are defined to have roughly uniform spacing, height

and length, while their crestlines tend to be straight or slightly sinuous and are
oriented perpendicular to the direction of the mean flow (see Ashley 1990; Venditti
et al. 2005b). Venditti & Church (2005) reported that, at the end of the sand wave
initiation process in their experiment, the chevrons migrate and begin to organize
transversely, forming ridges perpendicular to the flow with a preferred streamwise
spacing. This process eventually leads to the emergence in the experiment of the first
set of 2D bedforms at approximately t∼ 160 s. These sand waves are regularly spaced
with experimentally observed wavelength and amplitude in the range of approximately
4 to 14 cm and 2 cm, respectively (see figure 9). In the experiment of Venditti &
Church (2005) this 2D state lasted for nearly 500 s, until t ∼ 600 s, when the sand
waves started undergoing a distinct transition to their 3D state. It is important to
note, though, that, in spite of using the term ‘two-dimensional sand waves’, it is
evident from a visual inspection of figure 9 that the experimentally observed sand
waves are never perfectly 2D (i.e. straight, parallel crestlines perpendicular to the
flow direction). A number of complex topological connections among neighbouring
bedforms as well as distorted crestlines are evident in figure 9, which suggest that a
perfectly 2D state was not realized in the experiment. Venditti & Church (2005) have
proposed a more quantitative approach to delineate the 2D state of bed evolution
and identify the instant when three-dimensionality emerges, which we will discuss in
detail in a subsequent section.

In figure 10 we show snapshots of calculated bed elevation contours at two instants
in time, t = 150 and 300 s, which are within the interval when Venditti & Church
(2005) reported the onset of the 2D state in their experiment. In our simulations, this
state, which starts at t ∼ 120 s, can be at best characterized as quasi-2D, since, as
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FIGURE 9. Experimental observations of sand waves during their 2D state at (a) t= 240 s
and (b) t= 300 s in the centre of the channel. Flow is from left to right and the grid lines
are 0.115 m apart along both directions. (Courtesy of Venditti & Church (2005).)

evidenced by the results shown in figure 10, the simulated bedforms do not appear as
2D in their spanwise structure as in the experiment (compare figures 9 and 10).

We argue that the inability of the simulations to reproduce crestlines closer to a 2D
state as seen in the experiment should be attributed to the length of the computational
domain and the approach we employ to specify inlet conditions for the flow and
sediment concentration in the simulation. Recall that the flume of Venditti & Church
(2005) is 10.5 m long and the observation window within which the evolution of
sand waves was monitored starts at approximately 7.5 m from the inlet. Owing to
the significant computational cost of a coupled LES, the computational domain is
only 3.5 m long. As we discussed above, at the inlet of this domain we continuously
feed instantaneous velocity fields from a pre-computed LES of fully developed open
channel flow over a rigid bed and recirculate numerically the suspended sediment
exiting the domain by setting the sediment flux at the inlet equal to the outlet flux
at every instant in time. The latter boundary condition, however, which is intended
to emulate the sediment recirculation in the experiment of Venditti & Church (2005),
introduces disturbances to the near-bed flow near the inlet. Such disturbances are also
introduced in the experiment at the inlet, but the 7.5 m of flume upstream of the
observation window provides an opportunity for the bed to develop and the effects of
the disturbances to be reduced by the time the flow reaches the observation window.
In the simulations, however, the distance from the inlet to the observation window
is only 1 m. We thus argue that disturbances induced by the numerical recirculation
of sediment could be impacting the bed within the observation window, preventing
a more 2D state from emerging and triggering sooner the onset of the 3D state. A
quantitative assessment of the degree of two-dimensionality of the simulated bedforms
during this stage will be discussed in the next section using the metric proposed by
Venditti & Church (2005).

5.2.3. Transition to three-dimensional bedforms
Venditti et al. (2005b) reported that in their experiment the 2D phase of bed

evolution ends at approximately t= 600 s. The onset of the 3D state in the experiment
was characterized via sporadic mass transport events during which small masses of
sand material detach from sand waves to form idle crest defects, which are transported
and merge with neighbouring sand waves. As a result of such processes, the patterns
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FIGURE 10. Instantaneous images of the bed morphology (3D contours of bed elevation
are in centimetres) showing the sand waves at transition from chevron shape to 2D states
corresponding to (a) t= 150 s and (b) 300 s. Flow is from left to right and the grid lines
are 0.115 m apart along both directions. The windows in cover the entire width (1.0 m
in spanwise direction) for the last 2.415 m of the channel. (c) The bed elevation profiles
along 2 m of the channel centreline in the centre of window (a) with dotted line and
(b) with solid line.

of the bedforms become irregular and more sinuous in the spanwise direction and
develop complex multi-connected topologies as shown in figure 11, which depicts
two snapshots of the 3D state. The bedforms at this stage grow larger than in the 2D
stage, with wavelengths and amplitudes in the range of ∼10–50 cm and ∼4–6 cm,
respectively (Venditti et al. 2005b).

Figure 12 shows two representative snapshots of the calculated bed morphology at
two instants in time within the 3D state of bedforms. Comparing this figure with the
experimental images shown in figure 11, it is readily apparent that the simulations
capture a number of the complex topologies observed in the laboratory flume. Among
other things, we observe: many of the computed sand waves to be highly distorted
and sinuous in the spanwise direction; complex bifurcations of crestlines; and the
formation of distinct distorted O-shaped features connecting adjacent crestlines. The
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FIGURE 11. Experimental observations of sand waves during their 3D state at (a) t =
900 s and (b) t= 1020 s. Flow is from left to right and the grid lines are 0.115 m apart
along both directions. (Courtesy of Venditti & Church (2005).)

latter feature is further highlighted in figure 13, which shows instants in time when
such complex patterns are realized in the simulation and the experiment. The similarity
between the two patterns is striking, which further underscores the ability of our
simulations to capture sand wave topologies realized experimentally. It should be
noted that, even though such patterns appear even during the 2D state (see figures 9
and 10), they become very pronounced and prevalent when the 3D state emerges.

The previously discussed fundamental mass-transport mechanism among sand
waves that causes topologically complex crestlines to emerge is clearly illustrated in
figure 14, which shows three snapshots from the simulations highlighting the overall
process. A small crest defect that forms at t= 700 s is seen in figure 14 to migrate
and ultimately merge at t= 900 s with a downstream sand wave causing a bifurcating
crestline to form. Our simulations support the experimental findings of Venditti et al.
(2005b) that such mass transport events play a key role in maintaining the 3D
patterns of the bedforms, by providing the key mechanism for crestline bifurcation
and formation of complex topologies (see figure 14).

de Moraes Franklin (2013) employed a line recirculation vortex model with an
external flow and stability analysis to find a relationship to predict the longitudinal and
transverse wavelength of 3D ripples. Using their model, de Moraes Franklin (2013)
predict that the maximum wavelength of 3D ripples is λmax = 281d50. Employing
Franklin’s relation, this scale for our specific case with a d50 of 0.5 mm would be
λmax = 14 cm. The measured wavelength for 2D and early 3D stages by Venditti
& Church (2005) are 15 cm and 65 cm, respectively. The computed maximum
wavelength for 2D and 3D stages are 17 cm and 68 cm, respectively. Hence, it
seems that Franklin’s relation is more valid for the initial stages of bedform evolution
and during the early 2D stage of sand wave development for the test case simulated
and measured in this work. Andreotti, Claudin & Douady (2002) also proposed a
model for the transverse wavelength of 3D ripples. Using experimental and field data,
Andreotti et al. (2002) showed that the transverse wavelength λtrans and longitudinal
wavelength λlong of bedforms are related as λtrans ≈ 1.3λlong. Based on Franklin’s
model, on the other hand, the transverse wavelength of sand waves at their 3D stage
is λtrans ≈ 0.8λlong. The λtrans/λlong ratio for the simulated sand waves during the 3D
stage in our work, however, varies between 0.85 and 1.25. This ratio for the sand
waves measured by Venditti & Church (2005) is also approximately within the same
range (0.8–1.3). This means that, for both the measured and simulated sand waves
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FIGURE 12. Computed instantaneous images of the bed elevation contours (cm) showing
the sand waves at 3D state corresponding to (a) t = 700 s and (b) 1200 s on grid C.
Flow is from left to right and the grid lines are 0.115 m apart along both directions. The
windows cover the entire width of the channel (1.0 m in spanwise direction) for the last
2.415 m of the channel.
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FIGURE 13. (a,b) Computed and (c) experimentally observed 3D bed features at the 3D
stage of sand wave evolution. Images are shown for t = 660 s and 890 s for computed
and measured, respectively. The window in (a) covers the entire width of the channel and
for approximately 1.2 m of the central part of the channel. Flow is from left to right and
the grid lines are 0.115 m apart along both directions.

that we consider herein, during the early 3D stages of the process λlong is shorter than
λtrans and the ratio is more than unity. At later stages, the longitudinal wavelength
increases above λtrans and so the ratio is reduced to approximately 0.85. Thus, the
range of λtrans/λlong ratio for the simulated sand waves in this work is reasonably
consistent with the model presented by Andreotti et al. (2002).
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FIGURE 14. Computed instantaneous images of the bed morphology showing a crest
defect (circled) catching up with and merging into a downstream sand wave. The selected
windows are located at the centre of the flume. The idle crest defect was earlier cleaved
from an upstream sand wave. Images correspond to time instants of (a) t = 700 s,
(b) 800 s and (c) 900 s. The windows cover the entire width of the channel and for
approximately 1.0 m of the central part of the channel. Flow is from bottom left to top
right.

5.2.4. Quantitative characteristics of sand waves
Venditti et al. (2005b) systematically analysed the characteristics of the sand

waves in their experiment and reported quantitative information about the temporal
variation of sand wavelength, amplitude and celerity. The characteristics of the sand
waves were measured using two in-line acoustic sensors, which are 13.3 cm and
0.45 m apart in the streamwise and spanwise directions, respectively, focusing on
the observation window of the flume (see § 3). We post-process our simulated sand
waves by manually identifying the number of sand waves present in the observation
window at a given instant in time, measuring their amplitude and wavelength, and
tracking them to calculate their celerity. Since during most instants in time sand
waves are quite distorted, for each sand wave we average the various properties along
the spanwise direction.

In figure 15 we plot the simulated temporal variation of sand wave characteristics
(amplitude, length and celerity) on grid C along with the measurements of Venditti
et al. (2005b) over a time interval long enough to include all previously discussed
stages of bed evolution (spanning approximately 4.2 h in the simulations and 5.5 h in
the experiment). Since Venditti et al. (2005b) used two echo sounders (at two different
locations) to measure the sand wave characteristics (wavelength, amplitude and
celerity), the experimental data in figure 15 (open circles) represent the instantaneous
values measured with both echo sounders. However, the simulated data in figure 15
(filled circles) are the domain-averaged values throughout the bed surface at every
instant in time. Therefore, the variation in simulated results is less than in the
measured quantities. It is evident from this figure that the amplitude, length and
celerity of the computed sand waves are well within the range of the measured
values at most instants in time. The most significant discrepancies are observed
during the early stages of the process when the simulated sand waves appear to grow
in amplitude somewhat faster than the measurements, reaching the quasi-equilibrium
state approximately 30 min sooner than in the measurements. The aforementioned
differences between experiments and simulations concerning the gradual ramping
up of the flow in the laboratory flume, the length of the laboratory flume and
computational domain, and the potential disturbances introduced in the simulation
due to the manner in which sediment was recirculated numerically, may account for
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FIGURE 15. Measured (Venditti et al. 2005b) and computed sand wave (a) height,
(b) length and (c) celerity. The experimental data (open circles) represent individual sand
waves that are instantaneously measured, while the computed values (filled circles) are
averaged on the bed surface at each instant in time.

these discrepancies. These differences notwithstanding, however, and considering the
complex and inherently intermittent nature of the underlying processes, figure 15
clearly shows that the simulations capture sand waves whose characteristics are
comparable to what was measured in the laboratory.

To quantify the effect of grid resolution in the accuracy of the predicted sand wave
characteristics, we plot in figure 16 the temporal variation of domain-averaged values
of sand wave amplitude, length and celerity calculated on grids A, B, C and D. With
the only exception being the temporal variation of the amplitude, where grid B slightly
overshoots the grid C prediction, figure 16 demonstrates the monotonic convergence
of sand wave characteristics as the grid is refined, and makes a strong case that, at
least as far as the sand wave characteristics are concerned, the grid C simulations can
be characterized as grid-insensitive. Note that the simulations on grid D were carried
out for only the first 200 s, but during this interval the computed results of grids D
and C are very similar (see figure 16). Grids B and C also yield results close to each
other for all three quantities, but the sand waves predicted on the coarsest grid, grid A,
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FIGURE 16. Computed sand wave (a) height, (b) length and (c) celerity using grid system
A (dotted), B (dashed), C (dotted-dashed) and D (solid). Simulations on grid D are
continued for only the first 200 s.

grow significantly slower in amplitude and length, with the discrepancy being more
pronounced in the predicted sand wavelength. Most importantly, the quasi-equilibrium
sand waves on grid A have smaller amplitude and length and travel at a slightly
lower speed than on grids B and C. These results are consistent with the previously
discussed quantitative comparisons between the four grids (see figure 16).

To quantify the topological complexity of bedforms and to characterize the 2D and
3D states, Venditti et al. (2005b) proposed a metric denoted as the non-dimensional
span factor (NDS) as

NDS= Λc

Λy
, (5.2)

where Λc is the arclength of the bedform along its crestline and Λy is the linear
distance between the end points of the crestline at the channel side walls (see
figure 17). For sand waves with crestlines that do not extend all the way to the
channel side walls, the above definition can also be employed using the two end
points of the crestline. Similar to the stream sinuosity factor, the NDS is simply a
measure of sand wave crest sinuosity. By definition, NDS=1 for a line connecting two
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Flow

FIGURE 17. Schematic view of sand wave sinuosity parameters.
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FIGURE 18. Computed (filled circles) and measured (open circles) (Venditti et al. 2005b)
non-dimensional span NDS for the whole range of observed crestlines.

points and approaches infinity in the limit of a space-filling curve spanning the same
two points. Following Venditti et al. (2005b), therefore, the value NDS = 1 marks
a bed composed of perfectly straight-crested 2D dunes, while a value sufficiently
greater than one can be used to identify the transition from the 2D to the 3D state.
The minimum value found in the experiments of Venditti et al. (2005b) is NDS= 1.02
while the threshold marking the onset of the 3D state was set equal to NDS = 1.21
by examining the state of the bed and empirically deciding the NDS value for which
the bed is composed primarily by a mixture of highly sinuous and linguoid bedforms
(Venditti et al. 2005b).

In figure 18 we plot the measured and computed values of NDS as a function of
time for the first hour of bed evolution for all bedforms present within the observation
window at each instant in time. The first phase of bed evolution is marked in this
figure by the line NDS = 1.21, which delineates the transition from the 2D to the
3D states. It is evident from this figure that the calculated values of the NDS are
in reasonable agreement with the measurements of Venditti et al. (2005b). The
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FIGURE 19. Computed (filled circles) and measured (open circles) (Venditti et al. 2005b)
averaged non-dimensional span NDSave.

calculated values, however, do not get as close to unity as do the measurements and
are overall somewhat higher than the measurements throughout the first phase of bed
evolution. Moreover, the simulated bed crosses the NDS= 1.21 threshold at ∼700 s,
which is sooner than in the experiment. Overall, these trends are consistent with the
previously discussed finding that the simulations do not produce a state of the bed
evolution as 2D as observed in the experiment. As the NDS threshold for the onset
of three-dimensionality is crossed, both simulated and measured NDS values begin
to exhibit significant scatter and a great deal of intermittency, with values fluctuating
wildly between clearly 3D and 2D bed states. As discussed by Venditti et al. (2005b),
this trend is attributed to the complex and highly fragmented crestline topologies that
emerge during the 3D state during the crestline reorientation process. Such crestlines
are not persistent in time and give rise to the large scatter observed in figure 18. The
numerical simulations reproduce this important feature of the 3D state of the bed
with reasonable accuracy.

To further quantify the level of agreement between the measured and computed
temporal variation of the NDS, we plot in figure 19 the temporal variation of NDSave,
which is obtained by averaging at each instant in time the values of NDS for crestlines
with Λy > 0.8 m. This figure clarifies the trends we discussed in the previous figure
and further allows us to gauge the level of agreement between the experiments
and simulations during the 3D state when the NDS values exhibit large scatter. It
is evident, for instance, that once the NDS = 1.21 threshold is crossed, both the
measured and simulated NDSave values fluctuate around an equilibrium value, which
is equal to approximately 1.3 in the experiments and 1.25 in the simulations.

Numerous field and experimental studies have been devoted to investigate the ratio
of bedload to suspended load in waterways under various flow field condition (see e.g.
Fredsoe 1974; van Rijn 1993; Best 2005; Andreotti et al. 2011; Charru et al. 2013).
For a fixed flow condition, however, the variation of this ratio at different stages of
sand wave evolution has not been investigated. Using the simulation results in this
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FIGURE 20. Calculated instantaneous profiles of bedload (qb) and suspended load (qs)
distribution over a sand wave along the streamwise direction (s vector) during (a) the 2D
stage and (b) the 3D stage of sand wave development. The 2D and 3D stages correspond
to t = 200 s and 400 s, respectively. Flow is from right to left and the vertical axis is
elevation above bed.

work, we attempted to identify the relationship between bedload and suspended load
during the 2D and 3D stages of sand wave development. In figure 20, we plot the
variation of suspended load and bedload along the streamwise direction over a single
sand wave in the middle of the channel and at two different instants in time: one
during the 2D stage; and one during the 3D stage of sand wave development. The
suspended load is calculated as the depth integral of the product of the streamwise
velocity component with the suspended sediment concentration above the bedload
layer. The bedload, on the other hand, is calculated directly from (2.18). The results
in figure 20 show that, for a single sand wave in the 3D stage (in this case after
400 s), the bedload and suspended load contributions to the total sediment load are
83 % and 17 %, respectively. During the 2D stage (after 200 s in this case), the
bedload and suspended load contributions comprise 94 % and 6 % of total sediment
load, respectively. These results agree with the study of Andreotti et al. (2011) in
which, for grains with ws/U � 1, they proposed that most of the sediment load is
concentrated near the bed and that the bedload is the main contribution of the total
load. In our study, we observe that, during the 2D stage when the suspended sediments
are not completely entrained, the sediment concentration is more concentrated near
the bed and therefore our results show only a small contribution of suspended load
(6 %). As the turbulent flow near the bed is able to entrain more sediment into
suspension, however, the contribution of the suspended load increases significantly to
17 % as sand waves develop into their 3D stage. Thus the total sediment load that
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FIGURE 21. Calculated temporal evolution of contours of bed elevation along the
arclength coordinate s showing the propagation of sand waves along the centreline of the
channel computed on grid systems (a) A, (b) B and (c) C.

gives rise to the development of the sand wave pattern comprises both suspended load
and bedload, and neglecting either of these contributions can lead to considerable
errors. This finding is consistent with the previously discussed effects of stratification,
which become increasingly more significant at later stages (see figure 8) when the
concentration of suspended load in the water column increases.

To summarize many of the characteristics of the simulated sand waves in a single
plot and present yet another comparison between the solutions obtained on the three
grid systems, A, B and C, we plot in figure 21 contours of bed elevation during
the first 25 min of the simulation in s–t form. The horizontal axis s in this figure is
the arclength along the channel centreline within the sand wave observation window,
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the vertical axis t measures time since the start of the coupled simulation, and the
contours shown are those of the instantaneous bed elevation z = z(s, t). Such plots
are used extensively to characterize the spatial and temporal evolution of bedforms,
because they provide an effective way to illustrate a number of important physical
phenomena (MacVicar et al. 2006; Coco et al. 2007; Escauriaza & Sotiropoulos
2011a). For example, the slope of the characteristic lines that emerge in such a plot
is inversely related to the sand wave celerity, while the horizontal spacing of the
topography contours along t = const. lines provides the wavelength of sand waves.
It is evident from figure 21 that on all three grid systems bed features of various
sizes and celerities appear and evolve with time. A well-known feature of sand
waves, which has been observed in many experiments (see e.g. Coleman & Melville
1994; Venditti & Church 2005), is that the celerity of bedforms decreases with time
(also see figure 15c). This feature is clearly evident in figure 21 by the continuously
steepening upward slope of the characteristic lines. Fast-travelling small-scale sand
waves are seen to initially appear and merge to form larger-scale slower-travelling
sand waves. In particular, the three different stages of sand wave development that
we already mentioned in previous sections of this paper can be readily identified in
figure 21, especially on the two finest meshes. The first stage (t<∼ 120 s), when the
sequence of cross-hatch patterns, chevrons and incipient crestlines appear on the bed,
is clearly evident by the fine structure of the contours observed during this interval
in figure 21(b,c). The quasi-2D stage of the process is also evident in figure 21, by
the steepening of the characteristic lines in the interval ∼120 < t < ∼600 s, as is
the onset of the 3D quasi-equilibrium stage occurring for t > 600 s and marked in
figure 21 by yet another steepening of the slope of the characteristic lines. Finally,
this figure can also serve as an effective measure for quantifying the grid sensitivity
of the computed sand waves. It is evident from figure 21(a), for instance, that, as we
have already discussed above, grid A is far too coarse to accurately capture the first
stage of bed evolution dominated by small-scale cross-hatch and chevron features.
While it takes longer until the bedforms initiate in this grid, however, it is apparent
in figure 21(a) that, as soon as they appear, they grow very fast, yielding patterns
that are broadly similar to those observed on the two finer grids. Finally, while both
grids B and C can capture the fine-scale early-time bed features, figure 21 clearly
shows that on grid C the simulated sand waves evolve faster than in the other two
grids, which is in better overall agreement with the measurements.

5.3. Coupled bed–flow interactions
Having established in the previous section that the simulations are able to capture most
features of the measured bed instability and subsequent growth of sand waves with
reasonable accuracy, we now turn our attention to elucidate the physics of the coupling
between the turbulent open channel flow and the mobile sand bed. The main objective
of this section is to provide novel insights into the hydrodynamic processes that drive
the complex morphological features we discussed in the previous section. Specifically,
we seek to probe questions that have been at the centre of extensive debate in the
literature, including, among other things: the linkage between coherent structures in
the turbulent boundary layer and the initial bed instability (Colombini 2004; Venditti
& Church 2005; Venditti et al. 2006; Chou & Fringer 2010; Omidyeganeh & Piomelli
2013a,b), the role of flow separation off sand wave crestlines as a means for sand
wave migration (Kostaschuk 2000; Schindler & Robert 2004; Best 2005; Colombini
& Stocchino 2012) and the origin of low-frequency coherent structures rising to the
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water surface, also known as surface ‘boils’ (Jackson 1976; Yalin 1992; Venditti &
Bennett 2000; Best 2005).

With the previously discussed grid-sensitivity studies and numerical experiment in
which stratification effects were neglected (see § 5.2.1), we presented evidence in
support of the hypothesis that near-bed coherent structures in the turbulent flow over
the initially flat, mobile sand bed are responsible for initiating the bed instability
(Grass 1970; Venditti et al. 2006). If this is indeed the case, however, it is reasonable
to further hypothesize that the distinct linear cross-hatch patterns that appear on the
bed at the onset of the instability (see figures 5a and 4a) are the imprints on the
sand bed of near-bed coherent structures. Turbulent sweep events, characterized by
fourth-quadrant (Q4) velocity fluctuations with u′ > 0 and w′ < 0 and associated with
the interaction of hairpin vortices in the turbulent boundary layer with the wall, have
long been hypothesized as the main mechanism for destabilizing the bed (Grass 1970,
1971; Coleman & Melville 1994; Best & Kostaschuk 2002). Venditti & Church (2005)
presented some quantitative evidence in support of this hypothesis by showing that
the average or dominant size of eddies in the initial (flat bed) flow at 5 mm above
the bed (located at wall unit of z+∼ 150) are essentially identical to the average size
of the lines of the cross-hatch pattern. It has yet to be demonstrated, however, that
instantaneous sweep events form patterns that correlate with the distinct cross-hatch
or chevron striations observed during the early stage of the bed instability (Venditti
& Church 2005). To explore this possibility we first use our simulation results on
grid C and consider the fluctuating velocity field at the first horizontal plane off
the bed (located at z+ ∼ 23) at time t ∼ 4 s. At this instant in time the bed is still
flat and shows no signs of instability. To identify the areas on the bed experiencing
instantaneous sweeps, we define the sweep detection function (SDF) Fs defined as
follows:

Fs =
{

1 if u′ > 0 and w′ < 0,
0 elsewhere.

(5.3)

In figure 22 we plot a snapshot of the SDF constructed by time averaging the
instantaneous velocity field over a time interval of 4 s (from t= 0 until t= 4 s) and
subtracting the mean velocity field from the instantaneous velocity field to calculate
the fluctuating velocity components. We also plot in this figure the fluctuating shear
velocity (which is non-dimensionalized with the mean flow velocity) and show for
the sake of reference the cross-hatch patterns that emerge on the bed a few seconds
later within the same observation window. The dimensionless fluctuating shear velocity
(u′∗/U) in figure 22(b) is also computed by time averaging the instantaneous shear
velocity over a time interval of 4 s and subtracting the mean velocity field from the
instantaneous velocity. It is clearly evident from figure 22 that both the SDF and the
fluctuating shear velocity exhibit cross-hatch patterns very similar to those appearing
on the bed during the early stage of instability. The length of most of the linear
features comprising the cross-hatch in the shear stress and SDF fields are of the order
of 5–7 cm, which compares well with the length of lines that appear on the bed.
The angles the lines in the SDF and fluctuating shear velocity contours form with
the channel axis in figure 22 range from 35◦ to 45◦, which is close to the average
angle of the cross-hatch patterns (35◦–40◦). To the best of our knowledge, these results
represent the first evidence that near-bed synchronized sweeps are correlated in terms
of both length and shape with the early cross-hatch patterns on the sand bed. We
thus argue that, when considered in tandem with the evidence presented by Venditti
& Church (2005), our results make a conclusive case that near-bed coherent structures
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FIGURE 22. Computed contours of (a) the dimensionless fluctuating shear velocity and
(b) sweep detection function Fs (5.3) over a window in the centre of the channel and
near the bed surface where z = ‖δBL‖. The bed features associated with this instant in
time (t∼ 4 s) are the cross-hatch patterns with an amplitude of ∼2d50 and wavelength of
∼4–7 cm, which are consistent with the scale of the structures shown in this figure (see
the oblique lines). Flow is from left to right and the grid lines are 0.115 m apart along
both directions. The black solid lines are provided to better identify some of the regions
of linear cross-hatch features in the contour plots.

are responsible for destabilizing the bed and for giving rise to the cross-hatch and
chevron shapes observed in both the simulations and the experiments during the very
early stage of bed evolution.

In order to further support our hypothesis regarding the linkage between near-bed
coherent structures and bedform initiation, we use our simulation results on the finest
grid system, grid D, and track simultaneously the evolution of the turbulent sweep
events on a 2D plane above the bed and the bed deformation for the first 22 s of
the simulation. We note once again that the fluctuating quantities and SDF at any
time instant t = tf are obtained by time averaging the instantaneous values over a
time interval of 0 < t < tf and subtracting the mean value (over the time interval)
from the instantaneous quantity. In figure 23 we further mark in the contour plots of
the instantaneous SDF (5.3) the location where the deforming bed rises to intersect
and protrude through the horizontal plane, which is located at the leading edge of
the bedload layer (z = δb). In other words, the white patches in figure 23 mark the
intersection of the sediment defects (areas of localized deposition of sediment) with
the horizontal plane and can be used to readily track the growth and propagation
of these defects in relation to the instantaneous sweep events. To help interpret
these results, we note that the dark-coloured patches in the Fs contours mark areas
where Fs = 1, which by definition denotes Q4 events, whereas light-coloured patches
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are areas where Fs = 0 (regions where no sweeps are present). In other words, the
dark patches in these plots are regions where the vertical velocity component of the
fluctuating velocity vector is directed towards the bed. One could thus argue that
regions where Fs= 1 are areas where local micro-scour events could first originate on
the bed because: (i) the direction of the fluctuating velocity vector in these regions
is towards the bed and is favourable for inducing scour; and (ii) Q4 events carry
high-momentum fluid towards the bed and tend to locally increase the bed shear
stress, which could create conditions suitable for initiation of motion (see subsequent
discussion about the role of shear stress fluctuations). For sediment continuity to be
satisfied, and assuming that during the initial stages of the process only a negligible
amount of sediment is suspended (see the discussion of figure 20), the sediment
displaced outside of these small scour holes will tend to accumulate in their vicinity,
giving rise to the formation of small sediment defects. We also note that, as soon as
some of these defects and surrounding scour holes form on the bed, they modify the
local bed geometry and can help intensify the local structure of near-bed fluctuations
in a manner that promotes further scour and deposition events, causing the defects
to grow and propagate (see subsequent discussion on this in relation to figure 24).
Based on this heuristic analysis we can thus hypothesize that sediment defects will
first appear on the bed in regions where Fs = 0 and adjacent to patches where
Fs = 1. As seen in figure 23 our computed results confirm this hypothesis. During
the first 5–6 s of the simulation, any defects on the bed are too small to protrude
through the horizontal plane of figure 23. During that time the contours of Fs exhibit
the characteristic cross-hatch pattern that is also seen in the bed elevation contours
at early times previously shown in figure 5(a) and also discussed by Venditti &
Church (2005). The cross-hatch patterns in Fs (figure 23a,b) are seen to form angles
between 40◦ and 60◦ with the horizontal, which are similar to the angles observed
in the cross-patterns of the bed elevation during the first few seconds of the bed
instability (Venditti & Church 2005). At approximately 6 s (see figure 23c), the first
sediment defects appear on the horizontal plane, where Fs is plotted in the form of
small circular nodes of sediment. It is evident from this figure that essentially all
sediment defects are fully contained within areas where Fs= 0 and are almost always
outlined, at least in part, by the boundary of areas where Fs = 1. This trend is seen
to clearly persist for several seconds of the simulation, until the sediment defects
and associated areas of scour on the bed become large enough to start drastically
changing the structure of near-bed velocity fluctuations. This appears to happen after
approximately 15 s when the Fs contours begin to lose the characteristic cross-hatch
pattern they exhibited at early times when the bed was essentially flat.

Another important finding that is evident from figure 23 is that, as soon as the
sediment defects appear at the horizontal plane, they begin to grow in size as they
are advected downstream and ultimately begin to merge with surrounding defects to
form the chevron features observed in the bed elevation at later times (see figure 5b).
This process is highlighted in figure 23 by marking a few such defects (which are
circled) so that their fate can be clearly tracked with time. A closer look at this figure
further shows that essentially all defects that initially appear on the horizontal plane
have the same fate; they are advected downstream by the near-bed flow, grow in size
and ultimately merge to start the process of bedform initiation.

To underscore the importance of fluctuating shear stress magnitude in the formation
and subsequent propagation of sediment defects, we plot in figure 24 the contours
of instantaneous shear stress at the same plane, location and instants in time as
used in figure 23 for the Fs contours. As in figure 23, we also superimpose in



Simulation of sand waves in a turbulent open channel flow 191

(a)

(c)

(e)

(g)

(i)

(b)

(d)

( f )

(h)

( j)

FIGURE 23. Computed (on grid D) contours of the instantaneous sweep detection function
Fs (5.3) on a horizontal plane located at z= ‖δBL‖ superimposed with the intersection of
the bed surface with that plane (white spots). The circles in some of these figures are
used to track in time a few selected areas of local deposition, which grow, merge and
start forming the incipient sand waves. Flow is from left to right and the grid lines are
0.115 m apart along both directions.
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FIGURE 24. Computed (on grid D) contours of the dimensionless fluctuating shear
velocity on a horizontal plane located at z= ‖δBL‖ superimposed with the intersection of
the bed surface with that plane (white spots). Flow is from left to right and the grid lines
are 0.115 m apart along both directions.

figure 24 the intersection of the bed with the plane at various instants in time. It is
readily apparent from figure 24(a,b) that the regions of the near-bed flow where the
fluctuating shear stress is high are organized in the same cross-hatch pattern as the
Fs function in figure 24. As previously discussed, this should not be surprising, since
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fluctuating sweep events transport high-momentum fluid towards the bed and increase
the local fluctuating shear stress. It is also evident from figure 24 (see snapshots at
6–10 s) that sediment defects occupy regions of low fluctuating shear stress but along
their stoss side are bounded by regions of high fluctuating shear stress. This finding
is entirely consistent with our previous discussion regarding the role of sweeps to
promote local scour events on the bed and lead to the formation of adjacent sediment
defects. Figure 24 also illustrates clearly the mechanism via which sediment defects
grow and propagate. Note, for instance, that, as soon as the defects appear on the
plane, they start propagating downstream ahead of a trail of high fluctuating shear
stress that follows their motion. These distinct regions of high fluctuating shear stress
in the stoss side of the defects, which also coincide with sweep events as shown in
figure 23, mark regions of local scour events that supply the sediment that helps grow,
advect and sustain the defects. As we observed for the Fs contours, the fluctuating
shear stress magnitude contours begin to lose their cross-hatch pattern, starting at 10 s,
when the defects have grown enough to be able to affect the local flow. Even at these
later instants in time, however, the pockets of high fluctuating shear stress always
trail sediment nodes. This finding underscores and further clarifies the previously
discussed process of local scour at the stoss side (marked by high fluctuating shear
stress) of the sediment nodes followed by deposition at their lee side that causes the
bed features to grow and propagate. In subsequent sections of this paper we will
discuss how essentially the same mechanism of scour at the stoss side and deposition
at the lee side is responsible for the growth and migration of large-scale sand waves
when they appear. The results we have presented in this section, however, are quite
striking, as they also show that such mechanism appears to be at work during the
early stages of bed instability. What changes are the structure, scale and dynamics
of coherent structures near the bed that drives such phenomena. During early stages
the process of bed deformation is dominated by the near-bed sweeps that occur in
the initially flat bed open channel flow. The bed responds quickly to the flow, and
sediment nodes appear as the result of sweep events in the fluctuating velocity field
that increase the fluctuating shear stress locally, giving rise to localized scour events
and associated regions of deposition for sediment continuity to be satisfied. As the
bedforms grow and self-organize to form dunes, they migrate much slower than the
time scale of the flow and, as we will subsequently show, induce large-scale coherent
structures that act to augment scour at the stoss side and promote deposition at the
lee side.

We now consider the coupled evolution between the bed and the flow at subsequent
instants in times by showing in figures 25–27 various instantaneous perspectives
of the simulated velocity magnitude, spanwise vorticity and suspended sediment
concentration fields. Figure 25 shows the flow and bed at t = 20 s during the
transition from chevrons to incipient crestlines. It is evident from the instantaneous
velocity contours shown in figure 25 that the emerging sand waves act as roughness
elements causing the boundary layer to thicken and giving rise to localized pockets of
low streamwise momentum. At this stage of the evolution of the flow, the amplitude
of sand waves is of the order of 0.5 cm (i.e. approximately smaller that 3 % of the
flow depth) and crestlines have just begun to emerge. Consequently, the sand waves
are not yet large and coherent enough to cause a major reorganization of the flow,
which at this stage resembles flow over a rough flat wall. The coupled interaction
between the turbulent flow and the mobile sand bed, however, is seen in figure 25
to have a profound impact on the suspended sediment concentration. Sediment is
transported from the bed upwards by the coherent structures, providing the sediment
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FIGURE 25. (Colour online) Computed colour maps of instantaneous (a) velocity
magnitude (non-dimensionalized by mean flow velocity), (b) streamwise velocity
component (non-dimensionalized by mean flow velocity) and (c) suspended sediment
concentration (volume fraction) superimposed with the concentration isosurface (=0.01).
The rectangular box in (a) shows the location of the windows in (b) and (c). Velocity
and concentration fields are shown along five and four longitudinal sections, respectively,
that are superimposed over the bed geometry at t = 20 s. Flow is from bottom left to
top right.

supply mechanism for mobilizing the bed and driving the subsequent evolution of
sand waves. While most suspended sediment at this stage remains confined close to
the bed, the resulting concentration field is highly 3D and is dominated by intermittent
and localized events during which masses of sediment are locally ejected from the
bed into the outer flow (see the circle area in figure 25c). The overall shape of
the concentration isosurface, which is characterized by streaks and loops inclined
forwards and rising upwards, suggests a close correlation between sediment transport
and coherent structures in the near-bed turbulent boundary layer. It is also clear from
figure 25 that by t= 20 s a spatially heterogeneous layer of suspended sediment has
formed above the bed, with pockets of heavier sediment-laden fluid lifted off the bed
and into areas of lighter, clear fluid, thus setting up an active stratified layer. Based
on the results shown in figure 8, it is approximately after 20 s of bed evolution
when measurable discrepancies emerge between the bed elevation computed with the
unstratified and the stratified formulations. The results shown in figure 25 explain
why this is so. While, at the very early stages of bed evolution (when cross-hatch
and chevrons appear), near-bed coherent structures serve as the only mechanism to
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FIGURE 26. (Colour online) Computed colour maps of instantaneous (a) velocity
magnitude (non-dimensionalized by mean flow velocity), (b) streamwise velocity
component (non-dimensionalized by mean flow velocity) and (c) suspended sediment
concentration (volume fraction) superimposed with the concentration isosurface (=0.01).
The rectangular box in (a) shows the location of the windows in (b) and (c). Velocity
and concentration fields are shown along five and four longitudinal sections, respectively,
that are superimposed over the bed geometry at t = 200 s. Flow is from bottom left to
top right.

destabilize the bed and initiate the entrainment of suspended sediment into the flow,
as soon as sediment comes into suspension, the energetic near-bed coherent structures
cause the formation of a spatially heterogeneous and locally unstable stratified layer
as heavier sediment-laden fluid is locally lifted off the bed and ejected into the outer
flow. Stratified layer instabilities, therefore, begin to become important at this point,
explaining why the discrepancies between the stratified and unstratified simulations
become evident at approximately this time. Therefore, our results make a strong case
that both coherent structures in the flow and stratified layer instabilities are responsible
for the destabilization and evolution of the bed (see also Venditti & Church 2005).
The former dominate during the early stages of the process and serve to create the
unstable and spatially heterogeneous stratified layer above the bed, which is required
for activating the latter.

The flow patterns shown in figure 26 are at t = 200 s when quasi-2D sand waves
have emerged with amplitude of ∼2 cm and wavelength of ∼4 to 14 cm. Comparing
this figure with figure 25, it is clear that the sand waves at this latter instant in
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FIGURE 27. (Colour online) Computed colour maps of instantaneous (a) velocity
magnitude (non-dimensionalized by mean flow velocity), (b) streamwise velocity
component (non-dimensionalized by mean flow velocity) and (c) suspended sediment
concentration (volume fraction) superimposed with the concentration isosurfaces (=0.01).
The rectangular box in (a) shows the location of the windows in (b) and (c). Velocity
and concentration fields are shown along five and four longitudinal sections, respectively,
that are superimposed over the bed geometry at t = 800 s. Flow is from bottom left to
top right.

time have grown large and organized enough to drastically alter the flow patterns
near the bed. The instantaneous velocity and vorticity contours suggest that the flow
is dominated by intense shear layers and vortex roller structures induced by KH
instability of the shear layers emanating from sand wave crestlines. The effect of
sand waves at this stage is also very pronounced in the suspended sediment field.
The contours and isosurface of concentration suggest that suspended sediment, which
is eroded by the accelerating flow over the crestlines, is trapped by the recirculating
flow and deposited in the lee side of the sand waves. This process is essentially
consistent with what has been hypothesized in the literature as the mechanism for
dune migration (Yalin 1992; van Rijn 1993; Coleman & Melville 1994; Best 2005).
Such processes are evident in figure 26 and become even more pronounced in
figure 27, which shows the flow at t = 800 s. Dunes that are fully grown and well
organized in the spanwise direction have now emerged on the bed, which protrude
higher into the flow, intensify shear-layer instabilities from crestlines and give rise
to intermittent, massive separation events that drive the transport of large amounts
of sediment from the bed towards the free surface. One such suspended sediment
transport event is clearly shown in figure 27, which shows a mass of sediment
having detached from a large pocket of suspended sediment trapped in the lee side
of a dune and getting advected towards the free surface (see the circled area in
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FIGURE 28. Computed colour map of instantaneous dimensionless shear velocity (u∗/U)
near the bed surface where z=‖δBL‖ at (a) t= 50 s, (b) 100 s, (c) 300 s and (d) 1000 s
over a window at the centre of the channel. High shear velocity near the nodes of the
chevrons at t=50 and 100 s are clearly shown in (a) and (b). Rearrangement of bed shear
stress from initial stage to 2D and 3D stages of sand development can be clearly seen in
these figures. Flow is from left to right and the grid lines are 0.115 m apart along both
directions.

figure 27c). Such major suspended transport events are expected to dramatically
attenuate the importance of stratified flow effects at this stage of the process, since
they set up large regions of locally unstable stratification, which would modify the
structure of turbulence and impact sediment transport and sand wave migration. This
finding has been further reinforced by examining the relative contributions of bedload
versus suspended sediment load in the flow, with the latter shown to be very small
during the early stages of bed evolution, while the former increases during the 3D
stage of the sand wave evolution (see figure 20 and the related discussion in § 5.2.4).

To further illustrate the role of flow separation from crestlines as the key mechanism
for sand wave migration, we plot in figure 28 snapshots of the instantaneous shear
velocity contours on the bed (non-dimensionalized with mean flow velocity). It is
evident from this figure that, throughout the various stages of the process, regions of
high shear stress occur at the stoss side of the crestlines while low shear stress occurs
at the lee side. These results are consistent with the previously discussed features of
suspended sediment motion. The high shear stress on the stoss side causes sediment
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erosion and injection into the flow, whereas the separated flow region in the lee side
promotes sediment trapping and deposition, causing the sand wave to migrate in the
streamwise direction and rearrange.

A major characteristic of turbulent open channel flow over dunes is the aperiodic
and highly intermittent appearance of free surface ‘boils’ (Muller & Gyr 1986;
Best 2005; Omidyeganeh & Piomelli 2013a,b). These are upwelling events during
which coherent structures in the flow advect near-bed fluid and sediment away from
the bed, making distinct marks, or ‘boils’, on the free surface. The recent LES of
Omidyeganeh & Piomelli (2013a,b), who simulated flow over fixed dunes, showed
that, in agreement with previously proposed conceptual models of coherent structures
(Best 2005), boils are the result of horseshoe-shaped vortical structures that rise away
from the bed and impinge at the surface. As shown in figure 29, which depicts
snapshots of an instantaneous isosurface of the Q criterion (=30) coloured with the
distance from the bed, our simulations also capture the emergence of large-scale
horseshoe vortices. This figure as well as video animations (not included herein) that
we have created, depicting the simultaneous evolution of coherent structures in the
flow and the sand waves, show that such horseshoe structures appear in the flow
as soon as chevrons and incipient crestlines emerge on the bed. The appearance
of such bed features causes local separation in the lee side of sand waves and the
emergence of distorted KH rollers in the spanwise direction (due to the complex sand
wave morphology), which quickly evolve into the horseshoe (or hairpin) structures
observed in figure 29. The heads of the horseshoes grow upwards while their legs
are stretched in the streamwise direction by velocity gradients in the local flow and
intensify. As the amplitude of sand waves grows, so do the strength and size of
horseshoes, which ultimately become strong enough not to be dissipated in the water
column and are able to rise all the way to the free surface, causing the distinct ‘boil’
events. Such events are intermittent and, as we will subsequently show, become more
frequent and pronounced when the 3D stage of bed evolution has been reached. To
further elucidate the effects of upwelling events on the free surface flow, we plot
in figure 30 instantaneous velocity magnitude, vorticity magnitude and suspended
sediment concentration contours on a horizontal plane located immediately below
the free surface. This figure clearly shows that surface boils are characterized by
low flow velocity, regions of large suspended sediment concentration and patches of
intense vorticity magnitude arising as sediment-carrying coherent structures reach and
interact with the free surface. It is however important to mention that bursting of
flow quantities (e.g. velocity and vorticity in figure 30a,b) and sediment concentration
(figure 30c) do not show up at the free surface at the same time because there
is a time lag between the two. The eruption of sediment concentration at the free
surface follows the eruption of coherent structures in the flow with a time lag. This is
indeed an interesting topic for future research, as it relates to fundamental differences
between Lagrangian and Eulerian coherent structures in the flow, with the former
arising as a result of the advection of suspended sediment to the free surface.

To quantify the frequency of occurrence and intensity of upwelling events at the
free surface, in figure 31 we plot an s–t diagram for the instantaneous vorticity
magnitude along the channel centreline and at 5 mm below the free surface. This
figure summarizes in a succinct manner many of the underlying flow processes
and also contains important quantitative information about their associated spatial
and temporal scales. First note that, since vorticity is advected by the flow, the
slope of the characteristic streaky patterns that emerge in this diagram is inversely
related to the local mean flow velocity. As seen in this figure, the slope of the
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FIGURE 29. (Colour online) Computed instantaneous isosurfaces of Q criterion (=30)
at (a) t = 100 s, (b) 400 s and (c) 700 s superimposed over the bed geometry at the
pertaining time instants. The window is the same as the rectangular box in figure 26(a).
The isosurfaces are coloured by contours of flow depth (in cm). Flow is from bottom left
to top right.

characteristics decreases with time, which is consistent with the acceleration of the
mean flow near the free surface occurring as sand waves emerge and reduce the
effective cross-sectional area of the channel and the flow velocity near the bed.
More specifically, the changing slope of the characteristics in figure 31 suggests
that at equilibrium the mean velocity at the free surface is approximately 35 %
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FIGURE 30. (Colour online) Computed contours of instantaneous (a) non-dimensionalized
velocity magnitude, (b) non-dimensionalized vorticity magnitude and (c) suspended
sediment concentration (volume fraction) at a horizontal plane 5 mm below the free
surface and after t= 500 s. The bed surface geometry associated with the same instant in
time is also shown below the water free surface. The selected window is focused on the
centre of the flume. The sediment concentrations below 10−7 are cut off. Flow is from
left to right and the grid lines are 0.115 m apart along both directions.

greater than when the bed is flat. This is broadly consistent with the development of
approximately 6 cm high equilibrium sand waves (see figure 15), which can locally
reduce the effective cross-sectional area of the channel by as much as 40 %. Another
important finding evident from figure 31 is that, based on the overall levels of vorticity
magnitude at the free surface, the following three distinct stages of evolution of the
vorticity field can be clearly defined: (i) 0< t< 100 s, when the vorticity magnitude
at the surface is essentially close to zero; (ii) 100 < t < 300 s, when intermediate
values of vorticity develop along with highly intermittent small-size streaks of high
vorticity; and (iii) t > 300 s, when streaks of high vorticity magnitude grow in size
and persist. Based on our previous discussion of bed evolution, it is apparent that the
time scales of these three stages correlate well with the various stages of development
of sand waves. During the first stage, when only small-amplitude cross-hatch patterns,
chevrons and incipient crestlines appear on the bed, the flow near the free surface is
not affected by near-bed phenomena and resembles that of the flow in a channel with
a flat bed, exhibiting weak vortical structures. As sand waves grow in their 2D and
3D stages, however, horseshoe vortical structures generated at crestlines are able to
rise and interact with the free surface (see figure 29), drastically increasing the levels
of vorticity magnitude in figure 31. This effect is clearly evidenced by the sharp
increase in the level of vorticity magnitude of the streaks occurring at approximately
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FIGURE 31. (Colour online) Computed contours of non-dimensionalized vorticity
magnitude in time along the channel centreline s at an elevation 5 mm below the free
surface.

t = 300 s, which is roughly when quasi-2D sand waves appear on the bed. Another
striking feature that follows from figure 31 is with regard to the average length of
the high-vorticity streaks, which is seen to increase continuously in time. In fact the
observed length scale agrees reasonably well with the wavelength of bedforms (see
figure 15b), reaching values as high as 50 cm or greater at later times. Such scaling
can be explained by the fact that the size of horseshoes, which dictates the length
of their free surface imprints, should correlate with the distance between adjacent
crestlines. The larger this distance, the more space horseshoes have to grow and
intensify through vortex stretching before they interact with horseshoes generated by
downstream crestlines – we present some evidence in support of this assertion in the
discussion of figure 32 below. Therefore, the results shown in figure 31 not only help
to quantify the interactions between vorticity structures generated by sand waves and
the free surface but also show that time series of flow quantities near the free surface
have embedded in them information regarding the characteristics of these sand waves.
Although not shown herein, similar conclusions can be drawn by considering s–t
diagrams of instantaneous velocity magnitude and sediment concentration.

To further elucidate the structure of the flow at instants in time when fully
developed dunes have emerged, we plot in figure 32 finite-time-averaged contours
and isosurfaces of streamwise velocity, turbulence kinetic energy, spanwise vorticity
and sediment concentration. The instantaneous results have been averaged over
a time interval of 5 s, which is small enough to assume quasi-stationary dunes.
Many of the previously discussed features of the flow become more clear in this
figure, including the regions of flow separation from crestlines, the pockets of high
turbulence kinetic energy at the unstable shear layers that originate as a result of the
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FIGURE 32. (Colour online) Computed contours of finite-time-averaged (a) velocity
magnitude, (b) turbulent kinetic energy, (c) spanwise vorticity (plus isosurfaces of
spanwise vorticity =15) and (d) suspended sediment concentration (plus concentration
isosurfaces of 0.01) along five representative longitudinal sections. Time-averaging has
been carried out over the time window of t=800 to 805 s. The location of the windows is
shown in figure 27(a). The quantities are non-dimensionalized with bulk velocity and flow
depth. Sections are separated with identical distances, and geometrical scales are tilted.
Flow is from bottom left to top right.

recirculating lee flow, the strong organization of vorticity in spanwise rollers along the
crestlines, and the systematic and persistent organization of regions of large suspended
sediment concentration in the lee side of the dunes. These results further reinforce
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FIGURE 33. Plan view of computed isosurfaces of finite-time-averaged (over the time
window of t = 800 to 805 s) spanwise vorticity (=8 in red) and streamwise vorticity
(= ± 1.5 in blue and green, respectively). Isosurfaces are superimposed over the bed
geometry (in gold) at t= 800 s. The window covers the entire mobile bed and the flow
is from left to right.

our previous discussion regarding the role of flow separation from the dune crestlines,
and sediment trapping and deposition in the lee side, as the main mechanism for
migration and continuous reorganization of crestlines. It should be noted, however,
that the mean vorticity field is rather more complex than that suggested by figure 32,
which only shows the spanwise vorticity. This is demonstrated in figure 33, where
we superimpose in the same plot an isosurface of spanwise vorticity along with two
isosurfaces of streamwise vorticity of equal but opposite sign. While it is clear from
the values of the selected isosurfaces that most of the mean vorticity in the flow is
concentrated along spanwise rollers aligned with dune crestlines, it is also evident
that the space between successive rollers is occupied by weaker, albeit clearly defined,
streamwise counter-rotating streaks of vorticity. The streamwise streaks that are close
to the channel walls are more coherent and persistent since they are the result of
well-known corner eddies in open channels (Yalin 1992; Nezu & Nakagawa 1993).
In the centre of the channel, however, the streamwise streaks are shorter and span the
distance between successive rollers. We argue that such streaks are associated with the
streamwise vorticity concentrated in the legs of horseshoe vortices that are stretched
in the space between adjacent crestlines as also revealed by the instantaneous Q
isosurfaces shown in figure 29.

5.3.1. Sand wave dynamics
In this section, we focus our attention on quantifying the statistical properties of

the simulated sand waves as well as examining the spectral characteristics of the
simulated flow velocity fields over an active mobile sand bed. Previous work has
shown that sand waves in numerical simulations, in laboratory experiments and in
nature obey universal scaling laws. For instance, spectral analysis of the topography
in experimental data has revealed power-law relations of the frequency spectra, with
exponents of f−2 and f−3 for high and low frequencies, respectively (Hino 1968;
Jain & Kennedy 1974). The root-mean-square (RMS) of bed elevation fluctuations
sampled over a range of length scales has also been shown to exhibit a power scaling
law (Jerolmack & Mohrig 2005c,a,b; Escauriaza & Sotiropoulos 2011a), which can
be related to the roughness of the evolving bed (Barabási & Stanley 1995). Finally,
recent laboratory measurements of turbulent flow over mobile beds showed that the
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spectra of velocity fluctuations above the bed exhibit a distinct ‘spectral gap’, which
delineates energetic low-frequency structures in the flow linked to migrating bedforms
from turbulence in the flow (Van Der Hoven 1957; Singh et al. 2010). In this section
we show that our simulated sand waves and flow fields exhibit all these important
characteristics.

Following Jerolmack & Mohrig (2005c) and Escauriaza & Sotiropoulos (2011a), we
evaluate the rms of the computed bed elevation as a function of the length scale
1s along the centreline s of the channel. The details of this so-called fluctuation
approach can be found in Escauriaza & Sotiropoulos (2011a) (see also Chrisohoides
& Sotiropoulos 2003) and for that reason only a brief summary is presented here.
For a given instant in time t, we sample the bed elevation series along the channel
centreline z= z(s) using a filter width 1s and compute the RMS of the bed elevation
as a function of 1s as follows:

z′1s =
[

1
N

N∑
i=1

(zi − z̄b)
2

]1/2

, (5.4)

where zi is the bed elevation at the ith point along the channel centreline, z̄b is the
averaged bed elevation along the centreline, and N is the total number of data points
along the centreline at intervals of 1s.

The scale invariance of the spatial fluctuations produced by the bedform geometry
determines an increase in magnitude with the length scale of z′1s. This relation is also
similar to the definition of the roughness exponent on the RMS diagram of Barabási &
Stanley (1995). We thus define the statistic I1s to quantify the scaling of the variation
of the bed RMS with 1s (Escauriaza & Sotiropoulos 2011a):

I1s = z′1s

√
1s∼ (1s)ϑ . (5.5)

The scale at which I1s deviates from the above power-law relation represents the
approximate maximum spatial window size at which the spatial correlation of the
bedforms is maintained (Escauriaza & Sotiropoulos 2011a). As seen in figure 34, for
our case and at time t = 150 s, when we apply the above fluctuation analysis, the
bed elevation fluctuations remain correlated up until 1s ≈ 0.05 m. This coherence
length scale of sand waves coincides with the average length of measured (Venditti
& Church 2005) and computed sand waves in the time period of 0< t< 200 s. Sand
waves of smaller length scale remain correlated and self-similar, with a roughness
exponent ϑ = 0.5. This exponent is identical to that determined by Escauriaza &
Sotiropoulos (2011a) for ripples developing inside the scour hole in the junction of a
circular cylinder with a mobile sand bed.

In figure 35 we plot the temporal variation of the spatial standard deviation of
the bed elevation z = z(s, t) along s obtained on all four grid systems that we
employed in this work. Since bedforms cannot grow indefinitely, we anticipate
reaching an equilibrium steady state consistent with the continuous generation of
bedforms at a statistically converged wavelength and amplitude. As seen in figure 35,
and regardless of the grid system used, the resulting variation of σ(t) exhibits three
distinct scaling regimes of bedform development. In the first regime, when the bed
evolves from the flat bed condition to cross-hatch patterns, σ(t) increases as t0.5 (see
figure 35). Subsequently, the chevron-shaped and subsequent features evolve much
faster and σ(t) grows rapidly as t10, which is one order of magnitude larger than the
previous stage. This trend continues until the entire bed surface is covered with sand
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FIGURE 34. Statistics of bed elevation along the centreline that shows the fluctuation
diagram averaged over time (5.5). The error bars are associated with the standard deviation
of I1s and spatial window size 1s is in metres. The straight line marks the 0.5 slope.

waves. Later a new regime appears at which self-similar 2D and/or 3D bedforms
migrate downstream in a periodic manner. The much slower evolution of the standard
deviation at this last regime explains the approximately constant slope of 0.5 in the
fluctuation diagram shown in figure 35. Even though all four grid systems show a
similar trend of sand wave development, the coarse grid simulation (grid A) exhibits
a time lag of approximately 100 s, which has already been discussed and explained
in a previous section. Overall, a figure like figure 35 can serve as a statistical measure
for quantifying the grid sensitivity of the computed bedforms.

In figure 36 we also plot the frequency spectrum of bed elevation fluctuations
at the centre of the channel. The figure shows that in the low frequency range,
corresponding to the larger slowly migrating dunes, the spectrum exhibits −1 decay,
while for the high frequency range, corresponding to small-scale sand waves, the
spectrum coincides with the approximately −2 power-law relation. This rate of
spectral decay for small-scale sand waves agrees reasonably well with what has
been observed before in laboratory experiments and numerical simulations. Using
experimental data, Hino (1968) showed that the frequency spectrum of bedforms
has a power-law relation with a decay of f−2 for low frequencies near the peak of
the spectrum, and argued that the −2 power law was mainly associated with the
dynamics of ripples. The numerical simulations of Escauriaza & Sotiropoulos (2011a)
showed the same −1 and −2 slopes for the high and low frequency ranges of the
spectrum, respectively, for sand waves developing around a cylindrical pier. The
recent experiments of Singh et al. (2010) also showed the −2 slope for bedforms in
a large-scale gravel-bed experimental flume. We note that the reason our simulations
cannot maintain the −2 slope spectrum at even higher frequencies is that the solution
of the Exner–Polya equation in our model is based on a dissipative second-order
scheme for the spatial derivatives, which, in the absence of a subgrid model for the
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FIGURE 35. Evolution of the standard deviation of the bed elevation in time calculated
along the channel centreline. The dashed, dotted, dotted-dashed and solid lines represent
the simulation results on grid systems A, B, C and D, respectively.

fluctuations of the bed elevation, tends to smooth high-frequency features of the bed
elevation.

Finally we turn our attention to the spectra of the velocity fluctuations in the flow
that arise in a channel with slowly evolving bedforms. Compared to a turbulent flow
over fixed roughness elements, in which turbulence is the only source of velocity
fluctuations, a distinct characteristic of a turbulent flow over moving bedforms is
that it is modulated by the very slowly evolving bed topography. In the present case,
sand waves propagate with an average velocity that is less than 0.5 % of the bulk
flow, and this slow evolution of the bed introduces additional velocity fluctuations at
the very slow temporal scales associated with bedform migration. Singh et al. (2010)
recently showed that the velocity spectra in a gravel mobile bed open channel exhibit
a clear spectral gap delineating the low-frequency fluctuations associated with the
migrating bedforms from the higher-frequency fluctuations associated with turbulence.
The experiment of Singh et al. (2010) considered bedforms with amplitude as high as
10 cm developing in turbulent open channel flow with a very high Reynolds number
Re= 106. They argued that the underlying physical causes for the spectral gap in their
measurements are similar to the well-known spectral gap in atmospheric turbulent
boundary layers (Van Der Hoven 1957), where the gap separates energy contributions
due to turbulence from those due to very slow mesoscale and diurnal variability in
the atmosphere. In figure 37 we plot the calculated velocity spectra at three elevations
above the bed. It is seen that all three spectra exhibit scaling regimes separated by
a region of a clearly defined flat spectral gap: (i) the low-frequency f−1 scaling due
to migrating bedforms; and (ii) the characteristic spectrum of turbulence with the
f−1 and f−5/3 regions. It is also evident from figure 37 that in our simulations the
width of the spectral gap increases with distance from the wall. Singh et al. (2010)
reported velocity measurements at only one elevation above the bed but hypothesized
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FIGURE 36. Frequency spectrum of bed elevation fluctuations at the centre point of the
channel.

that the width of the spectral gap should increase with distance from the bed surface.
This is because the right (high-frequency) end of the spectral gap is associated with
the integral time scale of turbulence (the scale of the largest turbulent eddies in
the flow) while the (left) low-frequency end of the spectral gap is associated with
velocity fluctuations contributed by the smallest bedforms. For turbulent boundary
layers, however, eddies of vertical size smaller than the distance to the surface z do
not produce a signature in the velocity spectra at height z (Venugopal et al. 2003).
Therefore, the smaller the distance from the bed at which the velocity sensor is
placed, the better it is able to resolve velocity fluctuations by the smallest bedforms,
thus extending the low-frequency end of the spectral gap to the right into higher
frequencies as the bed is approached and causing the width of the gap to be reduced.
This is clearly evident in the calculated spectra in figure 37, which show that, while
the right end of the spectral gap is fixed at approximately 1 Hz (the frequency of the
largest eddies in our case), its left end is displaced further to the right into higher
frequencies as the distance from the bed is decreased. To the best of our knowledge,
this is the first time that the experimentally observed spectral gap has been simulated
numerically. Moreover, our simulations confirm the hypothesis of Singh et al. (2010)
regarding the relationship between the width of the spectral gap and the distance of
the velocity probe from the bed.

Regarding the spectra shown in figure 37, the apparent good resolution of the LES
is due to the fact that the spectra shown in this figure have been computed at a
time when very large-scale sand waves are present on the bed (during the 3D stage
of sand wave evolution when ∆ ∼ H/3). When bedforms grow to be so large, the
large-scale energetic coherent structures shed from their crestlines dominate turbulence
production and can be apparently resolved quite well on a grid like grid C that we
have employed.

6. Summary and conclusions
We developed a LES approach for carrying out coupled hydro-morphodynamic

simulations of turbulent flow in open channels with a mobile sand bed. The numerical
formulation can handle sand waves of arbitrary geometrical complexity, accounts
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FIGURE 37. Calculated frequency spectrum of velocity fluctuations at (a) the leading edge
of the bedload layer where z = 2d50 above the bed surface, (b) z = 5d50 above the bed
surface and (c) z= 10d50 above the bed surface. The time series are probed at the centre
point of the channel during the 3D stage of the sand wave development when ∆∼H/3.

for stratified flow effects through the Boussinesq assumption, and can simulate
both bedload and suspended sediment transport processes. The method was applied
to simulate the case studied experimentally by Venditti & Church (2005), who
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investigated sand wave initiation, growth and migration in a sand bed open channel
with sediment recirculation.

We carried out systematic grid refinement studies and showed that a sufficiently
refined mesh near the bed is required in order to correctly capture the sand wave
dynamics, especially during the early stages of bed instability when small-scale
features develop on the initially flat bed. The computed results reproduced with
reasonable accuracy the various stages of sand wave initiation and development,
including the initial appearance of linear cross-hatch patterns, the growth of chevron
features, the emergence of incipient crestlines and the ultimate appearance of fully
grown 2D and 3D bedforms.

One discrepancy between the simulation results and experimental observations is
with regard to the time scale of various stages of sand wave development, which
are slightly under-predicted in our simulations. We argued that one reason for the
faster development of simulated sand waves is an important difference between the
experimental and computational set-ups during the early stages of the process. In the
former, the flow discharge was gradually increased over a period of 60 s from zero
to the target experimental value, while in the simulations, the flow was assumed to
be fully developed from the start of the simulation. Another difference between the
observed and simulated bedforms was that in the simulation a 2D stage, with nearly
straight crestlines perpendicular to the flow direction, was not observed as clearly as
in the experiment. Even though in the experiments truly 2D bedforms were also never
quite realized, a stage with rather organized spanwise structures did appear. We argued
that this difference is due to the shorter domain that we used in the simulation, which
did not allow sufficient distance for disturbances introduced at the inlet of the domain
due to the continuous recirculation of sediment to diminish and triggered sooner the
onset of the 3D phase. In other words, the discrepancy in capturing the 2D stage of
the sand wave evolution in this work can also be attributed to the short length of the
simulated channel (3.5 m) while the experimental facility is approximately 10 m long
(Venditti & Church 2005). The reason for such a choice, however, is dictated by the
enormous computational cost that would be required to simulate the entire length of
the experimental channel. This important issue can be explored further via additional
simulations with longer domains. These discrepancies notwithstanding, however, the
computed sand waves captured most of the experimentally observed features with
good accuracy, including the complex topologies emerging during the continuous
rearrangement of crestlines.

Our simulations provided important insights into the coupling between migrating
bedforms and the turbulent stratified flow in the open channel. By carrying out
systematic numerical experiments, turning on and off the Boussinesq terms in the
Navier–Stokes equations, we showed that, when the grid is sufficiently refined in the
near-wall region, stratification effects do not play a role during the initial stages of
the bed instability. Rather, the initial cross-hatch patterns that appear on the bed at the
very start of the process are closely correlated with the structure of the fluctuating
near-bed sweep events just before the bed is destabilized. Stratification effects do
become important, however, at later stages of the process, when near-bed coherent
structures are able to entrain sediment into suspension, creating a highly heterogeneous
stratified layer above the bed, which modifies the structure of turbulence and the
sediment dynamics. Our findings, therefore, are in agreement with and help explain
the experimental measurements of Venditti & Church (2005), who showed that the
size of near-bed coherent structures on the initially flat bed essentially coincides with
the average length of the lines of cross-hatch that develop in the bed. They also help
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reconcile previously presented arguments in the literature regarding the relative
importance of near-bed coherent structures and stratification-related instabilities
in destabilizing the bed (Grass 1970, 1971; Coleman & Melville 1994; Best &
Kostaschuk 2002; Venditti et al. 2006). Both mechanisms are important at different
stages of the process.

While recent numerical simulations of turbulent flow over frozen 3D dunes
(Omidyeganeh & Piomelli 2013a,b) captured the previously hypothesized horseshoe
vortical structures emanating from crestlines and rising up towards the surface, our
work is the first to simulate the evolution of these structures starting from a flat
bed condition. As bedforms develop and grow, spanwise vortical rollers form that
are aligned with crestlines. As crestlines become distorted in the spanwise direction,
these rollers evolve into horseshoes, which ultimately grow sufficiently strong to rise
to the free surface. These structures transport both low-momentum near-bed fluid and
suspended sediment giving rise to the distinct ‘boils’ that are observed on the water
free surface. As a result of such rich coherent structure dynamics, the mean vorticity
field (averaged over an interval long enough for obtaining turbulence statistics but
short enough compared to the time scale of bed evolution) is shown to consist of
rollers of spanwise vorticity aligned with crestlines with streamwise streaks of axial
vorticity spanning the space between rollers. By analysing the instantaneous vorticity
magnitude field at the free surface, we showed that it contains embedded in it distinct
signatures associated with the characteristics of the migrating bedforms. This is also
true for other flow quantities, such as the flow velocity field at the free surface, thus
pointing to the conclusion that it may be possible to extract information about the
characteristics and dynamics of bedforms from resolved velocity measurements at the
free-surface.

Spectral and statistical analysis of the calculated time series of bed elevation
demonstrate that the calculated bedforms exhibit scaling laws that are similar to
those observed in experiments and in the field. The temporal variation of the standard
deviation of bed elevation time series in particular revealed a triple regime of bedform
development. During the first regime, the bed evolves from flat bed condition to
cross-hatch pattern at a slow, t0.5, rate. Afterwards the chevron-shaped features start
to evolve in time at a rate that is approximately 20 times faster than in the previous
stage. This trend continues until the organized quasi-2D bedforms appear, which
gradually grow in amplitude and length until a new regime appears during which the
self-similar 3D bedforms migrate downstream at a very slow rate.

Spectra of velocity fluctuations at various locations above the mobile bed revealed
the existence of a distinct spectral gap that delineates the spectrum of turbulence in the
flow from that associated with low-frequency energetic coherent motions modulated
by the slowly migrating bedforms. These results confirm for the first time recent
experimental findings of Singh et al. (2010), who reported the existence of a spectral
gap in a flow with much higher Reynolds number (Re= 106) in an open channel with
a mobile gravel bed. Our results also show that the width of the spectral gap increases
with the distance from the bed, thus providing the first confirmation of the hypothesis
first put forth by Singh et al. (2010). This is because, while the high-frequency end
of the spectral gap is fixed, since it depends on the integral scale of turbulence, the
low-frequency end depends on the ability of the velocity sensor to resolve fluctuations
associated with the smallest bedforms, which decreases with the distance from the
bed. The spectral gap was first observed in atmospheric flows (Van Der Hoven 1957)
and was attributed to the large disparity of time scales between turbulent eddies in
the boundary layer and very slow mesoscale and diurnal variations in the atmosphere.
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In a turbulent boundary layer over a mobile bed with migrating bedforms, such clear
separation of scales occurs because the average velocity of bedform migration is less
than 1 % of the bulk velocity of the flow and thus the time scale of eddies modulated
by the bedforms and the integral time scale of turbulence in the flow vary across two
orders of magnitude. Therefore, our results suggest that LES over frozen bedforms,
such as those reported by Omidyeganeh & Piomelli (2013b), constitutes a viable
and more economical approach to study the structure of turbulence during various
stages of bedform development. The coupled hydro-morphodynamic method we have
developed herein can be used to obtain realistic 3D sand wave topologies, which can
then be used as input to high-resolution LES to study the details of the turbulent
flow over the frozen bed and during various stages of sand wave development.

A limitation of the morphodynamic model that we have developed herein is that it is
based on sediment entrainment and bedload flux relations that have been empirically
correlated to the mean shear stress. In our work, as in previous studies (Chou &
Fringer 2010; Escauriaza & Sotiropoulos 2011a), we have assumed these correlations
to be valid for instantaneous sediment and flow quantities. While there is no rigorous
physical argument for supporting the validity of this assumption, the results we have
obtained suggest that the proposed model can yield results that exhibit a great deal
of physical realism. Models that can incorporate instantaneous flow quantities to
calculate sediment entrainment have been proposed by Escauriaza & Sotiropoulos
(2011b), who developed a transport equation for the sediment particle velocity within
the bedload layer based on instantaneous forces acting on particles, and Coleman &
Nikora (2008, 2009), who proposed a volumetric momentum balance approach. The
hydro-morphodynamic model we have developed herein presents a framework within
which the performance of such models can be systematically evaluated relative both
to each other and to the empirical sediment transport relations we have incorporated
in this paper. Such evaluation, however, needs to be accompanied by laboratory
experiments able to resolve the effects of fluctuating flow forces on the motion of
sediment grains (e.g. Diplas et al. 2008).
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