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The control of Tollmien–Schlichting waves in a two-dimensional boundary layer is
analysed using numerical simulations. Full-dimensional optimal controllers are used
in combination with a setup of spatially localized inputs (actuator and disturbance)
and outputs (sensors). The adjoint of the direct-adjoint (ADA) algorithm, recently
proposed by Pralits & Luchini (In Seventh IUTAM Symposium on Laminar–Turbulent
Transition (ed. P. Schlatter & D. S. Henningson), vol. 18, 2010, Springer), is used
to efficiently compute an optimal controller known as a linear quadratic regulator;
the method is iterative and allows one to bypass the solution of the corresponding
Riccati equation, which is infeasible for high-dimensional systems. We show that an
analogous iteration can be made for the estimation problem; the dual algorithm is
referred to as adjoint of the adjoint-direct (AAD). By combining the solutions of the
estimation and control problem, full-dimensional linear quadratic Gaussian controllers
are obtained and used for the attenuation of the disturbances arising in the boundary
layer flow. The full-dimensional controllers turn out to be an excellent benchmark
for evaluating the performance of the optimal control/estimation design based on
reduced-order models. We show under which conditions the two strategies are in
perfect agreement by focusing on the issues arising when feedback configurations are
considered. An analysis of the finite-amplitude disturbances is also carried out by
addressing the limitations of the optimal controllers, the role of the estimation, and the
robustness to the nonlinearities arising in the flow of the control design.
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1. Introduction
Control of wall-bounded transitional flows might lead to high potential benefits

and outcomes; for instance, even a small reduction of aerodynamic drag can greatly
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reduce the operational cost of commercial aircraft or cargo ships. In the last decade,
active and passive control strategies have been investigated, in order to favourably
manipulate flows. Passive control has been implemented by introducing roughness
elements (White & Saric 2000) or riblets (Bechert & Bartenwerfer 1989; Luchini,
Manzo & Pozzi 1991; Choi, Moin & Kim 1993), while active means include open-
loop strategies, like opposition control (Hammond, Bewley & Moin 1998) or moving
walls (Quadrio & Ricco 2004), as well as techniques based on control theory or
adjoint-based optimization (Abergel & Temam 1990; Bewley, Moin & Temam 2001;
Corbett & Bottaro 2001).

More specifically, linear control can be used to attenuate perturbations arising during
the early stages of transition to turbulence, whose evolution is typically governed
by linear mechanisms (Schmid & Henningson 2001); however, the design of high-
dimensional controllers remains a computational challenge. Indeed, even though it
is relatively common to deal with numerical simulations with dimensions n > 105,
control design tools become infeasible for much smaller dimensions. For instance,
linear optimal controllers are usually designed by solving a Riccati equation (Lewis
& Syrmos 1995), a quadratic matrix equation that becomes computationally intractable
for n> 103 (Benner, Li & Penzl 2008).

1.1. Design-then-reduce versus reduce-then-design
A common approach to this computational challenge is to use a reduced-order model:
one identifies a simpler model, with dimension r� n, which captures the essential
features of the original system to be controlled (usually referred to as the plant). Once
such a model is available, a low-order controller can be designed using traditional
methods such as Riccati solvers. This approach is usually referred to as reduce-then-
design and it is schematically represented along the left-hand branch of the diagram in
figure 1 (see Anderson & Liu 1989).

A reduced-order model can be built such that the dynamics of the system is
analysed from measurements taken from the system. In other words, as mentioned
by Bewley (2001), we seek to achieve the desired closed-loop system behaviour by
only using measurements (outputs), with the system excited by several input signals.
This dynamics is referred to as input–output dynamics of the system and is usually
characterized by a complexity that is smaller than the original one. This feature allows
one to considerably shrink the dimensions of the dynamical system, while preserving
the main dynamics for the control design. A systematic way to perform such a
reduction is to use balanced truncation (Moore 1981); for a high-dimensional system,
balanced truncation can be approximated using a snapshot-based algorithm proposed
by Rowley (2005). This methodology is equivalent to a system identification method
called the eigensystem realization algorithm (ERA) (Juang & Pappa 1985), as shown
in Ma, Ahuja & Rowley (2011).

The reduce-then-design approach has been successfully employed for many flow
cases, such as cavity flows by Rowley & Juttijudata (2005) and Åkervik et al. (2007),
channel flows by Ilak & Rowley (2008) and spatially developing boundary layers in
both two-dimensional (Bagheri, Brandt & Henningson 2009a) and three-dimensional
configurations (Semeraro et al. 2011). More recently, system identification based on
auto-regressive models (ARMAX) was applied by Hervé et al. (2012) for the control
of flows over a cavity.

The second approach sketched in figure 1 is referred to as design-then-reduce; in
this case, a full-dimensional controller is designed first, while in the second step, the
dimension of the controller is reduced. Indeed, a very high-order controller is usually
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FIGURE 1. Reduction and control: the sketch represents the two approaches usually followed
for the design of active controllers. In general, the two schemes do not produce equivalent
results.

not of practical interest for engineering applications; thus for actual implementation, it
is still important to reduce the dimension of the controller.

In general, the two approaches are not equivalent. Even though the reduce-then-
design approach is quite popular in the flow control community, for the advantages
already mentioned above, it has a number of drawbacks, as pointed out by Anderson &
Liu (1989). First, the approximation is performed earlier in the design process, which
is generally undesirable. Moreover, in order to reliably approximate the plant, some
knowledge of the controller is required; but in the reduce-then-design approach, the
controller is not known until the plant is reduced. In practice, the model reduction
step is usually performed in open loop; when the loop is closed, a number of states
disregarded during the design of the model might become important for the dynamics
of the closed-loop system.

1.2. Full-dimensional controllers and flow control

For spatially invariant systems with distributed actuation and measurements, Bamieh,
Paganini & Dahleh (2002) showed that it is possible to design spatially localized
optimal controllers (or kernels) with a compact support in physical space. In this
approach, a controller is designed for each wavenumber pair in Fourier space,
independently, while the final kernel in physical space is obtained by performing
an inverse Fourier transform.

This procedure has been used for plane channel flow by Högberg, Bewley &
Henningson (2003) and later extended for weakly spatially developing flows by
Chevalier et al. (2007a) and Monokrousos et al. (2008). Apart for the limit imposed
by the hypothesis of spatial invariance of the system, a drawback of this methodology
is the necessity of introducing a distributed system of sensors and actuators.
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An alternative, more general approach to the design of optimal controllers is to
compute a linear quadratic regulator by solving a Riccati equation (Lewis & Syrmos
1995). A classic technique for solution is the Chandrasekhar method, in which the
full Riccati equation is replaced by a set of partial differential equations, valid when
the resulting number of degrees of freedom of the system n is much larger than the
number of actuators m� n. Efforts have been devoted to optimizing the integration
of these equations by using Newton methods (Banks & Ito 1991) or projection on
Krylov subspaces by using the Arnoldi process (see e.g. Benner 2004, and the
references contained therein). An efficient solution method for this set of equations
was proposed by Borggaard & Stoyanov (2008) and Akhtar et al. (2010), where
long-time integrators are used in combination with reduced-order models based on
proper orthogonal decomposition (POD).

Methods for the solution of large optimal control problems were also proposed
by Bewley, Luchini & Pralits (2012), based on previous works by Bewley, Pralits
& Luchini (2007) and Pralits & Luchini (2010). In particular, Bewley et al. (2007)
presents a minimal-energy feedback control that can be obtained as a limit for l→∞,
where l stands for the control penalty in a cost function to be minimized. This
limitation has been circumvented in Pralits & Luchini (2010), where the adjoint of the
direct-adjoint (ADA) algorithm was introduced and tested for the optimal control of
the von Kármán street developing past a cylinder.

The original direct-adjoint optimization is replaced with the corresponding
sensitivity analysis by considering the adjoint of the entire problem: this procedure
changes an optimization problem of size n, the number of states, into a problem
of size m, where m is the number of outputs. In flow control, usually n � m,
even when multi-input–multi-output (MIMO) cases are considered (see e.g. Semeraro
et al. 2011); moreover, the algorithm shares the same numerical machinery as the
original direct-adjoint problem, making the technique particularly appealing for control
design.

1.3. Aim of the investigation
As mentioned above, the steps of dimension reduction and control design do not,
in general, commute. Thus, one might wonder about the limitations of the reduce-
then-design approach when applied to a large flow system: under what conditions do
the two approaches give the same reduced-order controller? What is the limiting
performance of an ‘ideal’ full-state optimal controller designed using the full-
dimensional system?

In order to address these issues, we compare the full-dimensional control design and
the corresponding design based on a reduced-order model. In particular, we use the
ADA algorithm to compute a controller to suppress small-amplitude perturbations in a
spatially evolving two-dimensional boundary layer on a flat plate. The investigation
is performed using numerical simulations. The same test case has been used in
Bagheri et al. (2009a), in which the reduce-then-design approach was adopted, by
first performing a balanced truncation for the identification of a reduced-order model,
followed by a low-dimensional control design using a linear quadratic Gaussian (LQG)
controller. In order to provide a proper benchmark for the low-dimensional design,
we extend the formulation of the ADA algorithm to the estimation problem, by
performing a sensitivity analysis of the dual system. An optimal estimator can be
designed by solving a feedback problem applied to the adjoint variable, thus resulting
in optimization based on an adjoint-direct system (see Kim & Bewley 2007). This
approach is deterministic; however by interpreting the weights appearing in the cost
function defined for the problem as covariance of the stochastic excitation, we can
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FIGURE 2. Flow case. The flow is developing over a flat plate, which physically extends to
x = 800. The disturbance propagates from the input Bw , located at (xw , yw) = (35, 1), while
the actuator Bu is placed at (xu, yu) = (400, 1). The sensor Cz placed at (xz, yz) = (750, 1)
acts as objective function. Two locations for the estimation sensor Cy are tested: upstream
of the actuator, (xy , yy) = (300, 1), and a short distance downstream of it, (xy , yy) = (405, 1).
A fringe region extending in the interval x ∈ [800, 1000] enforces periodicity of the solution
along the streamwise direction.

easily recover the original characterization of the problem (Bagheri et al. 2009b). In
the present contribution, the dual algorithm is referred to as adjoint of adjoint-direct
(AAD).

By combining the results of the two iterative schemes, full-dimensional LQG
controllers are designed. The performance of the device is investigated by a parametric
analysis where the relative positions of the estimation sensor and the actuator, and
the control penalty l are studied. Moreover, a brief investigation of the compensation
of nonlinear flows is reported in order to assess the performance (and the limits)
of different combinations of controllers based on the computed full-dimensional
control/estimation gains.

The article proceeds as follows. First, we introduce the flow case and the
input–output system in § 2. In § 3, a quick overview of the optimal control and
estimation problem is presented, together with the main relations used in § 4, where
the iterative procedures are outlined. Here, we summarize the ADA algorithm and
introduce the AAD algorithm for the estimation problem. Results for the spatially
evolving boundary layer are presented in § 5, where the evolution of small- and
finite-amplitude disturbances is considered for the analysis of the control design. The
conclusions are drawn in § 6.

2. Flow case
The control of small-amplitude perturbations is analysed for the two-dimensional

input–output configuration already investigated by Bagheri et al. (2009a) and Belson
et al. (2013). In figure 2, a sketch of the computational domain is shown; the
streamwise and wall-normal directions are denoted by x and y, respectively.

The disturbance velocity field is governed by the Navier–Stokes equations
linearized around a spatially evolving zero-pressure-gradient boundary layer flow
U(x)= (U,V)T,

∂u
∂t
=− (U ·∇)u− (u ·∇)U −∇p+ 1

Re
∇2u+ λf (x)u, (2.1a)

0=∇ ·u, (2.1b)
u= u0 at t = 0. (2.1c)
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The disturbance velocity field and the pressure field are u(x, t) = (u, v)T and p(x, t),
respectively, and λf is a parameter in a forcing term to be discussed below. The ∇
denotes the differential operator (∂/∂x, ∂/∂y). The Reynolds number is defined as
Re ≡ U∞δ∗0/ν, where δ∗0 is the displacement thickness at the inflow position, U∞
is the uniform free-stream velocity and ν is the kinematic viscosity. For all the
cases analysed in this study Reδ∗0 = 1000, corresponding to Rex ≈ 3 × 105 at the
computational inlet at x= 0.

The physical domain has dimensions [Lx,Ly] = (1000, 30). No-slip conditions
are imposed on the flat plate, at y = 0. In the free stream (y = 30), Dirichlet
boundary conditions enforce vanishing perturbations. Periodicity is assumed along
the streamwise direction within the Fourier approximation by introducing a forcing
term λf (x)u in (2.1a); the forcing arises in a fringe region extending in x ∈ [800, 1000]
where the perturbation is forced to be zero (Nordström, Nordin & Henningson 1999).

The simulations were performed using a pseudo-spectral direct numerical simulation
(DNS) code (Chevalier et al. 2007b). The spatial operators are approximated by
Fourier expansion along the streamwise direction with Nx = 768 and Nx = 1024 for
the linear and nonlinear cases, respectively. Chebyshev expansion in the wall-normal
direction is used on Ny = 101 Gauss–Lobatto collocation points. Divergence-free
conditions are guaranteed by the equations cast in velocity–vorticity formulation.

2.1. Input–output system
The first step of the control design is to specify the inputs and outputs of the plant, the
system to be controlled. The inputs consist of an external disturbance and an actuator,
whose spatial profiles are given by the matrices Bw ∈ Rn and Bu ∈ Rn×m, respectively.
The number of degree of freedom of the system is n = 2NxNy, i.e. the number of
grid points times the velocity components. The parameter m represents the number of
actuators (for our application, m = 1). The outputs consist of a performance measure
and a sensor, described by the matrices Cz ∈ Rk×n and Cy ∈ Rp×n, respectively. The
scalar value p is the number of sensors, while k is the number of outputs; also in this
case, k = p = 1. The inputs and the outputs are shown schematically in figure 2, and
described in more detail below.

Let u(t) ∈ Rm denote the control signal, and w(t) ∈ R denote an external disturbance,
modelled as zero-mean, unit-variance, Gaussian white noise. The linear time-invariant
system reads

q̇= Aq+ Bw w + Buu, (2.2)

where the matrix A ∈ Rn×n represents the linearized and discretized Navier–Stokes
equations, including the boundary conditions, while the column vector q(t) ∈ Rn

indicates the velocity components of the discretized problem. Note that the time-
stepper approach is used: the system matrix is never stored, but its action is
approximated by marching the DNS solver in time. In this case, the storage demand
in memory is of the same order as that of the flow field. The column vector Bw

describes the spatial location of the disturbance, located upstream (on the left in
figure 2); the impulse response of the system is shown in figure 3 where the evolving
Tollmien–Schlichting (TS) wave-packet is captured at three different instants of time.
The actuator Bu is modelled as a localized volume forcing close to the wall. The
column vectors Bw and Bu are obtained from discretizations of the solenoidal function

f (x, x0)=
(
σxŷ
−σyx̂

)
exp

(−x̂2 − ŷ2
)
, (2.3)
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FIGURE 3. Streamwise component of the TS wave-packet generated as impulse response of
the system to the perturbation Bw . The snapshots are taken at three different instants of time:
(a) t = 200, (b) 800, (c) 1600.

where

x̂= x− x0

σx
, ŷ= y− y0

σy
. (2.4)

The scalar quantities σx = 4 and σy = 1/4 determine the size of the inputs, while the
scalars x0 and y0 define the locations. Note that they are all of same size. From this
definition, we obtain

Bw = f (x, xw), Bu = f (x, xu), (2.5)

with xw = (35, 1) and xu = (400, 1), see also figure 2. These positions are the same as
already chosen by Bagheri et al. (2009a).

The sensor measurement y(t) also incorporates a zero-mean Gaussian white noise
g(t), and is given by

y = Cyq+ ηg, (2.6)

where η is the magnitude of the sensor noise, a parameter that is important for
estimator design, to be discussed in § 3.2. The performance measure z(t) is given by
the fictitious output

z =
[
Cz

0

]
q+

[
0
l

]
u, (2.7)

and is used to determine a cost function for the optimal control problem to be
addressed in § 3.1; in particular, the optimal controller will minimize ‖z‖2. The
parameter l determines how much the control effort is penalized in the cost function
and is referred to as the control penalty.

The flow measurements are obtained by averaging the velocity field over a
small portion of the domain defined by the row vectors Cz and Cy , defined from
discretizations of the function (2.3) and used as weights. In particular,

Czq=
∫
Ω

(
f (x, xz)

Tq
)

dx dy, Cyq=
∫
Ω

(
f (x, xy)

Tq
)

dx dy, (2.8)
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where Ω indicates the computational domain. The output Cz is located at xz =
(750, 1). Two different locations are chosen for the sensor Cy , see figure 2; the
relative position along the streamwise direction of the actuator and sensor is important
and influences the dynamics of the closed-loop system.

When the sensor is located downstream of the actuator, or a short distance upstream,
it can measure the disturbance and the effect of the actuator; this configuration is
referred to as output feedback control. If, on the other hand, the sensor is located
far upstream of the actuator, it cannot measure the effect of the actuation, due to the
strong advection dominating the flow. This configuration is a special case of output
feedback control referred to as disturbance feedforward control in the framework
described by Doyle et al. (1989); in this limit, the action of the controller is based
only on the measurements of the disturbance w(t). A straightforward way for testing
the configuration is represented by the input–output analysis of the dynamics between
the actuator Bu and the sensor Cy : feedback arises when the transfer function from u
to y is non-zero.

Thus, it is possible to categorize the two configurations by analysing the behaviour
of the signals in the time domain or the associated transfer function in the spectral
domain. Note that feedback and feedforward controllers strongly differ in terms of
stability properties and robustness to uncertainties of the system; these aspects are
thoroughly analysed for the same configuration in Belson et al. (2013).

3. Optimal control and estimation: a brief review
The optimal control and the estimation problems are well known and the available

literature is quite broad (see e.g. Lewis & Syrmos 1995; Zhou, Doyle & Glover 2002;
Bagheri et al. 2009b); the aim of this section is to introduce the main relations in a
concise way, as these will be needed in § 4.

3.1. Full-information optimal control
The heart of the optimal control problem is the minimization of the cost function

J (q (u) , u)= 1
2

∫ T

0

(
qHQzq+ uHRu

)
dt, (3.1)

where Qz > 0 and R > 0 are weights that determine the relative penalties on the state
perturbations q(t) and control effort u(t), respectively; the notation (·)H denotes the
conjugate transpose. Here, we choose Qz = CH

z Cz , and R = l2, so the cost function
is simply ‖z‖2

L2[0,T]. Note that we have assumed that the cross-weighting between
the state and the control term is null; this assumption does not lead to any loss of
generality.

The optimal control u(t) minimizes the cost J subject to the dynamics

q̇= Aq+ Buu, q (0)= q0. (3.2)

Note that in the optimal control problem, the disturbance w(t) is taken to be zero;
however, this disturbance is needed in the optimal estimation problem. One way of
solving this problem is to follow the Lagrangian approach, by forming an augmented
cost function J̃ based on the cost in (3.1) and equation (3.2), acting as constraint.
The adjoint variable p(t) corresponds to the Lagrangian multiplier and is governed by

ṗ=−AHp− Qzq, p(T)= 0, (3.3)
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where AH denotes the adjoint operator. The adjoint operator satisfies the relation
〈Aq, p〉 = 〈q,AHp〉.

The optimal control is then given by

u(t)=−R−1BH
u p(t). (3.4)

Introducing the linear dependence p(t) = X(t)q(t), this solution may be written
u(t)= K(t)q(t), where

K(t)=−R−1BH
u X(t) (3.5)

is the control gain K(t) ∈ Rm×n and X(t) ∈ Rn×n is a solution of a differential Riccati
equation. In the limit as T →∞, X becomes a constant matrix, and is a positive-
definite solution of an algebraic Riccati equation

AHX + XA− XBuR−1BH
u X + Qz = 0. (3.6)

Note that, for a given initial condition q(0), the optimal input u(t) may also be
computed without Riccati equations by iteratively solving (3.2)–(3.3), together with the
optimal condition (3.4) for a finite time-horizon T . In this case, the optimal input is
computed using a gradient descent, noting that

∂J̃

∂u
= BH

u p+ Ru, (3.7)

where J̃ is the augmented cost function.

3.2. Estimation problem and dual system
In order to implement the feedback law u(t) = Kq(t) from the previous section,
one needs to know the flow state q(t). However, in practice, only the sensor
measurement y(t) is available; thus, we replace q(t) by a state estimate q̂(t),
determined by an estimator that typically takes the form

˙̂q= Aq̂+ Buu − L(y − ŷ), (3.8a)

ŷ = Cy q̂. (3.8b)

A stochastic framework is assumed for the description of the disturbance w(t) and
noise g(t). As already mentioned, the terms w(t) and g(t) are modelled as white-noise
stochastic processes with zero mean and known covariance matrices W = E {wwH} and
G= E {ggH}, respectively. The operator E (·) indicates the expected value operator.

The estimator dynamics is forced by the last term proportional to the difference
between the real measure y(t) and the estimated measure ŷ(t) via the matrix L(t),
referred to as estimation gain. The matrix L(t) is designed to minimize the expected
energy Y = E

{
eeH
}

of the estimation error e(t)= q(t)− q̂(t), that satisfies the relation

ė= (A+ LCy)e+ Bw w + ηLg, (3.9)

obtained by combining (2.2) and the estimator (3.8). The gain L(t) ∈ Rn×p assumes the
form

L(t)=−Y(t)CH
y G
−1, (3.10)

where Y(t) ∈ Rn×n is the solution of a second differential Riccati equation. Also in
this case, in the limit T→∞, Y becomes a constant matrix, solution of the algebraic
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Riccati equation associated with the estimation problem

AY + YAH − YCH
y G
−1CyY + BwWBH

w = 0. (3.11)

Note that the unknown of the Riccati equation (3.11) is the expected energy of the
estimation error e(t) (Lewis & Syrmos 1995; Bagheri et al. 2009b).

By analogy with the control problem, it is interesting to note that the optimal gain
matrix L can be computed by introducing the dual fictitious adjoint system

−ṗ= AHp+ CH
y ỹ, p (T)= p0, (3.12)

where the ‘feedback law’ is now represented by ỹ(t) = LHp(t). The dual system is
defined by performing the adjoint of equation (3.9), governing the estimation error e(t),
where the disturbance w(t) and the noise g(t) are taken to be zero (Kim & Bewley
2007). Note that the adjoint of the outputs CH

z and CH
y are the inputs forcing in the

dual adjoint system, while the adjoint of the inputs BH
w and BH

u plays the role of the
outputs of the system (Kailath 1980; Bagheri et al. 2009a). Once the dual system is
defined, one can cast a second optimization problem in order to minimize the auxiliary
variable p(t), based on the cost function

N (p (ỹ) , ỹ)= 1
2

∫ T

0

(
pHQw p+ ỹHQg ỹ

)
dt. (3.13)

The optimization procedure follows the same steps already outlined for the control
problem: the Lagrangian multiplier q(t) satisfies the relation

q̇= Aq+ Qwp, q (0)= 0, (3.14)

while the associated gradient is

∂ ˜N

∂ ỹ
= Cyq+ Qg ỹ . (3.15)

Finally, the Riccati equation (3.11) is obtained by defining the matrices Qw = BwWBH
w

and Qg = G. Thus, also by following a ‘deterministic’ formulation for the estimation
problem, the choice of the proper weights as covariance matrix allows us to recover
the original stochastic connotation. Note that the matrix Bw enters the definition of Qw ,
due to the input–output formulation.

3.3. Linear quadratic Gaussian (LQG) controller
Once the two optimal problems are solved, it is possible to show that the feedback
gain can be applied to the estimated state q̂(t) in order to compute the control signal
u(t). The LQG controller can indeed be designed in these two steps, performed
independently of each other (see Anderson & Moore 1990); according to the
separation principle, if each of the two problems is stable, the final compensator,
obtained from the optimal estimator and the optimal controller, will be stable and
optimal. Thus, by combining the estimator (3.8) and the full-information controller
in (3.5), we obtain the compensator or output feedback controller

˙̂q= (A+ BuK + LCy

)
q̂− LCyq, (3.16a)

u = Kq̂. (3.16b)

Since the solution of the Riccati equation is a full matrix, the storage requirement
is at least of O(n2). Moreover, the numerical methods for calculating the solution of
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the Riccati equation are usually characterized by a computational complexity of O(n3),
regardless of the structure of the system matrix A (Benner et al. 2008). Thus, the
computation of the solution is too expensive for high-dimensional systems, n > 103.
The reduce-then-design approach is usually adopted in the flow-control community
(see e.g. Bagheri et al. 2009b). The controller is built by using a model able to capture
the essential dynamics of the system. In the present investigation, the reduce-then-
design strategy is compared with the full-dimensional LQG obtained by applying the
iterative method outlined in the next section. The dynamical system in (3.16) runs next
to the main DNS, either based on a reduced-order model or based on a second DNS
when full-dimensional gains are used.

4. Optimization without Riccati equations
In Pralits & Luchini (2010), the adjoint of the direct-adjoint (ADA) algorithm for

the solution of the control Riccati equation is introduced, starting from the classic
direct-adjoint iteration. This direct-adjoint iteration for the optimal control problem
allows us to determine the optimal control signal u(t) for a given final time T , but
it is not capable of computing the associated feedback gain K defined in (3.5). We
summarize this method in § 4.1 and present the dual solution for an optimal estimator
in § 4.2, following the same procedure.

4.1. Adjoint of the direct-adjoint (ADA)
For a given initial condition q(0), the optimal input u(t) may be computed without
Riccati equations, by iteratively solving the direct equation (3.2) and the adjoint
equation (3.3), and using a gradient descent to minimize the cost J . When the
iteration converges, i.e. ∂J̃ /∂u → 0, the optimality condition (3.4) holds. If we
consider n linearly independent initial conditions (say, standard basis vectors of Rn),
then we may find the optimal input u(t) for any initial condition q(0), and compute the
gain matrix K in (3.5). For instance, if one aims to compute the feedback gain in the
limit as T→∞, i.e. when the solution is a constant matrix, it is possible to write[

u1
0 u2

0 ... un
0

]= K(0)
[
q1

0 q2
0 ... qn

0

]
, (4.1)

and solve for the feedback gain matrix K at t = 0. When n is large, one such
solution is feasible, but n solutions are clearly not feasible. However, if the resulting
dimension of the outputs is much smaller than the degrees of freedom of the inputs,
i.e. n� m, we may improve the situation by analysing the sensitivity with respect to
the initial condition using the adjoint of the system (3.2)–(3.3), as elucidated by Pralits
& Luchini (2010) and Bewley et al. (2012).

Letting z = (p, q), equation (3.2) and the adjoint equation (3.3) can be arranged,
together with the optimal condition u(t)=−R−1BH

u p(t), into the following system

Tz= 0, T =

 BuR−1BH
u

d
dt
− A

− d
dt
− AH −Qz

 . (4.2)

The initial conditions for the adjoint and direct equations are q(0) = q0 and
p(T)= 0, respectively. Note that the system is arranged in a slightly non-standard way
by making the temporal derivative appear in the off-diagonal blocks of the operator, in
order to simplify the following analysis. Now, we consider the variable z̃ = (p̃, q̃). By
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defining the inner product

〈a, b〉 =
∫ T

0
a(t)Hb(t) dt, (4.3)

one can express the following adjoint identity:

〈z̃,Tz〉 = 〈TH z̃, z〉 + b. (4.4)

The last term in (4.4) is obtained via integration by parts and is

b= (p̃Hq− q̃Hp)
∣∣T

0
. (4.5)

Now, suppose we solve the adjoint problem

TH z̃= 0,
q̃(0)= q̃0,

p̃(T)= 0.
(4.6)

It can be easily verified that equations (4.6) for the adjoint variable z̃ are identical
to the original equations (4.2), that is T = TH . If z is a solution of the original
problem (4.2), then (4.4) and (4.5) together with the boundary conditions give

[p̃(0)]Hq(0)= [q̃(0)]Hp(0). (4.7)

The optimality condition (3.4) can be imposed by comparing each row with the
identity (4.7). In particular, noting that the gain matrix K(t) from (3.5) satisfies

K(0)q(0)=−R−1BH
u p(0), (4.8)

at t = 0, one sees that by introducing one row of the matrix −R−1BH
u as initial

condition q̃H
0 , then the corresponding kth row of the optimal gain K(0) is given by

p̃H
0 that results from the solution of (4.6). Thus, if the number of inputs is m, we can

compute all m rows of K(0) from just m solutions of the adjoint problem (4.6), instead
of n solutions of the original problem (4.2). In flow control, where usually n� m, this
represents dramatic savings.

Thus, the computational machinery that one uses to solve (4.2) can be used for the
ADA problem without modification, except the initial condition q̃0; however, due to
the choice of the initial condition, the physical interpretation of the problem differs
because it is no longer an optimal control problem for a given final time T .

In the limit as t→∞, the gain K(t) becomes a constant, equal to K(0), so this
method recovers the standard infinite-time LQR solution. Thus, when the optimization
is performed for a time interval T that is long enough, the ADA algorithm is capable
of finding the exact solution of the Riccati problem.

4.2. Adjoint of the adjoint-direct (AAD)
As mentioned before, the machinery employed for the control problem can be
adopted in an analogous manner for computing the full-dimensional estimation gain
L. The corresponding system consists of equation (3.12) for the adjoint state and the
governing equation for the direct variable (3.14) which are arranged together with the
optimal condition ỹ(t)=−Q−1

g Cyq(t) as

T̃ =

CH
y Q
−1
g Cy − d

dt
− AH

d
dt
− A −Qw

 . (4.9)
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The initial conditions for the adjoint and direct equations are p(0)= p0 and q(−T)= 0,
respectively. In perfect analogy with the procedure already implemented for the control
problem, the adjoint of the entire system together with the boundary conditions leads
to the identity

[q̃(0)]Hp(0)= [p̃(0)]Hq(0). (4.10)

By comparing the latter identity with the relation

[L(0)]Hp(0)=−Q−1
g Cyq(0), (4.11)

it is possible to note that by introducing one row of the matrix −Q−1
g Cy as initial

condition p̃H
0 , the direct solution q̃H

0 at time t = 0 provides the corresponding row of
[L(0)]H , once the iteration is converged.

In conclusion, the full-dimensional LQG compensator in (3.16) can be computed by
combining the AAD solutions for the computation of the estimation gains, L, and the
ADA solutions for the controller gains, K .

4.3. Implementation and convergence
The algorithm for computing the full-dimensional gains is based on a classic iteration
where each step consists of a forward direct numerical simulation followed by the
associated adjoint simulation that marches the system backwards in time (see e.g.
Schmid 2007, and the references contained therein). For sake of clarity, we sketch the
iteration in the following, by using the ADA algorithm as an example.

(a) First, (3.2) is solved by marching the time stepper forward it time until T; the cost
function J can be estimated by using the integral in (3.1).

(b) Equation (3.3) is solved backwards in time. A modified version of the time stepper
is used, where the adjoint equations are implemented. For the derivation of this set
of equations, we refer to Bagheri et al. (2009a). Note that the forcing term consists
of the full state of (3.2); thus, in general, a proper implementation should include
a checkpoint procedure for the storage of the flow fields q ∈ [0,T]. However,
due to the input–output configuration, the term Qz = CH

z Cz appearing on the
right-hand side of (3.3) is low-rank; thus, it is sufficient to compute the output
signal z = Czq and force the adjoint solution by introducing this signal as input
of the forcing via CH

z . In fact, the output of the direct problem plays the role of
input in the adjoint system. For the estimation problem, the corresponding term is
Qw = BwWBH

w (see (3.14)).
(c) Finally the control signal u(t) is updated at each iteration by minimizing the cost

function J via a conjugate-gradient method (see e.g. Press et al. 2007). The
control signal is computed as

ui+1 = ui + αihi. (4.12)

A line-minimization algorithm is used for the computation of αi in (4.12), based
on Brent’s method outlined by Press et al. (2007). The signal u(t) is taken to be
zero as guess for the first iteration, while the direction hi is initialized as h1 =−g1.
The gradient gi is computed using (3.7). The first term of the gradient corresponds
to the output of the adjoint system, while the second term is given by the control
signal u(t). At each iteration the direction hi is updated using the gradient g as

hi =−gi + β ihi−1. (4.13)
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Input: Initial guess at i= 1, u on t ∈ [0,T]
Initial condition q0, corresponding to the kth row of −R1BH

u
Tolerance ε

1: Solve dq/ dt = Aq+ Buu, with q(0)= q0, solved forward in time for t ∈ [0,T]
2: Compute J =J (q(u), u)
3: if i> 0 and (J i+1 −J i)/J i < ε, then

exit loop
end if

4: Solve dp/ dt =−AHp− Qzq, with p(T)= 0, solved backwards in time for t ∈ [0,T]
5: Compute ∂J̃ /∂u = BH

u q+ Ru
6: Update u via gradient-based method (see § 4.3)
7: go to 1

Output: kth row of the control gain K , corresponding to p0 at t = 0

TABLE 1. Adjoint of direct-adjoint (ADA) algorithm.

The coefficient β i is computed using the Fletcher–Reeves formula. An alternative
method, steepest descent, has been successfully used by Pralits & Luchini (2010).

The ADA algorithm is summarized in table 1. The dual scheme is adopted for
the AAD iteration by applying the relations reported in §§ 3.2 and 4.2. In this
case, an adjoint-direct iteration is performed; at each step of the iteration, the
governing equation (3.12) is marched backwards in time, forced by the ‘control’ signal
ỹ(t), while equation (3.14) is marched forward in time. The gradient is computed
using (3.15).

The convergence is analysed by considering the cost J , the norm of the gradient
∂J̃ /∂u and the final time of optimization T .

The first two parameters are related to the convergence of the method, given a
certain tolerance; as convergence criterion, the relative error δJ = (J i+1 −J i)/J i

has been chosen, while the norm of the cost-gradient ‖∂J̃ /∂u‖ needs to decrease
when the iteration is progressing. The corresponding parameters are used for the
AAD algorithm by processing the cost function value N and the norm ‖∂ ˜N /∂ ỹ‖,
while the iteration advances. In figure 4, these parameters are shown as a function of
the number of iterations. Figure 4(a,b) shows the convergence rate of three different
control gains K , characterized by control penalty l2 = [50, 100, 500]. The algorithm is
used with a tolerance value of ε = 1.0× 10−8, which is deemed sufficient to guarantee
converged results. The required number of iterations varies with the control penalty
l; in particular, the convergence of the algorithm slows down when l is decreased.
The results in figure 4(a,b) are associated with a final time T = 2600. From the
theoretical point of view, this parameter is particularly interesting: the solution of the
optimization procedure has to be independent of the final time of the simulations.
Thus, the optimization time needs to be long enough in order to provide the exact
solution of the Riccati equation. As a starting guess, T is chosen as the time required
for a wave-packet produced at the initial-condition location to be convected out of the
computational domain. A convergence test can be performed efficiently by taking the
initial guess for u(t) to be the final result from a computation with a shorter value of
T , and extrapolating it for a longer time window.
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FIGURE 4. Convergence of the ADA algorithm (a,b) and AAD algorithm (c,d). (a) The
convergence of the cost function J is shown by considering the relative error δJ between
two successive iterations; three control penalties are considered: l2 = 500 (black solid line),
l2 = 100 (grey solid line) and l2 = 50 (blue solid line). The red solid line indicates the chosen
tolerance. The final time of integration for each direct-adjoint iteration is T = 2600. In (b),
the 2-norm of ∂J̃ /∂u is shown as a function of the iterations (same legend as in a). For the
AAD algorithm, δN is shown in (c) and the 2-norm of ∂ ˜N /∂ ỹ in (d), for the cases η2 = 500
(black solid line), η2 = 100 (grey solid line) and η2 = 50 (blue solid line). The final time of
integration is T = 2200.

The convergence features of the AAD algorithm are similar (see figure 4c,d); the
estimation gain L associated with a sensor located at xy = 300 is analysed, for three
different values η = [50, 100, 500] and a final time T = 2200. Also for the AAD
algorithm, the number of iterations increases progressively, when reducing the scalar
value η; in general, for the case analysed in this paper, it is possible to get converged
results within a number of iterations of O(100) (at most).

As already mentioned, each iteration includes a line-minimization (Press et al.
2007); thus, the total number of adjoint-direct (direct-adjoint) simulations used is
actually larger than the number of iterations, because the value of the cost J (N ) is
evaluated more than once for every iteration step.

4.3.1. Control and estimation gains
In figure 5(a,b) the streamwise component of the estimation gains obtained are

shown for two different positions of the estimation sensor Cy , here indicated by a
region denoted by a darker stripe. The solution is obtained from the direct problem
and resembles a TS wave-packet located just upstream of the sensor location; the
gains are characterized by a compact spatial support. The spatial distribution of the
gains L can also be justified by considering the related Riccati equation (3.11) and
the definition (3.10); the estimation problem depends on the location and spatial
distribution of the disturbance Bw and sensor Cy , and the covariances W and G of
the excitation and sensor noise, but it does not depend on a final state that needs to
be achieved, as it does for the control problem. Thus, the spatial support of the gain
is mainly confined between the locations of Bw and Cy . The penalty η = 1, for all
the cases treated in this paper. Different locations were tested for the sensor Cy , in
the range xy = [250, 600]; in all the cases, the gains L are characterized by similar
features.

The control gain K is obtained as the solution of the adjoint equation, see
figure 5(c,d). The spatial distribution is characterized by the typical tilted shape
leaning against the direction of the shear. In figure 5(c) the control gain K associated
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FIGURE 5. (a,b) Estimation gain L with η2 = 1, for two different positions of the sensor Cy ,
here indicated by a darker stripe, xy = 300 (a) and xy = 405 (b). (c,d) The control gain K for
the actuator Bu located at xu = 400. The control penalty of the gains is l2 = 1 (c) and l2 = 500
(d). For all of them the streamwise component is depicted.

with the actuator location xu = 400 and l2 = 1 is shown; the packet is localized
downstream of the actuator and is characterized by a compact support. In figure 5(d),
the control gain associated with the same configuration and l2 = 500 is depicted. As
expected, the magnitude of the gains decreases; moreover, the spatial distribution is
slightly different and also extends upstream of the actuator location.

4.3.2. Controller reduction on a basis of balanced modes
Figure 6 shows the estimation and controller gains when projected on a basis of

r = 80 modes. The chosen basis Φ ∈ Rn×r is composed by an approximate balanced
mode, used in combination with the related adjoint base Ψ ∈ Rr×n for generating
a reduced-order model of the system (Rowley 2005). The modes are obtained by
collecting snapshots from the impulse response of the system to each input, by using
forward simulations, and each output, by using adjoint simulations. The reduced gains
are obtained as K̂ = KΦ and L̂ = ΨL. A perfect matching is found between the
gains obtained by following the design-then-reduce strategy and the reduce-then-design
scheme adopted in Bagheri et al. (2009a). For this reason, in the next section, the
controllers based on full-dimensional methods (FD) are compared with those obtained
by designing the controller based on reduced-order models (RM). The models are
obtained by performing a Galerkin projection over the balanced modes basis.

5. Results
In this section, the optimal control and estimation gains are used in combination

with the time stepper in order to simulate a flow compensated by the LQG controller.
The closed loop is obtained by coupling two different versions of the code: the main
DNS of the perturbation flow according to (3.2) to a second one that marches forward
in time the dynamical system (3.16).

The effects of the controller can be qualitatively considered by observing the
evolution of the wave-packet in physical space when the control is active. In figure 7,
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FIGURE 6. Reduced-order gains; L̂ is shown for two different positions of the sensor Cy at
xy = 300 (a) and xy = 405 (b), while K̂ is shown for the actuator location xu = 400 (c). The
gains obtained by following the design-then-reduce approach (red solid line) are perfectly
in agreement with the gains obtained by first reducing the model and then designing the
controller (black dots).
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FIGURE 7. Evolution of an uncontrolled wave-packet (a) compared to a controlled case
(b) for four different instants of time, t = [100, 500, 900, 1300], from top to bottom. The
streamwise component is shown with the same contour level at each instant of time; the blue
stripe in (b) indicates the location of the actuator Bu, xu = 400.

the uncontrolled configuration is compared with a controlled case where a feedforward
setup is considered with xy = 300, and control penalty l2 = 50; four different instants
of time are shown. The actuator is located at xu = 400 and starts to damp the wave-
packet while it propagates downstream. Once the controller has successfully damped
the wave-packet, a strong reduction of the energy amplitude can be observed (see
figure 8e).
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FIGURE 8. Input–output dynamics for two different control configurations. The estimation
signal y and the control u(t) are depicted in (a) and (c), respectively, for the feedforward
configuration, and in (b) and (d), respectively, for the feedback configuration. The
perturbation energy as a function of time is shown in (e), compared to the uncontrolled
case (black solid line). For all figures: the full-dimensional (FD) case xy = 300 is indicated by
a blue solid line, the FD case xy = 405 by a red solid line, the reduced-order model (RM) case
xy = 300 by a black dashed line and the RM case xy = 405 by a grey dashed line.

In the following, a quantitative analysis of the results is provided by comparing the
input–output dynamics, the energy evolution in time of the perturbation and the cost
value. Full-dimensional controllers are compared with the corresponding case where
model reduction is used; moreover, the finite-amplitude case is discussed for different
typologies of controllers when using the full-dimensional gains.

In figure 8 we report a comparison between the performance achieved with the
FD controller and the RM for the two configurations introduced in § 2.1. The
controller where xy = 300 is considered in figure 8(a,c). The setup is in feedforward
configuration; the dynamics between sensor Cy and actuator Bu is negligible. The
perfect agreement characterizing the estimated signal y(t) in figure 8(a) and the
control signal u(t) shown in figure 8(c), when comparing FD and RM methods,
leads to the same behaviour for the compensated flow when the perturbation energy
E(t) = 〈q, q〉 is analysed as a function of time (figure 8e). Feedforward configurations
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xy Case l2 JFD JRM

1 0.610 0.627
300 FFW 50 17.617 17.629

100 33.051 33.060

1 2.123 2.812
405 FBK 50 19.956 20.491

100 36.694 37.005

1 4.222 —
415 FBK 50 29.904 29.974

100 51.650 51.613

TABLE 2. Control cost for three different configurations. The labels FFW and FBK
indicate the feedforward and feedback cases, respectively; l is the control gain, JFD is the
cost for the full-dimensional cases, JRM is the cost for the reduced-order model cases.

are not affected by a small error in approximating the plant. Conversely, when a
feedback configuration is considered, instabilities of the closed loop can be an issue
(see Belson et al. 2013).

5.1. Reduce-then-design versus full-dimensional controllers
The estimation signal y(t) and the control signal u(t) are shown in figure 8(a–d); the
agreement is fairly good as revealed by a qualitative inspection of the perturbation
energy curve in figure 8(e), even though the match between the two cases is not as
good as in the feedforward case where the two results are barely distinguishable. From
the quantitative point of view, the good agreement between RM and FD is confirmed
by the values of the cost function J (see table 2). Also in this case, a perfect
match is found when feedforward configurations are considered, while for the feedback
configuration we observe a small deviation in the results, and – more interestingly
– for positions of the sensor further downstream of the actuator, xy > 415, the model-
reduction control does not guarantee stability of the closed loop. An example is
provided by the results shown in table 2: when strong actuation (l2 = 1) is chosen for
the feedback control with xy = 415, the controller becomes unstable. The stability of
the closed loop was also investigated by varying the size of the reduced-order model r
when performing the Galerkin projection, but without observing any improvements in
the dynamics of the closed-loop system.

A physical explanation can be found by considering that an open-loop model
reduction is performed, where the most observable and controllable states are ranked
for obtaining a reduced-order model without accounting for the effects of the actuation.
In a feedforward configuration, this modelling procedure is enough to guarantee
stability of the controller; indeed, the closed-loop system is inherently an open-loop
system, where the actuation effects are never fed back into the controller system.
Vice versa, when the controller is in feedback configuration, the estimation sensor can
measure the effects of the actuation, but the resulting model may not be sufficient
for the design of the controller in these conditions. This observation is supported
by the efficiency of the full-dimensional design that is able to guarantee stability
when changing the position of the sensor and tuning the control penalty l. In control
literature, this condition is usually referred to as the spill-over effect and it is a rather
typical condition when open-loop model reduction is applied for the control of a full
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plant. By considering the results of the gains projection shown in § 4.3.2, it is possible
to argue that a basis that also includes the effects of the actuation might lead to an
improvement of the closed-loop system when the configuration is not degenerating in a
feedforward case (Losse et al. 2011).

Higher values of l2, corresponding to weaker action of the controller, result in
stable closed loop for both of the analysed methodologies. Configurations based on
a sensor upstream of the actuator are characterized by better performance in terms
of perturbation amplitude reduction. Cases where the estimation sensor is located
downstream of the actuator show a progressive decay of the performance. Nonetheless,
a sensor downstream of the actuator is of interest for such a flow case strongly
dominated by the advection, whenever we are interested in a configuration truly
characterized by a feedback dynamics or based on adaptive controllers, as often
found in experiments (see e.g. Sturzebecher & Nitsche 2003). In that sense, locations
relatively far from the actuator are also of practical interest, because of the constraints
arising in the implementation of the control hardware (the geometry of the actuator,
for instance).

In conclusion, the reduce-then-design scheme based on an open-loop model
reduction might be limiting, as shown by the comparison carried out in this section.
This discussion does not apply when the output feedback controller degenerates into
the limit of a feedforward controller, i.e. a controller inherently resulting in an open-
loop compensator.

5.2. Effect of the nonlinearities
The limitations of the linear optimal controllers when finite-amplitude perturbations
are introduced in full nonlinear DNS (Chevalier et al. 2007b) can be analysed using
the full-dimensional gains by decoupling the effects of the linear controller when
nonlinearities are present in the flow from the role of the estimation. Indeed, the
full-information control can be used once the full-dimensional gain K is available. In
figure 9, the perturbation energy behaviour as a function of time is shown for two
different cases characterized by different initial amplitudes, by defining the amplitude
of the perturbation q(t) as

a(t)=
(

max
x,y

q (t)−min
x,y

q (t)
)
/2U∞. (5.1)

In figure 9(a) the case with a0 = 0.30 %, is shown while higher amplitudes up to
a0 = 1.52 % are analysed in figure 9(b). The red solid line indicates for both cases the
results obtained by a linear quadratic regulator (LQR), with control penalty l2 = 50.
Note that the performance of the LQR does not depend on the initial condition
used for the disturbance: in the control Riccati equation (3.6) the input triggering
the disturbance does not appear while we require knowledge of the actuator Bu,
the objective function Cz – hidden in the last term Qz – and the system matrix
A. Numerical simulations were performed with initial disturbance placed at different
locations along the streamwise coordinate. When the resulting spatial support of the
incoming disturbance is upstream of the spatial distribution of the controller gain
K (see figure 5) is always possible to achieve good performance within the linear
limit and weakly nonlinear case. Thus, the limitations are mostly related to the
choice of the actuator and – more importantly when nonlinear cases are tested – the
accuracy of the model used for the control design (i.e. the linearized Navier–Stokes).
These results represent the lower bound for the performance of such a controller
designed for a localized actuator by using linear approximation and for a given initial,
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FIGURE 9. Perturbation energy as a function of time. In (a), the initial amplitude a= 0.30 %,
while in (b) a = 1.52 %. The red solid line indicates the performance achieved by using an
LQR, the grey solid line an LQG with nonlinear estimator and the blue line an LQG with
linear estimator. Black solid line indicates the reference case without control.

finite, amplitude of the perturbation. In other words, a control design based on these
‘ingredients’ cannot perform better; thus, the full-dimensional LQR controller results in
a benchmark for the performance that it is possible to achieve.

When a linear estimator is introduced, as expected, a degrading of the performance
is observed: the evolution of the propagating wave-packet starts to diverge from
the linearized one due to the presence of the nonlinearities in the flow. For this
case, a feedforward configuration with xy = 300 is chosen. Higher amplitudes are
characterized by stronger deviation: considering the cost function J for the case
in figure 9(a), an increase of 6.3 % is observed while for the case in figure 9(b)
the worsening is of order 70 %. The corresponding energy curve (green solid line in
the plot) shows more than one order of magnitude of difference for the latter case.
Note that when the reduced-order-model-based LQG is employed, the results perfectly
match the full-dimensional LQG.

When the estimation gains designed in the linear limit are used in combination
with an estimator based on the full Navier–Stokes equations, similarly to what
happens when the extended Kalman filter is applied, the decay of the performance
is significantly reduced. Thus, also for this case, full-dimensional gains can serve as a
benchmark for comparing the performance of a reduced-order-model-based controller
with nonlinear effects included with the best performance achievable by using a perfect
estimator based on the full model. Note, however, that while the case represented by
the LQR is a lower bound for the control performance depending on the actuator, the
control penalty chosen during the design and the system matrix, the estimator for the
nonlinear cases is strongly affected by the location of the sensor along the streamwise
direction, due to the increasing amplitudes of the disturbance and the mechanisms
triggered by the nonlinearities, and the disturbance modelled by Bw .

6. Concluding remarks
The attenuation of Tollmien–Schlichting (TS) waves in a two-dimensional boundary

layer, by using full-dimensional controllers based on optimal controllers/estimators,
was investigated by means of direct numerical simulations.
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The adjoint of the direct-adjoint (ADA) algorithm for the solution of optimal
control problems, first introduced by Pralits & Luchini (2010), was extended to the
estimation problem by using the dual adjoint system. In the present contribution, the
algorithm has been referred to as adjoint of adjoint-direct (AAD).

The two approaches were applied for the design of full-dimensional linear quadratic
Gaussian (LQG) controllers in a two-dimensional boundary layer developing over a
flat plate. The configuration was the same as used by Bagheri et al. (2009a), where
the controllers were designed using a reduced-order model; such a strategy is referred
to as reduce-then-design in the literature (Anderson & Liu 1989) and is the usual
approach followed in the flow-control community for the treatment of such large-scale
systems (Bagheri et al. 2009b).

The full-dimensional LQG was taken as benchmark for two different analyses.
First, the relative position between estimation sensor and actuator was tested. A
good agreement over a wide range of parameters, including the number of modes
for the Galerkin projection and the penalty gains, was found between the controllers
designed by using a reduced-order model, and the full-dimensional controllers when
a disturbance feedforward configuration (Doyle et al. 1989) for the estimator sensor
placement was used. However, when the estimator sensor was introduced in feedback
configuration, only the full-dimensional methods guarantee stability over a broad range
of parameters, including the sensor placement along the streamwise direction and
control penalty gains. Vice versa, controllers based on open-loop model reduction were
not able to always guarantee stability of the controlled system.

Finite-amplitude disturbances were also analysed with the aim of detecting the
decay of the performance due to the effects of the nonlinearities. For this case, the
optimal controller based on the full state can be considered as a lower bound for
the achievable performance. When considering a controller based on an estimator,
the full-dimensional gains allow one to analyse the ideal case of a fully nonlinear
estimator.
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