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Abstract
In the present paper, two different approaches to
compute the optimal disturbances in the quasi three-
dimensional flows are presented. One of the approaches
is based on the Multiple Scales method and the other
one utilises the Parabolised Stability Equations.

1 Introduction
The classical approach used to predict the position of
laminar turbulent transition in laminar boundary lay-
ers is based on the analysis of exponentially grow-
ing instabilities of infinitesimal amplitude. The posi-
tion of transition is assumed to occur when the rel-
ative amplification of the perturbations first, at the
most upstream position, reaches a certain value ob-
tained from correlations with experimental studies in
low freestream conditions. In experiments with mod-
erate to high free-stream turbulence level, it has been
noted that boundary-layer flows may undergo transition
without the occurrence of any noticeable exponential in-
stability (Tollmien-Schlichting waves). Instead, streaky
structures have been observed in the form of stream-
wise elongated regions of defective velocity. Ellingsen
& Palm [7] showed, with linear stability analysis of an
inviscid channel flow, that three-dimensional perturba-
tions without streamwise variation can lead to an in-
stability that grows linearly rather than exponentially
in time, and produces high- and low-velocity streaks.
Landahl [15] showed that all inviscid shear flows can
be unstable to three-dimensional perturbations and un-
dergo temporal linear growth of the perturbation’s ki-
netic energy. The physical mechanism of the formation
of streaks is the lift-up effect, stemming from the fact
that fluid elements tend to keep their horizontal mo-
mentum when displaced in the wall-normal direction,
thus causing a streamwise-velocity perturbation. This
basically inviscid algebraic growth was later shown to
occur for a finite length of time in the presence of vis-
cous damping, and thus denoted as transient growth. In
the temporal framework several studies such as Butler
& Farrell [3], Henningson et al. [13], Corbett & Bot-
taro [5, 6] have been performed for different parallel in-
compressible flows. Hanifi et al. [12] analysed, also in
the temporal framework, the case of parallel compress-
ible mean flow.

One of the few investigations of transient growth
made so far concerning three-dimensional flows is the
one performed by CB1 in which the mean flow was
approximated by the Falkner-Skan-Cooke similarity so-
lutions and the analysis was made using the temporal
framework. They assumed a periodic behaviour of the
streamwise and spanwise wavenumbers, and computed
the optimal initial condition at time t = 0 such that a

measure of the disturbance kinetic energy at a final time
was maximised.

In two-dimensional flows the maximum amplifica-
tion obtained from modal and non-modal analysis is
given for quite different wavenumbers. As well known,
the exponentially most amplified perturbations in in-
compressible boundary layers (regardless of the mean
flow pressure gradient) are two dimensional. On the
other hand, the maximum transient growth is found
for a three-dimensional perturbation with the stream-
wise wavenumber equal to zero. In three-dimensional
flows, the wavenumbers of the respective unstable re-
gions might be very similar or even coincide. Corbett &
Bottaro [6] (from here on denoted CB1) further showed
that wavenumbers for which the unstable modal and
non-modal results coincide correspond, in the modal
analysis, to exponentially amplified perturbations al-
most aligned with the inviscid streamline. These per-
turbations are the so called crossflow vortices and exist
both as steady and travelling waves.

In order for the theory of non-modal growth to be
useful for transition prediction, since the perturbations
on a wing in a real case are of convective type, the tran-
sient growth must be studied using a spatial framework.
The maximum spatial transient growth (generated by
the so called optimal perturbation) in two-dimensional
incompressible flow was studied by Luchini [17, 18] and
Andersson et al. [1] for the case of zero pressure gradi-
ent and by Tumin [20] including the pressure gradient.
Tumin & Reshetko [21] also studied two-dimensional
compressible flow in the presence of a pressure gradi-
ent. Transition prediction models have been proposed
by Andersson et al. [1] which correlate the transition
Reynolds number with the maximum spatial transient
growth in the Blasius boundary layer.

The extension of the theory of spatial transient
growth to incorporate also three-dimensional flows is
still missing in the literature. A difficulty, which is im-
mediately encountered, is how to model the perturba-
tions. If a solution can be obtained using a single mode,
i.e. if the contribution to the solution by all modes ex-
cept the least stable one is zero or negligible, then this is
a usually preferred since the computational cost is less or
much less. However, how to model a certain perturba-
tion is not a choice which can be made a priori but must
be made considering the actual flow which one intends to
analyse. In the analysis of two-dimensional incompress-
ible mean flow, such as Luchini [17, 18] and Andersson
et al. [1], it was clear due to the scale separation be-
tween the streamwise and the other two directions that
a single-mode approach was not possible. In that case
the linearized boundary layer equations were used and
the parabolic system of equations were marched in the
streamwise direction.



In this paper both the so called “single-mode” ap-
proach, and the extension to three-dimensional flows
of the approach used by Luchini [18] and Andersson et
al. [1] are presented. The first, which has been prepared
by the authors Pralits and Luchini, is first derived and
compared with the analysis made by CB1 for the tem-
poral case in which a single-mode approach is exact, and
the second has been prepared by Byström, Hanifi and
Henningson.

2 Mean flow
In the present paper we study the growth of small dis-
turbances in a developing boundary layer over a swept
flat plate of infinite span where a pressure gradient is
present in the chordwise direction. The scene of the
survey is illustrated in figure 1, which also presents the
utilized reference systems. The definitions are as fol-
lows: i) Cartesian coordinate system aligned with the
plate, denoted by x, where x1, x2 and x3 are the axes in
the chordwise, the spanwise and the wall-normal direc-
tions, respectively. The corresponding velocity compo-
nents are denoted U , V and W , respectively. ii) Carte-
sian coordinate system aligned with incoming flow, de-
noted by r. iii) Curvilinear, orthogonal coordinate sys-
tem aligned with the external streamline, denoted by s.
The axes s1 and s2 are, respectively, parallel and perpen-
dicular to the streamline, and s3 is normal to the plate.
Hereafter, we will refer to these as the streamwise, cross-
stream and wall-normal axes. The corresponding veloc-
ities will be denoted Us, Vs and Ws, respectively. iiii)
Non-orthogonal, curvilinear coordinate system which is
utilized in the computations, as outlined in § 4.1. The
coordinate axes ξ1, ξ2 and ξ3 are, respectively, aligned
with the streamline, parallel to the leading edge and nor-
mal to the plate. It can be noted that the wall-normal
axis has the same direction in all four coordinate sys-
tems.

Our study will be restricted to flows with a fixed
chordwise pressure gradient where the chordwise veloc-
ity at the boundary layer edge (superscript e) is given
by a simple expression,

Ue = C
(
x1
)m

, (1)

where m = βH/
(
2 − βH

)
and βH is the Hartree pa-

rameter. Furthermore, it follows from the infinite span
approximation that the spanwise component V e is con-
stant in the chordwise direction and that the flow is in-
dependent of the spanwise coordinate. For such simple
3D flows, often referred to as 2.5D, a family of similar-
ity solutions exists for incompressible flows. They are
called the Falkner–Skan–Cooke similarity solutions(see
ref. [4]).

3 The single mode approach
In this section the approach to compute optimal distur-
bances in swept-wing flows by Pralits and Luchini is pre-
sented using the temporal framework. A similar analy-
sis, as mentioned in the previous section, was made by
CB1. A short description of their problem formulation
is first made and then compared with the new “single-
mode” approach used in the present analysis.

3.1 Temporal analysis

We consider a locally parallel laminar mean flow on
a swept wing given by the Falkner-Skan-Cooke sim-
ilarity solution, and the coordinate system s shown
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Figure 1: Flow over an infinite, flat plate with a sweep
angle Λ.

in figure 1. Here, Re = US0δ0/ν denotes the
Reynolds number based on the streamwise velocity
component, US0 , of the external flow at s1 = s1

0,
and δ0 =

√
νs1

0(m + 1)/(2US0). A flow decomposi-
tion ũ(s1, s2, s3, t) = US(s3) + u′(s1, s2, s3, t) is intro-
duced into the Navier-Stokes equations for incompress-
ible three-dimensional flow. Here, u′ is an infinitesi-
mal perturbation which is assumed to be periodic in the
streamwise and spanwise directions. This can be written

u′(s1, s2, s3, t) = u(s3, t) exp(iαs1 + iβs2). (2)

The linearized Navier-Stokes equations, using the flow
decomposition and the ansatz (2), can be written as

A
∂q
∂t

+ Bq = 0, (3)

where q = (u, p), u = (u, v, w), and u, v, and w are the
perturbation velocity components in the s1, s2, and s3

directions respectively, and p is the perturbation pres-
sure. The boundary conditions are chosen as non-slip
on the wall and vanishing perturbation velocity in the
freestream. If an exponential time dependence

u(s3, t) = û(s3) exp(−iωt) (4)

is introduced, equation (3) reduces to an eigenvalue
problem with ω as the eigenvalue. We are interested
in determining the initial condition u(s3, 0) = u0(s3)
such that a gain given by

G(T ) =
E(T )
E(0)

(5)

has its maximum value. Here E(0), and E(T ), are
the disturbance kinetic energies at time t = 0 and
t = T . The disturbance kinetic energy is defined as
E(t) = ‖u‖2.

In CB1 optimal control theory was used to solve this
problem by means of a gradient based optimization algo-
rithm to find the optimal initial condition. The method
is equivalent of using a steepest descent algorithm and
the gradient was efficiently evaluated using the adjoint
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Figure 2: Gain G(T ) comparing optimal perturbations
with exponentially growing perturbations varying the
Reynolds number. Here, α = 0.0092, β = 0.461, and
T = 600, and the mean flow is given by m = 0.46,

Λ = 46.9.

of equation (3).
In figure 2 a comparison between modal analysis as-

suming a time dependence according to expression (4)
and optimal growth is made. The parameters for the
three-dimensional mean flow are taken from CB1 and
the wavenumbers α and β chosen such that the eigen-
value obtained from the Orr-Sommerfeld equation has
a positive growth rate. The optimal perturbation was
computed for a final time T = 600. It is interesting
to note that the gain G of the optimal initial condition
gives rise to a transient for t < 200 and for t > 200
has an evolution equal to that of the exponentially am-
plified perturbation. This has been verified by consid-
ering that for large times, in this particular case for t
larger than 200, a relation between the evolution of the
gain comparing the optimal initial condition and that of
the exponentially amplified perturbation can be written
Gopt = KGexp, where K is a constant.

Further computations performed, varying the value
of T while keeping all other parameters fixed, showed
that K does not change as long as T is larger than ap-
proximately 200. It is important to note that the value
200 is depending on the parameters chosen. In a more
general context we can instead consider that there ex-
ist a value for T above which the optimal initial condi-
tion for these types of flows will, after a short transient,
evolve with an exponential behaviour. In fact, if one
is interested in determining the gain due to the optimal
initial condition for large values of T it is enough to cap-
ture the asymptotic evolution of G correctly. The task
of computing the optimal perturbation for large values
of T therefore consists in evaluating the gain using a
modal analysis and, in addition, determine the value of
K.

This can be obtained by considering that the initial
condition that we aim to compute u0(s3) is the one giv-
ing the largest amplification. This can be written as a
function of the left eigenvector of the Orr-Sommerfeld
equation as

u0(s3) = Cv0(s3), (6)
where v0 = (u!, v!, w!), and q!

0 = (v0, p!) is the left
eigenvector of the Orr-Sommerfeld equation. C is a con-
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Figure 3: Gain G(T ) comparing optimal perturbations
with the single-mode approach given by expression (9)

varying the Reynolds number. Here, α = 0.0092,
β = 0.461, and T = 600, and the mean flow is given by

m = 0.46, Λ = 46.9.

stant and function of the disturbance kinetic energy at
t = 0, and t = T . The latter can be derived using op-
timal control theory, as in the work by CB1, in order
to obtain the optimality condition. If we further con-
sider that the perturbation considered takes the form of
a single mode as

u(s3, t) = a0ū(s3) exp(−iωt), (7)

where a0 denotes an initial, optimal, amplitude and bar
denotes a chosen normalization, and the fact that also
a0 can be expressed as a function v0 as

a0 = v0 · u0. (8)

If the above mentioned normalization is chosen such that
‖ū‖2 = 1 then the gain can be written

G(T ) = ‖v0‖2 exp(2ωit), (9)

where ωi is the imaginary part of the angular frequency.
This expression is nothing but the gain computed for
a single mode times a constant given by the value of
‖v0‖2. We denoted this factor the Algebraic amplifica-
tion Factor (AF ) and with the normalization used can
take values ‖v0‖2 ≥ 1. This means that when ‖v0‖2 = 1
the non-modal growth is zero. The corresponding op-
timal initial condition is given by expression (6), i.e. a
function of the left eigenvector of the Orr-Sommerfeld
equation.

In figure 3 the gain obtained from the single-mode
approach using expression (9) is compared to the ones
obtained from the optimal initial conditions shown in
figure 2. It is clearly shown by these results that above
a certain time the two different approaches coincide for
various Reynolds numbers corresponding both to un-
stable and stable perturbations. It is interesting to note
that the Algebraic amplification Factor is more or less
the same for the different Reynolds numbers shown here.
The values of AF can be read from figure 3 when t = 0.

In figure 4 the spanwise and wall-normal velocity
components of the optimal perturbations are shown for
two of the Reynolds numbers presented in figure 3. Note
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Figure 4: Spanwise (w) and wall-normal (v) velocity
components of the optimal perturbation for Re = 185,
and Re = 825. The profiles have been normalized such

that |w| = 1. Here, α = 0.0092, β = 0.461, and
T = 600, and the mean flow is given by m = 0.46,

Λ = 46.9.

that the same components of the left eigenvector for
these two cases, which corresponds to the optimal ini-
tial condition of expression (9), are not shown as they
coincide with the results of the optimal perturbations.

3.2 Spatial analysis

In this section the “single mode” approach presented
in § 3.1 for the temporal framework is extended to the
spatial framework in order to allow for the analysis of
more realistic applications. In order to account for the
growth of the boundary layer the linear stability analysis
is here performed using the multiple scales analysis.

We assume a weak streamwise-dependency of the
perturbation shape and express it as

ũ(X1, x2, x3, t) = û(X1, x3) exp(iβx2 − iωt). (10)

where X1 = εx1 and ε is a small parameter. We now
seek an asymptotic solution of the linearised equations
when ε → 0 with the hypothesis that û(X1, x3) is the
product of a exponential part and another which is ex-
pressed as a power series in ε as

û(X1, x3) =
∑

n

un(X1, x3)εn exp(iφ(X1)/ε), (11)

where dφ/dX1 = α is the complex wavenumber in the
X1 direction. If one substitutes equation (11) into the
linearised equations and collects terms of equal powers
in ε, one obtains a hierarchy of equations.

If one supposes that the scale of the rapid variation
in the x1 direction coincides with the length scale in
the wall-normal direction (this is the hypothesis which
has to be verified), then comparing the last one with
the scale of the variation of the mean flow along the
wall one obtains the parameter ε as a function of the
Reynolds number, more precisely as ε = Re−1, where
Re = Uref δ/ν, and δ is proportional to the boundary
layer thickness. These considerations deduce that ε is
small and as a consequence one only has to consider the
equations which corresponds to ε0 and ε1. The equations

are given as

O(ε0) : (A + iαI)q0 = 0, (12)

O(ε1) : (A + iαI)q1 = − ∂q0

∂X1
− Cq0. (13)

The problem at order ε0 is an eigenvalue problem.
Equation (12) is actually the Orr-Sommerfeld equation,
where q = (u, û, v, v̂, w, ŵ, p), and û, v̂, ŵ are iαu, iαv
and iαw, respectively. At order ε1, the operator of the
left hand side is identical to the one at order zero, while
the matrix C contains the derivatives of the meanflow in
the x1 direction. According the theory regarding linear
systems equation (13) does not have any solution if the
right hand side does not satisfy an opportune condition,
known as a compatibility condition. This condition con-
sists in imposing that the right hand side is orthogonal
to the left eigenvector p of the zero-order problem, that
is

p0 · (
∂q0

∂X1
+ Cq0) = 0. (14)

The solution of equation (13) represents the correction
to impose at order zero in order to account of the growth
of the boundary layer in the direction of the flow. We
now assume a decomposition of q0 as

q0(X1, x3) = a(X1)q̄0(X1, x3) (15)

where a(X1) is the amplitude and ¯ denotes a chosen
normalisation. If expression (15) is introduced into (14)
we obtain an equation for the amplitude as

da

dX1
p0 · q̄0 + a(p0 ·

∂q̄0

∂X1
+ p0 ·Cq̄0) = 0, (16)

which solution is written

a(X1) = a0 exp

(
−
∫ X1

X1
0

κ(X1)dX1

)
, (17)

where a0 is the amplitude at X1 = X1
0 and

κ =
p0 ·

∂q̄0

∂X1
+ p0 ·Cq̄0

p0 · q̄0
. (18)

The final solution, using expression (15) and (17), can
now be written

q̃ = a0 q̄0 ×

exp

(
i

ε

∫ X1

X1
0

[α(X1) + iεκ(X1)]dX1 + iβx2 − iωt

)
, (19)

where iεκ is the correction of the eigenvalue α due to
the growth of the boundary layer. In the spatial frame-
work, the optimal perturbation problem consists of find-
ing the initial condition û(X1

0 , x3) = û0(x3) such that
the gain

G(X1) =
E(X1

1 )
E(X1

0 )
(20)

has its maximum value. Here, X1
0 and X1

1 denote the
initial and final positions of a certain interval of interest
in the X1 direction. This can be obtained by consider-
ing that the initial condition that we want to compute
u0(x3) is the one giving the largest amplification. This



can be written as a function of the left eigenvector of
the Orr-Sommerfeld equation as

û0(x3) = Cv0(x3), (21)

where v0 = (u!, v!, w!), and q!
0 = (v0, p!) is the left

eigenvector of the Orr-Sommerfeld equation. C is a con-
stant and function of the disturbance kinetic energy at
X1 = X1

0 , and X1 = X1
1 . The latter can be derived

using optimal control theory, as in the work by CB1, in
order to obtain the optimality condition. If we further
consider that the perturbation considered takes the form
of a single mode as expression (19) where a0 denotes an
initial, optimal, amplitude and ¯ denotes a chosen nor-
malization, and the fact that also a0 can be expressed
as a function v0 as

a0 = v0 · û0, (22)

then the gain, following the derivation used for the
temporal framework with a normalization such that
‖ū‖2 = 1, can be written

G(X1
1 ) = ‖vo‖2 exp

(
−2

ε

∫ X1
1

X1
0

[αi(X1) + εκr(X1)]dX1

)
.

(23)
Expression (23) is the optimal gain using a single mode
approach in the spatial framework accounting for both
modal and non-modal growth. The term ‖vo‖2 ≥ 1
gives a measure of the non-modal growth where ‖vo‖2 =
1 means that the gain is governed only by exponential
growth. A common approach to estimate the position
of transition using a modal analysis is made by corre-
lating the quantity N = ln(A/A0) for the exponentially
amplified perturbations with experiments performed in
wind tunnels. Here, A is the perturbation amplitude at
certain streamwise position, and A0 denotes the ampli-
tude at the first neutral position. In framework of the
multiple scales theory, we can write

N =
1
ε

∫ X1
1

X1
0

[−αi(X1)]dX +
∫ X1

1

X1
0

[−κr(X1)]dX1. (24)

Note here that the first term on the right hand side of
expression (24) is the contribution from the local parallel
analysis denoted Nl, and the second is the correction due
to the slowly developing boundary layer here denoted
Nnl. The same two terms can be derived from from
expression (23) by taking the natural logarithm of the
square root of G(X1). This is given as

log[
√

G(X1
1 )] = log(‖v0‖) +

1
ε

∫ X1
1

X1
0

[−αi(X1)]dX1

+
∫ X1

1

X1
0

[−κr(X1)]dX1. (25)

In addition to the two terms given in expression (24) we
have the natural logarithm of the square root of the Al-
gebraic amplification Factor (AF) which in this case is
given as log(‖v0‖) ≥ 0. It is important to note that this
approach of computing the algebraic growth is new and
has so far not been correlated with experimental data.
The aim is to investigate if the new Algebraic amplifica-
tion Factor can give additional information compared to
the traditional N-factor in order estimate the postition
of transition. An example using expression (25) is given
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Figure 5: Relative amplification, expression (25), of
stationary crossflow mode for a mean flow given by the

parameters βH = 0.1, Λ = 45 degrees, β = 0.28,
Re0 = 825.

in figure 5 for the case of a stationary crossflow mode
and the mean flow given by the parameters βH = 0.1,
Λ = 45 degrees, β = 0.28 and Re0 = 825. As expected
the correction due to non-parallel effects is small. The
algebraic amplification factor in this case, which is evalu-
ated at the upstream neutral position, has a value of 2.9.
However, preliminary results for the analysis of station-
ary modes show that the algebraic amplification factor
depends both on the waveangle and the mean flow.

4 PSE approach
In this section, the approach based on the Parabolised
Stability Equations (PSE) used by Byström, Hanifi &
Henningson is presented.

4.1 Formulation

First, we discuss the appropriate scaling, coordinate
system and disturbance equations for our studies of
transient growth in the Falkner–Skan–Cooke bound-
ary layer. Herein, R denotes the Reynolds number
R = U0δ0/ν where U0 is the chordwise velocity of the ex-
ternal flow at x1 = x1

0 and δ0 =
√

νx1
0/U0. Andersson et

al. [1] and Luchini [18] employed the linearized disturbed
boundary layer equations (LDBLE) in their indepen-
dent studies of transient growth in the Blasius boundary
layer. This analysis was later extended to the Falkner–
Skan boundary layer by Levin & Henningson [16], who
presented a comparative study of algebraically grow-
ing streaks, governed by the LDBLE, and exponentially
growing TS-waves governed by the PSE. Both set of
equations are derived from the linearized Navier–Stokes
equations, with the disturbance q̃ assumed to be of the
form

q̃
(
x1, x2, x3, t

)
= q̂

(
x1, x3

)
exp (iθ) (26)

θ =
∫

α dx1 + βx2 − ωt. (27)

where q̂ is a complex amplitude function, α and β are
the chordwise and spanwise wavenumbers, respectively,
and ω is the angular frequency. The principal difference



is that the PSE accounts for disturbances with a rapid,
oscillatory variation in the chordwise direction while the
LDBLE assumes a slow, non-oscillatory variation, hence
the chordwise wavenumber is zero. Due to the different
choices of scaling, the LDBLE is a Reynolds-number
independent set of equations, identical to the Görtler
equations with zero Görtler number (see refs. [8] and
[10]), while the PSE are Reynolds-number dependent.

The PSE has successfully been employed in studies
of stationary cross-flow modes, see e.g. the comparison
with DNS results in [14]. According to [6], the physi-
cal mechanism behind transient growth in the Falkner–
Skan–Cooke boundary layer is similar to that of the ex-
ponentially amplified cross-flow modes. Bagheri & Han-
ifi (2007) (paper + private communication) modified the
PSE to obtain a parabolic set of equations, which was
employed to calculate the algebraic growth of longitu-
dinal vortices. They considered disturbances with in-
finite chordwise wavelength and kept O

(
R−2

)
terms,

namely Wx1 û (W and û are the wall-normal and chord-
wise components of the meanflow and the disturbance,
respectively) in the wall-normal momentum equation.
Calculations showed that this term has a significant im-
pact on algebraic instabilities but no bearing on the ex-
ponentially growing TS-waves. Furthermore, Bagheri
& Hanifi [2] omitted the chordwise gradient of the dis-
turbance pressure, p̂x1 , from the chordwise momentum
equation. This term, associated with rapid oscillations
in time, is neglectable for the stationary disturbances
associated with the maximum algebraic growth. The
calculated energy growth agreed very well with that re-
ported by Levin & Henningson [16].

Herein we will employ a similar set of parabolic
equations to study transient growth in the Falkner–
Skan–Cooke boundary layer. In order to do so, we
must however first find an integration path along which
the wavenumber can be set to zero. It is well known
that disturbances tend to be aligned with the external
streamline in 3D boundary layers, i.e. the streamwise
wavenumber is zero. We will therefore formulate the
disturbance equations for the non-orthogonal coordinate
system ξ where the first axis ξ1 is aligned with the ex-
ternal streamline.

Under the infinite span approximation the mean flow
is considered to be independent of the spanwise coor-
dinate ξ2. By subtracting the equations for the mean
flow and removing the products of disturbances, a lin-
earized set of disturbance equations is obtained. The
disturbances are assumed to be spanwise periodic and
non-oscillatory in the streamwise direction, hence the
streamwise wavenumber is set to zero. Herein we will
only consider stationary disturbances, the total distur-
bance (26) can thus be simplified to

q̃
(
ξ1, ξ2, ξ3

)
= q̂(ξ1, ξ3) exp

(
iβξ2

)
. (28)

Furthermore it is assumed that the variation along the
streamline is weak, i.e. ∂/∂ξ1 ∼ O

(
R−1

)
. Note that

here we modify the PSE by assuming that W is of
the same order as the other velocity components of the
meanflow. Introducing the disturbance (28) into the lin-
earized equations and dropping terms associated with
the streamwise pressure gradient yields a parabolic set
of disturbance equations:

Aφ̂ + B
∂φ̂

∂ξ3
+ C

∂2φ̂

∂ξ3∂ξ3
+ D

∂φ̂

∂ξ1
= 0, (29)

where φ̂ is a vector containing disturbance quantities.
The elements of the matrices A, B, C, D can be found
in Byström [9]. The velocity disturbances are subjected
to no-slip boundary conditions and vanishing in the free-
stream. Furthermore, the initial conditions must be
specified at the inlet. Together with the boundary and
initial conditions, the disturbance equations (29) forms
an initial-boundary-value problem that can be solved
through a downstream marching procedure. A detailed
description of the numerical scheme employed herein can
be found in Hanifi et al. [11].

4.2 Adjoint optimization procedure

We are interested in identifying the initial disturbance
that is optimal in the sense that it maximizes the growth
of the disturbance energy as defined in equation (20).
Following the works of Andersson et al. [1] and Lu-
chini [18], we will employ an adjoint-based optimization
procedure to identify the initial disturbance φin which
maximizes the energy growth (20).

The initial-boundary value problem (29) is linear and
homogeneous, and can be regarded as an input-output
problem, where the disturbance equations (29) acts as
a linear operator A on the initial disturbance φin (the
input) to produce a downstream disturbance φout (the
output) at the outlet

φout = Aφin (30)

Employing operator theory, it can be shown that the
maximum growth Gmax is the largest eigenvalue λmax
of the eigenvalue problem

A∗Aφ = λφ (31)

and the optimal initial disturbance φin is the corre-
sponding eigenvector φ. Here A∗ represents the ad-
joint to the operator A. To solve the eigenvalue prob-
lem (31) and determine the optimal disturbance, we em-
ploy power iterations of the form

φn+1 = A∗Aφn (32)

The action of the operator A on an initial distur-
bance φn, i.e. Aφn, is given by the disturbance equa-
tions (29). Here, the operator A∗ is the adjoint of the
operator A and can be written as

Ãφ∗ + B̃
∂φ∗

∂ξ3
+ C̃

∂2φ∗

∂ξ3∂ξ3
− D̃

∂φ∗

∂ξ1
= 0, (33)

where φ∗ are the adjoint variables. The bondary and
initial conditions as well as the enteries of matrices Ã,
B̃, C̃ and D̃, are given in ref. [9] . The adjoint equations
must be marched in the upstream direction. The initial
conditions must therefore be set at the outlet ξ1 = ξ1

out.
As outlined in § 4.1, the calculations are carried out

under the assumption that the wavenumber is zero along
the ξ1 -axis. This axis is aligned with the external
streamline, since it is known that disturbances in 3D
boundary layers evolves nearly along this line. Calcu-
lations with the present implementation does however
reveal that the disturbances are not perfectly aligned
with the streamline. This small deviation is equivalent
to a small, but non-zero wavenumber with respect to the
ξ1-axis. Although such a small deviation will only cause
neglectable errors locally, the cumulative effect may be
significant when the disturbance equations (29) are in-



tegrated over a long streamwise distance. Therefore, an
iterative procedure was utilized to identify the streakline
(the disturbance trajectory as the nline which follows
the maximum of the streamwise disturbance velocity).

4.3 Results

In this section we will study the optimal disturbances in
boundary layers within the Falkner–Skan–Cooke fam-
ily with a sweepangle of Λ = 45◦. We consider both
an accelerated flow with a chordwise pressure gradient
of βH = 0.1 and a retarded flow; βH = −0.05. The
chordwise velocity at the boundary layer edge (1) is
chosen such that Φ = Λ = 45◦ at the chordwise po-
sition r1/l = 1, where Rl = Ull/ν = 106 and Ul =
Us

(
r1 = l, r3 = r3max

)
. We will employ two reference

lengths for the presented figures, l and δl =
√

νl/Ul.
First, we will restrict our study of optimal distur-

bances to a sub-critical chordwise interval, 0.005 ≤
r1/l ≤ 0.25, in order to study purely transient growth.
Then, we will extend this interval to super-critical flows
and study the evolvement of algebraically growing, non-
modal disturbances into exponentially amplified modes.

From a physical point of view, it is desirable to start
the calculations at the leading edge, in order to cap-
ture the process where vortical free-stream disturbances
enters the boundary layer. There are however several
problems associated with this upstream region. The
Falkner–Skan–Cooke family of similarity solutions are
discontinuous at the leading edge. For the normal ve-
locity we have that limr1→0 W → ∞, and in retarded
flows it follows from equation (1) that limr1→0 Ue → ∞.
Despite these difficulties, which applies to the 2D case
as well, Andersson et al. [1] and Luchini [18] inde-
pendently carried out studies of transient growth in the
Blasius boundary layer where the disturbances where
introduced at the leading edge. Luchini [18] utilized a
jump condition to solve the singularity problem, while
Andersson et al. [1] carried out a study where the in-
ception point was gradually moved towards the leading
edge. They found that no dramatic changes occurs in
the shape of the optimal disturbance or in the down-
stream response when the leading edge is approached,
and concluded that the calculations could be initiated
at the leading edge if the normal velocity is set to zero in
the first calculation point. Neither Andersson et al. [1]
or Luchini [18] did however address the problem that the
boundary layer equations are not valid in this region.
Levin & Henningson [16], who studied optimal distur-
bances in the Falkner–Skan boundary layers with fa-
vorable, zero and adverse pressure gradients, optimized
the point of inception. They found that the maximum
growth occurs when the disturbance is introduced into
the boundary layer a significant distance downstream of
the leading edge. The difficulties associated with the
leading edge was therefore not considered.

For the swept flows studied herein, a new set of lead-
ing edge related problems arise in addition to those
encountered in the 2D studies. The streamline an-
gle, Φ = arctan (V e/Ue), is undefined at the leading
edge in Falkner–Skan–Cooke boundary layers with non-
zero pressure gradients. In accelerated flows we have
limr1→0 Φ = 90◦, since limr1→0 Ue = 0. The axes ξ1

and ξ2 of the non-orthogonal coordinate system will
thus collapse at the leading edge. In retarded flows,
where limr1→0 Uw → ∞, the limit of the streamline an-
gle is limr1→0 Φ = 0◦. Both the accelerated and the
retarded flow will undergo a very rapid transformation
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Figure 6: The energy growth of the optimal disturbance
in the retarded and accelerated flow. Λ = 45o
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Figure 7: (a) Vector representation of optimal
disturbances at r1/l = 0.005, and (b) its downstream
response at r1/l = 0.25 projected onto the cross-flow
plane (contours of positive, black, and negative, grey,

streamwise velocity). Λ = 450, βH = 0.1.

in the vicinity of the leading edge, where the streamline
angle draws away from the extreme value at the leading
edge. Furthermore, if it is assumed that the optimal dis-
turbance takes the form of vortices more or less aligned
with the external streamline, it is clear that the orienta-
tion of these vortices will vary rapidly when the point of
inception is moved upstream towards the leading edge.

Due to the difficulties discussed above, the point
of inception was set a small distance downstream of
the leading edge, at r1/L = 0.005. In figure 6, the
energy growth of the optimal disturbances are shown
as functions of the coordinate r1 for both the acceler-
ated and the retarded flow over the chordwise interval
0.005 ≤ r1/l ≤ 0.25. The initial disturbance is opti-
mized to produce the maximum energy growth over this
interval. As can be seen in figure 6, the retarded flow
gives rise to twice the transient growth of the accelerated
flow. Levin & Henningson [16], who studied optimal dis-
turbances in the 2D Falkner–Skan boundary layers, also
found that retarded flows gives rise to higher transient
growth.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

100

r1/l

E/Eout

Figure 8: Energy growth of the optimal disturbance
(black dashed line) and a cross-flow mode (grey line)

with the same spanwise wavenumber, βδl = 0.34.

2

4

6

x3/δl û v̂ ŵ
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with the same spanwise wavenumber, βδl = 0.34.

Figure 7 shows a vector representation of the real
part of the optimal disturbance in the cross-flow plane.
It is apparent that the optimal disturbances take the
form of counter-rotating vortices, similar to the opti-
mal disturbances found in 2D flows. The vortices are
however not symmetric as in 2D boundary layers, but
tilted around the wall-normal axis. The vortices are
tilted anti-clockwise in the accelerated flow and clock-
wise in the retarded flow (not shown here). This dif-
ference is likely related to the cross-flow component of
the boundary layer, which changes sign with the pres-
sure gradient. As the disturbances evolve downstream
their orientation changes, the streaks at the end of the
interval are therefore tilted clockwise in the accelerated
flow and anti-clockwise in the retarded flow, i.e. the op-
posite of the initial disturbance. In 2D boundary lay-
ers the regions of transient and modal growth are well
separated in the (ω, R)-plane, as noted by Luchini [18]
in his study of transient growth in the Blasius bound-
ary layer. The maximum transient growth occurs for
stationary disturbances, and the growth decays rapidly
with increasing frequency, while the exponential growth
occurs for modal disturbances of relatively high frequen-

cies. In 3D boundary layers no such separation exists,
since stationary modes can receive exponential amplifi-
cation. Stationary cross-flow modes are a more common
cause of transition than their traveling counterparts in
free-flight conditions (Reed & Saric [19]). The station-
ary modes take the form of vortices, nearly aligned with
the external streamline, and streaks of alternating high
and low streamwise velocity. It is thus clear that this
exponential instability resembles the algebraic instabil-
ity described above. This is contrary to the situation in
2D boundary layer, where the modal disturbances are
traveling waves and bears little resemblance to the dis-
turbances associated with algebraic instability.

Now we consider the optimal disturbance in the ac-
celerated flow, βH = 0.1, over the chordwise inter-
val 0.005 ≤ r1/l ≤ 1.0, thus including super-critical
flow. This allows us to study a scenario where tran-
sient growth pass over into exponential growth, to il-
luminate the differences and similarities between these
instabilities. Corbett & Bottaro [6] considered sub-
and super-critical Reynolds-numbers, comparing alge-
braically growing disturbances to exponentially ampli-
fied eigenmodes. They concluded that the algebraically
growing disturbances are fed into cross-flow eigenmodes
as the critical Reynolds-number is exceeded. The tem-
poral analysis employed by Corbett & Bottaro [6] does
however not allow a study where the downstream devel-
opment of the disturbances can be monitored as they
evolve from the sub- to the super-critical domain of the
boundary layer. The spatial approach applied herein
will however allow such a study, where both the alge-
braic growth and the subsequent exponential amplifica-
tion of the disturbances is investigated.

Figure 8 shows the energy growth of the optimal dis-
turbance with the spanwise wavenumber β = 0.34/δl.
For comparison, we have included data from a PSE cal-
culation of a cross-flow mode with the same wavenum-
ber, initiated at the point of neutral stability. It is clear
that the algebraic growth of the optimal disturbance is
followed by exponential growth, where the growth rate
collapse with that of the modal disturbance. The reason
is apparent from figure 9 which presents the amplitude
functions of the cross-flow mode as well as the down-
stream response of the optimal disturbance at the end
of the streamwise interval, r1/l = 1.0. The close agree-
ment proves that the optimal disturbance has evolved
into a cross-flow mode. From figure 8 it can be con-
cluded that the transition from algebraic to exponential
amplification is a gradual process without any jumps
in the growth rate. We thus conclude that the physical
mechanism that drives the algebraic instability is similar
to that responsible for the classical exponential instabil-
ity, and that the algebraic disturbances are feed into
exponentially amplified modes as the critical Reynolds-
number is exceeded.

5 Conclusions
Two different approaches have been presented which
both investigate optimal disturbances in spatially de-
veloping swept wing boundary layer flows.

The analysis presented in the first part of this paper
is a “single-mode” approach to compute the algebraic
growth of perturbations in three-dimensional spatially
developing boundary layers based on a modified version
of the modal analysis. It has been shown that when
the interval, over which the optimal gain is computed,
is large the solution can be wrtitten on a modal form
times an Algebraic amplification Factor (AF). With a



properly defined normalization of the modal solution the
AF is only a function of the corresponding left eigenvec-
tor. In the second part of the paper, a parabolic set of
disturbance equations were employed to study algebraic
and exponential instability in the Falkner–Skan–Cooke
boundary layer. An adjoint-based optimization proce-
dure was utilized to identify optimal disturbances, i.e.
the initial disturbance which receives the greatest am-
plification over a given chordwise interval.

A comparison between these two approaches can be
made considering the results presented in figures 5, 8
and 9. The so called “single mode approach” is based
on an analysis which demonstrates that a perturbation
in this kind of flow is dominated by a single mode. We
have verified that the three velocity components plotted
in figure 9, obtained from the PSE analysis, are indis-
tinguishable from the components of the single mode. A
direct comparison of the gain curve between the two ap-
proaches can not be made since the transient evolution
of G is not captured in the single mode approach. How-
ever, the total amplification due to the transient growth
can be compared by computing the algebraic amplifica-
tion factor (AF), derived for the single-mode approach,
for both cases. Based on the results given In figure 5
and 8, the energy gain from the single mode approach
is slightly higher than the one computed using the PSE
approach .
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[14] M. Högberg and D. S. Henningson. Secondary in-
stability of cross-flow vortices in falkner-skan-cooke
boundary layers. J. Fluid Mech., 368:339–357,
1998.

[15] M. Landahl. A note on an algebraic instability
of inviscid parallel shear flows. J. Fluid Mech.,
98(2):243–251, 1980.

[16] O. Levin and D. S. Henningson. Exponential vs al-
gebraic growth and transition prediction in bound-
ary layer flow. Flow, Turbulence and Combustion,
70:183–210, 2003.

[17] P. Luchini. Reynolds-number-independent instabil-
ity of the boundary layer over a flat surface. J. Fluid
Mech., 327:101–115, 1996.

[18] P. Luchini. Reynolds-number-independent instabil-
ity of the boundarylayer over a flat surface: optimal
perturbations. J. Fluid Mech., 404:289–309, 2000.

[19] H. L. Reed and W. S. Saric. Stability of three-
dimensional boundary layers. Ann. Rev. Fluid.
Mech, 21:235–284, 1989.

[20] A. Tumin. A model of spatial algebraic growth in a
boundary layer subjected to a streamwise pressure
gradient. Phys. Fluids, 13(5):1521–1523, 2001.

[21] A. Tumin and E. Reshotko. Spatial theory of opti-
mal disturbances in boundary layers. Phys. Fluids,
13(7):2097–2104, 2001.


