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 INTRODUCTION 

 

In the present project we will search for the optimal perturbation in a spatial 

developing flow. Using the modal and non-modal stability analysis we will calculate the 

stability of the fluid. The Ginzburg-Landau model will be used to describe the wave amplitude 

in a bifurcating spatially developing flow. 

This project is divided in six parts, these consist in:  

Part 1. Adjoint equations: we will use the Ginzburg-Landau model to derivate the 

optimality system and the adjoint equation with the established values in the 

beginning of the problem.  

Part 2. Numerical solution: The optimization of the problem is solved numerically using 

the Finite Differences Method. 

Part 3. Optimal perturbation: The optimal perturbation will be calculated varying the 

Ginzburg-Landau parameters. 

Part 4. Linear stability analysis: The stability analysis is made through the modal 

theory. 

Part 5. Transient Growth: The stability analysis is made through the non-modal theory.   

Part 6 . Conclusion. 

 Here, we have the linearized equation for the amplitude of a perturbation governed by 

the Ginzburg-Landau model: 

 

  

  
          

  

  
    

   

     

Knowing that: 

          is the wave amplitude of the perturbation 

       is the velocity of the main flow 

       is the diffusion coefficient 

       is the local bifurcation parameter             
  

   
          

 g=g(x)  is the initial condition 

The above-written equation will be solved in a one-dimensional domain D=(α, β) from 
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time  t=(0,T), optimizing g in order to minimize de following quantity.  

 

   
           

               
 

This equation is called COST FUNCTION.  

We also have the boundary and initial conditions of the problem: 

         

         

               

 

In the next point, we will calculate the adjoint equations. 

 

 

1.- ADJOINT EQUATIONS 

 

We have defined our STATE EQUATION as: 

  

  
          

  

  
    

   

        

 In order to derive the optimality condition with equality constraints with the method 

of Lagrange multipliers we have to find the stationary points of the Lagrangian with respect to 

the variables                

1 

                     
  

  
                              

 

 

 

 

     

               
 

 

 

 The derivation respects a,b,c  and d leads to the state equation, initial and boundary 

conditions: 

 

                                                           
1 Taken from “Lecture Notes from the University of Genova” Chapter I: Constrained Optimization, 

example 5.2- Optimal growth for the non parallel Ginzburg-Landau operator in an unbounded domain. 
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 Derivation respects  (     give us the ADJOINT EQUATION with boundary and 

optimality conditions (full derivation in the Appendix) 

  

  
                           

    

 
                 

  

  
                    

  

  
           

  

  
    

   

                 
               

              
                           

 

2.- NUMERICAL  SOLUTION 

 

 A Matlab script has been written in order to solve numerically the optimization 

problem. The main steps are briefly outlined here: 

 Forward integration of the state equation. 

 Evaluation of the cost function. 

 Backward integration of the adjoint equation. 

 Assessment of a new control function (optimality equation). 

 

We will set all these steps inside a loop so that the difference between two 

consecutive values is not higher than an imposed “tolerance”.  

The integrations of the state and adjoint equations are performed using an implicit 

backward Euler finite difference scheme: 

STATE EQUATION 2 

  
      

 

  
    

    
        

   

   
  

    
       

        
   

   
     

    

 

                                                           
2 Taken from “Lecture Notes from the University of Genova”  Chapter I: Sensitivity analysis”. 
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ADJOINT EQUATION3 

 
  

    
   

  
   

    
        

   

   
  

    
       

        
   

   
     

    

 

  
       

    
   

   
 

   

       
      

    

   
           

     
   

   
 

   

     

The accuracy of the adjoint has been checked using the “adjoint equality” which in our 

case gives: 

   
  

  
          

  

  
    

   

   
       

   

   

   
  

  
          

  

  
    

   

   
      

   

   

      
 

 
 

         
 
                     

which in all our simulation has been less than      , next to the machine precision. 

 

3.- OPTIMAL PERTURBATION 

 

The initial condition g that maximises the ratio between the final and the initial 

disturbance kinetic energy, usually denoted G, is defined as the OPTIMAL PERTURBATION. This 

can be recast as a minimization problem where the aim is to minimize the inverse of G, ie 

  
 

 
 

   
           

               
 

So, we present the evolution of the OPTIMAL PERTURBATION analyzing the evolution 

of   
 

 
 with time (0,20). In the next table, we can see that, varying    [0.4-0.5] the behavior 

of G values is as follows: 

 

 

 

                                                           
3 Taken from “Lecture Notes from the University of Genova”  Chapter I: Sensitivity analysis”. 
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According to the behavior of G, varying    we can come up with the next conclusions: 

0.40<  <0.44 The perturbation first increase, and when T<6 it decreases. 

   =0.44 The function/perturbation is STABLE, because the initial and final 

perturbation are almost the same. 

0.44<  <0.475 The perturbation has the same behavior than before, but in these 

cases the maximum perturbation occurs later and later. And our J value at T=20 (final 

perturbation) becomes more and more neutral. 

  =0.475 The function is NEUTRAL. 

0.475<  <0.5 The perturbation grows with time. 

 

Table 1. Values of G obtained varying    and T. 

Figure 1. Evolution of G varying    and T. 
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4.- LINEAR STABILITY ANALYSIS 

 

 In order to test the performance of the solution with tools from linear stability analysis 

we work with NORMAL MODE DECOMPOSITION, substituting the solution written as: 

         (x)    

Into the equation: 
  

  
         

 

  
  

 

       

This transforms the linear initial-value problem into a corresponding eigenvalue problem 

where   is the identity operator 

             

               

 

 Doing this we convert our problem of “linear initial-value” in a problem of 

eigenvalues. A positive eigenvalue in   makes the function   grows exponentially while for 

negative values it decreases exponentially. Therefore, we must find the highest eigenvalues 

because these will be the most unstable and will be used in the next part. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The most unstable eigenvalues of   according to   (0,4-0,5). 

Figure 2. The most unstable eigenvalues of   according to   (0,4-0,5). 
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5.- TRANSIENT GROWTH4 

  

 We define the gain G(t) as the ratio between some measure related to the energy of 

the current and initial perturbation: 

         
  

               

            
 

But since the evolution of the system is described by 

                       

The equation becomes 

         
  

   
              

            
                

It should become obvious that no information about the eigenvectors of  , contained in  , 

are considered only when the least stable mode is taken as a representation of the operator 

exponential. 

 From the stability theory we know that the minimum growth-rate of the solution 

matches at least with the most unstable eigenvalue, so we can say that 

                                       

The quantity          represents the condition number of   (k( )), a measure of the non-

orthogonality of this columns. So, if k( )>1 (as in our case) the operator   is said to be non-

normal, and systems governed by non-normal matrices can exhibit a large transient 

amplification of energy contained in the initial condition. 

 

In our case, we have evaluated the evolution of energy present in a perturbation to different 

   values. In it we could verify the results since the match between optimal perturbations and 

no modal analysis, and we have observed that they actually match. In figure 2 we can observe 

that for lower values of  “t” (t  6) the function represents a transient growth explained by the 

non-orthogonality of the eigenvectors of  . For values higher than t (t > 6) the function 

behaves depending on the instability eigenvalues. 

 

 

 

                                                           
4
 Taken from “Non-modal stability analysis. Part of the course Advanced Fluid Dynamics” 
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Figure 3. Semilogarithmic plot of the gain function G(t) from which we can we see the transient 

growth of the solution for different values of σ0. 
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6.- CONCLUSIONS 

In this project we have observed the stability of an initial perturbation in a spatially 

developed flow described by the Ginzburg-Landau equation, with classic modal analysis and 

from recently-developed non-modal analysis. 

The results have shown that, we can come up with the same conclusion for both 

methods. The solution exhibits a so-called transient growth on a finite time and we can see 

that, by increasing    (strongly and non-parallel flow) the perturbation becomes more and 

more unstable (non-normal).  

 

  

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Optimal perturbation and stability analysis of a spatial developing flow 

2012-2013 

 

 pág. 10 

7.-  APPENDIX 

                     
  

  
                              

 

 

 

 

     

               
 

 

 

Stazionary point: 

   
  

  
   

  

  
   

  

  
   

  

  
   

  

  
   

  

  
   

  

                                  
  

  
   

  

  
   

  

  
   

  

  
   

  

  
   

  

  
   

Introduce:                           

 

  

  
   

 

  

  
                   

           

                  
      

   

  

 

 

        

                          
 

 

             
 

 

   

  

Now, I have to resolve the integration by parts in space and time: 

 

  

  
                   

           

                
                                  

          
   

  
  

  

  
   

 

 

  
 

 

       
  

  
                                             

 

 

 

 

 

Collect terms: 
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Enforcing the boundary and initial conditions yields: 

1.                
           

                 

2.             

3. 
  

  
           

  

  
  

   

    

4.       
  

  
      

5.        
  

  
      

6.                 

 

Derivation of the optimality conditions: 

  

  
             

  

  
 

     

               
     

      
 

 
                

 

Now I have the complete optimality system: 

State equations: 

 
  

  
    

                

          

          

 

 

Adjoint equations: 

 

 
  

  
           

  

  
  

   

    

          

          

                
           

                 

 

 

 

Optimality Condition: 
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