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1. Introduction

The analysis of the two dimensional subsonic flow over a NACA 0012 airfoil using OpenFoam
is presented. This work has been realized following an accurate sequence of steps: first of all,
the geometry and the flap have been created. Then, it has been important to launch  various
simulations by altering only the angle of attack from 0° to +20° with steps of 5° so as to find the
angle  that  causes an evident  flow separation and a high value of  the drag coefficient.  In
consequence of this result, the aim of this work is to show the behavior of the airfoil, with the
latter angle of attack, by varying the flap position from -9° to +15° in order to optimize it and
minimize the drag coefficient  of  the airfoil.  All  these simulations  have been run  for  a low
Reynolds number (500), in fact they constitute the first part of a broader framework in which
calculations will be also evaluated for higher Reynolds numbers.

2. Problem formulation

Simulations have been performed using the Navier-Stokes equations[1]. The derivation of the
Navier-Stokes equations begins with an application of Newton's second law: conservation of
momentum (often  alongside  mass and energy conservation)  being  written for  an arbitrary
portion of the fluid. In an inertial frame of reference, the general form of the equations of fluid
motion is:

                              ρ(
∂ v
∂ t

+v⋅∇ v)=−∇ p+∇⋅T + f                                             (2.1)   

                              
∂ρ

∂ t
+∇⋅(ρv )=0                        

where                    

v  is the flow velocity,

ρ  is the fluid density,

p  is the pressure,

T  is the (deviatoric) component of the total stress tensor, which has order two,

f  represents body forces (per unit volume) acting on the fluid     

In our case, the solver is applied to simulate the incompressible flow around the NACA 0012 
airfoil considering constant viscosity, so the N-S equations are simplified:

                              ρ(
∂ v
∂ t

+v⋅∇ v)=−∇ p+μ∇
2 v+ f                                           (2.2)   

                              ∇⋅v=0
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    where x is the streamwise direction, y is the direction of the depth axis 

    and z is the direction long the vertical axis. 

    The fluid domain is represented by a rectangle containing the airfoil with an 
     x side of 22m and a z side of 12m:                     top

                                                                                 inlet

                                                                                          

                                                                                   
In terms of initial conditions, it's important to refer to pressure and velocity: pressure 
initial condition is uniform in the internal field and equal to zero value, instead the initial velocity

field is uniform but not zero value in the direction of motion where v=0,005
m

s
. 

In regard to boundary conditions, the fluid domain presents null normal gradient of pressure for
inlet, top and bottom and null normal velocity components for top and bottom.
As for the line of the airfoil, normal gradient of pressure is zero and velocity components are
zero.

 3. Optimization

In this chapter the main step of the work is presented. As previously said, the purpose of this
project is to study how the drag coefficient of the airfoil can be minimized by moving the flap.
So the optimization of the problem is reduced to one parameter: the flap position. This fact
allows a streamlined process by using a handmade optimization; indeed a new geometry has
been created for each flap position and simulated from -9° to +15° as shown in Fig. 3.1.
   
    

Fig. 3.1 airfoil with different flap positions
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In another way, optimization could have been done automatically
by using one of the gradient methods like Steepest Descent[2]. The
latter method  is based on the observation that if the multivariable
function F(x ) is defined and differentiable in a neighborhood of

a point a  , then F(x ) decreases fastest if one goes from a

in the direction of the negative gradient of F   at a  ,

−∇F (a ) . It follows that, if b=a−δ∇ F (a) for δ small

enough, then F(a)≥F(b) .

With this observation in mind, one starts with a guess x0 for a

local minimum of F and considers the sequence x0 , x1, x2 ,...

such that xn+1=xn−δn∇ F (xn) , n≥0 .

We have F(x0)≥F (x1)≥F (x2)≥... , so hopefully the sequence (xn)  converges to the 

desired local minimum. In our case the iterative procedure should be:

                                                        βn+1=βn−δn(
∂CD

∂β
)
n

                                                  (3.1)

where

βn is the n-th angle of the flap

δn is the step length of the n iteration

CD is the drag coefficient                                                   

                                                                                                            Fig. 3.3 angle β

4. Problem resolution

The OpenFOAM® CFD Toolbox[3] is an open source CFD software package which has a large
user base across most areas of engineering and science, from both commercial and academic
organizations. An extensive set of OpenFOAM solvers has evolved (and is forever growing)
that are available to users. In particular, in this work icoFoam has been selected; icoFoam
solves the incompressible laminar Navier-Stokes equations using the PISO algorithm.

The  computational  domain  of  this  work  is  composed  of  about  55000  cells  emerged  in  a
structured way, taking care of the refinement of the grid near the airfoil in such a way as to
enclose  the  boundary  layer  approach.  Calculations  are  done  for  constant  air  velocity,
evaluated in order to have a low Reynolds number (500). 
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4.1 Geometry creation

The NACA 0012 airfoil has been chosen as geometry for its symmetry which makes it suitable
for  an easier  but  reliable analysis.  First  of  all,  the surface of  the airfoil  has  been created
starting  from the  profile  coordinates  using  a  CAD Software  named Rhinoceros;  then,  the
surface has been extruded in y  direction from -1 to 1  (as  shown in Fig.  4.1.1a)  because
OpenFoam  needs  a  3D  mesh  although  the  problem  is  2D.  Finally,  the  solid  has  been
converted in a polygon mesh and saved as a stl file. 

As regards the flap, it has been designed conventionally: its length is 20% of the chord as
shown in Fig. 4.1.1b .

Fig. 4.1.1 : a) surface extruded on the left ; b) flap representation on the right

4.2 Mesh and Grid generation

One of the most essential step of this work is the mesh and grid generation. After importing the
geometry in OpenFoam, it's important to customise the grid around it  appropriately. For this
purpose, OpenFoam provides the right tools: blockMesh and SnappyHexMesh.

SnappyHexMesh is a mesh generation utility for 3-dimensional meshes containing hexahedra
and split-hexahedra automatically from triangulated surface geometries in Stereolithography
format. The mesh approximately conforms to the surface by iteratively refining a starting mesh
and morphing the resulting split-hex mesh to the surface. The specification of mesh refinement
level is very flexible and the surface handling is robust with a pre-specified final mesh quality.

Before snappyHexMesh is  executed a background mesh of  hexahedral  cells  (that  fills  the
entire region within) must be created (Fig. 4.2.1); this has been done using BlockMesh.
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In Fig.  4.2.1 the first  and the second mesh refinement region are also shown (particular),
instead the last three are shown in Fig. 4.2.2

Fig 4.2.1 domain: the grid created using BlockMesh and the particular of the mesh refinements 

After these refinements, cells have been selected for splitting in the locality of  a specified
surface and then a process of cell removal has started. 

Cell removal requires one or more regions enclosed entirely by a bounding surface (in our
case the airfoil) within the domain; cells are retained if 50% or more of their volume lies within
the region. The remaining cells have been removed accordingly as illustrated in Fig. 4.2.2 a):
this is the first refinement level.

The next stage of the meshing process (second refinement level) has involved moving cell
vertex points onto surface geometry to remove the jagged surface from the mesh as shown in
Fig  4.2.2  b).  The surface  snapping  can  produce some irregular  cells  along  the  boundary
surface, so the third refinement level has been used. 

Thanks to the last step, additional layers of hexahedral cells aligned to the boundary surface
have been introduced as illustrated in Fig. 4.2.2 c).

6



Fig. 4.2.2 refinement levels and respective underlying particulars

5. Results

Numerical simulations always need a grid convergence study in order to find the optimal cell 

size. The goal is to obtain Δ x and Δ z (cell dimensions respectively in x and z direction,

Fig 5.1) such that force coefficients don't change if these lenghts
decrease; that is why, before the beginning of the official simulations, a
set of  them have been launched by varying the number of cells of the
principal grid in x and z direction, instead grid dimensions remained the
same.
The optimal number of cells has been 220 in x direction (along the side of 22) and 120 in z 
direction (along the side of 12) in fact, as shown in the following table, 

the increase of cells doesn't really modify the force coefficients:

Angle of attack Number of cells CD Cl

0° (220;  120;  1) 2.1973e-01 -6.46e-05

0° (230;  130;  1) 2.1977e-01 -5.35e-05

Tab. 5.1 variation of cell size
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Therefore it's important to consider the numerical stability of  the problem through the Courant
number.  The  Courant  condition[4] is  necessary  for  stability  while  solving  certain  partial
differential equations numerically by the method of finite differences; it arises in the numerical
analysis of explicit time integration schemes, when these are used for the numerical solution.

As a consequence, time step must be less than a certain value in many explicit time-marching
computer simulations, otherwise the simulation will produce incorrect results.

For the two-dimensional case, the Courant condition has the following form:

                                                   Co=ux
Δ t
Δ x

+uz
Δ t
Δ z

≤Comax                                                (5.1)

where

Δ t is the time step size

Δ x and Δ z are the dimensions of the grid cell at each location

ux  and uz are the average linear velocities at that location respectively in x and z direction

In our case, the (low) velocity field develops especially in x direction, so the relation 5.1 can be
simplified as follows:

                                                     Co=ux
Δ t
Δ x

≤1                                                    (5.2)

 A physical explanation, for a CFD simulation, of the Courant number could be that it tells you
something about how fluid is moving through your computational cells. Meaning that  If the
Courant number is <= 1 , then the fluid particles move from one cell to another within one time
step (at most). While if the Courant number is  >1 a fluid particle move through two or more
cells at each time step and this can affect negatively the convergence. 

In this work, the Comax has been monitored in order to not exceed the limit of 0.3 (as usually
when the solver is icoFoam), while the time step size has been 0.1s with a total simulation of
3600s.
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5.1 Research of the critical angle of attack

Before optimizing the flap position computations have been performed in order to find the 
angle of attack that causes the flow separation as shown in Fig 5.1.1 and 5.1.2 .

Fig. 5.1.1 foot prints of pressure (on the left) and velocity (on the right) 

for different angles of attack
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Fig. 5.1.2 foot prints of vorticity

Flow separation starts between α=+10° and α=+15° and it grows till α=+20°: as can be seen in
Fig. 5.1.2, Von Karman vortex street starts at α=+15°, but the critical angle for which Von 
Karman vortex street is well rendered is α=+20°. That is why the rest of the work has been 
conducted in order to minimize the drag coefficient of the airfoil with this setting, that results 

the highest value:     CD(20°) = 0.42         (Fig. 5.1.3)
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                                         Fig. 5.1.3 Force coefficients vs angle of attack

The graphic in Fig. 5.1.3 shows us the lift and drag coefficients varying the angle of attack; the
values from 0° to 15° are instantaneous values (C l and CD  solutions are constant in time),
instead the value at 20° is a mean value because C l and CD  are oscillatory solutions for all the
simulated time. 

5.2 Varying the flap position

Now let's change over to the last step of the work: the airfoil analysis results by varying the flap
position is presented.
As previously mentioned, the flap position has been varied from -9° to +15° with step of 3° in
order to have a substancial and reliable range to analyze. 

As shown for the cases represented in Fig. 5.2.1 , the flap doesn't avoid flow separation, but
vorticity decreases from -9° to +15° slowly. This latter event can be deduced by analyzing the
vorticity magnitude for  each vortex street  in  Fig.  5.2.1  ,  in  fact  the vortex street  tends to
dissolve itself by increasing the angle of the flap.
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                                          Fig. 5.2.1 Footprint of vorticity by varying β
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The flap's effect clearly emerges from plots below. It stands to reason that CL and CD have
similar trend (Fig. 5.2.2 and Fig. 5.2.3) because the extension of the flap from 0° to negative

values of β causes an enlargement of the airfoil surface that deflects more volume of fluid; it

means that lift increases, but drag increases too. On the other hand, lift and drag decrease by
moving toward positive angle of the flap and this is what we have to look for. The decrease of
CD directly depends on the reduction of the region of separated flow; in fact, as we can see in
Fig. 5.2.1 , the red region around the airfoil, which represents the area with the highest vorticity
magnitude, tails off from -9° to +15° reducing losses and drag.

                                           Fig. 5.2.2 lift coefficiet vs the angle of the flap

                                          Fig. 5.2.3 drag coefficient vs the angle of the flap
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 As shown by Fig. 5.2.2 and 5.2.3  CL > CD for all the flap positions simulated, however a new
fact comes to light from the following figure: the lift coefficient decreases more quickly than the
drag coefficient in the same range (from -9° to +15°). This is caused by the presence of the
separated region that decreases, yet it makes it slowly provoking the same slow reduction for
CD .

                         Fig. 5.2.4 relation between the two force coefficients by varying β

In the end, for what concerns the pitch moment coefficient, it is easy to see that simulations
give a negative Cm ; it means that the airfoil tends to get lower the leading edge because the
barycenter is more advanced than the point of application of the lift.

 

                         

                                    Fig. 5.2.5 pitch moment coefficient vs the angle of the flap

All the points represented in the four graphics above are average values over time because Cl, CD  

and Cm  are oscillatory solutions.
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In conclusion, it's possible to affirm that the goal of this work has been achieved, especially the

optimal flap position that minimize the drag coefficient of the airfoil (for  α =20°) has been

found: β = +15°. However, the trend of CD  has been such interesting that more simulations

have been launched for higher angles of the flap: in particular the new aim of the work has
been the search for a minimum value for CD and CL joined to the the analysis of the footprint of
vorticity.

5.3 Higher angles of flap

                                                Fig. 5.3.1 Footprint of vorticity

The Fig. 5.3.1 shows the footprint of vorticity for high angles of flap; as can be seen, vorticity

magnitude decreases until β = +42° for which the vortex street seems to dissolve itself. After

this  value vorticity  magnitude  gradually  grows  until  the  last  flap  position  simulated  that  is

β = +60°.
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                                      Fig. 5.3.2 force and momentum coefficients vs β

The first part (red points) of each trend represented in Fig. 5.3.2 is similar to the respective
trend for low angles of flap (chapter 5.2), instead the second part (blue points) is conditioned
by a new flow separation on the flap. 

In fact, it is clearly evident that CD and CL continue to decrease from +15° to +42° for CD and
from +15° to +33° for CL ; the trend of CD is joined to the vorticity magnitude (Fig. 5.3.1) in fact,

after  β = +42° CD   grows by following the increase of vorticity. For the same reason the

relation CL / CD inverts his trend from +33°. 

The pitch moment coefficient confirms this growing trend from +21° to +33° yet it changes sign
to positive values, which means that the airfoil tends to raise the leading edge because the

barycenter  is  less  advanced than the  point  of  application  of  the  lift.  After  β = +33°  Cm

decreases until it becomes negative again.
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6. Conclusions

This work consists of two parts: the first one is the search for the optimal flap position from -9°
to +15° in order to minimize the highest value of the drag coefficient found for α=+20°:

CD(+20 °)β=0 °=0.42      is reduced to   CD(+20 °)β=+15°=0.35

The second part is the natural extension of the first, in fact simulations continue for higher
angles of flap in order to search for the minimum value of CD ; as consequence:

CDmin(+20 °)=CD(+20 °)β=42°=0.31

β is the angle of the flap

α is the angle of attack

Next steps: 

• calculations will be evaluated for higher Reynolds numbers.

• a new work based on the study about the creation and the growth of the region of
separeted flow on the flap for high values of β will be realized.
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