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Abstract
We investigate the stability properties of flows over an open square cavity for
fluids with shear-dependent viscosity. Analysis is carried out in context of the
linear theory using a normal-mode decomposition. The incompressible Cau-
chy equations, with a Carreau viscosity model, are discretized with a finite-
element method. The characteristics of direct and adjoint eigenmodes are
analyzed and discussed in order to understand the receptivity features of the
flow. Furthermore, we identify the regions of the flow that are more sensitive
to spatially localized feedback by building a spatial map obtained from the
product between the direct and adjoint eigenfunctions. Analysis shows that the
first global linear instability of the steady flow is a steady or unsteady three-
dimensionl bifurcation depending on the value of the power-law index n. The
instability mechanism is always located inside the cavity and the linear stability
results suggest a strong connection with the classical lid-driven cavity problem.

(Some figures may appear in colour only in the online journal)

1. Introduction

Our notion about the dynamics of many flow configurations are often based on familiar
Newtonian fluids such as water and air. The non-Newtonian fluid mechanics, however, can be
a very important and useful field because such kinds of flows are often encountered in nature
and many industrial applications, where the observed flow can be markedly different from
that of its Newtonian counterpart. In this paper we focus our attention on the class of non-
Newtonian fluids characterized by an instantaneous mutual relation between the rate of shear
and the shear stress. In other words, such fluids have no memory of their past history.
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1.1. Shear-thinning and shear-thickening fluids: the Carreau viscosity model

The shear-thinning phenomena are perhaps the most widely encountered type of time-inde-
pendent non-Newtonian behavior in engineering practice. They are characterized by an
apparent viscosity which gradually decreases as the shear rate increases. On the contrary, the
shear-thickening fluids present an apparent viscosity that increases with the increasing of the
shear rate and hence the characteristic name dilatant flows.

In the last century many mathematical equations and models of varying complexity and
forms have been reported in the literature; some of these are straightforward attempts to fit the
experimental data, while others have a theoretical basis in statistical mechanics (see e.g.
Carreau et al (1997)). In this work we have chosen to use the Carreau viscosity model, that is
based on a molecular theory (Lodgeʼs theory) since it allows to satisfactorily describe the
complex behaviors of such fluids. Moreover, it has been widely used to model non-New-
tonian fluids (including for example hemodynamic studies, see Hsu et al (2009)), and thereby
offers the possibility to validate our numerical code.

1.2. Open-cavity instabilities

The open cavity flow is a problem of great interest in many engineering applications such as
military aircraft, sunroofs in automobiles or the gap between train wagons. Historically it has
been given great attention since it represents a prototype problem in which there is a finite
region of separated flow. Rossiter (1964) was the first to give a significant contribution to
explain the unsteadiness of flows over rectangular cavities, identifying an acoustic feedback
mechanism for cavities of several aspect ratios L D (i.e. length to depth) and flow regimes.
The presence of this Rossiter mode, in turn, generates self-sustained oscillations of velocity,
pressure, and, in some cases, density, which may induce strong vibrations in the substrate
over which the fluid is flowing. The latter may give rise to structural fatigue or acoustic noise.
Many experimental and numerical studies have shown that this resonance is based on a
feedback mechanism, whereby small disturbances in the shear layer are amplified by the
Kelvin–Helmholtz instability (see e.g. Rowley et al (2002)).

However, when significant interactions between the shear layer and the flow within the
cavity exist, the flow may be found in a completely different state from that of the cavity
resonance that can be described with the aid of the Rossiter model (or any of its improved
versions). The resultant mode appears to be a global instability whose frequency of oscillation
is independent of the Mach number. Recently, Brés and Colonius (2008) have performed
several 3D simulations that have proved, for the first time, the existence of 3D instabilities
situated inside the cavity. They showed also that these 3D instabilities are related to cen-
trifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity
flows and Couette flows.

In the field of inelastic non-Newtonian fluids, there are only a few studies aimed at
detecting the instability mechanism in the configuration under investigation. One relevant
numerical and experimental investigation was reported by Cochrane et al (1981). They
studied the behavior of the non-Newtonian (PAC) flow and the Newtonian flow (syrup-water
mixture) past a square open cavity.

1.3. Goal of present work

The aim of the present work is to study the effects of shear-dependent viscosity on the
instability features in incompressible open cavity flows. The goal is to provide a better
description of the instability mechanism of 3D perturbations and to show that the instability is
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strictly correlated with the one arising in the lid-driven cavity flow. First of all, we perform an
accurate analysis of the occurrence of the first instability using the linear stability theory; the
critical Reynolds number Recr and the corresponding spanwise wavenumber, here denoted as
the optimal spanwise wavenumber βopt , are computed for different non-Newtonian fluids (i.e.
for every couple of parameters λn, of the Carreau model). After the identification of the first
instability, we analyze the adjoint field in order to describe the receptivity behavior.

Furthermore, we determine the instability core by performing a structural sensitivity
analysis, as discussed by Chomaz (2005), Giannetti and Luchini (2007) and Marquet et al
(2008). The spatial map of the structural sensitivity gives a better understanding of the
instability mechanism. In the present work, since the flow is globally unstable, we do not
consider the sensitivity to transient disturbance growth as considered by Brandt et al (2011).
Finally, we want to remark that the current sensitivity analysis is not directly applicable when
it concerns passive control devices with the scope of controlling instability. In order to do so
one must extend the current analysis the include variations of the basic flow. Examples of this
can be found in Pralits et al (2010) and Pralits et al (2013).

2. Theoretical framework

We investigate the stability characteristics of non-Newtonian fluids in the case of a two-
dimensionl (2D) flow arising over a square open cavity due to a uniform stream. The geo-
metry, frame of reference and notation are shown in figure 1. A Cartesian system is located on
the left edge of the cavity with the x-axis pointing in the flow direction. The fluid motion,
then, can be described by the unsteady incompressible Cauchy equations,

=�� u· 0, (1)

∂
∂ + = − +�� �� ��
u

u u T
t

P
Re

( · )
1

, (2)

where u is the velocity vector with components =u u v( , ) and P is the reduced pressure. This
system is closed when we supply a constitutive relation between the stress tensor T and the
rate-of-strain tensor = +�� ��⎡⎣ ⎤⎦D u u( )T1

2
. In this paper we focus on fluids whose T depends

linearly on D through the relation μ=T DS2 ( ) , where = D DS (2 : )1 2. While for a
Newtonian fluid the dynamic viscosity μ does not depend on the shear rate S, for a non-
Newtonian fluid this dependence cannot be ignored and the functional form of μ μ= S( )
changes with the particular fluid considered. We adopt a Carreau model that is characterized

Figure 1. Flow configuration, frame of reference and the computational domainD. The
figure also shows a sketched schematic visualization of the base flow structure.
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by the following viscosity law (Bird et al (1987), chapter 4)

μ μ
μ μ λ

−
− = +∞

∞

−⎡⎣ ⎤⎦S
ˆ

ˆ ˆ
1 ( ) , (3)

0

2
n 1

2

where μ∞̂ and μ̂0 are the viscosities at infinite and zero shear rates (the ratio μ μ∞̂ ˆ0 is set to
−10 3), the parameter n is the power index and λ is the relaxation time.
Equations (1) and (2) are made dimensionless using the cavity depth D as the char-

acteristic length scale, the velocity of the incoming uniform stream ∞U as the reference
velocity and μ̂0 as the reference dynamic viscosity. Thus, the Reynolds number can be
expressed as ρ μ= ∞Re U D ˆ0. Finally, the system of differential equations (1) and (2) is
closed with the following boundary conditions: =u e1 · x at the inlet ∂Din, the outflow
boundary condition (i.e. = ∂ =P u0, 0x ) at the outlet ∂Dout , no-slip conditions =u 0 on the
solid walls ∂Dw (represented with a solid line in figure 1), free-slip condition with zero
tangential stress (i.e. ∂ =u 0y and =v 0) on the upper limit of the computational domain ∂Dext

and on the remaining boundary ∂D fs. Similar conditions are used, for the same reference
geometrical configuration, by Sipp and Lebedev (2007) and Barbagallo et al (2009).

2.1. Global stability analysis

The instability onset is studied within the framework of the linear stability theory with a
classical normal-mode analysis. The stability analysis relies on the existence of a steady
solution about which infinitesimal unsteady perturbations are superimposed. The velocity and
pressure fields are decomposed into a 2D base flow Q x y( , )b = u P( , )b b

T = u v P( , , 0, )b b b
T and

a three-dimensional (3D) disturbance flow, denoted by ′q x y z t( , , , ) = ′ ′u P( , )T =
′ ′ ′ ′u v w P( , , , )T of small amplitude ϵ. Introducing this decomposition into (1) and linearizing,

we obtain two problems describing the spatial structure of the base flow and the evolution of
the unsteady perturbation field. In particular, the base flow is governed by the steady version
of (1), whereas the perturbed field is described by the following set of linearized unsteady
Carreau equations (uCE)

∂ ′
∂ + ′ = − ′��{ }u

C u u
t

Re P, , (4)b

′ =� u· 0, (5)

where the linearized operator C can be written as

′ = ′ + ′�� ��{ }C u u u u u uRe, · ·b b b

μ μ− ′ + ′ + ′ +�� �� �� �� ��⎡
⎣⎢

⎤
⎦⎥( )( ) ( )u u u u

Re
1

· ( ) .b
T

b b
T

In the previous definition we have introduced μb and μ′ that represent the base flow viscosity
and the perturbation viscosity, respectively (see e.g. Lashgari et al (2012)).

As the base flow is homogeneous in the spanwise direction, a general perturbation can be
decomposed into Fourier modes with spanwise wavenumber β . The 3D perturbations may be
expressed as

β γ′ = + +⎡
⎣⎢

⎤
⎦⎥{ }( )q qx y z t x y exp i z t c c( , , , )

1
2

ˆ ( , ) . . , (6)T

where γ σ ω= + i is the angular frequency, c c. . stands for the complex conjugate of the
preceding expression and =q u v w Pˆ ( ˆ, ˆ, ˆ , ˆ). Complex conjugation is required in (6) since ′q is
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real. The angular frequency γ is a complex number: its real part σ represents the temporal
growth rate and its imaginary part ω the frequency of the perturbation. The physical meaning
of σ is in agreement with the classical definition of stability: for σ > 0, the base flow is
unstable whereas for σ < 0 it is stable. Introducing the ansatz (6) in (4- 5) that govern the
evolution of the perturbation, we obtain a generalized eigenvalue problem that is expressed by
means of the following formal relation

γ+ =AA BBq qˆ ˆ 0, (7)

in whichA is the complex linearized evolution operator. The boundary conditions associated
with (7) are derived from those used for the base flow calculation, as in Sipp and Lebedev
(2007). Finally, we underline that the two complex eigenpairs σ ω+ i q( ; ˆ ) and σ ω− i q( ; ˆ*)
associated with a particular base flow Qb are simultaneously a solution of the eigenproblem
together with the boundary conditions. Thus, the eigenvalues are complex conjugates and the
generic spectra in the σ ω( , ) plane is symmetric with respect to the real axis.

2.2. Structural sensitivity and the adjoint field

In this section we introduce, in a concise manner, the analysis regarding structural sensitivity.
The idea of this analysis is the concept of ‘wavemaker’ that was introduced by Giannetti and
Luchini (2007) and Hill (1992) to identify the location of the core of a global instability (see
e.g. Pralits et al (2010)). Recently, Luchini and Bottaro (2014) reviewed the use of adjoint
equations in hydrodynamic stability analysis. They discussed in detail the adjoint-based
sensitivity analysis (Appendix A, Section 9) that is able to map the structural sensitivity of a
global oscillator. We refer to this paper for further details.

In Lashgari et al (2012) it is shown, using a perturbation analysis, that for each con-
sidered global mode σ ω+ i u v w p( ; ˆ, ˆ, ˆ , ˆ), by adding a forcing term in the form of a ×(2 2)
coupling matrix δM0, the following eigenvalue drift is obtained

∑δγ δ δ= =S M S M: , (8)
ij

ij ij0 0

where we have introduced the sensitivity tensor

∫
=

+

+
D

S
f u

f u
x y

x y x y

dS
( , )

ˆ ( , ) ˆ ( , )

ˆ · ˆ
. (9)0 0

0 0 0 0

The adjoint field
+f̂ is obtained using the Lagrange identity (as in Giannetti and Luchini

(2007)); thus, the vector field =+ + +g fx y mˆ ( , ) (ˆ , ˆ ) satisfies the following problem:

γ− + + =+ + + +��{ }f C u fRe mˆ , ˆ ˆ 0, (10)b

=+�� f· ˆ 0. (11)

in which the operator +C is defined as

= −+ + + +�� ��{ }C u f u f u uRe, ˆ · ˆ ·b b b

μ+ + + ++ + +�� �� �� �� ��
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )( ) ( )f f u u f V u

Re
1 ˆ ˆ · ˆ ( )b b bb

T T

where the viscosity fluctuation operator V can be expressed in tensorial notation (see e.g.
Lashgari et al (2012))
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μ μ μ= ∂
∂

∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂

⎡
⎣⎢

⎤
⎦⎥u u u uV

S x S y S z
( ) 2 ( ) ( ) ( ) . (12)b b b bi

i i i1 2 3

The boundary conditions associated with the adjoint problem are derived from those used for
the direct eigenproblem. Different norms of the tensor S can be used to build a spatial map of
the sensitivity. The spectral norm is chosen here to study the worst possible case.

3. Numerical method and validation

3.1. Base flow calculation

The numerical computations of base flow have been performed using a finite element code. In
particular, we first derive the associated variational formulation of the Cauchy system (1) and
then use the FreeFem ++ (http://www.freefem.org) software to obtain a spatial discretization
onto classical −P P2 1 Taylor-Hood elements. The resultant nonlinear system of algebraic
equations, along with their boundary conditions, is solved with a Newton-Raphson procedure:
starting from an initial guess wb

(0) , at each step the linear system

= −( )CE Re W w rhs, · (13)b
n

b
n n( ) ( ) ( )

is inverted using the MUMPS-MUltifrontal Massively Parallel sparse direct Solver (Amestoy
et al (2006, 2010)) and the base flow is then updated as

= ++W W w . (14)b
n

b
n

b
n( 1) ( ) ( )

The initial guess is chosen as the solution of the Stokes equations and the process is carried
out until the L2-norm of the residual of the governing equations becomes smaller than −10 12.
Three different meshes: 1, 2 and 3, have been generated (see table 1) with the
Bidimensional Anisotropic Mesh Generator (BAMG) that is present in the Freefem ++
software.

3.2. Eigenvalue solver

Once the base flow is determined, the system (7) is used to perform stability analysis. After
spatial discretization, equation (7) along with the boundary conditions are recast in the
following standard form

Table 1. Comparison of the results obtained by the present code with those obtained by
Sipp and Lebedev (2007) with the meshes 1 and 2. The eigenfrequency ω and
growth rate σ have been calculated for the first 2D unstable eigenmode at =Re 4140.
We report also the number of degrees of freedom (nd o f. . .) and the number of triangles
(nt) for each unstructured Mesh.

Mesh σ ω nd o f. . . nt

1 0.0007590 7.4931 998668 221045
2 0.0008344 7.4937 1416630 313791
3 0.0009122 7.4943 2601757 576887
1 0.0007401 7.4930 880495 194771
2 0.0008961 7.4942 1888003 418330
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γ+ =⎡⎣ ⎤⎦( )A Re W B w 0, · , (15)b

where w is the right (or direct) eigenvector. The large number of degrees of freedoms
prohibits direct matrix methods and suggests the use of iterative techniques. This means, for
example, that methods based on the QR decomposition are not appropriate for solving these
large scale problems. Thus, we have chosen to adopt an efficient matrix-free iterative method
based on the Arnoldi algorithm (see e.g. Arnoldi (1951)). We use the state-of-the-art
ARPACK code of Lehoucq et al (1998), which implements the Arnoldi method with implicit
restarts to limit memory requirements and to compress the information of the desired
eigenvectors into a small subspace. The solutions of the linear systems (15) are determined by
the use of the same sparse solver (MUMPS) used for the base flow calculations. The adjoint
modes are computed as left eigenvectors of the discrete systems derived from the
discretization of the linearized equations and the sensitivity function is then computed by
the product of the direct and the adjoint fields. In this paper the right (direct) and left (adjoint)
eigenvectors are normalized by requiring

∫= =∈
+

D
D

{ } f uu x y dSmax ˆ ( , ) 1, ˆ · ˆ 1. (16)x y,

3.3. Code validation

In order to perform an accurate validation of the present code (Freefem ++ code) we compare
our results with three different test cases. First of all, we validate the stability analysis against
the results reported by Sipp and Lebedev (2007). These authors investigate the stability of a
Newtonian fluid in the present reference geometrical configuration and report as first
instability a 2D eigenmode that becomes unstable at =Re 4140. Table 1 compares our results
obtained with different meshes (1, 2, 3) and the results obtained in Sipp and Lebedev
(2007). In these particular representative runs, 50 eigenvalues were obtained, with an initial
Krylov basis set of dimension 150, and the convergence criterion present in the Arnoldi
iterations is based on a tolerance of −10 12. The accuracy of the converged eigenpairs was then
independently checked by evaluating the residual γ+max A B w|( ) |i i j i j j, , , and this quantity was
always less than −10 9 for the reported results. More importantly, for the leading few eigen-
pairs, this residual was generally less than −10 12.

We then validated the base-flow velocity profiles (not shown here for sake of brevity)
relative to the non-Newtonian channel flow with Nouar et al (2007), and an excellent
agreement was found. Finally, we compared the stability results for the classical lid-driven
cavity problem with those obtained by Haque et al (2012). Figure 3 shows the perfect
agreement in the computation of the critical Reynolds number for several non-Newtonian
flows. In the present work we used the Mesh 2 to perform all computations.

4. Results

First of all, we show the effect of the shear-dependent viscosity on the spatial distribution of
the base flow in figure 2. The shear layer that develops above the cavity presents a char-
acteristic wall-normal length scale that increases as the power index n increases . In figure 4
there are displayed several profiles of velocities u y( )b and v x( )b inside the cavity for the
Newtonian critical Reynolds number =Re 1370. In order to determine the influence of the
time constant λ on the structure of the base flow, we have chosen to take the parameter n
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constant and equal to 0.8. The spatial distribution of the profiles suggests that the viscosity
parameter λ does not change significantly with the base flow structure inside the cavity.

The dependence of the eigenvalues on the Reynolds number and spanwise wavenumber
β is presented in figure 5. In figure 5(a) we show the growth rate (real part σ ) of the leading
eigenvalues (i.e. the least stable) as a function of the power index n. Compared to the
Newtonian fluid, shear-thickening is increasingly stable as the value of n is increased, while
this monotonic behaviour is not true for the case of shear-thinning fluids. Figure 5(b) shows
the optimal spanwise wavenumber βopt (the value of β corresponding to the neutral curve) as
a function of the parameter n. All the curves present a discontinuity in ≃n 1.25 and, con-
sequently, the wavelengths Λ π β=ˆ 2 opt associated with the corresponding global modes

increase from Λ = ˆ (0.4)s (steady modes) to Λ = ˆ (1.5)u (unsteady modes). We have
investigated wavenumbers larger than those shown in figure 5b) and find no evidence of other

Figure 2. Spatial distribution of the base flow for several values of the parameters λ and
n at constant Reynolds number =Re 1370. The distribution is displayed through
contour plots of the velocity field modulus.

Figure 3. Determination of the critical Reynolds number Recr for several non-
Newtonian lid-driven cavity flows. Comparison of the present stability results with
Haque et al (2012).

Fluid Dyn. Res. 47 (2015) 015503 V Citro et al

8



eigenvalues that would give rise to instabilities for the Reynolds numbers considered.
Figure 5(c) shows the associated frequencies of the global modes. Thus, we note that the first
absolute linear instability of the steady base flow is a steady or unsteady 3D bifurcation
depending on the value of the power-law index n. We note that this behavior is qualitatively
the same as in the case of the lid driven cavity flow (see Haque et al (2012)).

The data in figure 5 has been further analyzed in order to investigate if a universal scaling
exists for the neutral curve. For this purpose we introduced the averaged Reynolds number, as
defined in Haque et al (2012) based on the mean viscosity ( ∫=Re Re x y dxdy( , )avg Area.

1 ),
and plotted the neutral curve as a function of n and λ. The results are presented in figure 6.
Indeed it is found that this scaling gives neutral curves that are rather independent of the
values of n and λ, when compared to the case of Newtonian fluids ( =n 1).

So far only the optimal spanwise wavenumber has been shown for a given Reynolds
number. In figure 7 we present the growth rate as a function of the spanwise wavenumber for
three values of the power index n and the Reynolds number chosen such that at least one

Figure 4. Velocity profiles inside the square cavity: (top) streamwise velocity
component ub at −x( , 0.5), (bottom) cross-stream component vb at y(0.5, ). The
Reynolds number is =Re 1370 and =n 0.8

Figure 5. (a) Critical Reynolds numbers as a function of the power index n, (b)
corresponding spanwise wavenumbers β (denoted optimal wavenumber) and (c)
eigenfrequencies ω.
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solution is unstable. In all cases λ = 10. A clear difference in the value of β for the unstable
solutions is found passing from =n 1.1 to =n 1.3.

We now turn to the analysis of the linear modes that destabilize the 2D base flow. Since
we want to analyze the features of both steady and unsteady modes, we select as repre-
sentative cases the flows characterized by λ = 10, =n 0.8 (steady case) and λ = 10, =n 1.3
(unsteady case). Figure 8 shows the structure of the two leading eigenmodes at the respective
critical Reynolds numbers and corresponding optimal spanwise wavelengths. The streamwise
velocity (figure 8(a)), wall-normal velocity (figure 8(b)) and spanwise velocity (figure 8(c))
contours clearly show that the steady bifurcating mode is localized in the region inside the
cavity.

In order to characterize the physical mechanism that underlies the instability, we show in
figure 9 a fictitious 3D field obtained as ϵ+ ′Q qb . Since the 3D global mode weakly affects
the flow outside the cavity, we represent the spatial structure of the field by three streamlines
inside the cavity (plotted with solid lines in figure 9). The spatial distribution of the boundary
layer developing over the cavity is also visualized by an iso-surface of streamwise velocity

Figure 6. Rescaled neutral curve: the data in figure 5 has been rescaled using the
definition of the averaged Reynolds number as found in Haque et al (2012).

Figure 7. The growth rate σ as a function of the spanwise wavenumber β for different
values of the power index n and Reynolds numbers. The value of λ = 10.
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and the streamwise structure of the flow is depicted by three slices. Thus, the secondary flow
generated by this instability can be described as flat rolls lying inside the cavity similar to
those reported by the 3D linear instability of the lid-driven cavity flow (see Albensoeder et al
(2001)). Figure 9 is made by taking the optimal Fourier wavelength as the transverse length.
The first unsteady mode, instead, is displayed in figure 8(e–g) by the modulus of the three
components û, v̂ and ŵ. The dynamics associated with this mode are a periodic oscillation
concentrated in the region inside the cavity. The secondary flow generated in this case has a
more complicated spatial structure with several ’rolls’ but again localized within the cavity.
The exact size and shape of the cavity vortex depends weakly on the global flow properties,
so, the 3D instabilities, driven by this local part of the flow field, always present similar
features. The receptivity behavior of the steady and unsteady mode is then investigate by an
adjoint analysis. In figure 10 is reported the spatial structure of the adjoint field using the
contours of the modulus of the adjoint velocity. For the stationary mode (figure 10(a)) the
receptivity to a momentum forcing is strong both near the right wall of the cavity and very
close to the left edge. The unsteady mode (figure 10(b)) presents the same receptive behavior
with a slight difference in the distribution of the maximum of the field. We have to note that
the region of high receptivity located on the left corner is the main difference with the lid-
driven cavity case.

Finally, following Chomaz (2005) and Giannetti and Luchini (2007), we have examined
the sensitivity of the leading eigenvalue to structural perturbations of the linear evolution
operator in order to determine the region of the flow where feedback processes at the origin of
a self-sustained instability are active. In figure 11 we show the structural sensitivity map for
both the unsteady and steady mode. In physical terms, this overlap region identifies where
local feedback will have a large impact on the leading eigenvalue. The sensitivity associated
with the steady mode (figure 11(a)) and with the unsteady mode (figure 11(b)) again have a

Figure 8. (a–c) Contour plots of the streamwise (a) u x yˆ ( , ), wall-normal (b) v x yˆ ( , ) and
spanwise (c) w x yˆ ( , ) direct eigenfunction of the steady mode: =Re 970cr , β = 13.6opt ,

λ = 10 and =n 0.8. (d–f) Visualization of the structure of direct eigenfunction of the
non-stationary mode by contours of modulus of streamwise (d) u x y| ˆ ( , ) |, wall-normal
(e) v x y| ˆ ( , ) | and spanwise (f) w x y| ˆ ( , ) | component: =Re 2700cr , β = 4opt , λ = 10 and

=n 1.3.
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Figure 9. Perspective view of the secondary flow generated by the steady bifurcating
mode ( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8). The total field is obtained as

ϵ+ ′Q qb where the small amplitude ϵ of the perturbation field is set to ϵ = 0.05.
Threeslices are placed respectively at =x 0, in the middle of the cavity ( =x 0.5) and at

=x 1. The structure of the shear layer developing above the cavity is visualized by an
iso-surface of the streamwise component of total velocity U (iso-surface value = 0.9).
The spatial distribution of the total field is displayed within the cavity with three
streamlines.

Figure 10. Contour plots of the modulus of the adjoint field for the (a) steady mode
( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8) and (b) unsteady mode ( =Re 2700cr ,

β = 4opt , λ = 10 and =n 1.3).
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similar structure concentrated only inside the cavity. Thus, any local feedback applied outside
this region only slightly modifies the leading eigenvalue, indicating that these regions do not
play a significant role in the process giving rise to global instability. For the present flow
configuration, we may conclude that the cavity vortex is the wavemaker region of the 3D
instability for both modes.

5. Conclusions

In this paper we have presented the linear dynamics of a 2D flow arising in open cavity
configurations for the case of non-Newtonian fluids given by the Carreau viscosity model. A
global stability analysis has been performed in order to map the neutral stability curves as a
function of the Reynolds number, and the model parameters n and λ. We have found that the
primary bifurcation is always 3D but can have both steady or non-stationary behavior,
depending on the value of the power index n. In particular, a single value of ≈n 1.25
separates the steady and unsteady bifurcations.

A detailed analysis of the structure of both leading global modes suggest that the
instability is localized within the cavity. Furthermore, we have computed the adjoint global
modes associated with the respective direct mode in order to show the receptive behavior of
the base flow. An analysis of the adjoint spatial structure allowed us to localize two regions of
strong receptivity to momentum forcing. The direct and adjoint modes are all concentrated
inside the cavity in the same region. Thus, the overlap field is again localized within the
cavity. We have further shown that if the Reynolds number is based on the average viscosity
(as in Haque et al (2012)), a more or less universal value of the critical Reynolds number is
found, independent of both n and λ. Finally, we conclude that the results summarized above
suggest the same instability mechanism of the lid-driven cavity flow.

Figure 11. Visualization of the structural sensitivity for the (a) steady mode
( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8) and (b) unsteady mode ( =Re 2700cr ,
β = 4opt , λ = 10 and =n 1.3).
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