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Abstract
Methods for optimal design of different means of control are developed in this
thesis. The main purpose is to maintain the laminar flow on wings at a chord
Reynolds number beyond what is usually transitional or turbulent. Linear sta-
bility analysis is used to compute the exponential amplification of infinitesimal
disturbances, which can be used to predict the location of laminar-turbulent
transition. The controls are computed using gradient-based optimization tech-
niques where the aim is to minimize an objective function based upon, or re-
lated to, the disturbance growth. The gradients of the objective functions with
respect to the controls are evaluated from the solutions of adjoint equations.

Sensitivity analysis using the gradients of the disturbance kinetic energy
with respect to different periodic forcing show where and by what means control
is most efficiently made. The results are presented for flat plate boundary layer
flows with different free stream Mach numbers.

A method to compute optimal steady suction distributions to minimize the
disturbance kinetic energy is presented for both incompressible and compress-
ible boundary layer flows. It is shown how to formulate an objective function in
order to minimize simultaneously different types of disturbances which might
exist in two, and three-dimensional boundary layer flows. The problem for-
mulation also includes control by means of realistic pressure chambers, and
results are presented where the method is applied on a swept wing designed for
commercial aircraft.

Optimal temperature distributions for disturbance control are presented
for flat plate boundary layer flows. It is shown that the efficiency of the control
depends both on the free stream Mach number, and whether the wall down-
stream of the control domain is insulated, or heat transfer occurs.

Shape optimization is presented with the aim of reducing the aerodynamic
drag, while maintaining operational properties. Results of optimized airfoils
are presented for cases where both the disturbance kinetic energy, and wave
drag are reduced simultaneously while lift, and pitch-moment coefficients as
well as the volume are kept at desired values.

Descriptors: fluid mechanics, laminar-turbulent transition, boundary layer,
laminar flow control, natural laminar flow, adjoint equations, optimal control,
objective function, PSE, APSE, ABLE, HLFC, eN -method, Euler equations
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CHAPTER 1

Introduction

The final design of an aircraft wing is always a compromise in the intersection
of feasibility imposed by various requirements. Aerodynamics is one important
aspect as it enables calculations of operational properties such as lift, moments
and drag. Traditionally, the design work has been an iterative process between
theory and experiments, in which the latter has often been costly. Orville and
Wilbur Wright1 spend many hours in the laboratory using their home made
wind tunnel to test different types of wings in order to increase the lift coef-
ficient enough enabling their first controlled flight in 1903. Nowadays, when
available computer power increases rapidly and numerical tools increase in ac-
curacy and modeling capability, both experiments and numerical calculations
are part of the total design process. For a computational method to be reli-
able as a tool, it must be based on a mathematical model which provides an
appropriate representation of the significant features of the flow, such as shock
waves, boundary layers and laminar-turbulent transition.

The total drag of an aircraft is mainly given by the sum of pressure or wave
drag, related to the existence of shock waves for transonic and supersonic flows,
and viscous drag, whose magnitude depends on whether the flow is laminar or
turbulent. Turbulent flow, in some cases, produces a much larger drag; thus
important research efforts have been devoted to find efficient means to keep the
flow laminar over the largest possible portion of the wing surface. A similar
situation is encountered in other industrial applications (wind-turbine blades,
diffuser inlets), where less turbulence means less energy spent to achieve the
same motion, which in turn translates directly to less pollution and reduced
expenses.

Control of fluid flow can be made by means of active or passive control
devices. A natural passive device is the shape of the wing itself, and reduction of
drag is obtained by a properly made design. An approach in which the aim is to
increase the laminar portion of the wing is usually called Natural Laminar Flow
(NLF) design. Other examples are found looking at the surface structure where
roughness elements or cavities, such as on golf-balls, are sometimes used. An
active device which has been investigated extensively is suction of air through
the whole or parts of the wing which have been equipped with a porous surface.
This technique falls into the category of Laminar Flow Control (LFC) which

1The 17th of December 2003 is the 100 year anniversary of the first controlled flight performed
by O. and W. Wright in 1903 which had a duration of 59 seconds.
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4 1. INTRODUCTION

means to maintain the laminar flow at a chord Reynolds number beyond what
is usually transitional or turbulent when no control is used. With this definition
it does not cover cases where the aim is to relaminarize already turbulent flow.
A combination of NLF and LFC in which the active control is imposed only on
a part of the wing is usually called Hybrid Laminar Flow Control (HLFC). A
distinctive feature of any flow design process as opposed to one not involving
fluids is that the computation is often very costly, or even totally out of reach of
any existing computer when turbulent flow in complex geometries is involved.
It is therefore common practice to introduce approximations. Once a reliable
and efficient numerical tool is available, a straight-forward approach for design
of passive or active devices is a vast parameter study in order to find the
control which best meets certain criteria set on the operational properties, and
decreases the drag. In most cases the number of possible designs is large, and
it is very unlikely that a truly optimal design can be found without assistance
of automatic tools. For this reason, there is a growing interest in utilizing
numerical optimization techniques to assist in the aerodynamic design process.

The aim of the work presented in this thesis is to integrate physical model-
ing of the flow and modern optimization techniques in order to perform optimal
NLF and HLFC design. Gradient-based optimization techniques are used and
the gradients of interest are derived using adjoint equations. When one consid-
ers highly streamlined bodies such as wings, there is often a substantial laminar
portion, thus a correct transition prediction becomes essential for a good es-
timate of the total drag. The governing equations for the physical problem
are introduced in chapter 2, and transition prediction is covered in chapter 3.
Means of control laminar-turbulent transition is discussed in 4, and the ap-
proach taken here to perform optimal HLFC and NLF is given in chapter 5.
A summary and conclusions are given in chapter 6, and papers related to the
work presented in these chapters are given in the second part.



CHAPTER 2

Modeling the flow

2.1. Governing equations
The motion of a compressible gas is given by the conservation equations of
mass, momentum and energy and the equation of state. The conservation
equations in dimensionless form and vector notation are

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

ρ
[∂u
∂t

+ (u ·∇)u
]

= −∇p +
1
Re
∇
[
λ(∇ · u)

]
+

1
Re
∇ ·
[
µ(∇u +∇uT)

]
, (2.2)

ρcp

[∂T

∂t
+(u·∇)T

]
=

1
Re Pr

∇·(κ∇T )+(γ−1)M2
[∂p

∂t
+(u·∇)p+

1
Re

Φ
]
, (2.3)

γM2p = ρT, (2.4)
with viscous dissipation given as

Φ = λ(∇ · u)2 +
1
2
µ
[
∇u +∇uT

]2
.

Here t represents time, ρ, p, T stand for density, pressure and temperature, u
is the velocity vector. The quantities λ, µ stand for the second and dynamic
viscosity coefficients, γ is the ratio of specific heats, κ the heat conductivity
and cp the specific heat at constant pressure. All flow quantities are made
dimensionless by corresponding reference flow quantities at a fixed streamwise
position x!

0, except the pressure which is made dimensionless with two times
the corresponding dynamic pressure. The reference length scale is fixed and
taken as

l!0 =

√
ν!
0x!

0

U!
0

.

The Mach number, M , Prandtl number, Pr and Reynolds number, Re are
defined as

M =
U!

0√
$γT !

0

, Pr =
µ!

0c
!
p0

κ!
0

, Re =
U!

0 l!0
ν!
0

,

where $ is the specific heat constant and superscript ! refers to dimensional
quantities. In order to generalize the equations for geometries with curved
surfaces an orthogonal curvilinear coordinate system is introduced. The trans-
formation from Cartesian coordinates X i to curvilinear coordinates xi is made

5



6 2. MODELING THE FLOW

using the scale factors hi. The definition of the scale factors and corresponding
derivatives mij are given as

h2
i =

3∑

j=1

(∂Xj

∂xi

)2
and mij =

1
hihj

∂hi

∂xj
.

Using the scale factors, an arc length in this coordinate system can be written
as

ds2 =
3∑

i=1

(
hidxi

)2
.

Here, x1, x2 and x3 are the coordinates of the streamwise, spanwise and wall
normal directions respectively1.

2.2. The steady boundary layer flow
In this thesis flat plate boundary-layer flows with and without pressure gradient
are considered as well as the flow past a swept wing with infinite span. All these
different flows are special cases of the flow past a swept wing with infinite span.
They are here given in dimensionless primitive variable form as

1
h1

∂(ρU)
∂x1

+
∂(ρW )
∂x3

= 0, (2.5)

ρU

h1

∂U

∂x1
+ ρW

∂U

∂x3
= − 1

h1

dPe

dx1
+

1
Re

∂

∂x3

(
µ
∂U

∂x3

)
, (2.6)

ρU

h1

∂V

∂x1
+ ρW

∂V

∂x3
=

1
Re

∂

∂x3

(
µ
∂V

∂x3

)
, (2.7)

cp
ρU

h1

∂T

∂x1
+ cpρW

∂T

∂x3
=

1
RePr

∂

∂x3

(
κ
∂T

∂x3

)

+ (γ − 1)M2
{ U

h1

dPe

dx1
+

µ

Re

[( ∂U

∂x3

)2
+
( ∂V

∂x3

)2]}
, (2.8)

where U, V, W are the streamwise, spanwise and wall-normal velocity compo-
nents, respectively2. Under the boundary-layer assumptions, the pressure is
constant in the direction normal to the wall, i. e. P = Pe(x1). The equation of
state can then be expressed as

γM2Pe = ρT,

and the streamwise derivative of the pressure is given by the inviscid flow as

dPe

dx1
= −ρeUe

dUe

dx1
.

1In the second paper the coordinates are given as x1 = x, x2 = z and x3 = y, where x, y, z
are the streamwise, wall normal and spanwise coordinates, respectively.
2In the second paper U, V, W are the streamwise, wall normal and spanwise velocity compo-
nents respectively.



2.3. LINEAR STABILITY EQUATIONS 7

The corresponding boundary conditions with no-slip conditions and assuming
an adiabatic wall condition are

U = V = W =
∂T

∂x3
= 0, at x3 = 0,

(U, V, T )→ (Ue, Ve, Te), as x3 → +∞.

The variables with subscript e are evaluated at the boundary layer edge and are
calculated from well known fundamental relations using respective free stream
values found either from measurements or inviscid flow calculations. The first
relation is that the total enthalpy is constant along a streamline in an inviscid,
steady, and adiabatic flow. The second is the isentropic relations which are used
to obtain the relation between pressure, density and temperature expressed as
ratios between total and static quantities.

2.3. Linear stability equations
In order to derive the linear stability equations, we decompose the total flow
field q and material quantities into a mean q̄, and a perturbation part q̃ as

q(x1, x2, x3, t) = q̄(x1, x2, x3) + q̃(x1, x2, x3, t) (2.9)

where q̄ ∈ [U, V, W, p, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃]. The mean flow quantities
were introduced in the previous sections and the lower case variables correspond
the the disturbance quantities. It is assumed that cp, µ and κ are functions of
the temperature only and are divided into a mean and perturbation part. The
latter are expressed as expansions in temperature as

c̃p =
dcp

dT
T̃ , µ̃ =

dµ

dT
T̃ , κ̃ =

dκ

dT
T̃ .

The ratio of the coefficients of second and dynamic viscosity is given as
λ

µ
=

µv

µ
− 2

3
, (2.10)

were the bulk viscosity µv is given as
µv(T )
µ(T )

=
(µv

µ

)

T=293.3 K
exp

(T − 293.3
1940

)
,

and is taken from Bertolotti (1998). Note here that Stokes’ hypothesis is used
setting µv = 0 in expression (2.10). We introduce the flow decomposition (2.9)
into the governing equations (2.1)–(2.4), subtract the mean flow, and neglect
non-linear disturbance terms. The result can be written as

Dρ̃
Dt

+ ρ∇ · ũ + ρ̃∇ · u + ũ ·∇ρ = 0, (2.11)

ρ
[Dũ

Dt
+ (ũ ·∇)u

]
+ ρ̃(u ·∇)u = −∇p̃ +

1
Re
∇
[
λ(∇ · ũ) + λ̃(∇ · u)

]

+
1
Re
∇ ·
[
µ(∇ũ +∇ũT) + µ̃(∇u +∇uT)

]
, (2.12)
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ρcp

[DT̃

Dt
+ (ũ ·∇)T

]
+ (ρc̃p + ρ̃cp)(u ·∇)T =

1
Re Pr

∇ · (κ∇T̃ )

+
1

Re Pr
∇ · (κ̃∇T )+ (γ−1)M2

[Dp̃

Dt
+(ũ ·∇)p+

1
Re

Φ̃
]
, (2.13)

γM2p̃ = ρT̃ + ρ̃T, (2.14)
where

D
Dt

=
∂

∂t
+ u ·∇

and

Φ̃ = λ̃(∇ · u)2 + 2λ
[
(∇ · u)(∇ · ũ)

]
+ µ(∇u +∇uT) : (∇ũ +∇ũT)

+
1
2
µ̃(∇u +∇uT) : (∇u +∇uT), (2.15)

with the definition A : B = AijBij . These equations are subject to the following
boundary conditions:

ũ = ṽ = w̃ = T̃ = 0, at x3 = 0,

(ũ, ṽ, w̃, T̃ )→ 0, as x3 → +∞.

2.4. Parabolized stability equations
In most cases a boundary layer grows in the downstream direction. In classical
or quasi-parallel stability theory the parallel-flow assumption is made which
means that the growth of the boundary layer is not taken into account. Setting
the non-parallel terms to zero is commonly made on grounds that the growth
of the boundary layer is small over a wave length of the disturbances and that
the local boundary layer profiles will determine the behavior of the disturban-
ces. This is an additional approximation made on the linearized equations
which for instance has to be considered in comparisons between theory and
experiments. Theoretical investigations of the instability of growing boundary
layers can be found in e. g. Gaster (1974); Saric & Nayfeh (1975) who used
a method of successive approximations and a multiple-scales method, respec-
tively. In Hall (1983), the idea of solving the parabolic disturbance equations
was introduced to investigate the linear development of Görtler vortices. Par-
abolic equations for the development of small-amplitude Tollmien-Schlichting
waves was developed by Itoh (1986). Further development was done by e. g.
Herbert & Bertolotti (1987); Bertolotti et al. (1992) who derived the non-linear
Parabolized Stability Equations (PSE). Simen (1992) developed independently
a similar theory for the development of convectively amplified waves propa-
gating in non-uniform flows. The PSE has since its development been used
to investigate different kind of problems such as stability analysis of different
types of flows (Bertolotti et al. 1992; Malik & Balakumar 1992), receptivity
studies (Hill 1997a; Airiau 2000; Dobrinsky & Collis 2000), sensitivity analysis
(Pralits et al. 2000) and optimal control problems (Hill 1997b; Pralits et al.
2002; Walther et al. 2001; Pralits & Hanifi 2003; Airiau et al. 2003). In the
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following sections an outline based on Hanifi et al. (1994) is given on the deriva-
tion of the parabolized stability equations used in this thesis. A review of the
PSE can be found in Herbert (1997).

2.4.1. Assumption and derivation

The disturbance equations are derived for mean flows which are independent
of the x2 direction i. e. quasi-three dimensional flows. Two assumptions are
used in the derivation:

1. The first is of WKB (Wentzel, Kramers and Brillouin) type in which
the dependent variables are divided into a amplitude and a oscillating part as

q̃(xi, t) = q̂(x1, x3)eiθ (2.16)

where q̃ is the complex amplitude function and i the imaginary unit,

θ =
∫ x1

X0

α(x′) dx′ + βx2 − ωt

the complex wave function with angular frequency ω, streamwise and spanwise
wave numbers α and β, respectively. Note that both the amplitude and wave
functions depend on the x1-direction.

2. The second assumption is a scale separation Re−1
0 between the weak

variation in the x1-direction and the strong variation in the x3-direction. Here,
Re0 is the local Reynolds number at a streamwise position x0. Further, the
wall normal component of the mean flow W and the derivatives of the scale
factors mij are also assumed to scale with Re−1

0 . A slow scale x1
S = x1Re−1

0 is
introduced which gives the new dependent variables

hi = hi(x
1
S , x3Re−1

0 ),
q̄ = q̄(x1

S , x3), W = WS(x1
S , x3)Re−1

0 ,

q̂ = q̂(x1
S , x3), α = α(x1

S). (2.17)

If the ansatz (2.16) and the scalings (2.17) are introduced in the linearized gov-
erning equations, keeping terms up to (Re−1

0 ), we obtain the linear parabolized
stability equations. They can be written in the form

Aq̂ + B 1
h3

∂q̂
∂x3

+ C 1
h2

3

∂2q̂
(∂x3)2

+ D 1
h1

∂q̂
∂x1

= 0, (2.18)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. These equations describe the non-uniform propaga-
tion and amplification of wave-type disturbances in a non-uniform mean flow.
The non-zero coefficients of the 5×5 matrices A,B, C and D are found in Pralits
et al. (2000). Equation (2.18) is a set of nearly parabolic partial differential
equations (see section 2.4.2). The boundary conditions of the disturbances at
the wall and in the freestream are

û = v̂ = ŵ = T̂ = 0, at x3 = 0,

(û, v̂, ŵ, T̂ )→ 0, as x3 → +∞.
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Note that in the ansatz (2.16), both the amplitude and wave functions given
above depend on the x1-direction. To remove this ambiguity, a normalization
or auxiliary condition is introduced such that the streamwise variation of the
amplitude function remains small. This is in accordance with the WKB type
assumption where the amplitude function should vary slowly on the scale of
a wavelength. Various forms of the normalization condition exist (see Hanifi
et al. 1994). In the investigations presented here we have used the following
condition ∫ +∞

0
q̂H ∂q̂

∂x1
dx3 = 0, (2.19)

where superscript H denotes the conjugate transpose. The stability equation
(2.18) is integrated in the downstream direction initiated at an upstream po-
sition x1 = X0 with the initial condition q̃ = q̃0 given by the local stability
theory. At each streamwise position the streamwise wavenumber α is iterated
such that the normalization condition (2.19) is satisfied. When a converged
streamwise wave number has been obtained the disturbance growth rate σ can
be calculated. For an arbitrary disturbance component ξ the growth rate is
given as

σ = −αi + Real
{1
ξ

∂ξ

∂x1

}

where the first term on the right hand side is the contribution from the expo-
nential part of the disturbance and the second part due to the changes in the
amplitude function. The variable ξ is usually û, v̂, ŵ, T̂ or ρ̄û + ρ̂ū taken at
some fixed wall normal position or where it reaches its maximum. In addition,
the growth rate can be based on the disturbance kinetic energy

E =
∫ +∞

0
ρ̄(|u|2 + |v|2 + |w|2) dx3,

and is then written
σE = −αi +

∂

∂x1
ln(
√

E)

2.4.2. Step-size restriction

In the parabolized stability equations presented here no second derivatives of q̂
with respect to x1 exist. The ellipticity has however not entirely been removed.
This is known to cause oscillations in the solution as the streamwise step size
is decreased. The remaining ellipticity is due to disturbance pressure terms
or viscous diffusion terms. Several investigations (see Haj-Hariri 1994; Li &
Malik 1994, 1996; Andersson et al. 1998) have been performed regarding this
problem. Li & Malik showed that the limit for the streamwise step size in order
to have stable solution is 1/|α|. Haj-Hariri proposed a relaxation of the term
∂p̂/∂x1 in order to allow smaller streamwise steps. Li & Malik showed however
that this approach is not sufficient to eliminate the step-size restriction. They
showed instead that eliminating ∂p̂/∂x1 relaxes the step-size restriction. The
approach which best removes the ellipticity while still producing an accurate
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Figure 2.1. Comparison of amplitude functions for a second
mode instability with F = 122× 10−4 at Re = 1900 between
DNS by Jiang et al. (2003) and the NOLOT/PSE code for
the flow past a flat plate at M∞=4.5, T∞=61.11 K, Pr = 0.7,
Sutherland’s law for viscosity, Stokes hypothesis for the second
viscosity.

result is the technique introduced by Andersson et al. (1998), where some of
the originally neglected higher order terms, O(Re−2), are reintroduced in the
stability equations. This method is used in the second paper where more details
can be found regarding the modifications of the parabolized stability equations.

2.4.3. Comparison with DNS

Since the development of the Parabolized Stability Equations, several verifica-
tions have been made in which the PSE has been compared with the results
of Direct Numerical Simulations (DNS), see for instance the investigations by
Pruett & Chang (1993); Hanifi et al. (1994) and Jiang et al. (2003). An example
is given here for the case of a flat plate boundary layer with a free stream Mach
number M∞=4.5 and temperature T∞=61.11 K. The disturbance analyzed is a
second mode3 with reduced frequency F = 122×10−6. Here, F = 2πf∗µ∗

e/U∗2
e

where f∗, µ∗ and U∗ are the dimensional frequency, kinematic viscosity and
streamwise velocity, respectively. In Figure 2.1, a comparison can be seen be-
tween the amplitude functions û, ŵ and T̂ obtained with the NOLOT/PSE
code4 used for the calculations in this thesis and the DNS data provided by
Jiang et al. (2003). The data has been normalized with the maximum value of
|û|. As can be seen from the figure the agreement is very good.

3The second mode is defined in chapter 4.
4NOLOT was developed by the authors given in Hanifi et al. (1994) and Hein et al. (1994)





CHAPTER 3

Transition prediction

Even though linear theory cannot describe the non-linear phenomena prior
and after transition, it has been widely used for transition prediction. Using
the linear stability equations previously described, we can calculate the ratio
between the amplitudes A2 and A1 which are given at two streamwise positions
X1 and X2 as

A2

A1
= exp

(∫ X2

X1

σdx1

)
.

A problem then arises if we say that transition occurs when ’the most danger-
ous disturbance’ reaches a certain threshold amplitude, as the values of A1 and
A2 remain unknown. Some empirical methods exist however, where the linear
amplification of a disturbance is correlated with the experimentally measured
onset of transition. The one which has been mostly used is the eN -method (see
van Ingen 1956; Smith & Gamberoni 1956) and a brief review is given here. For
an excellent overview of this method see Arnal (1993). As an example we con-
sider the two-dimensional disturbances superimposed on the Blasius boundary
layer. If we perform a stability analysis for each streamwise position and for a
large number of frequencies f1, f2, · · · , fn we can draw a neutral curve in the
f − Re plane which defines the intersection between the regions where these
disturbances are damped and amplified. If the upstream position of the neutral
curve (branch one) of a frequency f1 is denoted X0 with its ’initial’ amplitude
A0, then we can calculate any downstream amplitude A related to the initial
one as

A

A0
= exp

(∫ X

X1

σdx1

)
or ln

(
A

A0

)
=
∫ X

X1

σdx1.

The frequencies fi are amplified in different streamwise regions, and the corre-
sponding maximum amplification and streamwise position will therefore vary
with frequency. If we take the envelope of the amplification curves over all
frequencies as

N = max
f

[
ln
(

A

A0

)]
, (3.1)

then at each x1, N represents the maximum amplification factor of these dist-
urbances. Expression (3.1), which is commonly denoted the N -factor, cannot
however determine the position of transition without additional information.

13
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Figure 3.1. Comparison between eN -method using expres-
sion (3.2) (line), and wind tunnel data (symbols) for a flat
plate incompressible boundary layer flow. (Arnal 1993).

It was early found in experiments by Smith & Gamberoni (1956) and van In-
gen (1956) that the N -factor at the transition position was nearly constant
(Ntr ≈ 7 − 9). This is unfortunately not universal and does only apply under
certain conditions. The disturbances inside the boundary layer can be triggered
by acoustic waves, surface roughness, and free stream turbulence. The mecha-
nisms which explain how disturbance enter the boundary layer are commonly
called receptivity. Since the route to transition is preceded by receptivity and
transition itself involves non-linear mechanisms, their absence in this approach
is a shortcoming. Mack (1977) proposed the following expression for the tran-
sition N -factor to account for dependence of Ntr on the free stream turbulence
level Tu

Ntr = −8.43− 2.4 lnTu, (3.2)
This relation was derived to fit numerical results to low speed zero pressure
gradient wind tunnel data. Results of a comparison between expression (3.2)
and wind tunnel data can be seen in Figure (3.1). For values of Tu between
0.1% and 1% transition is probably due to exponential instability waves. For
higher values of Tu, and especially for Tu > 3% transition occurs at N = 0
indicating that transition is not caused by exponential instabilities. In several
experiments, (see e. g. Westin et al. 1994; Matsubara & Alfredsson 2001),
performed at moderate to high free stream turbulence levels, streamwise elon-
gated structures have been observed with streamwise scales much larger than
the spanwise scales. A model for transition prediction which correlates well
with experimental data from e. g. Matsubara & Alfredsson (2001) for Tu > 1%
was derived by Levin & Henningson (2003). They calculated both exponential
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and spatial transient (non-modal) growth of disturbances. For sufficiently large
disturbance amplitudes, the latter can lead to the so called bypass transition,
which is not associated with exponential instabilities (see e. g. Brandt 2003).

An important issue in applying the eN -method to more complex geome-
tries, where the flow is three dimensional, is the choice of the integration path.
For results presented in this thesis we follow the suggestions by Mack (1988).
There, applying the condition that the wave number vector is irrotational to-
gether with the assumption of a wing with infinite span implies that β (spanwise
wavenumber) is constant. The N -factor is then computed maximizing over ω
and β. This is here denoted envelope of envelopes (EoE). Due to the short-
comings and limitations of the eN -method mentioned before, better transition
prediction models are needed. However, in this thesis the N -factor curves
should be seen as capturing the trends of variation of the amplification rather
than exact prediction of the transition position.





CHAPTER 4

Disturbance control

The linear stability analysis presented in chapter 2 can be used to calculate the
growth of a disturbance superimposed on the mean flow for a given geometry
and flow condition. The growth rate can then be used as outlined in chapter 3
for the purpose of transition prediction. In many applications it is also of
interest to know how to affect the disturbance growth in order to control the
position of laminar-turbulent transition and thus the laminar portion of a given
geometry.

The linear stability of compressible boundary layers is different from that
of incompressible boundary layers in many ways. The incompressible Blasius
boundary layer is stable to inviscid disturbances, as opposed to the compress-
ible boundary layer on an adiabatic flat plate which has a so called general-
ized inflection point and is therefore unstable to inviscid disturbances. The
generalized inflection point ys is defined as the wall normal position where
D(ρD(U)) = 0, (D = ∂/∂x3). As the Mach number is increased the general-
ized inflection point moves away from the wall and hence the inviscid instability
increases. The viscous instability becomes less significant when M > 3, so the
maximum amplification rate occurs at infinite Reynolds number and viscosity
has a stabilizing instead of destabilizing effect. In incompressible flows there is
at most one unstable wave number (frequency) at each Re, whereas multiple
unstable modes exist whenever there is region of supersonic flow relative to the
disturbance phase velocity. The first unstable mode (first mode) is similar to
the ones in incompressible flows. The additional modes, which do not have
a counter part in incompressible flows, were discovered by Mack (1984) who
called them higher modes. The most unstable first-mode waves in supersonic
boundary layers are three dimensional, whereas the two-dimensional modes are
the most unstable in incompressible boundary layer flows. The most unstable
higher mode (second mode) is two-dimensional.

A brief review is made in this chapter on different active and passive meth-
ods to act on, or control disturbances in order to affect their amplification.
The expression active control implies that energy is added to the flow in order
to control, for example suction and blowing at the wall. A passive control on
the other hand is made without additional energy added, and an example is
changing the curvature of the wall. The review is restricted to methods which
will be used later on in the thesis for the purpose of optimal laminar flow

17
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control using blowing/suction, wall temperature distributions, and shape opti-
mization. Other methods which can be used to affect the disturbance growth
are e. g. surface roughness, transpiration cooling, nose bluntness and MHD
(magneto-hydro-dynamic) flow control.

4.1. Suction/blowing
When steady suction is applied, a second inflection point ys1 appear close
to the wall. This additional inflection point does not destabilize the inviscid
disturbances. Masad et al. (1991) showed that the suction level needed to
remove the generalized inflection point increases with increasing Mach number.
They further found that suction is more effective in stabilizing the viscous
instabilities and therefore more effective at low Mach numbers. Al-Maaitah
et al. (1991) showed that suction is more effective in stabilizing second-mode
waves at low Mach numbers. They also found that the most unstable second
mode remains two-dimensional when suction is applied. In Masad et al. (1991)
and Al-Maaitah et al. (1991) it was found that the variation of the maximum
growth rate with suction level is almost linear for both first and second-mode
disturbances. Studies have also been performed using discrete suction strips
in order to approach a more ’realistic’ case where it is assumed that only
certain parts of a geometry are available for the implementation of control
devices. Masad & Nayfeh (1992) presented results using suction strips for
control of disturbances in subsonic boundary layers. They found that suction
strips should be placed just downstream of the first neutral point for an efficient
control of the most dangerous frequency1. However, no such conclusion can be
made if all frequencies are considered which is the case in a real experiment.
For further reading regarding disturbance control by means of steady suction
see the extensive review on numerical and experimental investigations by Joslin
(1998).

A different approach to control compared to modifying the mean flow, is to
aim the control efforts at the instability wave itself. This is usually called wave
cancellation or wave superposition. An advantage of this method is the small
amount of control that is needed, of order O(ε2), in order to obtain consid-
erable reduction of a disturbance with amplitude of order O(ε). The concept
of wave superposition has been used in a number of experimental investiga-
tions. Milling (1981) used an oscillating wire in water to both introduce and
cancel waves. Other investigations concerns elements of heating (Liepmann
et al. 1982), vibrating ribbons (Thomas 1983), acoustic waves introduced by
loudspeakers (Gedney 1983), and suction/blowing (Kozlov & Levchenko 1985).
A draw back of this method is that exact information about the amplitude and
phase of the disturbance is needed.

1The frequency which first reach an N-factor which corresponds to laminar-turbulent tran-
sition is sometimes denoted ’the most dangerous frequency’.
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Figure 4.1. Disturbance control on a flat plate boundary
layer using a heating strip with a temperature of 1.5 times
the adiabatic temperature when no control is applied, located
at 720 ≤ Re ≤ 900. Left: Streamwise variation of the local
growth rate of a 2D disturbance with F = 15 × 10−6, for the
cases of zero control (solid), compared to the cases when the
heating strip is used and the plate downstream of the heating
strip is assumed insulated (dash-dot), and heat transfer occurs
(dash), M = 0.8, T∞ = 300 K, Pr = 0.72. Right: correspond-
ing N -factors.

4.2. Wall cooling
It was early recognized that uniformly distributed cooling has a damping effect
on viscous instabilities of boundary-layer flows at various Mach number, see
experiments by e. g. Diaconis et al. (1957) and Jack et al. (1957). Liepmann &
Fila (1947) showed that at low subsonic speeds the transition location on a flat
plate moves upstream as it is heated. The destabilizing effect of wall-heating
on boundary-layer disturbances is due to the increase of the viscosity of air
near the wall, which creates inflectional velocity profiles there. Cooling the
wall on the other hand, decrease the viscosity near the wall which results in
a thicker velocity profile and thus a more stable flow. Lees & Lin (1946) and
Mack (1984) used inviscid and viscous stability theory, respectively, and found
that subsonic air boundary layers can be completely stabilized by uniformly
distributed wall-cooling. Mack (1984) also showed that uniformly distributed
cooling has a destabilizing effect on the higher modes. The results by Mack
(1984) have also been confirmed in experiments for supersonic flows by Lysenko
& Maslov (1984). In the work by Masad et al. (1992) similar results were
found using the spatial stability equations for compressible flows. Cooling
has an effect on the compressible boundary layer similar to the one found
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in boundary layers subject to suction. As cooling is applied an additional
inflection point appear close to the surface which is not destabilizing the inviscid
disturbances. Masad et al. (1992) showed that the cooling level needed to
remove the general inflection point increases as the Mach number is increased.
They further showed that cooling is always stabilizing the first-mode waves
and destabilizing the second-mode waves. Several investigations have also been
performed with localized heat-transfer strips. It was found by Masad & Nayfeh
(1992) that a properly placed heating strip, close to the first neutral position,
has a stabilizing effect on first-mode disturbances. They further showed that a
cooling strip at the same location has a destabilizing effect on the first-modes.
This effect appear as the flow leaves the cooling strip it encounters a relatively
hotter surface downstream, which is destabilizing. The opposite occurs in the
case of heating strips. Similar results were found in the numerical investigation
by Lo et al. (1995) and experiments by Maestrello & Nagabushana (1989).
Our investigations showed that this stabilizing effect is found only when the
wall-temperature downstream of the strip is set to the adiabatic temperature
in the uncontrolled case, Tad0 . If the wall is insulated also downstream of the
heating strip, the wall-temperature will be larger than Tad0 . That is due to the
fact that extra heat has been added to the flow as it passes the heating strip.
This higher wall-temperature will increase the instability of the flow. This is
presented in figure 4.1 and the details regarding these calculations are found in
paper 4.

4.3. Wall-shaping
Shaping the wall results in two different effects which affect the disturbance
instability. The first one is the creation of a pressure gradient and the second
one is the effect of surface curvature.

4.3.1. Pressure gradient

Modification of the pressure gradient can be made by changing either the ge-
ometry itself or surrounding conditions. The latter is usually made in wind
tunnels by placing a curved geometry above a flat plate. It was early found in
experiments for incompressible flows by Schubauer & Skramstad (1948) that a
favorable pressure gradient has a stabilizing effect on the boundary layer while
the opposite was found for adverse pressure gradients. Malik (1989) investi-
gated the effect of the pressure gradient on second-mode waves at M = 4.5. He
found that favorable pressure gradients stabilizes the second-mode waves and
the band of unstable disturbances moves to higher frequencies. A more thor-
ough investigation was performed by Zurigat et al. (1990) in which the pressure
gradient was generated assuming a power-law edge Mach-number distribution
(Me = cxn). They analyzed the effects on both the first and second-mode
waves at different Mach numbers. They showed that a favorable pressure gra-
dient has a stabilizing effect on both first and second-mode waves. For lower
Mach numbers (M = 2) oblique first-modes are more efficiently damped than
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Figure 4.2. Effect of including curvature terms in the PSE
on the disturbance growth. Envelope of envelopes of N -
factor curves for cross-flow (CF) and Tollmien-Schlichting (TS)
waves. (a) with curvature included; (b) without curvature in
the PSE. Traveling CF (Solid), stationary CF (dashed), 2D
TS (dotted) and 3D TS (dash-dotted). Mean flow over infi-
nite swept wing with leading edge sweep angle ψle = 30.2o,
Mach number M∞ = 0.8 and temperature T∞ = 230 K.

two-dimensional ones. For higher Mach-numbers (M = 4− 8) it was shown for
2D second-mode waves that the damping effect of a favorable pressure gradient
decreases with increasing Mach number. For both disturbance types it was
shown that the maximum growth rate varies almost linearly with n.

4.3.2. Curvature

The effects of the curvature on the disturbance growth can roughly be divided
into two categories, i. e. those by concave surfaces and those by convex surfaces.
The interest here lies mainly in the case of convex surfaces as such geometries
have been analyzed in this thesis. It should however be mentioned that stabil-
ity analysis of boundary layer flows over concave surfaces has been the topic
of many investigations as it concerns the problem of so called Görtler vortices,
i. e. stationary counter-rotating vortices arising from centrifugal effects (see e.
g. Hall 1983; Spall & Malik 1989). The case of convex surfaces was studied by
Masad & Malik (1994) for three-dimensional incompressible flows over an infi-
nite swept cylinder. They found that curvature is stabilizing both stationary
and traveling disturbances. Including nonparallel terms, on the other hand,
is known to be destabilizing and will therefore have an opposite effect on the
disturbance growth compared to curvature. Masad & Malik (1994) found how-
ever that the changes in disturbance growth in an analysis accounting for both
these effects will be controlled by the convex curvature part.
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Figure 4.3. Curvature, κ, of the wing analyzed in Figure 4.2
which is used to calculate the curvature radius 1/κ.

In the parabolized stability equations used in this thesis, (2.18), the scale
factors hi and corresponding derivatives mij are all functions of the curvature κ.
An example on the effect of including curvature in (2.18) or not, is given here.
The latter is obtained by setting h1 = h3 = 1, and corresponding derivatives
to zero. The case is the mean flow on the upper surface of an infinite swept
wing (see Pralits & Hanifi 2003). Here the envelope of envelopes (EoE) of
the N -factors for a large number of convectively unstable disturbances have
been computed both with and without curvature terms in the linear stability
equations. The results are given in Figure 4.2 where the horizontal axis shows
the arc-length of the surface divided by the chord length.

The mean flow pressure gradient is strong and negative upstream of s/c ≈
0.4 and weak and positive downstream of this position. Due to the inflection
point in the velocity profile perpendicular to the inviscid streamline in the
region of a favorable pressure gradient, cross-flow (CF) waves are amplified.
Further downstream, in the zero or weakly adverse pressure gradient region,
Tollmien-Schlichting type of waves are amplified. The curvature κ of the wing
can be seen in Figure 4.3. Close to the leading edge the curvature is large and
then decreases rapidly downstream until approximately s/c = 0.05. Down-
stream of this position the curvature is an order of magnitude smaller com-
pared to the leading edge. As the region of large curvature coalesce with the
region of favorable pressure gradient it is clear that the disturbance growth of
CF waves, here given by the N -factors, will be mostly affected by the presence
of the curvature terms in the linear stability equations.



CHAPTER 5

Optimal design for disturbance control

The knowledge obtained from the analysis regarding disturbance control, which
was previously described, can be used in design of different active and passive
devices in order to affect the laminar portion of a geometry such as an aircraft
wing. Using suction and blowing, or the wall temperature for control purposes
can be considered as active devices. The term design here refers to how the mass
flux or temperature should be distributed along the surface. The knowledge
regarding the effect of the pressure distribution and curvature on disturbance
growth can also be related to the design of the geometry itself. For a rigid
body this is made once and can be regarded as a passive control device. A
straight forward design approach is, for a given number of design variables,
to perform a parameter study in order to find the “best” design. If we take
the example of design of a mass flux distribution, this means in practice to
test different control domains, mass flux amplitudes, distributions and further
more, for each case compute the effect on the disturbance growth. This can be
an extremely time-consuming approach if the number of degrees of freedom is
large. The word “best” is not objective and its meaning depends on the specific
case. For mass flux design it might be to decrease disturbance growth using
the least amount of suction power, while for wing design the best could be to
decrease disturbance growth while maintaining operational properties such as
given lift, and pitch-moment coefficients, and volume. The best solution from
a parameter analysis however does not rule out the possibility that an even
better solution might exist.

A different design approach is to define an optimization problem with an
objective function which includes the costs of the design that one wants to
minimize using certain control or design variables. Conditions which should be
satisfied while minimizing the objective function are introduced as constraints.
The advantage of the latter approach is that a number of different optimiza-
tion techniques such as e. g. gradient-based and generic algorithms exist which
depending on the problem can be used to efficiently compute an optimal so-
lution. Gradient-based algorithms are especially efficient when the number of
objective functions is small compared to the number of degrees of freedom.

5.1. Background
The work related to design of active and passive control devices for distur-
bance control and transition delay dates back several centuries, and a review
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is therefore not made here. Instead an attempt is made to cover representative
investigations where optimization techniques have been used for the purpose
of disturbance control.

5.1.1. Natural laminar flow

Design of a geometry such that the laminar portion is increased or maximized
is commonly denoted Natural Laminar Flow (NLF) design. In terms of practi-
cal implementations, NLF is probably the simplest approach. Once a feasible
geometry is found no additional devices such as e. g. suction systems, sensors
or actuators need to be mounted. One approach to NLF design is, in a first
step, to generate a pressure distribution (target) that delays transition, then,
in a second step, design a wing that results in a pressure distribution as close
as possible to the target. In addition constraints on e. g. lift, pitch, volume,
minimum thickness et cetera must be handled. Green & Whitesides (1996)
took an iterative approach which uses a target pressure-N-factor relationship
to compute the desired pressure distribution, and an inverse method to find
the geometry which satisfies the computed pressure distribution. The N -factor
method has also been used in multidisciplinary optimization problems of whole
aircraft configurations where aerodynamics is considered as one discipline. In
Lee et al. (1998), it was used to predict the onset of transition in order to deter-
mine where to turn on a chosen turbulence model in the Reynolds-Averaged-
Navier-Stokes equations, enabling calculation of the friction drag. In Manning
& Kroo (1999), a surface panel method was coupled with an approximative
boundary layer calculation, and stability analysis. Note however, that none of
these investigations explicitly calculates the sensitivity of a quantity obtained
from the stability analysis such as the N -factor or disturbance kinetic energy,
with respect to variations of the geometry. In paper 5, the sensitivity of the
disturbance kinetic energy with respect to the geometry is used for the purpose
of optimal NLF design.

5.1.2. Laminar flow control

Laminar flow control (LFC) is an active control technique, commonly using
steady suction, to maintain the laminar state of the flow beyond the chord
Reynolds number at which transition usually occurs. It is one of the few con-
trol techniques which has been attempted in flight tests. A combination of
NLF and LFC, where the active control is employed on a just a part of the
surface is called hybrid laminar flow control, HLFC. For an extensive review
of these techniques see Joslin (1998). Most investigations of HLFC concerns
suction but also wall-cooling have been used for control purposes. Balakumar
& Hall (1999) used an optimization procedure to compute the optimal suction
distribution such that the location of a target N -factor value was moved down-
stream. The theory was derived for two-dimensional incompressible flows and
the growth of the boundary layer was not taken into account. In Airiau et al.
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(2003), a similar problem was solved for the purpose of minimizing the distur-
bance kinetic energy, accounting for the non-parallel effects using the Prandtl
equations and the PSE for incompressible two-dimensional flows. The same
problem is extended to three-dimensional incompressible flows in paper 2, and
compressible flows on infinite swept wings in paper 3. Similar investigations
for the purpose of optimizing temperature distributions are, to the best of our
knowledge, not found in the literature. In Masad & Nayfeh (1992), a parameter
test was performed to find the “best” location for a predefined temperature dis-
tribution in order to reduce the N -factor of a given disturbance. In Gunzburger
et al. (1993) an optimal control problem using boundary controls for the incom-
pressible full Navier-Stokes equations was derived. An application to control by
heating and cooling was given with the wall heat flux as the control and a target
wall temperature as the objective. In paper 4, a problem is formulated for the
purpose of minimizing the disturbance kinetic energy by optimizing the wall
temperature distribution. In Hill (1997b) an inverse method was mentioned to
compute the optimal suction distributions, and cooling/heating distributions,
however no details were given there.

5.1.3. Control by blowing and suction

In a large number of investigations, different optimal control strategies in a tem-
poral frame work have been investigated. A recent thesis by Högberg (2001)
on the topic of optimal control of boundary layer transition provides a good
overview of this field. The investigations considered here are performed for
spatially developing flows. In Högberg & Henningson (2001), an extension to
spatially developing incompressible flows was made for previously developed
optimal feedback control through periodic blowing and suction at the wall.
Even though parallel flow assumptions are needed for their formulation, suc-
cessful results are shown for control of TS waves in Blasius flow and cross-flow
vortices in Falkner-Skan-Cooke flow. Cathalifaud & Luchini (2000) formulated
an optimal control problem for laminar incompressible flows over flat-, and
concave walls with optimal perturbations. They successfully minimized both
the disturbance kinetic energy at a terminal position, and as streamwise inte-
grated quantity, by optimizing distributions of blowing and suction. In Walther
et al. (2001) an optimal control problem was derived for two-dimensional in-
compressible flows with the focus on minimizing the disturbance kinetic energy
of TS waves. They accounted for the developing boundary layer using the
PSE. In both of the latter investigations, adjoint equations were used to obtain
sensitivities of the chosen objective function with respect to the control. A
global framework for feedback control of spanwise periodic disturbances, for
spatially developing flows, was presented by Cathalifaud & Bewley (2002). In
paper 1, we compute the sensitivity of the disturbance kinetic energy in a spa-
tially developing boundary layer flow, with respect to periodic forcing at the
wall and inside the boundary layer. The formulation is made using the PSE
for compressible flows and the sensitivities are computed using the adjoint of
the PSE. The sensitivity of the disturbance kinetic energy with respect to the
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wall normal velocity component of the perturbation is used in section 5.4.2 to
formulate an optimal control problem for cancellation of instability waves.

5.2. Gradient evaluation using adjoint equations
In gradient based optimization, there are different ways to compute the gra-
dients of interest. To discuss this we consider the following problem. Let the
state vector q satisfy the state equation

∂q
∂x

+ Aq = 0; q(X0, y) = q0, q(x, 0) = 0, lim
y→∞

q(x, y) = 0 (5.1)

where A is a matrix. Equation (5.1) is parabolic and solved by integration
between x = X0 and x = X1. We wish to find the initial value of q(X0, y) = q0

such that the norm of q at some downstream position x = X1 defined as

‖q1‖2 = 〈q1,q1〉 =
∫ ∞

0
|q(X1, y)|2 dy. (5.2)

is maximized. This can be written as an optimization problem where the aim
is to maximize an objective function

J =
∫ ∞

0
|q(X1, y)|2 dy, (5.3)

where the initial condition q0 is the control. The gradient of the objective
function J with respect to the control q0 can be defined through the directional
derivative as

δJ = 〈∇J (q0), δq0〉 = lim
s→0

J (q0 + sδq0)− J (q0)
s

(5.4)

A straight forward approach to compute the gradient of interest, ∇J (q0), is
to perturb each degree of freedom of the control and for each perturbation,
solve the state equations (5.1) and evaluate the objective function. A finite
difference approximation of the gradient can then be made from these results.
For a first order finite difference approximation, this is written

∇J (q0)i ≈
J (q0 + εq0

ei)− J (q0)
εq0

(5.5)

where the vector ei has component i equal to one and all other components zero,
and εq0

is a small real-valued parameter. If we denote the number of degrees
of freedom M , then for a first order approximation of the gradient, the state
equations have to be solved M times, for a second order approximation 2M
times et cetera. If M is large then this procedure can be very time consuming.
Another approach which has been shown successful in different optimization
problems in fluid dynamics is to use adjoint equations. An example will be
given below. For a compact notation of the adjoint equations, we will use the
formal adjoint L∗ for the differential operator L defined by the relation

〈u, Lv〉 = 〈L∗u,v〉+ boundary terms, (5.6)
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where the inner product 〈·, ·〉 is defined as

〈u,v〉 =
∫ X1

X0

∫ ∞

0
uTv dx dy (5.7)

for Rn-valued vectors u and v. Here, the superscript ∗ stands for the adjoint
quantities and T for the transpose. The derivation of the adjoint equations
is made in the following steps: the first variation of equations (5.3) and (5.1)
gives

δJ (q0) = 2
∫ ∞

0
q(X1, y)Tδq(X1, y) dy, (5.8)

∂δq
∂x

+ Aδq = 0, δq(X0, y) = δq0, δq(x, 0) = 0, lim
y→∞

δq(x, y) = 0 (5.9)

Then (5.9) is multiplied with the co-state or adjoint variable r and used in
the inner product given by (5.7). The right hand side of (5.6) is derived by
removing the derivatives from δq using partial integration

〈r, ∂δq
∂x

+ Aδq〉 = 〈− ∂r
∂x

+ ATr, δq〉 +
[∫ ∞

0
rT δq dy

]X1

X0
. (5.10)

We now require r to satisfy the adjoint equation with the initial and boundary
conditions

− ∂r
∂x

+ ATr = 0, r(X1, y) = 2q(X1, y), r(x, 0) = 0, lim
y→∞

r(x, y) = 0.

(5.11)
Equation (5.11) is integrated from x = X1 to x = X0 and the initial condition
for r at x = X1 is chosen such that the remaining boundary terms can be
written∫ ∞

0
r(X0, y)T δq(X0, y) dy. = 2

∫ ∞

0
q(X1, y)T δq(X1, y) dy = δJ (q0) (5.12)

Since the left hand side of (5.12) is equal to δJ , the gradient of J with respect
to q0 is identified as

∇J (q0) = r(X0, y) (5.13)
Compared to the finite-difference approach, the gradient (5.13) is now evalu-
ated by solving the state equation (5.1) and the corresponding adjoint equation
(5.11) once, independent of the size of M . The right hand side of (5.6) can
be derived using either a continuous or discrete approach. A continuous ap-
proach means that the adjoint equations are derived from the continuous state
equation and then discretized. In the discrete approach, the adjoint equations
are derived directly from the discretized state equation. The gradient which
is later identified from the adjoint equations, should in the latter case have
an accuracy close to machine precision. The accuracy of the gradient derived
using the continuous approach increases as the resolution of the computational
domain is increased. This is well explained in Högberg & Berggren (2000). The
continuous approach has been used through out the thesis except for the work
in paper 5 where the adjoint of the inviscid flow equations are derived using
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the discrete approach. The accuracy of the numerically calculated gradients is
discussed in papers 1, 2 and 5.

5.3. Outline of the current approach
In this section the optimal design problems considered in this thesis are out-
lined. Gradient-based optimization is used in all cases and the gradients of
interest are evaluated from the solution of the adjoint equations. The aim is
to use different control or design variables in order to achieve a decrease in
disturbance growth and therefore an increase in the laminar portion, thus a
decrease in friction drag.

5.3.1. Objective function

The objective function is given as the sum of the different costs of the state
which we want to minimize in order to achieve some desired goal. The costs,
or cost functions, can be given different weights depending on their respective
importance for the goal. In the analysis given here, the cost of friction drag is
not given as a measure of the shear stress. It is instead based on the idea that
an increase in the laminar portion of the body will result in a decrease of the
friction drag. This can also be seen as moving the position of laminar-turbulent
transition further downstream. The cost function is therefore a measure which
can be related to the transition position. One choice is to measure the kinetic
energy of a certain disturbance at a downstream position, say Xf . This can be
written as

Ef =
1
2

∫ Z1

Z0

∫ +∞

0
q̃HM q̃ h1dx2dx3

∣∣∣∣∣
x1=Xf

, (5.14)

where q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T and M = diag(0, 1, 1, 1, 0) which means that the
disturbance kinetic energy is calculated from the disturbance velocity compo-
nents. If the position Xf is chosen as the upper branch of the neutral curve,
then the measure can be related to the maximum value of the N -factor as

Nmax = ln

√
Ef

E0

, (5.15)

where E0 is the disturbance kinetic energy at the first neutral point. If in
addition, the value of the N -factor of the measured disturbance is the one
which first reaches the transition N -factor, then the position can be related
to the onset of laminar-turbulent transition. It is however not clear, a priori,
that such a measure will damp the chosen disturbance or other ones in the
whole unstable region, especially if different types of disturbances are present.
For Blasius flow, it has been shown that a cost function based on a single
TS wave is sufficient to successfully damp the growth of other TS waves (see
Pralits et al. 2002; Airiau et al. 2003). On a swept wing however, it is common
that both TS and cross-flow waves are present and moreover can be amplified
in different streamwise regions. An alternative is therefore to measure the
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kinetic energy as the streamwise integral over a defined domain. Using such an
approach several different disturbances, with respective maximum growth rate
at different positions, can be accounted for in one calculation. Here, the size of
K disturbances superimposed on the mean flow at an upstream position X0,
is measured by their total kinetic energy as

EΩ =
K∑

k=1

1
2

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
q̃H

k M q̃kh1dx1dx2dx3. (5.16)

We now define the objective function as the sum of all the cost functions based
on the disturbance kinetic energy as

Jq̃ = ξEΩ + (1 − ξ)Ef , (5.17)

where the parameter ξ can be chosen between zero and one, depending on
the quantity we want to minimize. An alternative approach to decrease the
disturbance growth and thus increase the laminar portion of the wing was in-
vestigated in Airiau et al. (2003) to optimize the mean flow suction distribution
in a given domain. They minimized the streamwise integral of the shape factor,
which for 2D disturbances in a 2D boundary layer should result in a suppression
of disturbance amplification. Minimizing the shape factor is a more heuristic
approach based on the knowledge that in such flows the two-dimensional dist-
urbances are stabilized by any thinning of the boundary layer. Their results
showed that an optimal suction distribution based on minimizing the shape fac-
tor does have a damping effect on the disturbance growth. A negative aspect
of not explicitly minimizing a measure of the disturbances is that one cannot
know if the optimized control will have a damping effect on the disturbances.
This has to be calculated after wards. A cost function based on the streamwise
integral of the shape factor is here written as

JQ =
∫ Xme

Xms

H12h1dx1 =
∫ Xme

Xms

δ1
δ2

h1dx1, (5.18)

where both the displacement δ1, and momentum-thickness δ2 are based on the
velocity component which is in the direction of the outer streamline. In paper
3 we present results which show that optimal suction distributions obtained
by minimizing expression (5.18) does not have a damping effect, but instead
amplifies disturbances in the case of swept wing flows.

5.3.2. Optimal design cases

With the objective functions defined, different optimal design cases can be out-
lined. We consider the flow over a body decomposed into three different parts:
a steady inviscid part provides a pressure distribution P for a given geometry
x, a steady mean flow Q is the solution for a given pressure distribution and
geometry, and the solution q̃ emerging from the stability analysis calculated for
a given mean flow and geometry. From the latter, the objective function based
on the disturbance kinetic energy can be evaluated. If the objective function
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Design variables Euler BLE PSE Obj. fcns. Gradients

w̃w P0 → Q0 → q̃→ Jq̃ ∇Jq̃(w̃w)
ṁw, Tw P0 → Q→ q̃→ Jq̃ ∇Jq̃(ṁw), ∇Jq̃(Tw)
ṁw, Tw P0 → Q→ JQ ∇JQ(ṁw), ∇JQ(Tw)

x P → Q→ q̃→ Jq̃ ∇Jq̃(x)
x P → Q→ JQ ∇JQ(x)
x P → JP ∇JP (x)

Table 5.1. Table of state equations involved in the possible
optimal design cases. The arrows indicates the order in which
the equations are solved, and P , Q, and q̃ are the states ob-
tained by solving the Euler, BLE and PSE respectively. The
subscript 0 means that the solution is fixed during the opti-
mization procedure.

is based on the shape factor, only the inviscid and mean flow parts are consid-
ered. Three different types of control or design variables are used. In the first,
we consider unsteady forcing such as periodic blowing/suction at the wall, w̃w,
for a fixed geometry. In this case, only the stability equations are affected by
the control as the inviscid flow and mean flow are both time-independent and
non-linear effects are not accounted for. As a second case we consider control
of disturbances by modifications of the mean flow on a fixed geometry. This
is made using either a mass flux distribution ṁw or a wall temperature dis-
tribution Tw. Here both the mean flow and disturbances are affected by the
control, which means that an objective function can be based on either Q or
q̃. The last case considers optimal design by changing the geometry and will
affect all states, i. e. the inviscid flow, the mean flow, and the disturbances. It
is therefore possible to consider objective functions based on either of the three
states P , Q or q̃.

If we denote the objective functions based on the three different states
P , Q, and q̃ as JP , JQ, and Jq̃ respectively, a chart of possible optimal
design problems can be made. This is shown in table 5.1. The solution of
the inviscid flow, mean flow and disturbances are here denoted Euler, BLE
and PSE, respectively. Depending on the design case, one or several states
will change during the optimization. The states which are not changed (kept
fixed) in respective case are given subscript 0. The different gradients required
to solve respective optimization problem are given in the column on the right
hand side of table 5.1.
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5.4. Optimal laminar flow control
5.4.1. Sensitivity analysis using periodic forcing

The concept of wave cancellation was discussed in section 4.1 and examples
were given of experimental results using different types of forcing, or actuators
such as heating plates, vibrating ribbons, and blowing and suction. Before
deciding which actuator to use in order to control the instability waves, it can
be of interest to investigate the sensitivity of different types of forcing ζ̃ on a
measure of the disturbance growth of a given disturbance. The latter is here
given by the objective function Jq̃, expression (5.17). A small variation of the
forcing δζ̃ will cause a small variation of the objective function δJq̃ and the
gradient ∇Jq̃(ζ̃) express the sensitivity of Jq̃ with respect to ζ̃. The different
forcing considered here are the disturbance velocity components ũw, ṽw, w̃w

and temperature T̃w at the wall, and a momentum force S̃ inside the boundary
layer as the model of a vibrating ribbons. When a low amplitude periodic
forcing such as blowing/suction at the wall is applied, only the linear stability
equations need to be considered, as neither the mean flow nor the inviscid
flow is affected if non-linear interaction of the disturbances are neglected. The
state equations solved here are the parabolized stability equations outlined in
section 2.4, which including the above mentioned periodic forcing are written

LP q̂ = Ŝ, (5.19)
∫ +∞

0
q̂H ∂q̂

∂x1
dx3 = 0. (5.20)

The forcing given at the wall are introduced as boundary conditions in (5.19).
The gradients of the objective function with respect to each forcing are derived
using adjoint equations. This is described in detail in paper 1 and the gradients
with respect to the wall forcing are

∇Jq̃(ũw) =
µD3(u∗)

Θ̄Re
, ∇Jq̃(ṽw) =

µD3(v∗)
Θ̄Re

,

∇Jq̃(w̃w) =
ρρ∗

Θ̄
, ∇Jq̃(T̃w) = −κD3(θ∗)

Θ̄PrRe
,

where Θ = eiθ, and with respect to the momentum forcing

∇Jq̃(S̃) =
q∗

Θ̄
where q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T.

Here, the over bar denotes the complex conjugate and superscript ∗ denote
adjoint variables. The latter satisfy the adjoint of the parabolized stability
equations (APSE), here given as

L∗
P q∗ = S∗

P (5.21)

∂

∂x1

∫ +∞

0
q∗H ∂LP

∂α
q̂ h1h2h3 dx3 = f∗, (5.22)
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Figure 5.1. Comparison between adjoint (adj) and central
difference (fd) calculations for different ∆R. Mach number
M = 0.7, β = 0. (a) lines denote ||(∂Jq̃/∂w̃r, ∂Jq̃/∂w̃i)/∆n||
and symbols |∇Jq̃(w̃w)n|. (b) relative error.

Details regarding equations (5.21)–(5.22) are found in paper 1 for the case of
Jq̃ = Jq̃(ξ = 0). The adjoint equations shown here are derived from the
continuous state equations. An alternative is to first discretize the state equa-
tions and then derive the adjoint equations. It was concluded by Högberg &
Berggren (2000) that a continuous formulation is a good enough approximation
if control is performed on a problem with a dominating instability. This type
of analysis can be made with the PSE and a continuous approach is there-
fore used here. In order to verify the accuracy of the gradient, we compare
the gradients computed using the adjoint equations with those obtained using
a finite-difference approximation. In the latter, the gradient of the objective
function with respect to each forcing is approximated by a second-order accu-
rate central finite-difference scheme. To compare the gradients given by the
adjoint and finite-difference approaches let us consider the example of a wall
normal velocity perturbation δw̃w at x3 = 0. The variation of Jq̃ with respect
to this wall perturbation is :

δJq̃ =
∂Jq̃

∂w̃r
δw̃r +

∂Jq̃

∂w̃i
δw̃i

The subscripts r and i denote the real and imaginary parts of a complex num-
ber. In the finite-difference approach, the variation of Jq̃ is obtained by im-
posing the inhomogeneous boundary condition w̃w = ±ε at x1 = x1

n. Here, ε
is a small number and index n refers to n-th streamwise position. Then, the
approximative gradients are calculated using a second-order accurate finite-
difference scheme. The expression for δJq̃ in the adjoint approach, for a flat
plate geometry, is in discretized form given as

δJq̃ =
∫ Z1

Z0

N−1∑

n=2

1
2
(∇Jq̃(w̃w)Hnδw̃wn + c.c.)∆n dx2,



5.4. OPTIMAL LAMINAR FLOW CONTROL 33

100 200 300 400 500 600 700 800
0

0.125

0.25

100 200 300 400 500 600 700 800
0

0.005

0.01

0.015

    

        

  

100 200 300 400 500 600 700 800
0

0.001

0.002

0.003

100 200 300 400 500 600 700 800
0

0.0025

0.005
(a) (b)

(c) (d)

Re Re

β = 0

β = 0.02

β = 0.04

Figure 5.2. Modulus of the gradients (sensitivities) due to
2D and 3D wall forcing as a function of the Reynolds number
for a flat plate boundary layer at Mach number M = 0.7.
(a) |∇Jq̃(ũw)|, streamwise velocity component; (b) |∇Jq̃(ṽw)|
spanwise velocity component; (c) |∇Jq̃(w̃w)| normal velocity
component; (d) |∇Jq̃(T̃w)| temperature component. The +
marks the first and second neutral point for each case.

where ∆n = (x1
n+1 − x1

n−1)/2 and c.c. is the complex conjugate. In the fol-
lowing, the quantity ∇Jq̃(w̃w)n is compared to those of the finite-difference
approach. The case is a flat plate boundary layer with free stream Mach num-
ber of 0.7, and the streamwise domain used here is Re ∈ [250, 750]. The mod-
ulus ||(∂Jq̃/∂w̃r, ∂Jq̃/∂w̃i)/∆n||, as a function of x1

n, is shown in figure 5.1a
and is compared to |∇Jq̃(w̃w)n| for different resolution of the streamwise step
∆R. A good agreement is found between the approaches for a given ∆R, and
both values converge as ∆R is decreased. The relative error given in figure
5.1b is below half a percent for all cases and decreases as ∆R is decreased.
Sensitivity results for a flat plate boundary layer at Mach number M = 0.7
subject to two-, and three dimensional wall forcing by ũw, ṽw, w̃w and T̃w can
be seen in figure 5.2. Here the modulus of each component have been plotted
as a function of the local Reynolds number. For all cases except the spanwise
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APSE

w̃k+1
w

∇J k
q̃ (w̃w)

Figure 5.3. Flow chart for the case of minimizing the distur-
bance kinetic energy using the wall normal disturbance veloc-
ity at the wall w̃w.

component, the largest sensitivity is obtained for two-dimensional wall forcing
and the maximum value occurs close to the first neutral point of analyzed dis-
turbance. It can also be seen that the magnitude of the wall normal velocity
component is about 15 times that of the streamwise component for this case
and the ratio is even larger compared to the spanwise velocity component and
the temperature. This implies that blowing/suction is the most efficient mean
of controlling instability waves. However, as shown in paper 1, the sensitivity
decreases with increasing Mach number.

5.4.2. Wave cancellation

In principle, any periodic forcing considered in section 5.4.1 can be optimized.
However, as an example we choose the wall normal velocity component because
it has been shown to give the highest sensitivity, and also because it is a good
model for periodic blowing/suction. In order to find the optimal solution for a
limited cost of the control, and also to bound the control amplitude we define
an objective function which balances the cost of the kinetic energy and the
control as

J̃q̃ = Jq̃ + l2
∫ X1

X0

|w̃w|2 h1 dx1. (5.23)

The term l2 serve as a penalty on the control such that l2 = 0 means unlimited
control and vice verse. The gradient of the objective function (5.23) with
respect to the control is given as

∇J̃q̃(w̃w) = ∇Jq̃(w̃w) + 2 l2w̃w (5.24)

As the optimization problem is defined for a given geometry and mean flow, the
only state equation which is updated in the optimization procedure is the PSE
(5.19)-(5.20). The optimization procedure can now be described considering the
chart given in figure 5.3 where k is the iteration number of the optimization
loop. An initial disturbance q̃0 is superimposed on the mean flow at an initial
position X0. The PSE is integrated from x = X0 to x = X1 and the objective
function is evaluated. The adjoint equations, APSE are then integrated from
x = X1 to x = X0. The gradient is evaluated from the solution of the APSE
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Figure 5.4. Control of a two-dimensional wave with F =
30 × 10−6 in a zero pressure gradient flat plate boundary
layer where M∞ = 0. (a) energy for zero (solid) and optimal
(dashed) control, (b) the optimal suction/blowing distribution
given as |w̃w| (solid) and Real(w̃w) (dashed). Bi and Bi-opt
mark the branch points for zero and optimal control

and the new boundary condition for the PSE is calculated using a chosen
optimization algorithm. In the next loop, the PSE is solved with a new w̃w

followed by the APSE. The optimization loop is continued until the variation
of the objective function is less than a prescribed value. Results of the optimal
design problem described above are given in figure 5.4 for the case when Jq̃ =
Jq̃(ξ = 0). Here we consider a flat plate boundary layer with free stream Mach
number M∞ = 0 and zero pressure gradient. The computational domain in
the streamwise direction is Re = [350, 1750]. A two-dimensional disturbance
with reduced frequency F = 30 × 10−6 is superimposed on the meanflow at
Re = 350. The control is imposed along the whole plate and the penalty has
value of l = 104. The objective function is evaluated at Re = 1750 which is
close to the second branch of the neutral curve, i. e. where the disturbance
kinetic energy is close to its maximum. In figure 5.4a the reduction in energy
has been plotted as the natural logarithm of the ratio between the square root
of optimal-, and initial disturbance kinetic energy, ln

√
E(x1)/E0(x1). Branch

1 and 2 of the uncontrolled case have been marked with vertical lines as B1 and
B2, respectively. The downstream shift of branch one in the case of optimal
control is shown with a vertical line marked B1 − opt. In figure 5.4b the
optimal distribution of suction and blowing is plotted both as the real part
and absolute value. Here it is seen that the control acts most strongly in the
vicinity of the first neutral point and then decays rapidly both in the upstream
and downstream direction. Results showing that the disturbance kinetic energy
measured close to the second branch of the neutral curve is most sensitive to
periodic forcing close to the first branch of the neutral curve can be seen in
paper 1 for different Mach numbers.
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5.4.3. Hybrid laminar flow control

The motivation for using optimal control theory for the purpose of hybrid lam-
inar flow is that in many industrial applications (see Joslin 1998), the design
of e. g. suction systems rely on the experience of the engineers which may not
always give the largest delay of laminar-turbulent transition at a given suction
power. Design using steady forcing implies that given a fixed geometry, the
mean flow will change during the optimization procedure. The analysis here is
made using either the wall mass flux ṁw = ρwWw, or the wall temperature Tw

as design variables. This particular choice is made as both ṁw and Tw have
been investigated for the purpose of Hybrid Laminar Flow Control. As out-
lined in table 5.1, several different cases can be considered depending on which
combination of objective function and control variable that is used. Gradient
based optimization is used in all cases analyzed here and the gradients are
evaluated from the solution of adjoint equations. When the objective function
is evaluated from the solution of the mean flow, JQ, then only the BLE is used
in the optimization and the gradient of JQ with respect to the chosen control
variable is evaluated from the adjoint of the boundary layer equations (ABLE).
Minimization of Jq̃ on the other hand, requires the solution of both the BLE
and PSE and the respective gradients are evaluated from the ABLE which in
turn is forced by the solution of the APSE. A summary on how to compute
the gradient for the different cases is given in table 5.2 where W ∗ and T ∗ are
solutions of the ABLE. Details regarding respective equation are given in pa-
pers 3 and 4. Note that for the cases presented in table 5.2 the assumption is
made that the streamwise domain of the forcing and the objective function is
the same. If this is not the case, changes occur in the boundary conditions of
both the BLE and ABLE. This is covered in paper 3 and 4.

5.4.3.1. Limiting the control

In many optimization problems it is of interest to bound or limit the control,
and in such a way compute the optimal solution using the least effort. Other
arguments for bounding the control come from issues regarding validity of the
state equations or avoiding ill-posed problems. This can be made using e. g.
a regularization parameter such that the objective function express the sum
of the original measure, expression (5.17) or (5.18), and a parameter times a
defined measure of the control. An example was given in section 5.4.2 for the
case of optimizing periodic blowing/suction. As an example here, we consider
the case of optimization the wall mass flux to minimize the disturbance kinetic
energy. A new objective function can be written

J̃q̃ = Jq̃ + l2
∫ X1

X0

ṁ2
w h1 dx1. (5.25)

The only difference compared to the equations given in table 5.2 appear in the
expression of the gradient which is now given as

∇J̃q̃(ṁw) = ∇Jq̃(ṁw) + 2 l2ṁw. (5.26)
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Des. Euler BLE PSE Obj. APSE ABLE Gradients

ṁw P0 → Q→ q̃→ Jq̃ q∗ → Q∗ → ∇Jq̃(ṁw) = W ∗
w

ṁw P0 → Q→ JQ Q∗ → ∇JQ(ṁw) = W ∗
w

Tw P0 → Q→ q̃→ Jq̃ q∗ → Q∗ → ∇Jq̃(Tw) =
κ

Re Pr
∂T ∗

w

∂x3

Tw P0 → Q→ JQ Q∗ → ∇JQ(Tw) =
κ

Re Pr
∂T ∗

w

∂x3

Table 5.2. Table of state and adjoint equations to evaluate
respective gradient in the optimal design cases using steady
forcing. The arrows indicates the order in which the equations
are solved. P , Q, and q̃ are the states obtained by solving the
Euler, BLE and PSE respectively, and Q∗ and q̃∗ are solutions
of the ABLE and APSE respectively. The subscript 0 defines
that the solution is fixed during the optimization procedure.

If the regularization parameter l is zero then the control is unbounded, and
when l > 0 then it is bounded. In practice this means that as l is increased, less
control effort is allowed, and possibly less decrease in the original state measure
is obtained. In some cases it is of interest not only to bound the control but
more specifically bound it at a certain value. One example is when the mass
flux is optimized for disturbance control purposes. The suction distribution
is commonly obtained by a system of pumps and pipes which uses a certain
amount of energy. It can therefore be of interest to find an optimal suction
distribution which uses a specified amount of energy EC , which for instance
can be written as

EC =
∫ X1

X0

ṁ2
w h1 dx1. (5.27)

In this case the problem is not regularized but instead constrained. As shown
in papers 3 and 4, this constraint can be fulfilled using a Lagrange multiplier
technique. Details on the derivations are found in the papers and the resulting
gradient expression is

∇J̃q̃(ṁw) = ∇Jq̃(ṁw) + 2 χ∗ṁw, (5.28)

The constant regularization parameter l2 in (5.26) has now been replaced by
an adjoint variable χ∗. This adjoint variable can be solved as follows: when
∇J̃ (ṁw) = 0 then ṁw = −W ∗

w/(2χ2) is the corresponding optimal mass flux
distribution and usually denoted optimality condition, ṁw is then substituted
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∇J k
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APSEABLE

Figure 5.5. Optimization procedure using steady forcing.
Here, k denotes the iteration number, ψ is the control vari-
able, JQ and Jq̃ are the objective functions evaluated from
the solutions of the BLE and PSE respectively.

into (5.27) and an expression for χ∗ is evaluated as

χ∗ =

(
1

4EC

∫ X1

X0

W ∗2
w h1dx1

) 1
2

. (5.29)

It should be noted that using this approach does not mean that expression
(5.27) is satisfied in each iteration of the optimization procedure. The con-
straint on the control energy is derived assuming that ∇J̃ (ṁw) = 0. There-
fore, as the optimization problem converge, i. e. ∇J̃ (ṁw) goes to zero, also the
constraint on the control energy will converge.

5.4.3.2. Solution procedure

The optimization procedures for the different optimal design problems consid-
ered here can be described using the chart in figure 5.5. There, k denotes
the iteration number, ψ is the control variable, JQ and Jq̃ are the objective
functions evaluated from the solutions of the BLE and PSE respectively. We
start by considering the case of minimizing Jq̃ for a single disturbance, i. e.
K = 1 if Jq̃ includes expression (5.16). This case is presented figure 5.5 as the
large dotted rectangle. The optimization is performed for a given geometry
and inviscid solution in an iterative procedure. During each iteration step, we
perform successive calculations of the BLE and PSE from X0 to X1; and APSE
and ABLE from X1 to X0. Then, a new control variable ψk+1 is computed
using the gradient evaluated from the solution of the ABLE, in a chosen opti-
mization algorithm. The calculations are repeated until the relative change in
the objective function is less than a prescribed value. If the objective function
includes expression (5.16) with K > 1 then instead of solving both state and
adjoint equations K times, we can utilize the fact that the ABLE, here written
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Figure 5.6. Convergence history for the case of minimizing
the disturbance kinetic energy at a downstream position us-
ing the wall temperature. (a) objective function vs. iteration
number, (b) wall temperature vs. Reynolds number for all it-
erations, the arrow shows the direction of increasing iteration
number (c) control energy, given and calculated vs. iteration
number, (d) gradient norm normalized by its initial value vs.
iteration number.

as

L∗
B Q∗ = S∗

B. (5.30)

are linear equations. In this case the gradient is evaluated as follows: the BLE
is solved once; the PSE and APSE are solved K times; the right hand side of
the ABLE, S∗

B, is calculated as

S∗
B =

K∑

k=1

S∗
Bk

.

Finally, the gradient is evaluated from a single calculation of the ABLE. The
case of minimizing JQ is computationally less expensive. This case is shown in
figure 5.5 as the smaller dotted rectangle. During each iteration step, successive
calculations are performed of the BLE from X0 to X1; and ABLE from X1 to
X0. The gradient evaluation and convergence is then as described above.
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5.4.3.3. Convergence

An example of the convergence history for an optimal design case is shown
in figure 5.6. The wall temperature distribution is optimized such that the
disturbance kinetic energy at a downstream position is minimized on a flat
plate with zero pressure gradient and a free stream Mach number M∞ = 0.7.
A disturbance with reduced frequency F = 50 × 10−6 is superimposed on
the meanflow at Re = 500 and the objective function, given by expression
(5.14), is evaluated at Re = 935. The wall temperature distribution Tw is
optimized between Re = 545 and Re = 935, and the convergence criteria is
set as (J k+1

q̃ − J k
q̃ )/J k

q̃ < 10−4. When control is applied, a deviation of the
wall temperature, ∆Tw, occur with respect to the case of zero control. The
constraint used here is the square of ∆Tw, accounting for both heating and
cooling, integrated in the control domain. With the reference temperature
taken as the adiabatic wall temperature in the case of zero control Tad0

, this is
written

EC =
∫ Xce

Xcs

(
Tw − Tad0

(x1, 0)
)2

dx1, (5.31)

Here, the start and end of the control domain are denoted Xcs and Xce, re-
spectively, and the value of EC used in this example is 0.5. The optimization
algorithm used here is the L-BFGS-B1 routine and convergence was reached
after 4 iterations. The objective function and the norm of the gradient, nor-
malized by its initial value, both as functions of the iteration number can be
seen in figures 5.6a and b, respectively. The objective function has reached a
plateau while the gradient norm is still decreasing indicates that the solution
is getting close to a local minimum. At the last iteration the relative difference
between the given and calculated control energy is 10−4 (figure 5.6c). If the
optimization is continued then finally it would reach a point where the gradi-
ent norm would no longer decrease. This might depend on the accuracy of the
gradient and/or the search algorithm used. The results from iteration 3 and 4
are not possible to distinguish from each other which can be seen in figure 5.6b,
and as efficiency is of importance when a large number of designs are evaluated,
the results here are considered converged.

5.4.3.4. HLFC for an industrial application

Optimization of the wall temperature or the mass flux distribution without
considering how it can implemented and used in a real case might solely be
of academic interest or serve as a reference case. This has been addressed in
paper 3 for the case of optimizing the mass flux distribution for the purpose of
disturbance control on infinite swept wings. The direct application of such an
analysis is a tool which could be used in design of HLFC systems. The mass

1The algorithm is the limited memory quasi-Newton method developed by Zhu et al. (1994).
It is based on a limited memory BFGS approximation of the Hessian matrix of the functional
f , and a gradient projection method is used to account for bounds on the data which makes
it suitable for large scale problems where only the gradient of f is available.
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Figure 5.7. Optimal suction design for minimization of EΩ

including a TS and a CF wave. The control energy is EC =
0.35 in all cases. Left: optimal static pressures for the case
of 7 pressure chambers, the continuous line shows the pres-
sure distribution on the wing. Right: Corresponding suction
distributions (thick lines) compared to an optimal suction dis-
tribution in a continuous domain (thin lines).

flux distributions on the porous surface of a wing in these systems is commonly
obtained using a number of pressure chambers. The surface velocity can be
expressed as a function of the surface porosity, hole geometry and the pressure
difference between the pressure distribution on the surface and static pressure
in the chambers. The relation used here written on dimensionless form is given
as

∆Pj = Pe − Pcj

=
C1

ρw

ṁ2
w + C2

µw

ρw

ṁw ∀x1 ∈ [Xcsj
, Xcej

], j = 1, · · · , Kp (5.32)

and is taken from Bieler & Preist (1992). It is based on measurements carried
out in the framework of the ELFIN (European Laminar Flow INvestigation)
program. The internal static pressure, start and end positions of chamber
number j is given by Pcj

, Xcsj
and Xcej

, respectively, and the coefficients C1

and C2 can be found in paper 3. If we use expression (5.32), then the design
variable is no longer ṁw but instead Pcj

, and the size and position of the
chambers for a given porous surface characterized by C1 and C2. As expression
(5.32) is differentiable with respect to ṁw it is possible to formulate an optimal
design problem similar to the previous cases. We use the Lagrange multiplier
technique and expression (5.32) is used as an additional constraint. The BLE,
PSE, APSE and ABLE are used in the optimization procedure and the gradient
of the objective function is now evaluated with respect to Pcj

. A comparison
can now be made between the case of optimizing the mass flux distribution,
ṁw, in one continuous domain with the case of optimizing the static pressures
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Figure 5.8. Envelope of envelopes (EoE) of N -factor curves
for the cases of zero control (dotted) and the optimal pressure
chambers in figure 5.7 (solid). A comparison is made with the
EoE of NE-factor curves (dashed) obtained with the continu-
ous suction distribution in figure 5.7.

in a number of discrete pressure chambers, with the aim of minimizing the
disturbance kinetic energy. In the latter, ṁw is indirectly optimized through the
relation (5.32). Results taken from paper 3 of such a comparison are presented
here for the case of minimizing the disturbance kinetic energy calculated as the
sum of a Tollmien-Schlichting (TS) and cross-flow (CF) wave. The mean flow
studied is the boundary layer on the upper side of a swept wing designed for
commercial aircraft. The continuous mass flux distribution is optimized in the
whole available control domain. A configuration of seven pressure chambers
are used for the comparison and the start of the first, and end of the last
pressure chamber are given by the end points of the available control domain.
In both the continuous and pressure chamber cases, the control energy (5.27)
is kept constant with a value of 0.35. The left hand side of figure 5.7, shows the
optimal static pressures for the case of 7 chambers. The pressure distribution
of the wing has been added for comparison in the plot. The largest values of
∆Pj occur close to the leading edge and then decrease downstream. This is
most evident observing the close up made in each plot on the left hand side.
The corresponding suction distributions are shown on the right hand side of the
same figure. There a comparison is made with the case of optimizing the mass
flux in a continuous control domain. Both the continuous suction distribution
and the ones obtained from the optimal static pressures are larger in magnitude
upstream and then decrease rapidly and become almost constant downstream.
The effect on the disturbance growth is given in figure 5.8 by plotting the
envelope of envelopes (EoE) of the N -factor curves both for TS and CF waves,
for the cases of zero and the optimal suction distributions shown in figure 5.7.
The results using the continuous suction distribution can be seen as a reference
case of what best can be achieved. As further constraints are imposed using
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the pressure chambers, it is expected that less damping of the disturbances will
be achieved.

5.5. Shape optimization for natural laminar flow
The various possible optimal design cases which can be considered in the current
frame work, where outlined in table 5.1. In the cases of using the shape of the
geometry as design variables, it was shown that the objective function can be
based on either the inviscid, mean flow, or stability solution. Note, that in
addition, also combinations of the three can be used as an objective function,
see paper 5. An objective function based on the solution of the inviscid flow, JP ,
is commonly used in the case of shape optimization where the aim is to minimize
e. g. the pressure, or wave drag. References to optimization problems regarding
inviscid flows can be found in e. g. Jameson (1988). A design problem which
accounts for viscous flow effects can be formulated using either JQ, and/or
Jq̃ as objective function. In particular the latter enables the possibility to
account for the physics related to laminar-turbulent transition. In the current
approach there are several physical approximations made. A discussion about
this is found in paper 5. The goal of the approach taken is to use an iterative
gradient-based optimization procedure with the aim of minimizing an objective
function based on a measure of the linear disturbance growth by optimizing the
shape of the geometry, such as a wing. As a decrease in disturbance growth
means a downstream shift of the laminar-turbulent transition location, and
thus an increase of the laminar portion of the surface, the approach taken here
can be seen as optimal design for natural laminar flow.

5.5.1. Problem formulation and gradients

We minimize the objective function based on the disturbance kinetic energy
Jq̃, expression (5.17), which depends explicitly on the solution of the stability
equations q̃ and the mesh, here given by the nodal coordinates X. This is here
written as

J ≡ J (q̃,X) , (5.33)
and is evaluated as follows:

1. The solution of the Euler equations for compressible flows (see paper 5)
provides the pressure distribution of a given geometry

2. The viscous mean flow is obtained by solving (2.5)–(2.8) for the given
geometry, and the pressure distribution from the Euler solution.

3. The parabolized stability equations (2.18)–(2.19) are solved for the ge-
ometry, and mean flow from the boundary layer analysis.

4. The objective function (5.33) is evaluated from the solution of the parab-
olized stability equations.

If w, Q, and q̃ are the solutions of the three state equations given above, then
J can be considered to be a functional of X only and the objective function
is then denoted JX(X). The nodal coordinates, X, are evaluated from the
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displacements, y, of the nodes on the airfoil by a mesh movement algorithm,
here denoted X ≡ X(y). The displacements are controlled by the parameter
a, i. e. y ≡ y(a). From these definitions we can now define

Jy (y) = JX (X (y)) , and Ja (a) = Jy (y (a)) , (5.34)

which clearly shows that Ja (a) is the objective function depending only on the
control parameter a. As the gradient of Ja (a) with respect to a is used in the
optimization procedure, we show in paper 5 that ∇Ja can be evaluated from

∇JX → ∇Jy → ∇Ja,

in the above mentioned order. The gradient of the objective function with
respect to the nodal coordinates ∇JX is derived using adjoint equations and is
evaluated solving the APSE, ABLE and adjoint of the Euler equations (AEuler)
in the mentioned order.

5.5.2. Mesh displacements, parametrization and
geometrical constraints

All displacements are made with respect to a reference mesh, defined by its
vector of nodal coordinates X0. For a vector yk of shape displacements the
new grid is obtained as

Xk = X0 + Lyk . (5.35)
Given the gradient ∇JX of a functional JX of the nodal coordinates, the gradi-
ent of the functional Jy (X) ≡ JX (X (y)) is obtained by the following matrix–
vector product

∇Jy = LT∇JX . (5.36)
Smooth shapes, together with geometric constraints, are obtained taking the
vectors of displacements y that are the solutions of a minimization problem
(see Amoignon 2003) of the form

y =

{
min
v∈Rn

1
2
vT Asv − vT Msa ,

CT y = b,
(5.37)

where As is the stiffness matrix associated with the Laplace operator, Ms is
a mass matrix, C is the matrix whose rows are the gradients of the linear
constraints (in Rn×m) and b is the vector of values imposed to the constraints
(in Rm). The solution y to the above system can be seen as the vector of
displacements, which, according to the norm defined by the positive definite
matrix As, is the closest to the solution of the discretized Laplace equation
defined by

Asỹ = Msa , (5.38)
and fulfills exactly the constraints

CTy = b . (5.39)

Such a parameterization implies that the controls are the vector a, right hand
side of equation (5.38), and the vector b, right hand side of the constraints,
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Figure 5.9. Flow chart for the case of minimizing the dis-
turbance kinetic energy using the parameter a to control the
shape of geometry.

relation (5.39). The gradients with respect to a and b, which are the control
variables in our method, can then be obtained by solving an adjoint problem
(see Amoignon 2003) of the form

(
AT

s −C
−CT 0

)(
y∗

λ∗

)
=
(
∇Jy

0

)
, (5.40)

from which it holds that

∇Ja = MT
s y∗ and ∇Jb = −λ∗ . (5.41)

Note that ∇Jy in (5.40) is obtained by evaluating expression (5.36). All con-
straints considered so far are equality constraints, and b is therefore a vector
of constants. The only control parameter in this case is therefore a.

5.5.3. Solution procedure

A simple chart of the order in which the state and adjoint equations are solved
and gradients are evaluated in order to perform optimal NLF is given in fig-
ure 5.9. There, k denotes the iteration number and the procedure is as follows:

1. For k = 1, we start with an initial Euler mesh X0

2. The Euler, BLE and PSE are solved in the given order
3. The objective function J k is evaluated
4. The adjoint equations, APSE, ABLE and AEuler are solved
5. The gradients ∇J k

X , ∇J k
y and ∇J k

a are evaluated in the given order
6. A new control parameter ak+1 is calculated2 using the gradient ∇J k

a

7. If k > 1, check convergence: If |(J k+1 − J k)/J k| < ε, else3 continue
8. A new mesh Xk+1 is calculated from the new control parameter ak+1

9. Goto 2.

2In the computations shown in paper 5, the L-BFGS-B routine was used, normally requiring
several functional and gradient evaluations in order to build up the approximative Hessian
matrix.
3Several convergence criteria exist in the L-BFGS-B routine, (see Zhu et al. 1994)
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5.5.4. An optimal design case

An optimization case in which constraints are not imposed on operational prop-
erties such as lift, and pitch-moment coefficients might result in a design which
is not useful. Results are shown here for the case of minimizing an objective
function including both the disturbance kinetic energy, pressure drag CD, and
in addition penalties on the deviations of the lift, and pitch-moment coefficients,
CL and CM , from the initial values. This is written

JC = λUJ + λDCD + λL
1
2
(
CL − C0

L

)2 + λM
1
2
(
CM − C0

M

)2
, (5.42)

where the coefficients λU and λD are used to normalize J and CD with respec-
tive values computed using the initial mesh. The coefficients λL and λM are
used to penalize the deviations of CL and CM from respective values computed
on the initial mesh. The initial design is the RAE2822 airfoil and the flow
is characterized by a free stream Mach number of M∞ = 0.734 and Reynolds
number of Re∞ = 6.5×106. The disturbance used to evaluate J has a physical
frequency f∗ = 11 kHz and wave angle of ψw ≈ 40◦ and is integrated from close
to the leading edge to half chord. As geometrical constraints we impose that
the volume should not deviate from its initial value and that a region around
the leading edge is kept fixed.
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Figure 5.10. Left: Disturbance kinetic energy. Right: wave
drag. Both as functions of the iteration number.

Results of the convergence history is shown in figures 5.10 and 5.11 for the
disturbance kinetic energy, pressure drag, lift, and pitch-moment coefficients
as functions of the iteration number. A reduction in the objective function
(5.42) is obtained from the first to the last iteration (see paper 5). During a
few iterations, however, it can be noted that the pressure drag increase while
the deviations of CD and CM decrease, figure 5.10. At the final iteration a
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reduction has been obtained in both disturbance kinetic energy and pressure
drag while CD and CM are kept within a few percent, figure 5.11.

A comparison between the pressure coefficients, and geometry for the initial
(solid) and last iteration (dash) obtained from the optimization can be seen in
figure 5.12. The largest change in the geometry occur in the region on the upper
side of the airfoil where J is evaluated. This can also be seen in the pressure
distributions. The relative small change on the lower side is caused in order to
satisfy the constant volume constraint. As the upper side of the final design
is thinner, and the part around the leading edge is fixed to approximately 4%
chord, an increase occur in the curvature of the airfoil around 10% chord. This
can be seen in the decrease in the pressure coefficient in that region.

The EoE of the N -factor curves for a large number of modes can be seen
in figure 5.13 for the initial and final design. In comparison with figure 5.12
we can note that the pressure gradient in the region where the disturbance
become unstable has change from an adverse to zero or weakly favorable. This
has a damping effect on the disturbance growth in the whole domain where J
is evaluated, which can be seen in figure 5.13. In order to estimate the change
in the total drag computations were performed solving the Reynolds Averaged
Navier Stokes equations on the initial and final design. The transition location
in these computations was estimated using the EoE curves computed using the
pressure distributions from the Euler solutions. The computations showed a
decrease in pressure drag of about 25%, viscous drag of about 23%, and total
drag of about 24%. In the approach taken here there are still improvements
to be made. This can for instance be seen looking at the region x/c ≈ 0.4 to
x/c ≈ 0.6 of the pressure distributions in figure 5.12 of the final design. The
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pressure gradient in this region is adverse indicating that separation occurs.
More results and discussions are found in paper 5.



CHAPTER 6

Summary & conclusions

The work presented in this thesis concerns the use of gradient-based optimiza-
tion techniques for the purpose of laminar flow control (LFC), and design of
wings for natural laminar flow (NLF). The goal of using this technique is to
reduce the viscous drag. Reduction of viscous drag can be seen as an in-
crease of the laminar portion of the wing, thus a delay of laminar-turbulent
transition. On wings in low free-stream turbulence environments, the latter is
usually caused by break down of small disturbances which grow as they prop-
agate down stream. The fluid flow has been divided into three different parts,
namely: an inviscid part providing the pressure distribution for a given geome-
try, a viscous mean flow which is computed given the pressure distribution and
geometry, and finally a linear stability analysis using the PSE providing the
growth rate of convectively unstable disturbances superimposed on the viscous
mean flow. The growth rate can been used to predict the transition location
using the so called eN -method. Here it is assumed that transition will occur at
the location where the total amplification of the disturbance, with respect to
the first streamwise position where the disturbance starts to grow, attains an
empirically determined value, whose logarithm is generally denoted by N .

Several optimization problems have been defined for the purpose of LFC
and NLF with the aim of minimizing an objective function based on measures
of, or related to, the growth of unstable disturbances. Here, different control
variables, means of control, have been used and the gradients of the objective
function with respect to the control has been derived using adjoint equations.
Especially the derivation of the adjoint of the PSE (APSE), and the adjoint
of the BLE (ABLE) for compressible flows have been of interest, and now
accomplished can be used in several applications. An existing optimization
routine has been used in most cases as the topic of this research does not
concern development of these routines.

The accuracy of the gradients evaluated from the solution of the adjoint
equations have been investigated by comparing them with those computed
by a finite-difference approximation. The tests have shown that an increased
accuracy can be achieved by increasing the spatial resolution of the discretized
equations. As the latter is known to cause numerical stability problems for
the PSE, a known method to overcome this problem has been used which also
alters the APSE and ABLE. A sensitivity analysis using the gradients of the
disturbance kinetic energy at the second neutral point with respect to periodic
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forcing show that control is most efficiently made in the vicinity of the first
neutral point. It was further shown that the disturbance kinetic energy is most
sensitive to control by means of periodic blowing and suction, and in general
the efficiency decreases with increasing Mach number.

Results of optimal steady suction distributions have been presented for
both incompressible and compressible flows. It has been shown that minimiz-
ing an objective function based on the disturbance kinetic energy of a single
disturbance results in a suction distribution which has a damping effect on a
large number of disturbances of the same type, e. g. (TS) Tollmien-Schlichting-,
or (CF) cross-flow waves. On swept wings, a situation might occur when both
these types of waves exist simultaneously. For such cases it has been shown
that both types must be included in the objective function in order to obtain a
suction distribution which has a damping effect on other disturbances of these
two types. Results of optimal temperature distributions for disturbance control
have been presented for various Mach numbers. It has been shown that the effi-
ciency of the optimal control decreases when the wall temperature downstream
of the control domain is maintained at its original adiabatic value, compared
to the case when the wall there is insulated. It has also been shown that the
efficiency decreases with increasing Mach number.

A problem has been formulated to perform optimal NLF design, in which
the aim is to minimize a measure of the disturbance kinetic energy. Results have
been presented for cases where both the disturbance kinetic energy, and wave
drag have been reduced simultaneously while lift, and pitch-moment coefficients
as well as the volume have been maintained at desired values.

One of the goals with work presented here was to show that the derived
techniques can be used in realistic applications. This was addressed for the case
of optimal suction distributions in which the problem was also formulated using
discrete pressure chambers, and computations were made on an infinite swept
wing designed for commercial aircraft. Also the problem of optimal NLF design
was formulated such that airfoils in realistic flow conditions can be optimized.
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Sensitivity Analysis Using Adjoint Parabolized
Stability Equations for Compressible Flows

By Jan O. Pralits1,3, Christophe Airiau2,
Ardeshir Hanifi3 and Dan S. Henningson1,3

An input/output framework is used to analyze the sensitivity of two- and three
dimensional disturbances in a compressible boundary layer for changes in wall-
and momentum forcing. The sensitivity is defined as the gradient of the kinetic
disturbance energy at a given downstream position with respect to the forc-
ing. The gradients are derived using the parabolized stability equations (PSE)
and their adjoint (APSE). The adjoint equations are derived in a consistent
way for a quasi two-dimensional compressible flow in an orthogonal curvilinear
coordinate system. The input/output framework provides a basis for optimal
control studies. Analysis of two-dimensional boundary layers for Mach num-
bers between 0 and 1.2 show that wall- and momentum forcing close to branch
I of the neutral stability curve give the maximum magnitude of the gradient.
Forcing at the wall gives the largest magnitude using the wall normal velocity
component. In case of incompressible flow, the two-dimensional disturbances
are the most sensitive ones to wall inhomogeneity. For compressible flow, the
three-dimensional disturbances are the most sensitive ones. Further, it is shown
that momentum forcing is most effectively done in the vicinity of the critical
layer.

1. Introduction
Transition from laminar to turbulent flow can be triggered by unstable distur-
bances inside the boundary layer. The growth of such1 disturbances are known
to be sensitive to surface inhomogeneities, forcing inside the boundary layer
and external acoustic perturbations, see e.g. Nishioka and Morkovin (1986),
Saric (1993) and Corke, Bar-Sever and Morkovin (1986). The studies devoted
to the birth of disturbances due to such forcing are called receptivity. The
acoustic receptivity is explained by Goldstein (1983) as a wavelength conver-
sion mechanism. The long wave length of an acoustic wave can be converted
to a shorter wave length of an instability wave at the leading edge or where

1Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden.
2Institut de Mécanique des Fluides de Toulouse, Allée du professeur Camille Soula, F-31 400
Toulouse, France.
3Swedish Defence Research Agency, FOI, Aeronautics Division, FFA, SE-172 90 Stockholm,
Sweden.

61



62 J.O. Pralits, C. Airiau, A. Hanifi & D.S. Henningson

a geometric inhomogeneity is present. Results of boundary layer receptivity
are documented by Crouch (1992a, 1992b) and Choudhari and Street (1992)
for two-dimensional disturbances in a Blasius boundary layer. Other references
may be found in Goldstein (1989) and in Saric (1993).

A disturbance inside the boundary layer may encounter an unsteady wall
inhomogeneity (forcing) which changes its growth. This problem can also be
viewed as a receptivity to wall perturbations. If the perturbation is appropriate,
it can be used to control the development of the disturbance. This is the
wave cancellation concept proposed by Thomas (1983). Such study may be
formulated as input/output problem where the input is some forcing on the
wall or in the boundary layer, and the output is a measure of the disturbance
in the domain. The sensitivity can be defined as the gradient of the output
with respect to the input. A typical output measure is the disturbance energy
at some downstream position or in the whole domain. Such a formulation can
easily be extended to a control problem by using the gradient to update the
input i.e. control variables in order to minimize the output. This analysis can
be done with gradient based optimization techniques as shown in Gunzburger
(2000) and Bewley, Temam and Ziane (2000).

Here we investigate the sensitivity of disturbances to unsteady wall condi-
tions and source of momentum in a compressible boundary layer in framework
of the non-local stability theory. This analysis is formulated as an input/output
problem and provides information which is useful for the control of disturban-
ces. The state equations are the so called Parabolized Stability Equations,
PSE, and are written in an orthogonal curvilinear coordinates system. For a
detailed presentation of PSE see e.g. Bertolotti, Herbert and Spalart (1998)
and Simen (1992).

The main tool developed here is based on the adjoint equations. The
approach of adjoint equations has been used for sensitivity studies in oceanog-
raphy and atmospheric circulation models, e.g. Hall (1986). This approach has
also appeared in receptivity studies. Tumin (1996) used it for confined flows.
Hill (1995,1997a) applied the adjoint approach for the local and nonlocal stabil-
ity theories to study the receptivity of Tollmien-Schlichting waves in boundary
layer flows. Receptivity of Görtler vortices was studied by Luchini and Bottaro
(1998) using backward-in-time integration. The adjoint techniques has also
been used for identifying the optimal disturbances in boundary layer flows, e.g.
Andersson, Berggren and Henningson (1999) and Luchini (2000).

Sensitivity analysis may be performed by forward calculations. For each
parameter that is changed (inhomogeneous wall boundary conditions, initial
disturbance, momentum source) the forward problem has to be solved. The
total time spent will be the product of the number of input parameters and
the time spent for each calculation.

The advantage of the adjoint approach is that the sensitivity of a distur-
bance can be obtained by solving the state and adjoint equations once. This
means that the adjoint method can provide an optimal distribution of suction
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Figure 1. Computational domain

to suppress the growth of disturbances with a relatively low computational cost.
Such a study was carried out by Cathalifaud and Luchini (2000) for optimal
disturbances in a Blasius boundary layer.

The aim of the present work is to derive the adjoint of the parabolized
stability equations for a compressible flow in a consistent way. The paper is
organized as follows. In section 2 the problem is defined and section 3 gives the
adjoint formulation and the gradient expressions. Validation and results of the
sensitivity analysis are presented for a two-dimensional compressible boundary
layer with two and three dimensional disturbances in section 4. The conclusions
appear in section 5. Details of the derivation of nonlocal stability equations
and their adjoint are given in the appendix.

2. Problem formulation
2.1. Definition of the sensitivity

The sensitivity of two- and three dimensional disturbances in a compressible
boundary layer for changes in wall- and momentum forcing is investigated. This
analysis is formulated as an input/output problem and will be discussed below
considering the domain given in figure 1. Here, x1, x2 and x3 are the stream-
wise, spanwise and wall normal coordinates, respectively, and Ue the free-
stream velocity. The computational domain is defined such that x1 ∈ [X0, X1],
x2 ∈ [Z0, Z1] and x3 ∈ [0,∞[. An initial disturbance is superimposed to the
boundary layer base flow at an upstream position X0.

In optimal control theory, sensitivity is defined as the derivative of the
state variables (output) with respect to the control variables (input). It is
related to the gradient of a functional J (called cost or objective functional)
which includes both a measure of a state E and a measure of the control
Ec. The measures are weighted together with a positive factor ε, so called
the regularization parameter, as J = E + εEc. The regularization parameter
serves the purpose of limiting the size of the control. The optimal input can
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then be obtained via an optimality condition using gradient based optimization
techniques as e.g. steepest descent or conjugate gradient, see e.g. Bewley et
al. (2000) and Gunzburger (2000).

Here, the input is defined as the inhomogeneities of velocity ũw and tem-
perature T̃w on the wall x3 = 0 and a source S̃ in the boundary layer. The
output is a function of disturbance variables, here written as the disturbance
energy norm

E =
1
2

∫ Z1

Z0

∫ ∞

0
φ̃H

1Mφ̃1h2h3 dx3 dx2, (1)

or alternatively

E =
1
2

∫ X1

X0

∫ Z1

Z0

∫ +∞

0
φ̃HMφ̃ h1h2h3 dx1 dx2 dx3, (2)

where φ̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T with ρ̃ denoting the density perturbation, ũ, ṽ, w̃
the streamwise, spanwise and normal velocity perturbations, respectively, and
T̃ the temperature perturbation. The superscript H denotes the transpose
complex conjugate, the subscript 1 refers to values at x = X1 and hi the scale
factors of the coordinate system. The positive diagonal matrix M defines the
measure of ’size’ of disturbances. In this paper M = Diag(0, 1, 1, 1, 0) such
that disturbances are measured by the modulus of their velocity components.
An example of another measure is given in Hanifi et al. (1994) where M =
Diag(T/ργM2, ρ, ρ, ρ, ρ/γ(γ − 1)TM2) with T being the mean temperature, ρ
the mean density, γ the ratio of the specific heat coefficients and M the Mach
number of the flow. We define the sensitivity as the gradient of E with respect
to ũw, T̃w and S̃. Here we consider the case with no penalty, i.e ε = 0, therefore
can the output be written J = E.

In the present paper the amplitude of the control parameters are assumed
to be so small that the nonlinear interaction with the mean flow can be ne-
glected. However, the procedure presented here can be extended to account for
the modification of the mean flow, see Pralits et al. (2000).

2.2. State equations

The governing equations are the non-local stability equations formulated using
PSE technique for quasi-three dimensional viscous, compressible flow formu-
lated in primitive variables and general, orthogonal curvilinear coordinates.
Here, we consider a general case where the boundary layer is subjected to
sources of mass, momenta and energy S̃, and inhomogeneous boundary con-
ditions on the wall ũw and T̃w. The notation, the reference quantities, the
assumptions and the derivation of the PSE are given in appendix Appendix A.
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The equations in symbolic form are written as

L̂ φ̂ = Ŝ in Ω
φ̂ = φ̂0 on x1 = X0

û = ûw(x1), T̂ = T̂w(x1) on x3 = 0
û → 0, T̂ → 0 as x3 →∞

∫ ∞

0
φ̂H ∂φ̂

∂x1
h2h3dx3 = 0 ∀ x1

(3)

The disturbance φ̃, the source S̃ and the inhomogeneous boundary conditions
have been divided into an amplitude function and a wave function

φ̃(xi, t) = φ̂(x1, x3)Θ, S̃(xi, t) = Ŝ(x1, x3)Θ, (4)

where

Θ(x1, x2) = exp i (
∫ x1

X0

α(x′)dx′ + βx2 − ωt). (5)

Here, α is the complex streamwise wavenumber, β the real spanwise wavenum-
ber and ω the real angular frequency of the perturbations. The integral ex-
pression in equation (3), the so called auxiliary condition, is used to remove
the ambiguity from the streamwise dependence that remains between the wave
and the amplitude functions.

In accordance to the derivation of the nonlocal stability equations, the
input parameters (ûw, T̂w and Ŝ) are assumed to be weak functions of the
streamwise coordinate, i.e. ∂/∂x1 ∼ O(R−1). Note that φ̃w and S̃ have the
same x2, t and main x1 dependence as the disturbances.

The system of equations (3), which is nonlinear in (α, φ̂), is integrated in
the downstream direction using a marching procedure, with the initial condition
at x1 = X0 given by the local stability theory. At each streamwise position,
the value of α is iterated such the auxiliary condition is satisfied.

3. Adjoint equations and gradients
The gradient of the output given by (1), is defined through the directional
derivative as

δJ = Real

{∫ X1

X0

∫ Z1

Z0

(
∇ũwJ

Hδũw +∇T̃w
JHδT̃w

)
h1h2 dx2 dx1+

∫ X1

X0

∫ Z1

Z0

∫ ∞

0
∇S̃JHδS̃ h1h2h3 dx3 dx2 dx1

}
, (6)

where

∇ξJ δξ = lim
s→0

J(ξ + sδξ)− J(ξ)
s

,
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and δũw, δT̃w and δS̃ are the variations of the input parameters. The gradient
expressions, i.e. the sensitivities, are derived in appendix Appendix B, using a
perturbation technique together with integration by parts in space. It yields

∇ũwJ =
µ

Θ̄R
D3(u∗) on x3 = 0

∇ṽwJ =
µ

Θ̄R
D3(v∗) on x3 = 0

∇w̃wJ =
ρρ∗

Θ̄
on x3 = 0

∇T̃w
J = − κ

Θ̄PrR
D3(T ∗) on x3 = 0

∇S̃J =
φ∗

Θ̄
in Ω

(7)

where the overbar denotes the complex conjugate, µ, κ, R and Pr are the
dynamic viscosity, the heat conductivity, the Reynolds and Prandtl numbers,
respectively, and

Di =
1
hi

∂

∂xi
.

The co-state variables φ∗ = (ρ∗, u∗, v∗, w∗, T ∗) and r∗ satisfy the adjoint equa-
tions

L̂∗ φ∗ = S∗ in Ω
u∗ = 0, T ∗ = 0 on x3 = 0
u∗ → 0, T ∗ → 0 as x3 →∞
φ∗ = φ∗1, r∗ = r∗1 on x1 = X1

∂

∂x1

∫ +∞

0
φ∗H ∂L̂

∂α
φ̂ h1h2h3 dx3 = f∗ ∀ x1

(8)

where
S∗ = −

[
r̄∗D1(φ̂)−D1(r∗φ̂)− (m21 + m31)r∗φ̂

]
, (9)

f∗ = i

∫ +∞

0
φ∗HŜ h1h2h3 dx3 + ih1h2

[
− κ

PrR
D3(T̄ ∗)T̂

+(ρρ̄∗)ŵ +
µ

R
D3(ū∗)û +

µ

R
D3(v̄∗)v̂

]∣∣∣
x3=0

.

(10)

and
mij =

1
hihj

∂hi

∂xj
.

The co-state equations (8) are integrated in the upstream direction with the
initial condition at x1 = X1 as :

φ∗1 = |Θ1|2(DH)−1(M− c1I)φ̂1, r∗1 = |Θ1|2 c1 (11)

where c1 is given in the appendix and I is the identity matrix. Equations (8)
are solved iteratively to find r∗ such that the integral expression is satisfied.
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β 0 0.02 0.04
M = 0, ϕ = 0◦ 22.3◦ 41.2◦
M = 0.7, ϕ = 0◦ 23.5◦ 42.5◦
M = 1.2, ϕ = 0◦ 25.9◦ 45.2◦

Table 1. Spanwise wavenumber β with corresponding wave
angle ϕ at R = 160 for different Mach numbers M . F = 10−4

Now, the gradients of J can be obtained in following steps. First, the state
variable φ is calculated by integrating equations (3) from x1 = X0 to X1. Then
the co-state equations (8) are integrated backward in the streamwise direction
from x1 = X1 to X0 to obtain the co-state variables φ∗. Finally, equations (7)
give the gradients with respect to each control parameter.

It is worth mentioning that the expression for S∗ depends on the choice of
the auxiliary condition while the adjoint operator L̂∗ will remain unchanged
for other choices of this condition. If the output is defined as in (2) the adjoint
system will be

L̂∗ φ∗ = S∗ + MHφ̂|Θ|2 in Ω
u∗ = T ∗ = 0 on x3 = 0

u∗ , T ∗ → 0 as x3 →∞
φ∗ = r∗ = 0 on x1 = X1

(12)

∂

∂x1

∫ +∞

0
φ∗H ∂L̂

∂α
φ̂ h1h2h3dx3 + |Θ|2

∫ +∞

0
φ̂HMφ̂ h1h2h3 dx3 = f∗∀x1

Note that in this case both φ∗ and r∗ are subjected to homogeneous initial
conditions.

4. Results
The results presented here are obtained by numerically integrating the dis-
cretized state and co-state equations. The x1-derivatives are approximated
by a first-order accurate backward Euler scheme and the x3-derivatives by a
fourth-order accurate compact finite-difference scheme. For details the reader
is referred to Hanifi et al. (1994).

The calculations are performed for two- and three dimensional disturbances
in a two-dimensional compressible boundary layer on an adiabatic flat plate.
The gradients express the sensitivity of disturbances to small unsteady inhom-
geneities in the steady boundary layer flow. The stagnation temperature is
300 K and the Prandtl number is held constant to Pr = 0.72. The dynamic
viscosity is calculated using Sutherland law and the coefficient of the specific
heat cp is assumed to be constant. The ratio of the coefficients of second
and dynamic viscosity is given by the Stoke’s hypothesis, i.e. λ/µ = −2/3.
In all figures the reduced frequency, defined as F = 2πf!ν!

e /U!2
e , is equal
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Figure 2. Comparison between adjoint (adj) and central
difference (fd) calculations for different ∆R. Mach number
M = 0.7, β = 0. a) lines denote ||(∂J/∂w̃r, ∂J/∂w̃i)/∆n|| and
symbols |∇w̃wJn|. b) relative error.

to 10−4. Here f! is the dimensional physical frequency and the subscript e

refers to values at the edge of the boundary layer. The output is measured
at R =

√
U!

e x1!/ν!
e = 760. The calculations have been performed for three

values of spanwise wavenumbers β at different Mach numbers. Values of the
wave angle ϕ given at x1 = X0 for the cases studied here are given in table 1.
In all calculations, the metric coefficients h1 = h2 = h3 = 1.

4.1. Accuracy of the gradient, validation

In order to verify the correctness of the gradient, we compare the adjoint based
gradients to those obtained using the finite-difference approach. In the latter,
the derivative of the output variable with respect to each input parameter is
approximated by a second-order accurate central finite-difference scheme.

To compare the gradients given by the adjoint and finite-difference ap-
proaches let us consider the example of a wall normal velocity perturbation
δw̃w at x3 = 0. The variation of a functional J with respect to this wall
perturbation is :

δJ =
∂J

∂w̃r
δw̃r +

∂J

∂w̃i
δw̃i (13)

The subscripts r and i denote the real and imaginary parts of a complex num-
ber. In the finite-difference approach, the derivatives of J are obtained by
imposing the inhomogeneous boundary condition w̃w = ±ε at x1 = x1

n. Here,
ε is a small number and index n refers to n-th streamwise position. Then,
the derivatives are calculated using a second-order accurate finite-difference
scheme.
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Figure 3. Comparison between adjoint and central difference
calculations of the phase Φ in degrees for M = 0.7, β = 0. a)
∆R = 10. + denotes central difference, and ◦ denotes adjoint
calculations. b) absolute error in degrees.

The expression for δJ in the adjoint approach, for a flat plate geometry, is
in discretized form given as

δJ =
∫ Z1

Z0

N−1∑

n=2

1
2
(∇w̃wJ

H
n δw̃wn + c.c.)∆n dx2, (14)

where ∆n = (x1
n+1 − x1

n−1)/2 and c.c. is the complex conjugate. In the follow-
ing, the quantity ∇w̃wJn is compared to those of the finite-difference approach.
The streamwise domain used here is R ∈ [250, 750]. In figure 2a the modu-
lus ||(∂J/∂w̃r, ∂J/∂w̃i)/∆n||, as a function of x1

n, is compared to |∇w̃wJn| for
different resolution of the streamwise step ∆R. A good agreement is found
between the approaches for a given ∆R, and both values converge as ∆R is
decreased. The relative error given in figure 2b is below one percent for all
cases and decreases slightly as ∆R is decreased.

The phase Φ of the gradients obtained by adjoint equations and central
differences is compared in figure 3a for a given streamwise step, ∆R = 10. The
absolute error of the phase shown in figure 3b is less than 0.1 degrees except
close to the outlet of the domain.

4.2. Sensitivity to wall disturbances.

In figures 4, 5 and 6 the modulus of the gradient for inhomogeneous wall bound-
ary conditions are shown for three different Mach numbers M and spanwise
wavenumbers β. As can be seen in there, the maximum value of the gradi-
ent is achieved if forcing is situated close to branch I of the neutral stability
curve. This is in agreement with receptivity studies of e.g. Hill (1995), Airiau,
Walther and Bottaro (2001) and Airiau (2000). In Airiau et al. the wall
gradients were interpreted as wall Green’s functions. One should note that
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Figure 4. Modulus of the gradients due to 2D and 3D wall
disturbances as a function of the Reynolds number for a Mach
number M = 0. a) |∇ũwJ |, streamwise velocity component; b)
|∇ṽwJ | spanwise velocity component; c) |∇w̃wJ | normal velocity
component; d) |∇T̃w

J | temperature component.

the distance between the maximum value of the gradient and Branch I of the
neutral stability curve depends on the Mach number and the input parame-
ter. Branch I and branch II are marked on each curve in the figures with +
signs. For low Mach numbers, the two-dimensional waves, β = 0, give the
largest value of the gradient for wall-disturbance components ũ, ṽ, w̃ and T̃ .
This can be seen for M = 0 and M = 0.7 in figures 4 and 5, respectively. As
is shown in figure 6, where M = 1.2, it is clear that for higher Mach numbers
the two-dimensional waves do not have the largest gradient. This observation
follows the fact that in compressible boundary layers the three-dimensional
disturbances are the most unstable ones (see e.g. Mack 1984). The magnitude
of the gradient is quite different comparing ũ, ṽ, w̃ and T̃ in figures 4, 5 and
6. It was noted that the normal velocity component gave the largest gradient
for various spanwise wavenumber at Mach numbers between 0 and 1.2. The
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Figure 5. Modulus of the gradients due to 2D and 3D wall
disturbances as a function of the Reynolds number for a Mach
number M = 0.7. a) |∇ũwJ |, streamwise velocity component;
b) |∇ṽwJ | spanwise velocity component; c) |∇w̃wJ | normal ve-
locity component; d) |∇T̃w

J | temperature component.

response to the wall normal velocity component was one order of magnitude
larger than the streamwise and spanwise velocity components. In cases studied
here, the normal component is about 15 times that of the streamwise compo-
nent. This implies that blowing and suction at the wall is the most efficient
mean of controlling the instability waves. However, as is shown in the figures,
the maximum response to a wall disturbance decreases as the Mach number
increases. This means that the efficiency of blowing and suction for control of
disturbance growth decreases at higher Mach numbers.

4.3. Sensitivity to momentum sources.

In figure 7 the modulus of the gradients for the streamwise and normal mo-
mentum forcing are plotted. The Mach number and spanwise wavenumber are
both zero in this case. However, the qualitative behavior does not change for
higher Mach numbers up to 1.2, and spanwise wavenumbers of 0, 0.02 and
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Figure 6. Modulus of the gradients due to 2D and 3D wall
disturbances as a function of the Reynolds number for a Mach
number M = 1.2. a) |∇ũwJ |, streamwise velocity component;
b) |∇ṽwJ | spanwise velocity component; c) |∇w̃wJ | normal ve-
locity component; d) |∇T̃w

J | temperature component.

0.04 which were studied here. A first observation is that the gradient for the
streamwise component of a source of momentum |∇S̃u

J | is about 10 times that
of the normal component. Further, the maximum value of |∇S̃u

J | is located
near branch I of the neutral stability curve. It was noted by e.g. Hill (1995)
that forcing most effectively is done in the vicinity of the critical layer, i.e.
where the streamwise velocity U(x, y) = ω/Real{α}. This was also found in
our analysis. The location of the critical layer is marked with a line in figure
7a.

5. Conclusions
The Adjoint Parabolized Stability Equations (APSE) have been derived for
quasi three-dimensional compressible flow using an input/output framework.
The equations are given for an orthogonal curvilinear coordinate system. The
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Figure 7. Contour plot of the gradients for momentum forc-
ing. δ0 denotes the boundary-layer thickness at streamwise
position x1 = X0. F = 10−4, M = 0.7, β = 0. The line in
a) shows the position of the critical layer. a) |∇S̃u

J |, stream-
wise component with maximum = 1.8. Branch locations: I at
R ≈ 400, II at R ≈ 680. b) |∇S̃w

J |, normal component with
maximum = 0.16. Branch locations: I at R ≈ 360, II at
R ≈ 680.

adjoint field gives the sensitivity of disturbances to changes in boundary con-
ditions and momentum forcing. These equations provide a basis for optimal
control of disturbance growth using unsteady wall perturbation or unsteady
momentum forcing.

In the present formulation, the sensitivity of the objective function (output)
to all control parameters (input) is found by solving the state equations and
their adjoint once. This will drastically reduce the computational costs in an
optimal design procedure.

The accuracy of the gradients have been verified by comparing the gradients
derived by the adjoint equations with a finite-difference approach. It was shown
that as the streamwise resolution is increased the differences between these two
methods decrease and the solution of the gradient converges.

Analysis of two-dimensional boundary layers shows that a given distur-
bance is most sensitive to wall- and momentum forcing close to branch I of
the neutral stability curve. The streamwise distance between the maximum of
sensitivity and Branch I depends on the input component. This was found to
be true for 0 ! M ! 1.2 studied here. We also found that the response to the
inhomogeneities of normal velocity at the wall is at least one order of magni-
tude larger than those of other the velocity components and temperature. This
is in agreement with Hill (1995) for incompressible flow.

For incompressible flows, it has been shown that the two-dimensional dist-
urbances are the most sensitive ones to wall inhomogeneity. However, for com-
pressible flows, the three-dimensional disturbances are the most sensitive ones.
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Further, it has been observed that momentum forcing is most effectively done
in the vicinity of the critical layer, which has earlier been shown by Hill for
incompressible boundary layer.

The results shown here are obtained with an objective function solely de-
fined by the terminal energy. If instead the disturbance energy over the entire
domain is used then the peak of the gradient would probably move another
streamwise position. Further, if the cost of the control energy is added to the
objective function as J = E + εEc then the results will most certainly change.
One point that has to be made clear when adding the control energy is that the
goal is not just to find the gradient for the disturbance energy but also for the
control energy used. In the simple case shown in this article it turns out that
the gradient appear to be similar to well known stability results, however what
will happen in the other cases described above is left for future investigations.

The second author wishes to thank the ’Conférence des Grandes Ecoles’
and FFA for their financial support. This work was carried out during a three-
months period at FFA where he appreciated the Swedish friendship. The au-
thors also wish to thank Martin Berggren at FFA for valuable discussions.

Appendix A. The non-local stability equations
A.1. Governing equations and assumptions

A model of convectively unstable waves with curved or divergent wave-rays
in a non-uniform flow is described here. The equations are derived from the
equations of conservation of mass, momentum and energy and the equation of
state governing the flow of a viscous, compressible, ideal gas expressed in prim-
itive variables and curvilinear coordinates. The non-dimensional conservation
equations in vector notation are given by

ρ [
∂u
∂t

+ (u ·∇)u] = −∇p +
1
R
∇[λ(∇ · u)] +

1
R
∇ · [µ(∇u +∇uT )], (15)

∂ρ

∂t
+∇ · (ρu) = 0, (16)

ρcp[
∂T

∂t
+ (u ·∇)T ] =

1
R Pr

∇ · (κ∇T )+ (γ − 1)M2[
∂p

∂t
+ (u ·∇)p +

1
R

Φ], (17)

γM2p = ρT, (18)
with viscous dissipation given as

Φ = λ(∇ · u)2 +
1
2
µ[∇u +∇uT ]2.

Here t represents time, ρ, p, T stand for density, pressure and temperature, u
is the velocity vector. The quantities λ, µ stand for the second and dynamic
viscosity coefficient, γ is the ratio of specific heats, κ the heat conductivity,
cp the specific heat at constant pressure. All flow quantities are made non-
dimensional by corresponding reference flow quantities at a fixed streamwise
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position x!
0, except the pressure which is referred to twice the corresponding

dynamic pressure. The reference length scale is fixed and taken as

l!0 =

√
ν!
0x!

0

U!
0

.

The Mach number, M , Prandtl number, Pr and Reynolds number, R are de-
fined as

M =
U!

0√
$γT !

0

, Pr =
µ!

0c
!
p0

κ!
0

, R =
U!

0 l!0
ν!
0

,

where $ is the specific heat constant and superscript ! refers to dimensional
quantities.

We decompose the flow and material quantities into a mean flow part Q
and a disturbance q̃ as Qtot(xi, t) = Q(xi) + q̃(xi, t) where x1, x2 and x3

are the streamwise, spanwise and wall normal components respectively. Here
Q ∈ [U, V, W, p, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃], where U, V, W are the streamwise,
spanwise and wall normal components of the mean velocity vector, respectively.
u, v, w are those of the perturbation velocity vector. The domain considered is
defined as x1 ∈ [X0, X1], x2 ∈ [Z0, Z1] and x3 ∈ [0,∞[. To simplify the analysis
the mean flow is considered to be independent of the spanwise coordinate x2.
Two assumptions are made to derive the non-local stability equations. The first
is of WKB type where the disturbance q̃ is divided into an amplitude function
and a wave function

q̃(xi, t) = q̂(x1, x3)Θ, Θ = exp i (
∫ x1

X0

α(x′)dx′ + βx2 − ωt).

Here α is a complex wavenumber, β the real spanwise wavenumber and ω the
real angular wave frequency. The second assumption is a scale separation 1/R
between the weak variation in the x1 direction and the strong variation in the
x3 direction analogous to the multiple scales method. We assume

∂

∂x1
∼ O(R−1), W ∼ O(R−1)

Furthermore, it is assumed that the metrics are of order O(R−1).

A.2. The linear non-local stability equations

The non-local stability equations are derived using Parabolized Stability Equa-
tion approach (PSE). We consider a general case where the boundary layer
is subjected to sources of mass, momenta and energy, S̃, and inhomogeneous
boundary conditions on the wall. The linearized disturbance equations are ob-
tained by introducing the variable decomposition into the governing equations
(15)-(18), subtracting the equations for the mean flow and removing the prod-
ucts of disturbances. We proceed with the derivation of the stability equations
by introducing the scaling relations given in section A.1. Finally, collecting
terms up to order O(R−1) gives a set of nearly parabolic partial differential
equations. A note on the parabolic nature of PSE can be found in e.g. Li and
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Malik (1996), and Andersson, Henningson and Hanifi (1998). The equation
can now be written

L̂ φ̂(x1, x3) = Ŝ(x1, x3) (19)

where the vector of the amplitude functions is φ̂ = (ρ̂, û, v̂, ŵ, T̂ )
T
. The bound-

ary conditions are

û(x1, 0) = ûw(x1), T̂ (x1, 0) = T̂w(x1),
lim

x3→∞
û = 0 and lim

x3→∞
T̂ = 0. (20)

The operator L̂ is defined as

L̂ = A + BD3 + CD33 + DD1 (21)

where

Di =
1
hi

∂

∂xi
, Dii =

1
h2

i

∂2

(∂xi)2
.

Here, hi is the scale factor such that a length element is defined as ds2 =
(h1dx1)2 +(h2dx2)2 +(h3dx3)2. The coefficients of the 5 × 5 matrices A, B, C
and D can be found in appendix Appendix C. Furthermore, as both the am-
plitude function and the wave function depend on the x1 coordinate, this am-
biguity is removed by specifying an auxiliary condition

∫ ∞

0
φ̂H ∂φ̂

∂x1
h2h3dx3 = 0, (22)

where, superscript H denotes the transpose complex conjugate. This condition
also guarantees that x1-variation of the disturbance amplitude function remains
small such that second streamwise derivatives are negligible.

Appendix B. Derivation of the gradient
The gradients are derived using the adjoint equations of the Parabolized Sta-
bility Equations. A discrete or a continuous formulation may be used. It was
concluded by Högberg et al. (2000) that a continuous formulation is a good
enough approximation if control is performed on a problem with a dominat-
ing instability. This type of analysis can be done with the PSE therefore a
continuous approach is used in this paper.

B.1. Inner product

For a compact notation of the adjoint equations, we will use the formal adjoint
L∗ of the differential operator L defined by the relation

(L∗Ψ∗, Φ) = (Ψ∗,LΦ) + boundary terms,

where the inner product (·, ·) is defined as

(Φ, Ψ∗) =
∫ X1

X0

∫ Z1

Z0

∫ +∞

0
ΦHΨ∗ h1h2h3 dx3 dx2 dx1, (23)
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for Cn-valued functions Φ and Ψ∗. Here, the superscript ∗ stands for adjoint
quantities.

B.2. Derivation of adjoint equations

At first, the equations (1), (19), (20) and (22) has to be differentiated with
respect to the input variables ûw, T̂w,Ŝ and the state variables α and φ

δJ = Real

{∫ Z1

Z0

∫ ∞

0
|Θ1|2φ̂H

1Mδφ̂1h2h3 dx3 dx2 +

∫ Z1

Z0

∫ ∞

0
|Θ1|2φ̂H

1Mφ̂1 i

∫ X1

X0

δαdx′ h2h3 dx3 dx2

} (24)

L̂ δφ̂− δŜ +
∂L̂
∂α

δα φ̂ = 0 in Ω

δφ0 = 0 on x1 = X0

δû(x1, 0) = δûw(x1) on x3 = 0

δû → 0 as x3 →∞
δT̂ (x1, 0) = δT̂w(x1) on x3 = 0

δT̂ → 0 as x3 →∞
∫ ∞

0
(δφ̂H ∂φ̂

∂x1
+ φ̂H ∂δφ̂

∂x1
) h2h3dx3 = 0 ∀ x1

(25)

Note here that the variation of a disturbance φ results in the variation of
both the amplitude function φ̂ and the streamwise wave-number α. A com-
plex co-state vector φ∗ = (ρ∗, u∗, v∗, w∗, T ∗)T and complex function r∗(x1) are
introduced. The adjoint equations are derived by taking the inner product of
vector φ∗ with the differentiated state equations, and r∗ with the differentiated
auxiliary condition according to the inner product (23). The complex conju-
gate of each term in the equation is added. Then, derivatives are removed from
the differentiated variables in equation (26) using integration by parts. After
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integrations, it yields (without complex conjugate for clarity)

(φ∗, L̂ δφ̂− δŜ +
∂L̂
∂α

δα φ̂) +
∫ X1

X0

∫ Z1

Z0

r̄∗
∫ +∞

0
[δφ̂HD1(φ̂) + φ̂HD1(δφ̂)] h1h2h3dx3 dx2 dx1 =

(L̂∗φ∗, δφ̂)− (φ∗, δŜ)−
∫ X1

X0

∫ Z1

Z0

∫ +∞

0

∂

∂x1
(φ∗H ∂L̂

∂α
φ̂ h1h2h3)

∫ x1

X0

δαdx′ dx3 dx2 dx1 +

∫ Z1

Z0

∫ +∞

0

[
φ∗H ∂L̂

∂α
φ̂ h1h2h3

∫ x1

X0

δαdx′
]X1

X0

dx3 dx2 +

∫ Z1

Z0

∫ +∞

0

[
φ∗H D δφ̂ h2h3

]X1

X0
dx3 dx2 +

∫ Z1

Z0

∫ X1

X0

[{
φ∗H

(
B − (m13 + m23 −m33) C − D3(C)

)
δφ̂ +

−D3(φ∗H) C δφ̂ + φ∗H C D3(δφ̂)
}

h1h2 dx2 dx1
]∞
0

+
∫ X1

X0

∫ Z1

Z0

∫ +∞

0

(
r∗D1(φ̂H)−D1(r̄∗φ̂H)−

(m21 + m31)r̄∗φ̂H
)
δφ̂ h1h2h3dx3 dx2 dx1 +

∫ Z1

Z0

∫ +∞

0

[
h2h3r̄

∗φ̂Hδφ̂
]X1

X0
dx3 dx2 = 0 (26)

where

mij =
1

hihj

∂hi

∂xj
.

Terms of δα have also been integrated in equation (26) in order to identify
from δJ the boundary terms at X1. Collecting terms of δφ̂ leads to the adjoint
equations

L̂∗φ∗ = −
[
r̄∗D1(φ̂)−D1(r∗φ̂)− (m21 + m31) r∗φ̂

]
(27)

In order to remove the terms of δφ̂ in the equation (26) as x3 → ∞, the
following homogeneous boundary conditions are chosen

u∗(x1, 0) = 0 and T ∗(x1, 0) = 0,
lim

x3→∞
u∗ = 0 and lim

x3→∞
T ∗ = 0, (28)

where u∗ = (u∗, v∗, w∗)T. Using the operator matrices of the forward problem,
the adjoint operator L̂∗ can be identified

L̂∗ = Ã + B̃ D3. + C̃ D33. + D̃ D1. (29)
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where Ã, B̃, C̃ and D̃ are

Ã = AH − D3(BH) − (m13 + m23) BH + D33(CH)
+ 2 (m13 + m23 −m33) D3(CH)
− D1(DH) − (m21 + m31) DH

B̃ = −BH + 2 D3(CH) + 2 (m13 + m23 −m33) CH

C̃ = CH

D̃ = −DH,

The system of equations (27) with corresponding boundary conditions (28) is
parabolic in the streamwise direction and must be integrated upstream, from
X1 to X0. The initial condition at X1 is found by identifying δJ , equation (24),
with the terms defined at X1 in equation (26). Matching terms of δφ̂, and δα
gives the following system of equations to solve for the initial condition for φ∗
and r∗

|Θ1|2
∫ ∞

0
φ̂H

1Mδφ̂1h2h3 dx3 =
∫ +∞

0
(φ∗H D + r̄∗φ̂H) δφ̂ h2h3dx3

∣∣∣
X1

i|Θ1|2
∫ ∞

0
φ̂H

1Mφ̂1h2h3 dx3 =
∫ +∞

0
φ∗H ∂L̂

∂α
φ̂ h1h2h3 dx3

∣∣∣
X1

(30)

Solving the above equations gives the initial condition for the adjoint equations
at X1 as

φ∗1 = |Θ1|2D+(M− c1I)φ̂1, r∗1 = |Θ1|2 c1,

c̄1 =

∫ ∞

0
(h1φ̂

H
1M D+H ∂L̂

∂α
φ̂1 − iφ̂H

1Mφ̂1) h2h3 dx3

∫ ∞

0
φ̂H

1D+H ∂L̂
∂α

φ̂1 h1h2h3 dx3

,
(31)

where D+ = (DH)−1. Since by definition δφ = 0 at X0, the remaining terms of
equation (26) together with equation (24) can be written

δJ = Real

{∫ X1

X0

∫ Z1

Z0

∫ +∞

0
φ∗HδŜ h1h2h3 dx3 dx2 dx1+

∫ X1

X0

∫ Z1

Z0

∫ +∞

0

∂

∂x1
(φ∗H ∂L̂

∂α
φ̂ h1h2h3)

∫ x1

X0

δαdx′ dx3 dx2 dx1+

∫ Z1

Z0

∫ X1

X0

{
φ∗H

[
B − (m13 + m23 −m33) C − D3(C)

]
δφ̂ +

−D3(φ∗H) C δφ̂ + φ∗H C D3(δφ̂)
}

h1h2 dx2 dx1
∣∣∣
x3=0

}

(32)

The gradient should be identified from the variation of φ̃ and of S̃. However
in equation (32) the variation of the momentum source and wall boundary
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condition is expressed in terms of φ̂ and Ŝ. The total variation of φ̃ and S̃ is
written

δφ̃ = δφ̂ Θ + φ̃ i

∫ x1

X0

δαdx′ , δS̃ = δŜ Θ + S̃ i

∫ x1

X0

δαdx′ (33)

From equation (33), δφ̂ and δŜ are substituted into equation (32). The varia-
tion of the functional δJ with respect to the total variation of φ̃ and S̃ is now
written

δJ = Real

{∫ X1

X0

∫ Z1

Z0

∫ +∞

0

1
Θ
φ∗HδS̃ h1h2h3 dx3 dx2 dx1+

∫ X1

X0

∫ Z1

Z0

h1h2

[
− κ

Θ PrR
D3(T̄ ∗)δT +

(ρρ̄∗)
Θ

δw̃+

µ

ΘR
D3(ū∗)δũ +

µ

ΘR
D3(v̄∗)δṽ

]
dx2 dx1

∣∣∣
x3=0
−

∫ X1

X0

∫ Z1

Z0

∫ +∞

0

∂

∂x1
(φ∗H ∂L̂

∂α
φ̂ h1h2h3)

∫ x1

X0

δαdx′ dx3 dx2 dx1+

∫ X1

X0

∫ Z1

Z0

∫ +∞

0
φ∗HŜ h1h2h3 i

∫ x1

X0

δαdx′dx3 dx2 dx1+

∫ X1

X0

∫ Z1

Z0

h1h2

[
− κ

PrR
D3(T̄ ∗)T̂ + (ρρ̄∗)ŵ +

µ

R
D3(ū∗)û+

µ

R
D3(v̄∗)v̂

]
i

∫ x1

X0

δαdx′ dx2 dx1
∣∣∣
x3=0

}

(34)

In equation (34) the expression for the wall boundary terms have been expanded
to clarify the dependence between each state variable and the adjoint quantities.
In the derivation of the adjoint equations the co-state variable r∗(x) has been
used in order to incorporate the auxiliary condition. However, equation (27)
gives a system with five equations and six co-state variables. Therefore, an
additional equation is needed to close the system. Collecting the terms of δα
in equation (34) provides an additional equation which must be satisfied for
each position in x1

∫ +∞

0

∂

∂x1
(φ∗H ∂L̂

∂α
φ̂ h1h2h3) dx3 = i

∫ +∞

0
φ∗HŜ h1h2h3 dx3+

i h1h2

[
− κ

PrR
D3(T̄ ∗)T̂ + (ρρ̄∗)ŵ +

µ

R
D3(ū∗)û +

µ

R
D3(v̄∗)v̂

]∣∣∣
x3=0

(35)

It is denoted ’adjoint auxiliary condition’ and is solved with an iterative pro-
cess for r∗ in a similar manner that equation (22) is solved for the streamwise
wavenumber α. The gradient of the functional ∇J , with respect to the momen-
tum forcing and wall disturbances can now be identified from the remaining
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terms of equation (34) as

∇ũwJ =
µ

Θ̄R
D3(u∗) on x3 = 0

∇ṽwJ =
µ

Θ̄R
D3(v∗) on x3 = 0

∇w̃wJ =
ρρ∗

Θ̄
on x3 = 0

∇T̃w
J = − κ

Θ̄PrR
D3(T ∗) on x3 = 0

∇S̃J =
φ∗

Θ̄
in Ω

(36)

Appendix C. Operator matrices
The non-zero components of matrices A,B, C and D in equation (21) are

a(1, 1) = U(m31 + m21) + D3(W ) + D1(U) + iξ

a(1, 2) = ρ(iα0 + m31 + m21) + D1(ρ)
a(1, 3) = iβ0ρ

a(1, 4) = ρ(m13 + m23) + D3(ρ)

a(2, 1) =
1

γM2
(D1(T ) + iα0T ) + D1(U)U + D3(U)W −m21V

2

a(2, 2) = ρ(D1(U) + iξ) +
µ

R
(α2

0l2 + β2
0)

a(2, 3) = −2ρm21V +
µ

R
α0β0l1

a(2, 4) = ρ(m13U + D3(U))− iα0

R

dµ

dT
D3(T )

a(2, 5) =
1

γM2
(D1(ρ) + iρα0) +

1
R

(− dµ

dT
D33(U)−D3(U)

d2µ

dT 2
D3(T ))

a(3, 1) = U(m21V + D1(V )) + D3(V )W +
iβ0

γM2
T

a(3, 2) = ρ(m21V + D1(V )) +
µ

R
α0β0l1

a(3, 3) = ρ(m21U + iξ) +
µ

R
(β2

0 l2 + α2
0)

a(3, 4) = ρ(m23V + D3(V ))− iβ0

R

dµ

dT
D3(T )

a(3, 5) =
iβ0

γM2
ρ+

1
R

(− dµ

dT
D33(V )−D3(V )

d2µ

dT 2
D3(T ))

a(4, 1) =
1

γM2
D3(T )−m13U

2 −m23V
2 +

iµ

R

l2
ρ

(β0D3(V ) + α0D3(U))
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a(4, 2) = −2ρm13U −
iα0

R
l0

dµ

dT
D3(T ) +

D3(ρ)
ρ

iα0

R
µl2

a(4, 3) = −2ρm23V −
iβ0

R
l0

dµ

dT
D3(T ) +

D3(ρ)
ρ

iβ0

R
µl2

a(4, 4) = ρ(D3(W ) + m31U + iξ) +
1
R

µ(β2
0 + α2

0) +
D33(ρ)
ρ

µ

R
l2

a(4, 5) =
1

γM2
D3(ρ) +

1
R

dµ

dT
i(−β0D3(V )−D3(U)α0)

a(5, 1) =
(γ − 1)
γ

(UD1(T ) + WD3(T ) + iT ξ) + cp(−WD3(T )− UD1(T ))

a(5, 2) = (γ − 1)M2D1(p)− ρcpD1(T )

a(5, 4) = (γ − 1)M2

[
D3(p) +

2iµ

R
(β0D3(V ) + D3(U)α0)

]
− ρcpD3(T )

a(5, 5) = ρ

{
dcp

dT
(−WD3(T )− UD1(T )) + i

[
(γ − 1)
γ

− cp

]
ξ

}
+

1
R Pr

[
dκ

dT
D33(T ) +

d2κ

dT 2
(D3(T ))2 + κ(−β2

0 − α2
0)
]

+

(γ − 1)
R

dµ

dT
M2

[
(D3(U))2 + (D3(V ))2

]
+

(γ − 1)
γ

(UD1(ρ) + WD3(ρ))

b(1, 1) = W

b(1, 4) = ρ

b(2, 2) = ρW − 1
R

dµ

dT
D3(T )

b(2, 4) = − iµ

R
α0l1

b(2, 5) = − 1
R

D3(U)
dµ

dT

b(3, 3) = ρW − 1
R

dµ

dT
D3(T )

b(3, 4) = − iµ

R
β0l1

b(3, 5) = − 1
R

D3(V )
dµ

dT

b(4, 1) =
1

γM2
T +

iµ

R

l2
ρ
ξ

b(4, 2) =
iµ

R
α0

b(4, 3) =
iµ

R
β0
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b(4, 4) = ρW +
l2
R

(2µ
D3(ρ)
ρ
− dµ

dT
D3(T ))

b(4, 5) =
1

γM2
ρ

b(5, 1) =
(γ − 1)
γ

WT

b(5, 2) = 2(γ − 1)M2 µ

R
D3(U)

b(5, 3) = 2(γ − 1)M2 µ

R
D3(V )

b(5, 5) = ρW

[
(γ − 1)
γ

− cp

]
+

2
R Pr

dκ

dT
D3(T )

c(2, 2) = − µ

R

c(3, 3) = − µ

R

c(5, 5) =
κ

R Pr
d(1, 1) = U

d(1, 2) = ρ

d(2, 1) =
T

γM2

d(2, 2) = ρU

d(2, 5) =
ρ

γM2

d(3, 3) = ρU

d(4, 4) = ρU

d(5, 1) =
(γ − 1)
γ

UT

d(5, 5) = ρU

[
(γ − 1)
γ

− cp

]

where

Di =
1
hi

∂

∂xi
, Dij =

1
hihj

∂2

∂xi∂xj
, α0 =

α

h1
, β0 =

β

h2
, lj =

λ

µ
+ j,

and
ξ = (α0U + β0V − ω).
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Adjoint-based optimization of steady suction
for disturbance control in incompressible flows

By Jan O. Pralits1,2, Ardeshir Hanifi2,
and Dan S. Henningson1,2

The optimal distribution of steady suction needed to control the growth of sin-
gle or multiple disturbances in quasi three-dimensional incompressible bound-
ary layers on a flat plate is investigated. The evolution of disturbances is
analyzed in the framework of the Parabolized Stability Equations (PSE). A
gradient based optimization procedure is used and the gradients are evaluated
using the adjoint of the parabolized stability equations (APSE) and the ad-
joint of the boundary layer equations (ABLE). The accuracy of the gradient is
increased by introducing a stabilization procedure for the PSE. Results show
that a suction peak appears in the upstream part of the suction region for opti-
mal control of Tollmien-Schlichting (T-S) waves, steady streamwise streaks in a
two-dimensional boundary layer and oblique waves in a quasi three-dimensional
boundary layer subject to an adverse pressure gradient. The mean flow modi-
fications due to suction are shown to have a stabilizing effect similar to that of
a favorable pressure gradient. It is also shown that the optimal suction distri-
bution for the disturbance of interest reduce the growth rate of other pertur-
bations. Results for control of a steady cross-flow mode in a three-dimensional
boundary layer subject to a favorable pressure gradient show that not even
large amounts of suction manages to completely stabilize the disturbance.

1. Introduction
Laminar-turbulent transition in boundary layers on aircrafts causes a rapid in-
crease of the skin friction and consequently a larger drag. Therefore, delay of
transition occurrence will reduce the fuel consumption which results in a lower
operation cost and less pollution. Transition in the boundary layer on aircraft
wings is usually caused by break down of small disturbances which grow as they
propagate down stream. It is well known that growth of such disturbances can
be suppressed or controlled by steady- or unsteady wall-suction. The latter
is sometimes referred to as the wave-cancellation concept and has been inves-
tigated both numerically and experimentally by numerous authors, see Joslin
(1998) for an excellent overview of earlier experimental and numerical works.

1Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden.
2Swedish Defence Research Agency, FOI, Aeronautics Division, FFA, SE-172 90 Stockholm,
Sweden.
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Steady suction implies that a modification of the steady mean flow is done.
Here, the aim is to reduce the thickness of the boundary layer and to stabilize
the mean velocity profile. The inviscid instability in two-dimensional boundary
layers, which is related to the second wall-normal derivative of the streamwise
velocity, is stabilized by suction. A similar stabilizing effect is obtained by
imposing a favorable pressure gradient given zero suction on the wall. The
relation between suction, the pressure gradient and the viscous terms in two-
dimensional boundary layers is well explained in e. g. Schlichting (1979). The
mean flow obtained using non-zero suction have similarities with those obtained
when a negative pressure gradient is applied. In the case of an adverse pressure
gradient present in the flow, the superposition of suction will reduce the cur-
vature of the velocity profile at the wall, weakening the inflection in the profile
which inhibits the inviscid instability. It should be noted that the discussion
above relates primarily to exponential instabilities.

Constant steady suction has been studied both experimentally and numer-
ically by several authors. Iglisch (1949) investigated theoretically the initial
length needed for the shape factor (displacement thickness/momentum thick-
ness) to reach a constant value in the case of a flat plate two-dimensional bound-
ary layer. Here, the streamwise velocity profile becomes ’fuller’ downstream as
suction is applied finally reaching the so called ’asymptotic suction profile’.
With the assumption of an asymptotic velocity profile present along the whole
plate, the laminar boundary layer is stable with respect to two-dimensional T-S
wave instabilities if the constant suction velocity Vw = V !

w/U!
∞ = 1.4 × 10−5.

Here, V !
w and U!

∞ are the dimensional wall-normal suction velocity at the wall
and free-stream velocity components of the mean flow, respectively. For the
same case, Ulrich (1944) showed that the critical Reynolds number, Recrit, in
fact decreases as one approaches the leading edge. Hence, an increasing amount
of suction is required in this region. In Schlichting (1979) it was shown that a
correction due to increased amount of suction close to the leading edge leads to
a constant suction velocity Vw = 1.2×10−4 in order to maintain a laminar flow
along the whole plate. The increased suction velocity due to the correction of
the initial length is an increased amount of suction energy. If a large amount
of suction is applied then the power saved by the reduction in drag might well
be lost by the power used for the suction device. Further, if a large amount
of suction is used, resulting in a thinning of the boundary layer then this may
lead to an increase of the shear stress at the wall. It is therefore of interest to
investigate if a more optimal suction distribution can be obtained which meets
the objective of reducing the disturbances present in the flow while using the
least amount of suction energy.

In the last decade more interest has been focused on optimal control of fluid
flows in which optimal control theory has been utilized in different manners.
Here, the objective is to minimize some measure of the state with a prescribed
amount of suction on the wall. This can mathematically be described by a
minimization of an objective function which balances a measure of the state
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and a measure of the control. The problem can be solved using the sensitivity
information given by the gradient of the objective function with respect to the
control in a gradient based optimization routine. An efficient way to calculate
the gradients is the adjoint approach which has been shown successful in nu-
merous applications such as shape optimization, optimal control, receptivity,
meteorology and optimal perturbations as long as the number of constraints
are low and the control-variable space is large. A recent workshop on adjoint
systems, see Flow, Turbulence and Combustion 2000 Vol. 65 (3/4), indicate
some of the progress in the field.

Here the wall-normal velocity component of the steady mean flow on the
wall is used as the control, which means that the suction will modify the mean
flow to control disturbance growth rather than generating an out-of phase dis-
turbance by time periodic suction. Another investigation was done by Balaku-
mar & Hall (1999) who used a Lagrangian approach to find the optimal suction
distribution for Blasius and swept Hiemenz flows. The objective was to move
the transition point, given by the eN -method, downstream. They found that
for Blasius boundary layers the optimal suction distribution peaked upstream
of the maximum growth rate and decreases to zero at the transition point.

In the present work we use an approach different from that in Balakumar
& Hall (1999). The control problem is defined using optimal control theory
in which a gradient-based technique is used to update the control during the
optimization process. The aim is to minimize a given objective function bal-
ancing a measure of the total disturbance kinetic energy and the control energy.
The mean flow is found by solving the quasi three-dimensional boundary layer
equations for incompressible flows and the growth of disturbances is analyzed
for developing boundary layers using the PSE (see Bertolotti et al. 1992; Malik
& Balakumar 1992; Simen 1992; Herbert 1997). In the frame work of these
governing equations we can analyze convective instabilities under the assump-
tion of a slow variation of both the mean flow and the shape function of the
disturbances in the streamwise direction. We also assume that the streamwise
pressure distribution is not affected by suction at the wall. The mean flow
is obtained using the boundary layer equations (see eg. Schlichting 1979). In
this approximation, as well as in higher order approximations, the wall normal
velocity of the mean flow, V, is of order O(1/Re). Here Re = U!

∞l!/ν! is the
Reynolds number in which l! and ν! denotes the dimensional reference length
and kinematic viscosity, respectively. In the optimization one must make sure
that this assumption is not violated.

An adjoint-based technique is used to evaluate the gradients (sensitivities).
Here, we couple the adjoint of the PSE with the adjoint of the boundary-
layer equations in order to find the gradient of the disturbance growth due
to modifications of the mean flow. The use of the adjoint PSE (APSE) was
first proposed by Herbert (1997) and has then been used for receptivity studies
(see Hill 1997a; Airiau 2000; Dobrinsky & Collis 2000), sensitivity analysis
(see Pralits et al. 2000) and optimal control problems (see Hill 1997b; Pralits
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et al. 2000b; Walther et al. 2001). Hill (1997b) used a similar approach in
inverse design for laminar boundary layer. However, no details were given there.
The common interest of all these applications lies in the efficient evaluation of
receptivity-coefficients and sensitivity information provided by a single solution
of the APSE. The major difference between previous works is found in the
derivation of the APSE. In Hill (1997a,b); Airiau (2000); Dobrinsky & Collis
(2000) the APSE is an approximation of the adjoint of the linearized Navier–
Stokes equations given an ansatz similar to the PSE. The additional equation
used to find the “adjoint” streamwise wave number comes from an orthogonality
relation between the solutions from the APSE and PSE. In Dobrinsky & Collis
(2000) it is shown that this condition in fact does not hold in a large part
of the domain which means a less accurate result of the adjoint equations.
The reason is said to depend on the numerical scheme and approximate inflow
conditions. In Pralits et al. (2000) the APSE is derived directly from the PSE
using a variational technique and the additional equation and inflow conditions
are part of the definition of the adjoint operator. The latter technique, which
is shown to have good accuracy in the major part of the domain, is also used
in Pralits et al. (2000b) and Walther et al. (2001).

The optimization process is dependent on the accuracy of the gradient
(search-direction), which can be evaluated to better assess the optimization
results. In the present work, the gradient is derived from the continuous state
equations which means that its accuracy can be improved if the resolution is
increased, see e. g. Högberg & Berggren (2000). However, the PSE is known
for its instability for small streamwise steps due to the remaining ellipticity.
Several studies on how to stabilize the PSE have been done (see Haj-Hariri
1994; Li & Malik 1994, 1996; Andersson et al. 1998). The approach which best
removes the ellipticity while still producing an accurate result is the technique
introduced by Andersson et al. (1998), where originally neglected higher order
terms, O(Re−2), are reintroduced. This stabilization procedure will also affect
the adjoint equations (see § 2.4).

In this paper we present a method which involves solving a number of
problems regarding the derivation of the gradient, adjoint equations and sta-
bilization of the adjoint equations. For this reason, a large part of the paper
is dedicated to explaining the different steps in detail. The optimal control
problem and the corresponding equations are presented in § 2. In § 3, a valida-
tion of the adjoint equations is done by analyzing the gradient accuracy. Here
we also show results on optimal control of steady streamwise streaks and T-S
waves in a two-dimensional boundary layer, and oblique waves and a steady
cross-flow mode in a quasi three-dimensional boundary layer. The discussion
and concluding remarks are given in § 4 and the complete derivation of the gra-
dient and the coupling of the adjoint of the parabolized stability and boundary
layer equations are shown in Appendix B. A preliminary version of the work
presented here can be found in the report by Pralits et al. (2000b).
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2. Problem formulation
This section presents the optimal control problem for incompressible flows. For
simplicity, we restrict our analysis to a plane geometry.

2.1. State equations

The flow field is given by the solution of the mass and momentum conserva-
tion equations for a viscous flow. The equations are written for a Cartesian
coordinate system with streamwise, normal and spanwise coordinates denoted
as x, y and z, respectively. The flow field is decomposed into a mean, Q, and
a perturbation part, q, as

Qtot(x, y, z, t) = Q(x, y) + q(x, y, z, t)

where Q = (U, V, W, P )T and q = (u, v, w, p)T. The mean flow, which has
zero variation in the spanwise direction, is a three-component, two-dimensional
boundary layer and is here referred to as a quasi three-dimensional boundary
layer. The evolution of disturbances is analyzed in the framework of the nonlo-
cal stability theory (see e. g. Bertolotti et al. 1992; Malik & Balakumar 1992;
Simen 1992; Herbert 1997).

In the following sections the equations for the mean flow and disturbances,
in non-dimensional form, are given. The velocity components are made non-
dimensional by U!

∞, the pressure by ρ!U!2
∞ and the reference length is taken

as l!0 = (ν!x!
0/U!

∞) 1
2 . Here superscript ! denotes dimensional quantities, ν! the

kinematic viscosity, U!
∞ the free stream velocity and ρ! the density.

2.1.1. Mean flow equations

The non-dimensional boundary layer equations for a quasi three-dimensional
incompressible flow on a flat plate with an external pressure gradient given as
dPe/dx = −UedUe/dx can be written

∂U

∂x
+
∂V

∂y
= 0, (1)

U
∂U

∂x
+ V

∂U

∂y
− Ue

dUe

dx
− 1

Re

∂2U

∂y2
= 0, (2)

U
∂W

∂x
+ V

∂W

∂y
− 1

Re

∂2W

∂y2
= 0, (3)

with the boundary conditions

U = W = 0, V = Vw on y = 0,

(U, W )→ (Ue, We) as y →∞,
(4)

where index e denotes that the variable is evaluated at the boundary layer edge
and Re = l!0U

!
∞/ν! is the Reynolds number. Note that for the boundary layer

approximations to be valid, the normal velocity at the wall, Vw = V !
w/U!

∞,
should be of order O(Re−1).
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2.1.2. Disturbance equations

We assume the perturbations to be time and spanwise periodic disturbances as

q(x, y, z, t) = q̂(x, y) exp i
(∫ x′

X0

α dx′ + βz − ωt
)

+ c.c., (5)

where α is the complex streamwise wavenumber, β the real spanwise wavenum-
ber and ω the real disturbance angular frequency. We assume a scale separation
Re−1 between the weak variation in x-direction and the strong variation in the
y-direction. It is also assumed that ∂/∂x ∼ O(Re−1) and V ∼ O(Re−1). In-
troducing (5) and the assumptions above in the linearized governing equations
and keeping terms up to order O(Re−1), yield a set of nearly parabolic partial
differential equations

Aq̂ + B
∂q̂

∂y
+ C

∂2q̂

∂y2
+ D

∂q̂

∂x
= 0, (6)

where the matrices A, B, C and D are given in Appendix A. For a note on
the parabolic nature of the PSE see Bertolotti et al. (1992); Haj-Hariri (1994);
Li & Malik (1994, 1996); Andersson et al. (1998). To remove the ambiguity
of having x-dependence of both the amplitude function and wave function in
(5) and to maintain a slow variation of the amplitude function q̂, a so called
’auxiliary condition’ is introduced

∫ ∞

0
ûH ∂û

∂x
dy = 0, (7)

where û = (û, v̂, ŵ)T and superscript H denotes the complex conjugate trans-
pose. The disturbances are subjected to the following boundary conditions

û = 0 on y = 0
û→ 0 as y →∞.

(8)

The system of equations (6) and (7), is integrated in the downstream direction
with the initial condition given by the solution of the local stability theory at
x = X0. At each streamwise position, the value of α is iterated such that (7)
is satisfied.

2.2. Optimal control of a single disturbance

In this section, we define an optimal control problem where the mean normal
velocity at the wall is optimized to reduce the growth of a single disturbance
with a fixed given initital condition. The optimization problem is solved by
minimizing an objective function balancing a measure of the state and the
control using a gradient based method. We obtain the gradient of the objective
function using an adjoint technique. The complete derivation of the equations
can be seen in Appendix B.
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Figure 1. Computational domain: flat-plate boundary layer

2.2.1. Objective function

We measure the size of a disturbance in domain Ω, defined such that x ∈
[X0, X1], y ∈ [0,∞) and z ∈ [Z0, Z1] (see figure 1), by its total kinetic energy
defined as

E =
1
2

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
uTu dy dx dz.

The objective function to be minimized is

J(Vw) =
1
2

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
uTu dy dx dz +

l2

2

∫ Z1

Z0

∫ X1

X0

Vw
2 dx dz (9)

where l2 > 0, is the regularization parameter and is used to insure that the
size of the control parameter Vw does not grow unbounded. Now, the control
problem can be defined mathematically as

find V opt
w ∈ L2(Γc) such that

J(V opt
w ) ≤ J(Vw) ∀ Vw ∈ L2(Γc)

(10)

where V opt
w is the optimal suction distribution on the wall.

2.2.2. Adjoint equations and the gradient

The gradient of the objective function (9) with respect to the control variable
is defined through the directional derivative as

δJ = 〈∇VwJ, δVw〉 = lim
s→0

∣∣∣∣
J(Vw + sδVw)− J(Vw)

s

∣∣∣∣ , (11)

where δVw is the variation of the control variable. Here, we derive the gradient
expression using the adjoint of the state equations. Details of the derivation is
given in Appendix B. This yields

∇VwJ = l2Vw + V ∗
w on y = 0. (12)

The value of V ∗
w = V ∗(x, 0) in (12) is given by the solution of the adjoint of the

PSE and boundary layer equations, hereafter referred to as APSE and ABLE,
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Figure 2. Chart of the solution process

respectively. The APSE which is found as (40)–(44) in Appendix B is here
written

AHq∗ −BH ∂q∗

∂y
+ CH ∂

2q∗

∂y2
−DH ∂q∗

∂x
= fAPSE, (13)

∂

∂x

∫ ∞

0
q∗H ∂A

∂α
q̂ dy + i|Θ|2

∫ ∞

0
|û|2 dy = 0, (14)

with boundary conditions

u∗ = v∗ = w∗ = 0 on y = 0,
u∗, v∗, w∗ → 0 as y →∞.

(15)

and initial conditions

q∗ = r∗ = 0 on x = X1. (16)

Here, q∗ = (p∗, u∗, v∗, w∗)T and r∗ are the co-state variables and fAPSE is the
forcing due to the auxiliary condition of the PSE and the objective function.
Equations (13)–(14) are integrated in the upstream direction starting at x =
X1. At each streamwise position, the value of the scalar r∗ is iteratively found
such that (14) is satisfied. The ABLE which are found as (45)–(47) in Appendix
B, are satisfied by the co-state variables Q∗ = (U∗, V ∗, W ∗). They are here
written as

L∗
BLE(Q)Q∗ = fABLE, (17)

with boundary conditions

U∗ = W ∗ = 0 on y = 0,
U∗, V ∗, W ∗ → 0 as y →∞,

(18)

and initial conditions

U∗ = V ∗ = W ∗ = 0 on x = X1. (19)

The forcing term in (17), fABLE, is a function of the solutions of both the
PSE and the APSE. Equations (17) are integrated in the upstream direction
starting at x = X1. The optimization procedure can now be outlined following
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the steps below considering the chart given in figure 2 where k denotes the
iteration number.

i. The BLE (1)–(3) are integrated from x = X0 to x = X1. If k = 1 then
V k

w = 0 (initial guess on the suction distribution).
ii. The PSE (6)–(7) are integrated from x = X0 to x = X1, then the APSE

are integrated from x = X1 to x = X0.
iii. fABLE is calculated from the solution of both the PSE and APSE.
iv. The ABLE (17) are integrated from x = X1 to x = X0 given the forcing,

fABLE, from (iii).
v. If k < 2 then goto (vi), else evaluate the convergence criteria: If Jk+1−

Jk < err then convergence is reached else goto (vi). Here err is a small
real-valued parameter defining the convergence.

vi. The gradient, (12), is evaluated and the new boundary condition for the
BLE, V k+1

w , is calculated using an optimization routine (here we use a
limited-memory quasi-Newton method). Continue: k = k+1, goto (i).

The gradient of the objective function due to a variation of the free stream
velocity can be derived in the same manner as for Vw and yields,

∇UeJ = −Ue

∫ ∞

0

∂U∗

∂x
dy. (20)

This variation would be the result of a change in the geometry and consequently
the pressure distribution. Effects due to geometry changes are not investigated
here.

2.3. Optimal control of multiple disturbances

In this section we generalize the technique introduced above to find the optimal
suction distribution of the steady mean flow that accounts for the growth of
more than one disturbance. This is necessary for cases where it is not possible
to clearly state which disturbance will grow the most and thus cause laminar-
turbulent transition first. An example of this is the two-dimensional Blasius
boundary layer where either T-S wave type instabilities or steady streamwise
streaks could give the maximum growth at a given streamwise position. The
measure of disturbance kinetic energy in Ω, is now taken as the sum of the
energy of a chosen number of pre-defined disturbances in a convectively un-
stable flow. In this case, the suction distribution will be optimal for the sum
of these disturbances. Our approach is however different from non-cooperative
strategies (see Bewley & Liu 1998; Bewley & Moin 1997) which analyze worst-
case scenarios, so called robust control. There, the strategy is to find the best
control in the presence of the worst case external disturbance.

The analysis does not differ much from the one outlined in § 2.2 and is
therefore done here on a more compact form. If we denote the total number of
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existing disturbances with N then the total kinetic energy is defined as

E =
N∑

k=1

1
2

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
uk

Tuk dy dx dz.

The objective function to be minimized is now

J(Vw) =
N∑

k=1

1
2

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
uk

Tuk dy dx dz +
l2

2

∫ Z1

Z0

∫ X1

X0

Vw
2 dx dz. (21)

The same procedure to find the gradient of J with respect to Vw given in Ap-
pendix B for control of single disturbances is now used to account for several
disturbances. As the control problem is derived for steady suction, the case of
multiple disturbances does not introduce any further complications. Equation
(11) is used to define the gradient which can now be written

∇VwJ = l2Vw +
N∑

k=1

(V ∗
w)k on y = 0. (22)

Equation (22) implies that each equation in the solution procedure given in
figure 2 must be solved N times, i. e. for each disturbance, before evaluating
the gradient. Instead, one can use the fact that the ABLE are linear equations.
In this case, for a given solution of the BLE, the PSE and the APSE are
solved N times, step (ii) in figure 2. The forcing term of the ABLE, step (iii),
is then computed as the sum of N realizations. In step (iv), the ABLE are
solved once given the total forcing from all N disturbances. The gradient is
finally evaluated from (12) which was given for control of single disturbances.
However, now a single evaluation of V ∗

w accounts for all N disturbances.
It should be mentioned that the evaluation of the initial disturbances far

upstream of the neutral point may be difficult. Therefore, if we consider a large
number of different disturbances whose neutral points are widely spread in the
streamwise direction, care has to be taken when X0 is chosen.

2.4. Adjoint of the stabilized PSE

In gradient based optimization, an increased accuracy of the gradient will give
a result closer to the optimum. The gradient presented here, (12), is derived
using a so called continuous approach. This means that the adjoint of a state
equation is derived from the continuous equation and then discretized. Another
approach is to first discretize the state equation and then derive its adjoint,
the so called discrete approach. The latter yields a more accurate gradient
in most cases but its derivation is more complicated. However, results of the
continuous approach should converge to that of the discrete one as the grid
resolution is refined, (see Högberg & Berggren 2000). It is a rather well know
problem that the PSE equations become unstable as the grid in the streamwise
direction is refined due to a remaining ellipticity in the equations, (see Haj-
Hariri 1994; Li & Malik 1994, 1996; Andersson et al. 1998). This problem will
therefore put a limit on the accuracy of the gradient unless some technique is
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used to overcome the instability problem and allow a smaller step-size in the
streamwise direction. A stabilization procedure was presented by Andersson
et al. (1998) in which they add terms proportional to the truncation error of the
implicit scheme used in the streamwise direction. These terms are of the same
order as some of the originally neglected terms in the PSE. It was shown that
the procedure does not alter the PSE results while allowing higher streamwise
resolution. The procedure here, does however not only add terms to the PSE
but also affects all adjoint equations since we derive the adjoint from the PSE
and not the adjoint linearized Navier–Stokes equations. Here, we present the
outline on how to derive the PSE, gradient and the adjoint equations, using the
stabilization technique given by Andersson et al.. The details of the derivation
can be seen in B.3. Following Andersson et al., terms of order O(Re−2) are
introduced in (6). The stabilized PSE can be written

−D
∂q̂

∂x
= A

[
q̂ + s

∂q̂

∂x

]
+ B

[∂q̂

∂y
+ s

∂

∂x

(∂q̂

∂y

)]
+

C
[∂2q̂

∂y2
+ s

∂

∂x

(∂2q̂

∂y2

)]
(23)

where s is a positive real number. The gradient, (12) and the adjoint equations
were derived in Appendix B without the stabilization terms. Now, the deriva-
tion has to be done using (23) instead of (6) which yields the following adjoint
equations

−DH ∂q∗

∂x
= −

[
AHq∗ − sÃH ∂q∗

∂x

]
+ BH

[∂q∗

∂y
− s

∂

∂x

(∂q∗

∂y

)]
−

CH
[∂2q∗

∂y2
− s

∂

∂x

(∂2q∗

∂y2

)]
+ fAPSE (24)

∂

∂x

∫ ∞

0
q∗H ∂A

∂α

[
q̂ + s

∂q̂

∂x

]
dy + i|Θ|2

∫ ∞

0
|û|2 dy = 0, (25)

L∗
BLE(Q)Q∗ = f̃ABLE, (26)

where fAPSE and fABLE denotes the forcing terms of the APSE and ABLE
respectively and the accent˜marks where additional terms due to the stabiliza-
tion procedure appear. Note here, that there is no influence on the gradient
expression or on the boundary conditions of the state and adjoint equations due
to the stabilizing terms. The additional terms on the right hand side of (24)
resembles the stabilizing terms in (23) apart from the sign difference on s. The
APSE resembles the PSE and the new right hand side of (24) will indeed work
as a stabilizing term allowing a smaller step-size in the streamwise direction
and the calculation of a more accurate gradient.

3. Results
The results presented are obtained by numerically integrating the discretized
state and co-state (adjoint) equations. The x-derivatives are approximated by
a first- or second-order accurate backward Euler scheme. The y-derivatives of
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the PSE and APSE are approximated by Chebychev-polynomials and a second-
order accurate finite-difference scheme for the BLE and ABLE. The L-BFGS-B
package, which is based on the limited memory quasi-Newton method, is used
in the optimization procedure (see Zhu et al. 1994; Byrd et al. 1995). Here we
take Jk+1 − Jk = 10−15 as a converged solution. The gradient accuracy has
been checked for the first and last iteration of the optimization process.

In all the results shown here, except for figure 9, the optimal suction distri-
bution is computed for the whole streamwise computational domain. In figure 9
different control domains are investigated. In all computations, the suction is
zero at the first streamwise point to assure that the original assumption of zero
variation of disturbance at X0 is met.

The relation between the regularization parameter, reduction of distur-
bance kinetic energy and control energy for all cases is found in the end of this
section.

3.1. Validation and accuracy of the gradient

The optimization procedure depends on the accuracy of the gradient. If its
accuracy is low, then it is less likely to find a minima and convergence prob-
lems will be encountered. Here, we check the accuracy of the gradient by a
comparison of the adjoint based gradients (12) with those obtained from a
finite-difference approach. The comparison is done considering a wall normal
velocity perturbation δVw at y = 0. The variation of the functional J with
respect to this perturbation is

δJ =
∂J

∂Vw
δVw. (27)

In the finite-difference approach ∂J/∂Vw is obtained by using the inhomoge-
neous wall boundary-condition Vw = ±εw at x = xn. The index n refers to
the n-th streamwise position and εw is a small positive number. The derivative
is then evaluated using a second-order accurate finite-difference scheme. The
discretized expression for δJ in the adjoint approach is given by

δJ =
∫ X1

X0

(N−1∑

n=2

∇VwJn δVwn∆n

)
dx (28)

where ∆n = (xn+1−xn−1)/2. In figure 3(b), the relative error between dJ/dVw

and ∇VwJn∆n is compared for different streamwise resolution ∆Re. The cal-
culations are done for a streamwise range Re = 250 − 760 on a quasi three-
dimensional boundary layer where dPe/dx = 0 given a T-S wave as the initial
disturbance at x = X0. The inviscid flow at Re = 250 has an angle of 30o,
the non-dimensional spanwise wavenumber β = 0 and the reduced frequency
F = 2πf!ν!

e /U!
e

2 = 10−4. As can be seen in figure 3(b), the relative error
decreases as the ∆Re is decreased. Here, ∆Re = 6 is the minimum streamwise
step size for which the PSE calculations are stable. The values for ∆Re = 2
are computed using the stabilization terms, explained in § 2.4. In figure 3(a),
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Figure 3. Comparison of the gradient from adjoint and
central-difference calculations for different streamwise resolu-
tion ∆Re. (a) ∆Re = 2, the continuous line is the gradi-
ent derived from adjoint equations, • marks central-difference
calculations. (b) The relative error (err) between adjoint
and central-difference calculations of the gradient for differ-
ent streamwise resolution ∆Re.

the gradient obtained from the adjoint equations is compared with central-
differences when ∆Re = 2 in order to visualize the agreement.

The results presented in § 3, has a ∆Re chosen such that the relative error
(err) was approximately 1%, which required the use of the stabilization pro-
cedure. A study was conducted on the influence of changing the streamwise
resolution for control of T-S waves in the Blasius boundary layer. It was found
that an increased resolution gives a faster convergence and a decrease of the
objective function.

3.2. Two-dimensional boundary layers

In this section we investigate the disturbance control in a two-dimensional
boundary layer with zero pressure gradient. The disturbances studied here are
chosen to be a T-S wave and/or optimally growing steady streamwise streaks.
The initial conditions for T-S waves are taken as the solutions of the local
stability theory and the initial condition for the streaks has been calculated
using the theory given in Andersson et al. (1999). For T-S waves, the stream-
wise range is chosen such that the unstable region is found between X0 and
X1. In § 3.2.1 the optimal suction distribution is calculated to control each of
these disturbances individually. Here, we also investigate the effect of different
domains along the streamwise axis for the control of T-S waves.

The results in this section on control of T-S waves are produced for a
disturbance with a frequency of F = 10−4. It is shown that the optimal
suction distribution obtained to control the chosen T-S wave has a stabilizing
effect on T-S waves with other frequencies. A study has also been performed to
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Figure 4. Disturbance control of optimally growing steady
streamwise streaks in a two-dimensional boundary layer
(dPe/dx = 0). The non-dimensional spanwise wavenumber
β = 0.292 at Re = 412. Results are shown for l2 = 1, 10, 103.
(a) Optimal suction distributions. (b) The disturbance ki-
netic energy in a mean flow with zero and optimal suction
distribution. (c) Suction profiles for the different steps in the
optimization process, l2 = 103. (d) The objective function as
a function of the iteration step.

control T-S waves with both higher and lower frequencies than the one shown
here. However, the effect of the optimization process on the growth rate of
these disturbances, the corresponding optimal suction profiles and mean flow
modifications all show the same behavior. Thus this choice of frequency give
the general behavior of the optimization process given a T-S wave instability
in a two-dimensional boundary layer.

3.2.1. Control of single disturbances

The optimal distribution of suction to control steady streamwise streaks is cal-
culated for a streamwise range Re = 412 − 730. The initial condition which
has the maximum energy at X1, is computed using the optimization procedure
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Figure 5. Disturbance control of a T-S wave with F = 10−4

in a two-dimensional boundary layer (dPe/dx = 0). Results
are shown for l2 = 102, 103, 104, 105. (a) Optimal suction dis-
tributions (note the different scalings). (b) The disturbance
kinetic energy in a mean flow with zero and optimal suction
distribution. (c) The growth rate, -imag(α), in a mean flow
with zero and optimal suction. (d) The objective function as
a function of the iteration step.

given in Andersson et al. (1999). The non-dimensional spanwise wavenumber
β = 0.292 and the frequency ω = 0. Three test cases are analyzed for these
parameters in which the regularization parameter l2 was 1, 10 and 103 and
the control is applied at Re = 418 − 724. In figure 4(a) the optimal suction
distributions for all cases are compared. A peak in the suction distribution is
noticed upstream which becomes more pronounced as the regularization pa-
rameter is decreased. In figure 4(b) the disturbance kinetic energy of zero and
optimal suction are compared. All three suction distributions result in a de-
crease of the disturbance kinetic energy. However, the main difference between
the curves where control is applied is seen in the upstream region. The effect
of the optimal suction distributions given in figure 4(a) is that the damping
of the disturbance kinetic energy is increased in the upstream region as l2 is
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Figure 6. Maximum local growth rate compared with local
growth rate of a T-S wave with F = 10−4, for zero and optimal
suction in a two-dimensional boundary layer (dPe/dx = 0).
The optimal suction is computed for control of a T-S wave
with F = 10−4 given that l2 = 105 for a streamwise range
Re = 250 − 760. Calculations of maximum local growth rate
are made with ∆F = 2.5× 10−6.

decreased. Figure 4(c) illustrates the changes in the suction distribution dur-
ing the optimization procedure. Here, Vw is plotted for each iteration in the
optimization loop for the case with l2 = 102. The optimal distribution is found
after 7 iterations. The difference between the sixth and seventh iteration can
not be distinguished. In figure 4(d) the objective function is given as func-
tion of the iteration number for all cases to illustrate the convergence of the
optimization procedure.

The optimal distribution of suction to control T-S wave instabilities is
calculated for a streamwise range Re = 250−760. The first investigation is done
by comparing different regularization parameters, here l2 = 102, 103, 104, 105

while control is applied at Re = 256− 754. The results can be seen in figure 5.
In figure 5(a) the optimal suction distributions from all cases are compared.
Here, it is noted that the optimal suction distribution tends to peak upstream
as the penalty on the control is reduced, and this peak is upstream of the
unstable region for all cases. Even though the magnitude of the suction rates
are within the original assumptions, one should also note that a decreased
penalty on the control produces suction distributions with large streamwise
variations in the upstream domain. At the point where our results show a
peak they are thus locally outside the range of validity of the parabolic theory
employed, since the gradient of the control velocity at the initial control point
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Figure 7. Modification of the two-dimensional mean flow
(dPe/dx = 0) and disturbance velocity due to optimal suc-
tion computed to control a T-S wave with F = 10−4 when
l2 = 102 in a streamwise range Re = 250 − 760. Results are
presented for Re = 256, 400, 598. (a) Streamwise and (c) wall
normal velocity of the mean flow subject to zero and optimal
suction. Absolute value of the (b) streamwise and (d) wall
normal disturbance velocity (note the different scalings).

approaches infinity as the step size in the streamwise direction approaches
zero. In figure 5(b) the disturbance kinetic energy is compared for zero and
optimal suction distribution. A reduction of disturbance kinetic energy can
be observed as the penalty of the control is reduced. The growth rate for all
cases can are given in figure 5(c). In all cases the growth rate is decreased as
l2 is decreased and the reduction is more pronounced in the upstream region.
Finally, in figure 5(d) the objective function is plotted as a function of the
iteration number to show the convergence of the optimization procedure.

A question that arises is if the suction distribution which is optimal for
one chosen T-S wave will damp or amplify other instability waves in the cho-
sen streamwise domain. This is analyzed by computing the maximum local
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growth rate, i. e. local growth rate over all possible frequencies, at a number
of streamwise positions both with zero and the optimal suction distribution.
The streamwise range and optimal suction distribution are taken from figure 5
with l2 = 105. The results are shown in figure 6 where the maximum local
growth rate has been computed for ∆F = 2.5 × 10−6 and ∆Re = 50 as the
reduced frequency and streamwise resolution respectively. Here, it is shown
that the optimal suction distribution for one given frequency has a stabilizing
effect on all other frequencies in the given streamwise range. Further, the local
growth rate for the T-S wave with F = 10−4 has been plotted both with zero
and optimal suction distribution. The result shows that the chosen disturbance
corresponds to the maximum growth rate both with zero and optimal suction
at a given streamwise position.

The effect of imposing suction at the wall is that the velocity profile of
the mean flow becomes fuller which is known to stabilize the viscous instabil-
ity waves. In figure 7 the effects on the streamwise and wall normal velocity
component of the mean flow are shown for three different streamwise positions.
There, the streamwise and wall normal disturbance velocity components are
also plotted. The suction distribution is that of figure 5 for l2 = 102. The first
position, Re = 256, is close to X0, the second position Re = 400 is close to
where the disturbance starts to grow and the last position Re = 598 is roughly
half way into the unstable region. In figure 7(a) the streamwise velocity pro-
file has been plotted for these three positions, when zero and optimal suction
are applied. In all three cases the mean flow profiles have become fuller (or
thickened). It should be noted that even though the optimal suction distribu-
tion shows a significant peak in the vicinity of Re = 256, see figure 5(a), the
effect on the streamwise mean velocity is not large. The effect of suction on
the mean flow is instead more pronounced for the wall normal component, see
figure 7(c), especially in the upstream region. The amplitude of the stream-
wise and wall normal disturbance velocities are shown for the cases of zero and
optimal suction in figure 7(b) and (d), respectively. The initial condition is
the same for zero and optimal suction and the effect of suction on both com-
ponents is similar. At the upstream position, the variation due to suction is
small. The results at the most downstream position show a larger reduction
of disturbance amplitude. Here, the results for the case of optimal suction at
Re = 400 and 598 are magnified to make the shape visible. In all cases the
disturbance shape is kept as the optimal suction distribution is applied but the
magnitude is decreased. Further, the peak velocity is moved somewhat closer
to the wall due to the decreased boundary layer thickness.

As pointed out in the introduction, the mean flow pressure distribution
is assumed to be unchanged due to the applied suction. If this would not
be the case, then an additional set of equations would be needed in order
to solve for the exterior pressure distribution in the optimization process. In
order to gain some insight into this, the shape factor H12 (displacement thick-
ness/momentum thickness) is plotted in figure 8(a) for all cases in figure 5. In
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Figure 8. Shape factor (H12) for control of a T-S wave with
F = 10−4 in a two-dimensional boundary layer (dPe/dx = 0).
Results are shown for l2 = 102, 103, 104, 105 (a) Shape factor.
(b) Relative change in the shape factor (∆H12) in percent,
between controlled and uncontrolled case.

figure 8(b) the relative change of H12 between the controlled and uncontrolled
case is plotted. For the three cases l2 = 103, 104, 105, the difference in shape
factor ranges between 0.5 − 2%. However, for the case of l2 = 102 a peak
of 6% in difference appears in the upstream region. Note, that all cases have
maximum suction velocities which are smaller than the original assumption of
Vw ∼ O(1/Re).

Figure 9 illustrates the effects of changing the size and location of the
control domain. Here, the same case as in figure 5 with l2 = 103 is used. Three
different control regions are compared. In the first case, the control is applied
to Re = 412− 554 which is from the initial point of unstable region (branch I
of the neutral stability curve) to roughly halfway into the unstable region. The
second case, Re = 412 − 718 is the control domain extended over the whole
unstable region and in the last case, Re = 256 − 754, the control is applied
over the whole computational domain. The corresponding optimal suction
velocity profiles can be seen in figure 9(a). Results for all cases show a suction
peak in the upstream region of the control domain. In figure 9(b) the kinetic
disturbance energy is shown for all cases. The first case shows a significant
reduction of energy as the control is applied but continues to grow when the
control is turned off. The second and last case show that approximately the
same reduction of energy at the final streamwise position can be obtained either
by acting only in the unstable region or in the whole domain. The growth rate
is given in figure 9(c). In the first and second case, the growth rate follows the
curve of zero suction until the control is turned on. A large reduction in growth
rate can then be seen in the upstream region of the control domain. The first
case shows a significant increase as the control is turned off inside the unstable
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Figure 9. Disturbance control of a T-S wave with F = 10−4

in a two-dimensional boundary layer (dPe/dx = 0). Results
are presented for different control domains given that l2 =
103. (a) Optimal suction distributions. (b) The disturbance
kinetic energy in a mean flow with zero and optimal suction.
(c) The growth rate, -imag(α), in a mean flow with zero and
optimal suction. (d) The objective function as a function of
the iteration step.

region. In figure 9(d) the objective function is plotted as a function of the
iteration number to visualize the convergence of the optimization procedure.

3.2.2. Control of multiple disturbances

The theory in § 2.3 was introduced to account for more than one disturbance
in the domain. This will produce an optimal suction profile that reduces the
disturbance kinetic energy for all disturbances accounted for. Here, we analyze
two disturbances, a T-S wave and optimally growing streamwise steady streaks,
with an initial energy such that they give the same maximum disturbance
energy at the downstream position X1. The domain is chosen so that X0 and
X1 are at the first and second branch of the neutral stability curve for the T-S
wave with F = 10−4. The initial condition for the steady streaks is computed
using the optimization technique given in Andersson et al. (1999) to provide
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Figure 10. Control of two disturbances in a two-dimensional
boundary layer (dPe/dx = 0). The disturbances are a T-S
wave (F = 10−4) and optimally growing streamwise streaks
(β = 0.292 at Re = 412) and l2 = 103. Disturbance kinetic
energy in a mean flow with zero and optimal suction (a) the
suction distribution is computed for each disturbance sepa-
rately, (b) the suction distribution is computed to account for
both disturbances (see § 2.3). (c) Optimal suction distribu-
tions. (d) The objective function as a function of the iteration
step.

the maximum growth at X1 for the chosen domain. In all calculations l2 = 103

which means that the same weighting is given between the disturbance and
control energy in all cases. The optimal suction profile was first computed
for each of the disturbances individually. A comparison of the disturbance
kinetic energy for zero and the corresponding optimal suction can be seen in
figure 10(a). It is shown that the reduction of kinetic energy is more than
two decades larger for the T-S wave as the optimal control is applied. Given
the same l2, it is therefore possible to say that optimally growing streamwise
streaks demand a stronger control than T-S waves. The corresponding suction
distributions can be seen in figure 10(c). It can be seen in this comparison that
the magnitude of the control of steady streaks is larger compared to T-S waves.
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This is however expected as the total disturbance kinetic energy of the streaks
is larger than that of the T-S wave given that the energy is the same at X1, see
figure 10(a), and therefore should result in a larger control energy. Then, the
optimal suction profile was calculated for the sum of both disturbances using
(22) with l2 = 103. In figure 10(b), the disturbance kinetic energy is shown
when the optimal control for the sum of both disturbances is applied to each
disturbance individually and the sum of both disturbances. The corresponding
optimal suction distribution can be seen in figure 10(c). Here, the total kinetic
energy for the streaks is larger than for the T-S wave, and the control will act
primarily on the streaks. Therefore, the optimal suction distribution for the
sum of the disturbances is similar to that of the streaks. When the optimal
suction profile for the sum is used on the T-S wave then the energy decreases
further and drops to 10−11, out of range in figure 10(b), at the downstream
position X1. This is 5 decades lower than the optimal suction profile for control
of just the T-S wave gives. In figure 10(d) the objective function is given as
function of the iteration number to show the convergence of the optimization
process.

3.3. Three-dimensional boundary layers

Here, we study the control of three-dimensional disturbances in quasi three-
dimensional boundary layers subjected to a pressure gradient. In the first
case, the flow is subject to an adverse pressure gradient and the disturbance
parameters have been chosen such that it has the maximum growth rate (over
all F −β) at some position in the computational domain. Further studies have
been performed on control of oblique waves with other frequencies and spanwise
wavenumbers than the one shown here. The behaviour of the optimal suction
distributions, mean flow and disturbances are similar. Therefore, we find that
the disturbance parameters chosen here represents the general behaviour of the
optimization process and results. In the second case, control is presented for
a steady cross-flow mode in a mean flow with a favorable pressure gradient
where we have chosen the case from Högberg & Henningson (1998). Although
the stationary cross-flow modes are not the most amplified ones, in the presence
of surface roughness they are often the dominant disturbances.

3.3.1. Control in a flow with an adverse pressure gradient

The control of an oblique wave is analyzed in a quasi three-dimensional incom-
pressible boundary layers with an adverse pressure gradient (Ue = (x/x0)−0.05).
The streamwise range is Re = 250−760, the non-dimensional spanwise wavenum-
ber β = −0.02 and the reduced frequency F = 10−4. The inviscid flow at
Re = 250 has an angle of 45o and the control has been applied at Re = 256−754.
In this case l2 has been altered to compare the impact of different regulariza-
tion parameters on the control energy used. The results comparing various l2

can be seen in figure 11. In figure 11(a) the optimal suction distribution Vw is
plotted. A suction peak appears at an upstream position of the control domain
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Figure 11. Control of an oblique wave in a three-dimensional
boundary layer with an adverse pressure gradient (Ue =
(x/x0)−0.05). The inviscid flow at Re = 250 has an angle of
45o and the non-dimensional spanwise wavenumber β = −0.02.
Results are shown for l2 = 102, 103, 104, 105. (a) Optimal suc-
tion distributions. (b) The disturbance energy in a mean flow
with zero and optimal suction. (c) The growth rate, -imag(α),
in a mean flow with zero and optimal suction. (d) The objec-
tive function as a function of the iteration step.

and is more pronounced as l2 is decreased. Downstream of the suction peak
the suction distribution is rather constant before it finally decreases to zero. It
is evident from this figure that a decreased penalty on the control will concen-
trate the increased control effort in the upstream domain. This creates, as in
figure 5, a strong streamwise variation of the suction distribution in this region.
The disturbance kinetic energy is compared in figure 11(b) for the case of zero
and optimal suction distribution. A reduction of kinetic energy is observed in
all cases starting in the upstream region of the control domain. Further, the
reduction is increased as l2 is decreased. In figure 11(c) the growth rate is
compared for zero and optimal suction distribution and it is shown that the
growth rate is decreased as l2 is decreased. Note that the growth rate for the
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Figure 12. Contours of local growth rate at different stream-
wise positions in a flow with an adverse pressure gradient
(Ue = (x/x0)−0.05). The inviscid flow at Re = 250 has an
angle of 45o. (a) At Re = 418 with zero suction. (all dist-
urbances are damped using optimal suction at this position)
(b) At Re = 676 with zero suction. (c) At Re = 676 with
an optimal suction distribution given by the case in figure 11
where l2 = 102. Here F,β and the local growth rate are scaled
with reference values at X0. The thick contours denote zero
growth rate and the contour spacing is 0.0005. The • marks
the disturbance initial condition used in figure 11.
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Figure 13. Modification of the three-dimensional mean flow
with an adverse pressure gradient (Ue = (x/x0)−0.05) and dis-
turbance velocity, due to optimal suction (l2 = 105). The
inviscid flow at Re = 250 has an angle of 45o and the control
is computed for an oblique wave (F = 10−4,β = −0.02 at
Re = 250) between Re = 250− 760. Up = (αrU + βW )/k and
the absolute value of the streamwise and spanwise disturbance
velocity are denoted u and w respectively. The streamwise po-
sitions are: Re = 262 in figures (a–b) and Re = 694 in figures
(c–d)

case with l2 = 102 shows a strong streamwise variation in the upstream do-
main. In figure 11(d) the objective function is plotted for each iteration in the
optimization loop to demonstrate the convergence of the optimization process.

In this analysis only one oblique wave has been considered. The effects
on the growth rate on other oblique waves are investigated using the suction
distribution from the analysis above with l2 = 102. This is done by computing
the local growth rate in the F − β plane at two different streamwise positions.
Contours of the local growth rate can be seen in figure 12 where the thick
contours mark zero growth rate and the • marks the oblique wave analyzed
in figure 11. Note here that the reduced frequency F , the non-dimensional
spanwise wavenumber β and the growth rate are scaled with the reference
values taken at X0. Figure 12(a) shows the local growth rate for oblique waves
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at Re = 418 with zero suction. Here it is shown that the disturbance analyzed
in figure 11 is close to the maximum growth rate for all oblique waves at this
streamwise position. No figure is shown for the case when optimal suction is
applied as all waves are damped at this position. The result in figures 12(b–c)
correspond to Re = 676 with the mean flow subjected to zero and optimal
suction respectively. The optimal suction is shown to make all oblique waves
more stable. However, the effect is less than in the upstream region.

It is also of interest to see how the inflection point due to the adverse
pressure gradient is affected by the optimal suction. The suction distributions
shown in figure 11(a) are similar except for the upstream region. Therefore,
the case of figure 11 with l2 = 105 is chosen to see if the smallest amount of
suction still affects the inflection point of the mean flow. The results for two
different streamwise positions are seen in figure 13. Here the mean flow has
been projected in the direction of the wavenumber vector k, with absolute value
k = (α2 + β2) 1

2 , and is given as Up = (αU + βW )/k. In figure 13(a) Up and its
corresponding second wall normal derivative are shown at Re = 262. The effect
of the optimal suction is small but increases the velocity inside the boundary
layer. The plot of the second wall normal derivative of Up shows that the
inflection point has almost disappeared. The effect on the disturbance velocities
due to the mean flow modification at Re = 262 is shown in figure 13(b). Here,
the absolute value of the streamwise and spanwise disturbance velocities are
plotted. Both components have kept their shape but the maximum values are
decreased and moved towards the wall. The quantities in figures 13(a–b) are
plotted at Re = 694 in figures 13(c–d) respectively. At this streamwise position
all suction distributions shown in figure 11(a) are similar and therefore are the
mean flow modifications at this position similar for all cases shown in figure 11.
The mean flow component shown in figure 13(c) have become fuller. However,
the inflection point of the streamwise component does still exist but has moved
towards the wall. The maximum value of the disturbance velocities shown in
figure 13(d) have moved closer to the wall and decreased by a factor of 103.
Further, it is noted that the disturbance shape has been kept also here.

3.3.2. Control in a flow with a favorable pressure gradient

The control of a steady cross-flow mode is analyzed in a quasi three-dimensional
incompressible boundary layers with a favorable pressure gradient taken from
Högberg & Henningson (1998) (Ue = (x/x0)0.34207). The streamwise range is
Re = 346 − 746 and the inviscid flow at Re = 346 has an angle of 55.26o.
Here, the control has been applied at Re = 351 − 741. The initial condition
of the disturbance is taken as the local solution at Re = 346 where the non-
dimensional spanwise wavenumber is β = −0.256.

In figure 14 results are presented for the optimization with different values
of the regularization parameter l2. Here, l2 = 103 gives a maximum suction
velocity which is close to the maximum value for which the boundary layer
equations are valid (see § 2.1.1). The optimal suction distributions due to the
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Figure 14. Control of a stationary cross-flow mode in a three-
dimensional boundary layer with a favorable pressure gradient
(Ue = (x/x0)0.34207). The inviscid flow at Re = 346 has an
angle of 55.26o and the non-dimensional spanwise wavenumber
β = −0.256. Results are presented for l2 = 103, 104, 105, 106.
(a) Optimal suction distributions. (b) Growth rate -imag(α).

variation of l2 are shown in figure 14(a). As l2 is decreased the magnitude of
the suction velocity is increased. The maximum of the suction velocity is found
in the upstream region in all cases but does not appear as a pronounced peak
as was shown in § 3.2 and § 3.3.1.

The corresponding growth rates for zero and optimal suction are presented
in figure 14(b). The uncontrolled steady cross-flow mode studied here has a
positive growth rate in the whole domain and it is shown here that the optimal
suction manages to reduce the growth rate. However, not even the largest
magnitude of steady optimal suction, i. e. the smallest l2, can stabilize the cross-
flow mode. The largest reduction of growth rate is found at approximately the
same streamwise position regardless of l2 and it should be noted that this is
far downstream of the point where suction has its maximum.

The results shown in § 3 have not been computed given a certain amount of
control energy. Instead has the regularization parameter l2, given in (9), been
used to balance the measured disturbance kinetic energy and the control energy.
In practice this means that increasing l2 will decrease the available control
energy and vice verse in the optimization process. In an application of this
theory it might be of interest to see how the benefit (reduction in disturbance
kinetic energy) is related to a certain amount of control energy. This can be
seen in figure 15(a) for all cases studied in § 3. Here, the benefit is given as
the ratio between the disturbance kinetic energies for optimal and zero suction
denoted as Eopt and E, respectively. The corresponding relation between l2

and the benefit is given in figure 15(b).
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Figure 15. Relation between reduction in disturbance kinetic
energy and (a) optimal control energy Ec, (b) the regulariza-
tion parameter l2. Here Eopt and E are the disturbance kinetic
energies given optimal and zero suction respectively.

4. Discussion and conclusions
A procedure to control disturbances in quasi three-dimensional incompressible
boundary layers on a flat plate has been derived and analyzed. Here, control
of disturbances is done by modifying the mean flow using the wall normal
velocity component of the mean flow on the wall. The optimization procedure
is gradient based and the aim is to minimize an objective function balancing
a measure of the state and the control energy. The gradient is derived using
adjoint equations and here it is shown how the coupling is done between the
adjoint of the PSE (APSE) and the adjoint of the boundary layer equations
(ABLE). The measure of the state is the disturbance kinetic energy in the
whole domain and here it has been generalized to account for more than one
disturbance.

To increase the streamwise resolution, a stabilization procedure has been
used for the PSE which modifies both the APSE and the ABLE. The gradients
derived using the adjoint equations has been validated with a finite-difference
approach and it has been shown that the gradient accuracy is increased as
the streamwise resolution is increased. A finite-difference check has also been
continuously done on the final gradients in the optimization indicating that the
continuous approach used for the derivation of the adjoint equations has been
adequate.

Numerical results have been presented for disturbance control in both two
and quasi three-dimensional incompressible boundary layers. The results shown
on suction distributions have a similar shape for control of T-S wave instabilities
and steady optimally growing streamwise streaks in two-dimensional boundary
layers and oblique waves in quasi three-dimensional boundary layers. The
suction profiles tend to peak close to the first point of the computational domain
but become significantly smaller and rather constant further downstream. This
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tendency become more pronounced as the penalty of the control l2 is reduced,
i. e. the freedom of the control is increased. Although the magnitudes of the
suction distributions are of order Vw ∼ O(Re−1), care must be taken as a
decrease in l2 may result in large streamwise variations of both Vw and the
growth rate. Caution must be taken so that this variation is small enough not
to contradict the underlying hypothesis of a slow streamwise variation assumed
in both the BLE and PSE.

If solutions without sharp peaks are desired then additional terms can be
added to the objective function in which a penalty is put on e. g. the streamwise
derivative of the control variable. This procedure has been used in e. g. shape
optimization problems where the goal has been to create not only an optimal
geometry but also with a certain degree of smoothness. Such constrains are
not investigated here as they are more connected to user applications and an
extension of the optimal control theory rather than the methodology itself.

In both two- and quasi three dimensional boundary layers it has been
shown that the boundary layer velocity profiles have become fuller as the op-
timal suction distribution is applied. Both of these observations show that the
stabilization obtained by the suction distribution is a modification of the mean
flow similar to that of a flow with a favorable pressure gradient with zero suc-
tion. The relation between the suction velocity, pressure gradient and second
wall normal derivative of the streamwise velocity on the wall is understood by
looking at (2) for y = 0

Vw
∂U

∂y
+

dPe

dx
=

1
Re

∂2U

∂y2
. (29)

In the case of a Blasius mean flow (dPe/dx = 0), the right hand side of (29)
give the favorable pressure gradient which corresponds to a certain suction
velocity. However, in the case of an adverse pressure gradient (dPe/dx > 0), the
modification is dependent on the magnitude of the suction velocity as neither
of the two terms on the left hand side of (29) is zero. Here, a favorable pressure
gradient is only obtained if Vw∂U/∂y < dPe/dx. A stabilizing effect will still
occur if Vw∂U/∂y > dPe/dx but the location of the inflection point due to the
adverse pressure gradient will be dependent of the magnitude of Vw.

As a result of the optimal suction distribution, the disturbance kinetic
energy is decreased as the control energy is increased (here shown by decreasing
l2). For control of T-S waves in two-dimensional boundary layers and oblique
waves in quasi three-dimensional boundary layers, the growth rate has the
largest decrease in the upstream domain when l2 is decreased. This corresponds
to where the optimal suction has its peak. In the case control is applied to the
steady cross-flow mode, the largest decrease in growth rate is positioned at the
same streamwise location independent of l2. Further, this is far downstream of
the point where the suction has its maximum. For T-S wave instabilities in the
Blasius flow it has been shown that essentially the same energy reduction at
the last streamwise point is achieved when the control is applied in the whole
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unstable region compared to control which starts just upstream and ends just
downstream of the unstable region.

One of the assumptions made in this analysis is that the disturbances have
homogeneous boundary conditions at the wall and therefore no coupling to the
mean flow at the wall. This can be interpreted as uniform suction through a
porous material. The validity of these boundary conditions should be analyzed
if instead discrete holes are used.

The first author wants to acknowledge the Swedish Foundation for Strate-
gic Research (SSF) who has financed this work through the Integral Vehicle
Structure (IVS)-program.

Appendix A. Matrices of the PSE
The matrices A, B, C and D in the PSE are given as

A =





iα 0 iβ 0

ξ +
∂U

∂x

∂U

∂y
0 iα

0 ξ +
∂V

∂y
0 0

∂W

∂x

∂W

∂y
ξ iβ





, B =





0 1 0 0

V 0 0 0

0 V 0 1

0 0 V 0





,

C =





0 0 0 0

− 1
Re

0 0 0

0 − 1
Re

0 0

0 0 − 1
Re

0





, D =





1 0 0 0

U 0 0 1

0 U 0 0

0 0 U 0





,

where
ξ = −iω + iαU + iβW +

1
Re

(α2 + β2).

Appendix B. Derivation of adjoint equations
The gradient of the objective function, J , with respect to the wall normal
velocity component of the mean flow on the wall, Vw, is derived using the
APSE and the ABLE. The question is whether to use a ’discrete’ or ’continuous’
formulation. One of the conclusions in Högberg & Berggren (2000) was that a
continuous formulation is a good enough approximation if control is performed
on a problem with a dominating instability. Here, the analysis is done for
dominating instabilities using the PSE why a continuous approach has been
chosen for the derivation of the adjoint equations.
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B.1. Inner Product

For a compact notation of the adjoint equations, we will use the formal adjoint
L∗ for the differential operator L defined by the relation

(ψ, Lφ) = (L∗ψ,φ) + boundary terms, (30)

where the inner product (·, ·) is defined as

(φ,ψ) =
∫ Z1

Z0

∫ X1

X0

∫ ∞

0
φHψ dy dx dz, (31)

for Cn-valued functions φ and ψ. Here, the superscript ∗ denotes adjoint quan-
tities and ψ is denoted the co-state variable which is chosen such that it satisfies
the adjoint equations L∗ψ = 0.

B.2. Derivation of the gradient

The idea behind the derivation is to identify the gradient from the boundary
terms in (30). There are earlier results on the derivation of the APSE (see
Airiau 2000; Hill 1997a), however in this analysis, as in Pralits et al. (2000),
the approach is somewhat different.

Here, we use a perturbation technique together with integration by parts
in space. The APSE are derived directly from the PSE why also the auxiliary
condition has to be taken into account. Further, there is no ansatz made
on the co-state variables of the PSE such as (5). In this way a method has
been introduced to derive the APSE which provides the corresponding adjoint
auxiliary condition. The details of the derivation is given below. First, the
objective function and the state equations are differentiated with respect to
the control Vw. Differentiating (9) and (6)–(7) yields

δJ = real
{∫ Z1

Z0

∫ X1

X0

∫ ∞

0
δuHu dy dx dz + l2

∫ Z1

Z0

∫ X1

X0

δVwVw dx dz
}
, (32)

Aδq̂ + B
∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+

(∂A

∂Q
δQ +

∂A

∂α
δα+

∂B

∂Q
δQ +

∂D

∂Q
δQ
)
q̂ = 0, (33)

∫ ∞

0
(δûH ∂û

∂x
+ ûH ∂δû

∂x
) dy = 0. (34)

The variations, δq, δQ are the variations of q, Q caused by the variation of Vw.
Note also that the variation of q results in a variation of both the amplitude
function q̂ and the streamwise wave-number α as

δq = δq̂ Θ + q̂ Θ
∫ x′

X0

δα dx′, (35)

where

Θ = exp i(
∫ x′

X0

α dx′ + βz − ωt).
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Proceed by differentiating (1)–(3). This is given on a compact form as

∂LBLE

∂Q
δQQ + LBLE δQ = 0. (36)

Now, introduce the complex functions q∗ = (p∗, u∗, v∗, w∗)T and r∗, the so
called co-state variables, which are multiplied with (33)–(34) respectively ac-
cording to (31). Then (36) are multiplied with the co-state variables Q∗ =
(V ∗, U∗, W ∗)T in the same manner. The corresponding left hand side of (30)
can now be written

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
q∗H
(
Aδq̂ + B

∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+
∂A

∂Q
δQq̂ +

∂A

∂α
δαq̂ +

∂B

∂Q
δQq̂ +

∂D

∂Q
δQq̂

)
dy dx dz + c.c. +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

(
r̄∗
(
δûH ∂û

∂x
+ ûH ∂δû

∂x

)
+ r∗

(
δûT ∂ ¯̂u

∂x
+ ûT ∂δ¯̂u

∂x

))
dy dx dz +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
Q∗T

(∂LBLE

∂Q
δQQ + LBLEδQ

)
dy dx dz (37)

The right hand side of (30) is derived by removing the derivatives from the
differentiated state equations using integration by parts in Ω. Note here that
the co-state variable r∗ has been introduced due to the additional equation,
(7), of the PSE. Further, the complex conjugate has been added as the gradient
by definition, (11), is a real-valued function. Here, the complex conjugate is
written out explicitly for the auxiliary condition. Note here that terms in (37)
of δα now must be integrated in the x-direction in order to obtain the same
integral form as in (35).
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After collecting terms of δû, δq̂, δQ and
∫ x′

X0

δα dx′, the right hand side

including boundary terms is written

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

(
AHq∗ −BH ∂q∗

∂y
+ CH ∂

2q∗

∂y2
−DH ∂q∗

∂x

)
δq̂ dy dx dz + c.c. +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

(
(r∗ − r̄∗)

∂ ¯̂u
∂x

+
∂r̄∗

∂x
¯̂u
)
δû dy dx dz + c.c. +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

(
L∗

BLE(Q)Q∗ − fABLE

)
δQ dy dx dz −

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

∂

∂x

(
q∗H ∂A

∂α
q̂
)∫ x′

X0

δα dx′ dy dx dz +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
Ue
∂U∗

∂x
δUe dy dx dz +

∫ Z1

Z0

∫ ∞

0

([
q∗HDδq̂ + r̄∗ûHδû + q∗H ∂A

∂α
q̂

∫ x′

X0

δα dx′ + ū∗ûδU + w̄∗ûδW

+V ∗δU + UU∗δU + U∗δP + W ∗UδW − U∗UeδUe

]X1

X0

)
dy dz +

∫ Z1

Z0

∫ X1

X0

([
q∗HBδq̂ + q∗HC

∂δq̂

∂y
− ∂(q∗HC)

∂y
δq̂ + ū∗v̂δU + v̄∗v̂δV +

w̄∗v̂δW + V ∗δV + V U∗δU + W ∗V δW +

1
Re

(U∗
y δU + W ∗

y δW −W ∗δWy − U∗δUy)
]∞
0

)
dx dz (38)

Here, fABLE are the terms due the δQ in the PSE. In order to identify the
objective function (32) in (38), we add and subtract the energy norm in (38).
Using (35), this additional term can be written

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
(δuHu− δûHû|Θ|2 − i|û|2

∫ x′

X0

δα dx′|Θ|2) dy dx dz + c.c. (39)

Now impose the following boundary conditions on the state and co-state vari-
ables

δû = δv̂ = δŵ = 0 at y = 0
δû, δv̂, δŵ, δp̂→ 0 as y →∞
δû = δv̂ = δŵ = δp̂ = 0 at x = X0

δ U = δ W = 0 at y = 0
δ U, δ W → 0 as y →∞
δU = δW = δUe = 0 at x = X0
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u∗ = v∗ = w∗ = 0 at y = 0
u∗, v∗, w∗, p∗ → 0 as y →∞
U∗ = W ∗ = 0 at y = 0
U∗, V ∗, W ∗ → 0 as y →∞

Let q∗ and r∗ satisfy the equations given by δu, δq̂ and
∫ x′

X0

δα dx′. Further,

let Q∗ satisfy the equations given by δQ. This is written explicitly as

p̄∗iα− ∂p̄∗

∂x
+
∂ū∗

∂y
V − ∂ū∗

∂x
U + w̄∗ ∂W

∂x
− 1

Re
∂2ū∗

∂y2
+

ū∗
[
−iω + iαU +

∂U

∂x
+ iβW +

1
Re

(α2 + β2)
]

=

−(r∗ − r̄∗)
∂ ¯̂u
∂x

+
∂r̄∗

∂x
¯̂u + ¯̂u|Θ|2, (40)

∂p̄∗

∂y
+ ū∗ ∂U

∂y
− ∂v̄∗

∂y
V − ∂v̄∗

∂x
U + w̄∗ ∂W

∂y
− 1

Re
∂2v̄∗

∂y2
+

v̄∗
[
−iω + iαU +

∂V

∂y
+ iβW +

1
Re

(α2 + β2)
]

=

−(r∗ − r̄∗)
∂ ¯̂v
∂x

+
∂r̄∗

∂x
¯̂v + ¯̂v|Θ|2, (41)

p̄∗iβ − ∂w̄∗

∂y
V − ∂w̄∗

∂x
U − 1

Re
∂2w̄∗

∂y2
+

w̄∗
[
−iω + iαU + iβW +

1
Re

(α2 + β2)
]

=

−(r∗ − r̄∗)
∂ ¯̂w
∂x

+
∂r̄∗

∂x
¯̂w + ¯̂w|Θ|2, (42)

−∂ū∗

∂x
+ ū∗iα− ∂v̄∗

∂y
+ w̄∗iβ = 0, (43)

∂

∂x

∫ ∞

0

(
i(p̄∗û + ū∗p̂) + (iU +

2α
Re

)(ū∗û + v̄∗v̂ + w̄∗ŵ)
)

dy +

i|Θ|2
∫ ∞

0
|û|2 dy = 0, (44)

∂V ∗

∂y
− ∂U

∂y
U∗ −W ∗ ∂W

∂y
= real

{
ū∗ ∂û

∂y
− ∂v̄∗

∂y
v̂ + w̄∗ ∂ŵ

∂y

}
, (45)

∂V ∗

∂x
+ U

∂U∗

∂x
+
∂V

∂y
U∗ + V

∂U∗

∂y
−W ∗ ∂W

∂x
+

1
Re

∂2U∗

∂y2
=

real
{

iα[ū∗û + v̄∗v̂ + w̄∗ŵ]− ∂ū∗

∂x
û− ∂ū∗

∂y
v̂ − ū∗ ∂v̂

∂y
+ v̄∗

∂v̂

∂x
+ w̄∗ ∂ŵ

∂x

}
,(46)
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∂W ∗

∂x
U +

∂W ∗

∂y
V +

1
Re

∂2W ∗

∂y2
=

real
{

iβ[ū∗û + v̄∗v̂ + w̄∗ŵ]− ∂w̄∗

∂x
û− w̄∗ ∂û

∂x
− ∂w̄∗

∂y
v̂ − w̄∗ ∂v̂

∂y

}
. (47)

Equations (40)–(44) are the adjoint of the parabolized stability equation, APSE.
The right hand side of (40)–(42), here denoted fAPSE, comes from the auxiliary
condition (7) and the objective function (9). Equation (44) solves the addi-
tional unknown co-state variable r∗ iteratively at each streamwise position.
Equations (45)–(47) are the adjoint of the boundary layer equations, ABLE.
The inhomogeneous right hand side, denoted fABLE, is calculated from the so-
lution of the PSE and the APSE. However, only the real part is used as the left
hand side consists of real-valued equations. The remaining boundary terms in
(38) come from the boundary x = X1 and the term of δV at y = 0. We impose
the initial condition of both the ABLE and APSE to be zero at x = X1. This
does however not cause trivial solutions as both (40)–(44) and (45)–(47) have
a non-zero right hand side in Ω. The remaining terms from (38) can now be
written

real
{
δJ −

∫ Z1

Z0

∫ X1

X0

(
(l2Vw + V ∗

w )δVw

)
dx dz +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
Ue
∂U∗

∂x
δUe dy dx dz

}
= 0. (48)

Index w, here denotes the value at y = 0. Equation (48) can now be rewritten
as

δJ =
∫ Z1

Z0

∫ X1

X0

(
(l2Vw + V ∗

w)δVw

)
dx dz −

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
Ue
∂U∗

∂x
δUe dy dx dz. (49)

If the first term on the right hand side of (49) is written, using (11) as

δJ =
∫ Z1

Z0

∫ X1

X0

∇VwJ δVw dx dz, (50)

then the gradient of the objective function with respect to the wall normal
velocity component of the mean flow at the wall can be identified as

∇VwJ = l2Vw + V ∗
w on y = 0. (51)

The second term on the right hand side of (49) is the variation of the objec-
tive function due a variation of the free stream velocity. If a similar gradient
definition as in (50) is used for Ue

δJ =
∫ Z1

Z0

∫ X1

X0

∫ ∞

0
∇UeJ δUe dy dx dz, (52)
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then the gradient of the objective function with respect to the free stream
velocity can be written

∇UeJ = −Ue

∫ ∞

0

∂U∗

∂x
dy. (53)

The variation Ue would be the consequence of e. g. a change in the geometry
and consequently the free stream pressure, and is therefore not considered in
this paper.

B.3. Derivation of the gradient including stabilization

The derivation of the gradient including the stabilization terms does not differ
much from the derivation done in B.2. The same definition of the adjoint,
(30), and inner product, (31), are used. The difference becomes clear if the
stabilization terms are added to (37). This can be written
∫ Z1

Z0

∫ X1

X0

∫ ∞

0
q∗H
(
Aδq̂ + B

∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+
∂A

∂Q
δQq̂ +

∂A

∂α
δαq̂ +

∂B

∂Q
δQq̂ +

∂D

∂Q
δQq̂

)
dy dx dz + c.c. +

s

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
q∗H
(
A
∂δq̂

∂x
+ B

∂

∂x

(∂δq̂
∂y

)
+ C

∂

∂x

(∂2δq̂

∂y2

)
+
∂A

∂Q
δQ

∂δq̂

∂x
+

∂A

∂α
δα
∂δq̂

∂x
+
∂B

∂Q
δQ

∂δq̂

∂x

)
dy dx dz + c.c. +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0

(
r̄∗
(
δûH ∂û

∂x
+ ûH ∂δû

∂x

)
+ r∗

(
δûT ∂ ¯̂u

∂x
+ ûT ∂δ¯̂u

∂x

))
dy dx dz +

∫ Z1

Z0

∫ X1

X0

∫ ∞

0
Q∗T

(∂LBLE

∂Q
δQQ + LBLEδQ

)
dy dx dz (54)

The new terms only appear in the second integral expression in (54). However,
this expression includes δq̂, δα and δQ why (40)–(44) and (45)–(47) will all have
additional terms due to s. The full derivation of the gradient using (54) is not
necessary due to the resemblance between (37) and (54). Instead, it suffices to
evaluate the additional terms associated with the stabilization. This is done
following the steps in B.2 and yields

s
(∂p̄∗

∂x
iα− ∂2ū∗

∂x∂y
V +

∂w̄∗

∂x

∂W

∂x
− ∂ū∗

∂x

∂V

∂y
− 1

Re
∂3ū∗

∂x∂y2
+

∂ū∗

∂x

[
−iω + iαU +

∂U

∂x
+ iβW +

1
Re

(α2 + β2)
])

,

(55)

s
(
− ∂

2p̄∗

∂x∂y
+
∂ū∗

∂x

∂U

∂y
− ∂2v̄∗

∂x∂y
V − ∂v̄∗

∂x

∂V

∂y
+
∂w̄∗

∂x

∂W

∂y
− 1

Re
∂3v̄∗

∂x∂y2
+

∂v̄∗

∂x

[
−iω + iαU +

∂V

∂y
+ iβW +

1
Re

(α2 + β2)
])

,

(56)
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s
(∂p̄∗

∂x
iβ − ∂2w̄∗

∂x∂y
V − ∂w̄∗

∂x

∂V

∂y
− 1

Re
∂3w̄∗

∂x∂y2
+

∂w̄∗

∂x

[
−iω + iαU + iβW +

1
Re

(α2 + β2)
])

,

(57)

s
(∂ū∗

∂x
iα− ∂2v̄∗

∂x∂y
+
∂w̄∗

∂x
iβ
)
, (58)

s

∫ ∞

0

( ∂
∂x

[
i(p̄∗

∂û

∂x
+ ū∗ ∂p̂

∂x
) + (iU +

2α
Re

)(ū∗ ∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗ ∂ŵ

∂x
)
])

dy, (59)

s
(
real

{
ū∗ ∂2û

∂x∂y
− ∂v̄∗

∂y

∂v̂

∂x
+ w̄∗ ∂

2ŵ

∂x∂y

})
, (60)

s
(
real

{
iα[ū∗ ∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗ ∂ŵ

∂x
]− ∂

∂x

(
ū∗ ∂û

∂x

)
− ∂

∂y

(
ū∗ ∂v̂

∂x

)})
, (61)

s
(
real

{
iβ[ū∗ ∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗ ∂ŵ

∂x
]− ∂

∂x

(
w̄∗ ∂û

∂x

)
− ∂

∂y

(
w̄∗ ∂v̂

∂x

)})
. (62)

Equations (55)–(58) are the additional terms in the (40)–(43) respectively.
Equation (59) is the additional term in (44) and (60)–(62) are the additional
terms in (45)–(47) respectively. It should be noted here that the boundary
conditions do not change in any of the state or adjoint equations. Further, the
gradient expression does not get any additional terms due to the stabilization
parameter s.
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Optimization of Steady Suction for Disturbance
Control on Infinite Swept Wings

By Jan O. Pralits1,2 and Ardeshir Hanifi2

We present a theory for computing the optimal steady suction distribution to
suppress convectively unstable disturbances in growing boundary layers on in-
finite swept wings. This work includes optimization based on minimizing the
disturbance kinetic energy and the integral of the shape factor. Further, a suc-
tion distribution in a continuous control domain is compared to an approach
using a number of discrete pressure chambers. In the latter case, the inter-
nal static pressures of these chambers are optimized. Optimality systems are
derived using Lagrange multipliers. The corresponding optimality conditions
are evaluated using the adjoint of the parabolized stability equations and the
adjoint of the boundary layer equations. Results are presented for an airfoil
designed for medium range commercial aircraft. We show that an optimal suc-
tion distribution based on a minimization of the integral of the shape factor
is not always successful in the sense of delaying laminar-turbulent transition.
It is also demonstrated that including different types of disturbances, e. g.
Tollmien-Schlichting and cross-flow types, in the analysis may be crucial.

1. Introduction
Reducing the viscous drag on a wing while maintaining operational properties
such as lift for example, is of great interest and the research in this area is
vast (see Joslin 1998). It is known that the viscous drag increases dramati-
cally as the boundary layer flow changes from a laminar to a turbulent state.
Therefore, a decrease in drag can be seen as increasing the laminar portion
of the wing, or moving the point of laminar-turbulent transition downstream.
Transition in the boundary layer on aircraft wings is usually caused by break-
down of small disturbances which grow as they propagate downstream. The
growth of these disturbances can be analyzed using linear stability theory in
which it is assumed that perturbations with infinitely small amplitude are su-
perposed on the laminar mean flow. The growth rate can then be used to
predict the transition location using the so called eN method (see van Ingen
1956; Smith & Gamberoni 1956). Here it is assumed that transition will occur
at the location where the total amplification of the disturbance, with respect

1Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden.
2Swedish Defence Research Agency, FOI, Aeronautics Division, FFA, SE-172 90 Stockholm,
Sweden.
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to the first streamwise position where the disturbance starts to grow, attains
an empirically determined value, whose logarithm is generally denoted by N .

The stabilization effect of steady boundary layer suction on disturbance
growth is well known (see Schlichting 1943/44) and has been utilized for lam-
inar flow control, for an extensive review see Joslin (1998). However, in most
cases the design of suction distributions relies on the experience of the engi-
neer which may not always give the optimal solution, i. e. to give the largest
delay of laminar-turbulence transition at a given suction power. In the last ten
years, the development of optimal control theory and its application to fluid
mechanics problems has been rapid and a number of attempts have been made
to optimize the steady suction distribution in order to control the growth of
disturbances, e. g. Hill (1997b); Balakumar & Hall (1999); Cathalifaud & Lu-
chini (2000); Pralits et al. (2002); Airiau et al. (2003). In all of these works the
optimization methods are gradient based and utilize the potential of adjoint
methods to obtain the gradients of interest. Other investigations including
those by Mughal (1998); Walther et al. (2001); Högberg & Henningson (2001)
consider unsteady suction/blowing. This approach may not be suitable for flow
control on aircraft wings at the present time (see Bewley 2001) due to the com-
plexity of its implementation. A common approach in the works by Balakumar
& Hall (1999); Cathalifaud & Luchini (2000); Pralits et al. (2002); Airiau et al.
(2003) is to minimize some measure of the disturbance growth, either the dis-
turbance kinetic energy (see Cathalifaud & Luchini 2000; Pralits et al. 2002;
Airiau et al. 2003) or the N -factor (see Balakumar & Hall 1999). The work
by Airiau et al. (2003), in contrast to the others, did also try to minimize the
shape factor which for 2D disturbances in a 2D boundary layer should result
in a suppression of disturbance amplification. Minimizing the shape factor is
a more heuristic approach based on the knowledge that in such flows the two-
dimensional disturbances are stabilized by any thinning of the boundary layer.
Their results showed that an optimal suction distribution based on minimizing
the shape factor does have a damping effect on the disturbance growth. The
advantage of this approach is that only one state equation has to be solved
which saves computational time. A negative aspect of not explicitly minimiz-
ing a measure of the disturbances is that one cannot know if the computed
suction distribution will have a damping effect on the disturbances. This has
to be calculated afterwards, once the optimal suction distribution is obtained.

In Pralits et al. (2002) the idea of multi-disturbance control was intro-
duced. The reason behind it is that, for certain types of flows, it is not clear
which types of disturbances will be dominant in terms of amplification. An
example is the Blasius flow in which, depending on the initial amplitudes, ei-
ther two-dimensional Tollmien-Schlichting (TS) waves or streamwise streaks
grow the most. In three-dimensional boundary layers on wings there is usually
a streamwise region close to the leading edge with a strong negative pressure
gradient, where cross-flow waves are the most amplified disturbances. Further
downstream, where the pressure gradient is zero or positive, TS waves are the
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most amplified ones. When computing an optimal suction distribution it is also
necessary to make sure that the mean flow modification due to a computed suc-
tion distribution for a specific disturbance does not trigger the growth of other
disturbances.

In real applications, steady boundary layer suction is usually done using a
number of discrete pressure chambers (see Reneaux & Blanchard 1992; Ellis &
Poll 1996; Preist & Paluch 1996; Bieler & Preist 1992; Joslin 1998). In such
cases, the suction velocity is a function of the surface porosity, hole geometry
and the pressure difference between the pressure distribution on the wing and
static pressure in the chambers (see Bieler & Preist 1992; Preist & Paluch
1996). This means that the size, position and the internal static pressure of
each chamber are the design variables. The suction distribution is then given
by the specific choice of these parameters. Atkin (2000) used an engineering
approach to design of the suction system in which he utilized the stability
characteristics of the flow. Here, the static pressure in the pressure chambers,
based on an automatized trial and error technique, were chosen such that the
amplification of disturbances stayed under a specified value.

Most of the previous works such as Balakumar & Hall (1999); Cathal-
ifaud & Luchini (2000); Pralits et al. (2002); Airiau et al. (2003) on optimal
steady suction deal with incompressible boundary layer flows on flat plates. Hill
(1997b) analyzed an infinite swept wing for inverse design of laminar boundary
layers but no details were given of how this was done. The considered suction
distributions have been applied in a continuous (see Balakumar & Hall 1999;
Cathalifaud & Luchini 2000; Pralits et al. 2002; Airiau et al. 2003) or a num-
ber of discrete control domains (see Airiau et al. 2003). However, so far no
study has shown how to incorporate the use of pressure chambers in order to
approach a real application.

In this paper we extend the work by Pralits et al. (2002), to compressible
boundary flows on infinite swept wings. Here we compare the case of mini-
mizing the disturbance kinetic energy with the simplified approach by Airiau
et al. (2003) of minimizing the integral of the shape factor. The feasibility
of the control is addressed by comparing two different ways of computing the
suction distribution: a continuous distribution of mass flux on the wall in a
control domain, and a number of discrete pressure chambers, which constitutes
a more realistic approach to obtaining a suction distribution on the wall. The
evolution of disturbances is analyzed using the Parabolized Stability Equations
(PSE) (see Bertolotti et al. 1992; Malik & Balakumar 1992; Simen 1992; Her-
bert 1997), and the laminar mean flow is computed using the two-dimensional
three-component boundary layer equations (BLE). We use optimal control the-
ory, in which the aim is to minimize a given objective function with state equa-
tions and the control energy as constraints. The problem is solved using a
Lagrange multiplier technique, which yields an optimality system consisting of
state and corresponding adjoint equations from which an optimality condition
is evaluated. Here, we couple the adjoint of the PSE with the adjoint of the
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Figure 1. Definition of the coordinates for the infinite swept wing.

boundary-layer equations in order to find the optimality condition. The deriva-
tion of the optimality system is similar to that presented in Pralits et al. (2002)
and is therefore presented here in a more compact form. Results are presented
for control of disturbance growth in a boundary layer on a wing designed for
commercial aircraft.

2. Problem formulation
The flow field considered here is the boundary layer on a swept wing with in-
finite span which is obtained by solving the mass, momentum and energy con-
servation equations for a viscous compressible fluid. The equations are written
in an orthogonal curvilinear coordinate system with streamwise, spanwise and
wall-normal coordinates denoted as x1, x2 and x3 respectively, see Fig. 1. A
length element is defined as ds2 = (h1dx1)2 + (h2dx2)2 + (h3dx3)2 where hi is
the scale factor. The total flow field, qtot is decomposed into a mean, q̄, and a
perturbation part, q̃, as

qtot(x
1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t)

where q̄ ∈ [U, V, W, P, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃]. Here U, V, W are the
streamwise, spanwise and wall-normal velocity components of the mean flow
respectively, T is the temperature, ρ the density and P the pressure. The
respective lower case variables correspond to the disturbance quantities. The
equations are derived for a quasi three-dimensional mean flow with zero vari-
ation in the spanwise direction. The evolution of convectively unstable dist-
urbances is analyzed in the framework of the nonlocal stability theory. The
mean flow and disturbance equations in the following sections are given in
dimensionless form. All flow and material quantities are made dimensionless
with the corresponding reference flow quantities at a fixed streamwise position
x!

0, except the pressure, which is referred to twice the corresponding dynamic
pressure. Here, dimensional quantities are denoted by the superscript 4.

The reference length scale is taken as l!0 = (ν!
0x!

0/U!
0 ) 1

2 . The Reynolds and
Mach number are defined as Re = l!0U

!
0 /ν!

0 and M = U!
0 /(RγT !

0 ) 1
2 respectively

where R is the specific gas constant, ν the kinematic viscosity and γ the ratio
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of the specific heats. In the proceeding sections the scale factors h2, h3 = 1 are
due to the infinite swept wing assumption.

2.1. Mean-Flow equations

The dimensionless boundary layer equations (BLE) written in primitive vari-
able form can be seen in Appendix A and are here written in symbolic form
as

LB Q = 0 (1)

where Q = (U, V, W, T )T. The suction distribution is imposed using the wall
normal velocity component at the wall Ww(x1) = W (x1, x3). Non slip condi-
tions are applied to the other velocity components and we assume an adiabatic
wall condition for the temperature. Equation (1) is integrated from the stagna-
tion point in the downstream direction normal to the leading edge. Note that
for the boundary layer approximation to be valid, the wall normal velocity at
the wall, Ww, should be of O(Re−1). Here, it is assumed that the pressure dis-
tribution on the airfoil does not change as the suction distribution is applied.
If the suction distribution would result in a large change in the boundary layer
thickness, then it might be necessary to update the pressure distribution in the
optimization process.

2.2. Disturbance equations

The perturbations are assumed to be time and spanwise periodic waves as

q̃(xi, t) = q̂(x1, x3)Θ, where Θ = exp

(
i
∫ x1

X0

α(x′)dx′ + iβx2 − iωt

)
. (2)

Here α is the complex streamwise wavenumber, β the real spanwise wavenumber
and ω the real disturbance angular frequency. X0 is the initial streamwise
position where the disturbances are superimposed on the mean flow. We assume
a scale separation Re−1 between the weak variation in the x1-direction and the
strong variation in the x3-direction. Further, it is assumed that ∂/∂x1 ∼
O(Re−1) and W ∼ O(Re−1). Introducing the ansatz given by Eq. (2) and
the assumptions above in the linearized governing equations, yields a set of
nearly parabolic partial differential equations (see Bertolotti et al. 1992; Malik
& Balakumar 1992; Simen 1992; Herbert 1997). The system of equations,
denoted parabolized stability equations (PSE), can be seen in Appendix A and
are here written in symbolic form as

LP q̂ = 0, (3)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. Here û, v̂, ŵ and T̂ are subject to Dirichlet bound-
ary conditions. To remove the ambiguity of having x1-dependence of both the
amplitude and wave function in the ansatz, and to maintain a slow stream-
wise variation of the amplitude function q̂, a so called ’auxiliary condition’ is
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introduced ∫ +∞

0
q̂H ∂q̂
∂x1

dx3 = 0, (4)

where superscript H denotes the complex conjugate transpose. Equation (3)
is integrated in the downstream direction normal to the leading edge with
an initial condition given by local stability theory. At each x1-position the
streamwise wavenumber α is iterated such that the condition given by Eq.
(4) is satisfied. After a converged streamwise wavenumber has been obtained,
the growth rate of the disturbance kinetic energy can be calculated from the
following relation

σ = −αi +
∂

∂x1
(ln
√

E),

where

E =
∫ +∞

0
ρ (|û|2 + |v̂|2 + |ŵ|2) dx3.

The growth rate can then be used to predict the transition location using the
so called eN -method (see van Ingen 1956; Smith & Gamberoni 1956). The
N -factor based on the disturbance kinetic energy is given as

NE =
∫ X

Xn1

σ dx1,

where Xn1 is the lower branch of the neutral curve. A complete description of
Eq. (3) is found in Pralits et al. (2000), and corresponding numerical schemes
used here are given in Hanifi et al. (1994).

3. Optimal control
The approach of the current work is to use optimal control theory to find
the optimal mean flow suction distribution in order to suppress the growth
of convectively unstable disturbances. In this paper we investigate different
control variables and objective functions. First, a general introduction is given
in this section. Then follows a concise description of the Lagrange multiplier
technique applied to the problem of minimizing a measure of the disturbances
using the mass flux on the wall (ṁw = Wwρw) as control variable.

The problem consists of the state variables Q and q̃; a control variable
given by the mass flux on the wall; constraints on the state variables given by
the BLE and PSE; and an objective function, a measure of the state, to be
minimized.

The final goal of boundary-layer suction is to increase the laminar portion
of the wing i. e. to move the location of laminar-turbulent transition further
downstream, and thus decrease the viscous drag. It is therefore important that
the chosen objective function can be related to the transition process. One
choice is to measure the kinetic energy of a certain disturbance at a downstream
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position, say Xf . This can be written as

Ef =
1
2

∫ Z1

Z0

∫ +∞

0
q̃HM q̃ h1dx2dx3

∣∣∣∣∣
x1=Xf

, (5)

where M = diag(0, 1, 1, 1, 0) which means that the disturbance kinetic energy
is calculated from the disturbance velocity components. Hanifi et al. (1996)
used a measure which also included ρ̂ and T̂ . If the position Xf is chosen as
the upper branch of the neutral curve, then the measure can be related to the
maximum value of the N -factor (see Airiau et al. 2003). If in addition, the
value of the N -factor of the measured disturbance is the one which first (with
zero control) reaches the transition N -factor, then the position can be related
to the onset of laminar-turbulent transition. It is however not clear, a priori,
that such a measure will damp the chosen disturbance or other ones in the
whole unstable region, especially if different types of disturbances are present,
such as TS and cross-flow waves. For Blasius flow, it has been shown that an
objective function based on a single TS wave is sufficient to successfully damp
the growth of other TS waves (see Pralits et al. 2002; Airiau et al. 2003). On a
wing however, it is common that both TS and cross-flow waves are present. An
alternative is therefore to measure the kinetic energy as the streamwise integral
over a defined domain. Using such an approach several different disturbances,
with respective maximum growth rate at different positions, can be accounted
for in the same domain. Here, the size of K disturbances superimposed on
the mean flow at an upstream position X0, is measured by their total kinetic
energy as

EΩ =
K∑

k=1

1
2

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
q̃H

kM q̃kh1dx1dx2dx3. (6)

We now define the objective function based on the disturbance growth as

J0 = ξEΩ + (1− ξ)Ef , (7)

where the parameter ξ can be chosen between zero and one, depending on the
quantity one wants to minimize. In order to have a well-posed problem, the
control needs to be bounded. This is done by quantifying the control effort as

EC =
∫ Xce

Xcs

ṁ2
wh1dx1. (8)

This measure has a physical meaning and also enables comparison of efficiency
of different objective functions. Taking the square of ṁw means that both
blowing and suction will be accounted for in EC .

A concise description of the objective can now be made: find the control
ṁw, and corresponding states Q and q̃ which minimizes the objective function
J0 with the constraints given by Eqs. (1), (3), (4) and (8). We now use
a Lagrange multiplier technique to replace the original constrained problem
with an unconstrained one, see e. g. Gunzburger (1997). In order to enforce
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the constraints we introduce the adjoint variables Q∗,q∗, r∗,λ∗,χ∗ and the
Lagrangian functional

L = J0 − J1 (9)

where

J1 = 〈Q∗, LB Q〉+
∫ Xce

Xcs

λ∗
[
ṁ(x1, 0)− ṁw

]
h1dx1

+ χ∗(EC −
∫ Xce

Xcs

ṁ2
wh1dx1) + 〈q∗, LP q̂〉+ 〈r∗q̂,

1
h1

∂q̂
∂x1
〉+ c.c.

where c.c. denotes the complex conjugate. The inner products 〈·, ·〉 appearing
above are defined as

〈ψ,φ〉 =
∫ X1

X0

∫ Z1

Z0

∫ +∞

0
ψHφ h1dx1dx2dx3, (10)

for complex valued vectors ψ and φ. We can now define the problem as: find
the control ṁw, states Q, q̃ and adjoint variables λ∗,χ∗,Q∗,q∗ and r∗ such
that L is rendered stationary according to the first-order necessary condition
for an extremal point. This is done by setting the first variation of L with
respect to the variables considered here to zero, while each of L’s arguments
are considered to be independent variables. This requirement comes from the
fact that at an extremal point the first variation of L with respect to each
variable vanishes. We start by setting the first variation of L with respect to
each adjoint variable to zero, which gives the state equations (1), (3) and (4),
and the constraint on the control effort, Eq. (8). We continue by setting the
first variation of the state variables q̂, α and Q to zero. After a procedure
which involves successive integrations by parts (see Pralits et al. 2002), this
yields the adjoint equations

L∗
P q∗ = S∗

P, (11)

∂

∂x1

∫ +∞

0
q∗H ∂LP

∂α
q̂h1dx3 =






0 ∀x1 /∈ [Xms, Xme]

−i|Θ|2
∫ +∞

0
q̂HM q̂h1dx3 ∀x1 ∈ [Xms, Xme],

(12)
L∗

B Q∗ = S∗
B, (13)

where q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T and Q∗ = (U∗, V ∗, W ∗,T ∗)T. Equation (11) is
the adjoint of the PSE (APSE) where u∗, v∗, w∗ and θ∗ are subject to Dirichlet
boundary conditions. The right hand side S∗

P is due to the auxiliary condition
of the PSE and the objective function. Equation (12) is a closure relation
obtained by setting the first variation of L with respect to the streamwise
wavenumber α to zero. At each streamwise position, r∗ is solved iteratively
such that Eq. (12) is satisfied. Equation (13) is the adjoint of the BLE (ABLE)
and the right hand side S∗

B is the sensitivity of the PSE with respect to the
mean flow. Both the APSE and ABLE are parabolic equations which are solved
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by backward integration in the streamwise direction. The above equations are
found in A.1, and the complete derivations are found in Pralits et al. (2000)
and Pralits (2001). Finally, we set the first variation of L with respect to ṁw

to zero which gives the so called optimality condition as

W ∗
w + 2χ∗ṁw = 0. (14)

The left hand side of the above expression is the gradient of the Lagrangian
functional with respect to the mass flux at the wall. As shown in Eq. (9),
χ∗ is the adjoint variable used to enforce the control effort and can be solved
iteratively in the optimization by substituting Eq. (14) into Eq. (8) as

χ∗ =

(
1

4EC

∫ Xce

Xcs

W ∗2
w h1dx1

) 1
2

. (15)

The complete optimality system contains Eqs. (1), (3), (4) and (11)–(15) which
can be found in Appendix A.

3.1. Solution procedure

The procedure of solving the optimization problem derived in Sec. 3 is de-
scribed here. We start by considering the case of minimizing a single distur-
bance, i. e. K = 1 in Eq. (6).

The optimal distribution of the mass flow is found through an iterative
procedure. During each iteration step, we perform successive calculations of
boundary-layer and stability equations from X0 to X1; and adjoint boundary-
layer and stability equations from X1 to X0. Then, a new mass-flow distribution
is computed using the gradient information given by solution of the adjoint
equations. Here we use the L-BFGS-B optimization routine, see Zhu et al.
(1994) and Byrd et al. (1995). The calculations are repeated until the relative
change in the objective function is less than a prescribed value.

If K > 1 in Eq. (6) then instead of solving both state and adjoint equations
K times, we can utilize the fact that the ABLE are linear equations. In this case
the optimality condition is evaluated as follows: the BLE is solved once; the
PSE and APSE are solved K times; the forcing of the ABLE, S∗

B, is calculated
as

S∗
B =

K∑

k=1

S∗
Bk

.

Finally, the optimality condition is evaluated from a single calculation of the
ABLE.

The results presented here are obtained by numerically integrating the
discretized state and adjoint equations. The x1-derivatives are approximated
by a first- or second-order accurate backward Euler scheme. The x3-derivatives
of the PSE and APSE are approximated by a fourth-order accurate compact
finite-difference scheme and a second-order accurate finite-difference scheme
for the BLE and ABLE. The convergence criteria is (J k+1 − J k)/J k < 10−4,
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Figure 2. The pressure distribution, Cp, as a function of the
arc-length normal to the leading edge, s/c. The black box
shows the available control domain, Γc.

where k denotes the iteration number in the optimization procedure. Further,
in all calculations the initial guess on the suction profile, ṁin

w , has been varied
to make sure that the optimal solution does not depend on the initial state.

3.2. Case studied

The flow studied here is the boundary layer on the upper side of a wing designed
for commercial aircraft. The flow conditions are characterized by a free stream
Mach number M∞ = 0.8, temperature T∞ = 230 K, Reynolds number Re∞ =
3.04 × 107 and leading edge sweep angle φle = 30.2◦. The control domain,
Γc = [Xcs, Xce], available for mounting the suction-system has been specified
by the manufacturer. The control domain is limited in the upstream direction,
0 < s/c < 0.006, by a suction strip used to control the stagnation line and
in the downstream direction by the front spar (s/c=0.17). Here s is the arc-
length normal to the leading edge measured from the stagnation point and c
is the chord length. The suction strip at the stagnation line is case specific
and will be held unchanged. However, this does not create any difficulties in
the optimization procedure. In Fig. 2 the pressure coefficient Cp is plotted
as a function of s/c. The available control domain 0.006 ≤ s/c ≤ 0.17 is also
indicated in this figure as a black box.

Parameters for the disturbances analyzed here are given in Table 1. At the
initial streamwise position (s/c = 0.0075), the flow has a strong favorable pres-
sure gradient and the mean flow velocity component perpendicular to the outer
streamline has an inflection point. There, waves with the wavenumber vector k
approximately perpendicular to the outer streamline have positive growth rate.
These are the so called cross-flow (CF) waves. Further downstream (s/c = 0.05)
where the pressure gradient is weaker and adverse, Tollmien-Schlichting (TS)
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X0 f∗ ∆f∗ β∗ ∆β∗ Type
0.0075 [1000, 8500] 500 [1000, 6000] 500 CF
0.0075 0 0 [500, 6500] 500 CF
0.05 [2250, 9500] 250 0 0 TS
0.05 [2250, 7000] 250 [25, 225] 50 TS

Table 1. Initial position (s/c = X0), dimensional frequency
(f∗), dimensional spanwise wave number (β∗) and type of dist-
urbances analyzed (CF = cross-flow wave, TS = Tollmien-
Schlichting wave). ∆f∗ and ∆β∗ denote respective dimensio-
nal step-length.

0 0.1 0.2 0.3 0.4 0.5
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Figure 3. Envelope of envelopes of NE-factor curves for the
two disturbance types given in table 1 for the case of zero
suction.

waves are amplified. The angles between the wavenumber vectors of the TS
waves analyzed here and the outer streamline are 0 − 60 degrees. In Fig. 3,
the envelope of envelopes (EoE) of the NE-factor curves are plotted for the CF
and TS disturbances given in Table 1 and for zero suction rate.

The control effort which is quantified by Eq. (8) depends on the specific
suction system chosen, i. e. compressors and tubing. We have therefore chosen
a number of different magnitudes of EC to examine the dependency of the
achieved stabilization on the amplitude of the control energy. Here we introduce
a new parameter QC = ECRe∞. In our calculations the values of QC are chosen
so that a noticeable control effect is achieved and to avoid the magnitude of
mean wall-normal velocity (at the wall) Ww exceeding O(Re−1). This was
checked after each calculation.
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Figure 4. Optimal suction distributions, ṁw, minimizing the
disturbance kinetic energy of a CF wave (f∗ = 5500 s−1, β∗ =
2500 m−1) measured as EΩ (dashed), Ef (solid). QC = 0.35
and 0.58, and the arrow marks increasing QC .

3.3. Results

Results are shown here for minimization of the disturbance kinetic energy, Eq.
(5.17), in which ξ has been chosen depending on the desired objective function.
In the latter, the measure is given as the sum of the kinetic energy of K dist-
urbances. Before the optimization is performed, it has to be decided if one or
several disturbances should be included. One of the conclusions from Pralits
et al. (2002) and Airiau et al. (2003) was that the optimal suction distribution
for a given disturbance will also have a damping effect on other disturbances
of the same type. The reason for including more than one disturbance in the
measure (see Pralits et al. 2002) is that in some cases it is not clear which type
of disturbance will cause laminar-turbulent transition first. Another reason is
that if different types of disturbances are present in the flow, then the mean
flow modification that minimizes some measure of one type of disturbance may
amplify rather than damp disturbances of another type. One should keep in
mind that the larger number of disturbances considered, the more costly the
optimization procedure will be. As a first investigation, a comparison is made
between minimizing the kinetic energy of a single disturbance integrated in a
streamwise domain (ξ = 1), with the case of minimizing the same disturbance
at a final streamwise position (ξ = 0). Eq. (5.16) is integrated between X0 and
the end of the control domain which means that the aim is to delay transition
at least up to this position. Xf in Eq. (5.14) is chosen as the position where
the maximum disturbance kinetic energy is found over all disturbances in Ta-
ble 1, here Xf = 0.105. The corresponding disturbance, which also has the
largest EΩ over all disturbances in Table 1, is chosen as the one to minimize
in both cases. This disturbance is a CF wave with dimensional frequency and
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Figure 5. Shape factor, H12, given zero (dotted) and optimal
suction distribution from Fig. 4 minimizing the disturbance
kinetic energy of a CF wave (f∗ = 5500 s−1, β∗ = 2500 m−1)
measured as EΩ (dashed), Ef (solid). QC = 0, 0.35 and 0.58,
and the arrow marks increasing QC .

spanwise wave number of 5500 s−1 and 2500 m−1, respectively. The calcula-
tions are performed for QC = 0.25, 0.35, 0.45 and 0.58. The optimal suction
distributions given by the two different objective functions can be seen in Fig.
4. Here, results are only shown for two different values of the control energy
to make the plot more clear. The arrow indicates the direction of increasing
QC and the uppermost streamwise suction distribution is the fixed stagnation
line control. It is interesting to note the similarity between the results when
comparing the two objective functions as opposed to a similar comparison for
control of TS waves reported by Airiau et al. (2003). The reason for this may
be that the growth and decay of CF waves in the case analyzed here occurs
over a short streamwise interval, and as a consequence the growth measured
by EΩ approach that for Ef . In all cases, the optimal control acts primarily
in the region where a strong favorable pressure gradient exists and then decays
further downstream. As the control effort is increased, the additional control
energy is concentrated to the beginning of the control domain. The effect of
the control on the shape factor is however small, which can be seen in Fig.
5. The magnitudes of the suction distributions presented in this paper are
all within the range of validity for the boundary layer equations, i. e. of order
O(Re−1). This was investigated by Airiau et al. (2003), where suction distribu-
tions with magnitudes within the limits experienced locally rapid streamwise
variations. They compared solutions from the Navier-Stokes equations with
those using the boundary layer equations. They found that the pressure gra-
dient from the Navier-Stokes solution varies rapidly close to the suction peak
but relaxes very rapidly downstream where it becomes small, in accordance
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Figure 6. Envelope of envelopes of NE-factor curves for the
disturbances given in table 1 given zero (dotted) and optimal
suction distribution from Fig. 4 minimizing the disturbance
kinetic energy of a CF wave (f∗ = 5500 s−1, β∗ = 2500 m−1)
measured as EΩ (dashed), Ef (solid). QC = 0, 0.35 and 0.58,
and the arrows mark increasing QC .

with the parabolic assumption of the boundary layer equations. They further
showed that shape factors from the boundary layer and Navier-Stokes solutions
agree well and conclude that there is a weak dependence of the shape factor
on the mean pressure gradient and that the solutions of the boundary-layer
equations are valid. In Fig. 6, the EoE of the NE-factor curves of CF and
TS waves are plotted for the cases of zero and optimal suction distributions
shown in Fig. 4. In the control domain, the CF waves are more damped as
QC is increased. However, downstream of the control region the CF waves are
increasingly amplified as QC is increased. As expected the TS waves are less
affected by the controls since we know that the control acts upstream of the
region where the TS waves are amplified. In the results shown here, the op-
timal suction distributions are based on minimizing a single disturbance only.
The damping effect of such a control on other disturbances of the same type
can be seen from EoE curves given in Fig. 6. In Figs. 7 and 8, this has been
emphasized by plotting contours of EΩ for CF and TS waves in the (f∗,β∗)-
plane comparing zero and optimal suction distributions for all values of QC .
In all cases the kinetic energy of all disturbances has been reduced. It is clear
from the ratio between the maximum value of EΩ for the zero and optimal
control, that the CF waves are mostly affected. This is true for all values of
QC studied here. From these results, as discussed in Pralits et al. (2002) and
Airiau et al. (2003), one can conclude that minimizing the disturbance kinetic
energy of one disturbance (in this case CF waves) does have a damping effect
on other disturbances of the same type. To confirm this, computations were
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Figure 7. Contours of EΩ for CF waves comparing zero
(solid) and optimal suction distribution (dashed) minimizing
the disturbance kinetic energy of a CF wave (f∗ = 5500 s−1,
β∗ = 2500 m−1). Both cases are normalized with their re-
spective maximum value and the contour spacing = 0.1. The
control effort QC and the ratio between the maximum values
are respectively (a) 0.25, 1.4× 10−8; (b) 0.35, 6.7× 10−10; (c)
0.45, 6.4× 10−11; (d) 0.58, 5.5× 10−12.

also performed in which the TS wave with the largest total disturbance kinetic
energy was controlled. The suction distribution from these calculations had
a damping effect on all other TS waves. These results are not shown here.
The absence of control in the region where the TS waves are amplified can be
overcome by adding a disturbance of TS type in the objective function when
ξ = 1. Therefore, as a next step both the CF and TS wave with the largest
EΩ over all respective disturbances in Table 1 are considered. The dimensional
frequency and spanwise wave number for the TS wave are 5750 s−1 and 225
m−1, respectively, and the calculations are performed with the same values of
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Figure 8. Contours of EΩ for TS waves comparing zero
(solid) and optimal suction distribution (dashed) minimizing
the disturbance kinetic energy of a CF wave (f∗ = 5500 s−1,
β∗ = 2500 m−1). Both cases are normalized with their re-
spective maximum value and the contour spacing = 0.1. The
control effort QC and the ratio between the maximum values
are respectively (a) 0.25, 0.21; (b) 0.35, 0.16; (c) 0.45, 0.1; (d)
0.58, 0.092.

QC used for control of a single CF wave. In Table 2 the ratio between the
maximum values of EΩ for CF waves using optimal and zero suction are given.
Here, we compare the case of optimal suction based on minimizing a CF wave
with the case of minimizing the sum of a CF and a TS wave. It is seen that
the change of the ratio is small between the cases, even when QC is increased.
In Table 3 the same comparison is done for the ratio of the maximum values of
EΩ for TS waves. Here, it is clear that the ratio has decreased when both CF
and TS disturbances are considered. As the same amount of control effort is
used, this means that QC is redistributed in the streamwise direction to control
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Disturbance QC = 0.25 QC = 0.35 QC = 0.45 QC = 0.58
CF 1.4× 10−8 6.7× 10−10 6.4× 10−11 5.5× 10−12

CF+TS 2.2× 10−8 1.4× 10−9 5.7× 10−11 1.1× 10−11

Table 2. Ratio between maximum values of EΩ for CF waves
when zero and optimal suction distribution minimizing the
disturbance kinetic energy is applied. The ratio is calculated
when equation (5.16) includes CF and CF+TS for different
values of QC .

Disturbance QC = 0.25 QC = 0.35 QC = 0.45 QC = 0.58
CF 2.1× 10−1 1.6× 10−1 1.0× 10−1 9.2× 10−2

CF+TS 6.1× 10−3 8.6× 10−3 1.1× 10−3 6.6× 10−5

Table 3. Ratio between maximum values of EΩ for TS waves
when zero and suction distribution control minimizing the dis-
turbance kinetic energy is applied. The ratio is calculated
when equation (5.16) includes CF and CF+TS for different
values of QC .

the TS wave. The corresponding optimal suction distributions are plotted in
Fig. 9 for the cases when EC=0.35 and 0.58. The suction distributions in the
upstream part of the control domain are similar to the ones in Fig. 4, but the
magnitudes are smaller. Further downstream, the suction distribution is rather
constant before it goes to zero at the end of the control domain. The latter is
similar to what is shown in Pralits et al. (2002) for control of two-dimensional
TS waves in two-dimensional boundary layer flows when a small control effort
is used. The effect of the control on the shape factor is plotted in Fig. 10.
Compared to the results given in Fig. 5, a larger decrease of H12 occurs in the
downstream portion of the control domain. The corresponding thinning of the
boundary layer is favorable in terms of damping the TS waves. The EoE of the
NE-factor curves are plotted in Fig. 11. Here, the CF waves are less damped
compared to the previous case, see Fig. 6. However, the TS waves are now
more damped.

It is of interest to know if a larger reduction of the disturbance kinetic
energy can be obtained for a given control effort if additional modes, apart
from the two discussed here, are included in the calculations. Such a parameter
study has been performed and the results show that the additional decrease in
disturbance kinetic energy is small when more modes are included. The reason
is that the control mainly acts on the modes with the largest energy. Since the
control affects all other disturbances (shown here), it will continue to act on the
mode with the initially largest energy even if additional modes are included.
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Figure 9. Optimal suction distributions, ṁw, minimizing the
disturbance kinetic energy EΩ of a CF (f∗

1 = 5500 s−1, β∗
1 =

2500 m−1) and TS wave (f∗
2 = 5750 s−1, β∗

2 = 225 m−1). QC
= 0.35 and 0.58, and the arrow marks increasing QC .
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Figure 10. Shape factor, H12, given zero (dotted) and opti-
mal suction distribution (solid) from Fig. 9 minimizing the dis-
turbance kinetic energy EΩ of a CF (f∗

1 = 5500 s−1, β∗
1 = 2500

m−1) and TS wave (f∗
2 = 5750 s−1, β∗

2 = 225 m−1). QC = 0,
0.35 and 0.58, and the arrow marks increasing QC .

4. Simplified approach
In design of suction distributions for the purpose of delaying laminar-turbulent
transition, it is important that the procedure is not computationally expensive.
The same argument can be made when designing on-line control systems, where
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Figure 11. Envelope of envelopes of NE-factor curves for the
disturbances given in table 1 given zero (dotted) and optimal
suction distribution from Fig. 9 minimizing the disturbance
kinetic energy EΩ of a CF (f∗

1 = 5500 s−1, β∗
1 = 2500 m−1)

and TS wave (f∗
2 = 5750 s−1, β∗

2 = 225 m−1). QC = 0, 0.35
and, 0.58 and the arrows mark increasing QC .

fast feed back is needed. For this purpose, an alternative approach was analyzed
in Airiau et al. (2003) for the control of TS waves in incompressible flat-plate
boundary layers. In their study the optimal suction distribution is computed
by minimizing the streamwise integral of the shape factor. This means that
only the boundary layer and corresponding adjoint equations are involved in
the optimization process which is computationally more efficient. However, the
effect of the optimal suction distribution on the disturbance growth is analyzed
afterwards. This choice of objective function is based on the knowledge that any
thinning of the boundary layer has a stabilizing effect on the boundary layer.
Successful results are shown for control of TS waves. The positive features of
this approach motivates an investigation here.

4.1. Optimality system

The objective function is now given as

J0 =
∫ Xme

Xms

H12h1dx1, whereH12 =
δ1
δ2

=

∫ +∞

0

(
1− ρUSL

ρeQe

)
dx3

∫ +∞

0

ρUSL

ρeQe

(
1− USL

Qe

)
dx3

. (16)

Both the displacement δ1 and momentum thickness δ2 are based on the velocity
component USL = U cos(φ) + V sin(φ) which is in the direction of the outer
streamline. Here φ = tan−1(Ve/Ue) and Qe = (Ue

2 + Ve
2) 1

2 . Now, only one
state equation is considered and the problem consists of finding the control ṁw,
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Figure 12. Shape factor, H12 for zero (dotted) and optimal
suction distributions (solid) minimizing the shape factor. QC
= 0, 0.1, 0.3, 0.58, 0.81 and 1.43 and the arrows mark increas-
ing QC .

and corresponding state Q which minimizes J0 given the constraints shown in
Eqs. (1) and (8). The technique using Lagrange multipliers is also used here
to enforce the constraints. The adjoint variables Q∗,λ∗,χ∗ are introduced and
the new Lagrangian functional is given as

L = J0 − J1 (17)

where J1 is now written

J1 = 〈Q∗, LB Q〉+
∫ Xce

Xcs

λ∗
[
ṁ(x1, 0)− ṁw

]
h1dx1 +

χ∗(EC −
∫ Xce

Xcs

ṁ2
wh1dx1).

The derivation is performed as previously described which yields an optimality
system which contains the BLE, Eq. (1), corresponding adjoint equation and
optimality condition. Compared to the previously derived ABLE, differences
occur in the boundary conditions and forcing term S∗

B. These differences are
due to the objective function, Eq. (16). Details of the optimality system can
be seen in Appendix B.

4.2. Results

Results are shown here on minimizing the shape factor. First we consider con-
trol in the whole available domain Γc, and the objective function is integrated
in the same streamwise region used for Eq. (5.16) in Sec. 3.3. The control
efforts in these calculations are QC = 0.1, 0.3, 0.58, 0.81 and 1.43. In Fig.
12 the shape factors for these cases are compared to that of the uncontrolled
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Figure 13. Optimal suction distributions, ṁw, minimizing
the shape factor, H12. QC = 0.1, 0.3, 0.58, 0.81, 1.43 and the
arrows mark increasing QC .
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Figure 14. Envelope of envelopes of NE-factor curves for the
two disturbance types given in table 1 given zero (dotted) and
optimal suction distribution minimizing (solid) the shape fac-
tor. QC = 0, 0.1, 0.3, 0.58, 0.81, 1.43 and the arrows mark
increasing QC .

case. As the control effort is increased, the shape factor is decreased within the
major part of the control domain. Downstream of the control domain a small
increase of the shape factor is observed.

The corresponding suction profiles are plotted in Fig. 13. Note that the
uppermost streamwise suction distribution is due to the stagnation line control
which is taken to be fixed. In all cases, the optimal control is divided roughly at
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Figure 15. Comparison of optimal suction distributions for
the cases of: minimizing the disturbance kinetic energy of a
TS wave measured as EΩ (solid), Ef (dashed-dotted), and the
case of minimizing the shape factor (dashed). QC =0.01, 0.05,
and the arrow indicates increasing QC .

s/c = 0.04 into blowing upstream and suction downstream, and the magnitude
of the control is increased in both regions as QC is increased. At this position
the flow goes from a strongly accelerating one to a weekly decelerating one.

Compared to Fig. 3, one can see that the region of blowing is where the
CF waves are amplified and the region of suction is where the TS waves are
amplified. In Fig. 14 the EoE of the NE-factor curves for CF and TS waves
are plotted for zero and optimal suction distributions (QC = 0, 0.1, 0.3, 0.58,
0.81, 1.43). When control is applied, the TS waves are completely stabilized
in the control domain and are then amplified downstream, except for QC =
0.1. The CF waves are instead amplified in the region where blowing occurs
and this becomes more pronounced as QC is increased. For the airfoil analyzed
here, this means that applying an optimal control based on minimizing the
streamwise integral of the shape factor will not delay but rather precipitate
laminar-turbulent transition.

In the results shown so far, the most efficient way to control CF waves is
a suction distribution based on minimizing the most amplified CF wave. The
TS waves, on the other hand, have so far shown to be more efficiently con-
trolled using the suction distribution based on minimizing the shape factor.
In order to further investigate the control of TS waves, the case of minimiz-
ing the shape factor is compared with the cases of minimizing the integrated
disturbance kinetic energy of a TS wave and its value at a given streamwise
position Xf . The latter two objective functions are obtained by setting ξ equal
to one and zero respectively in Eq. (5.17). In this comparison, a smaller control
domain, ΓC = [0.05, 0.17], is used, as the TS waves are amplified downstream
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Figure 16. Comparison of envelope of envelopes of NE-factor
curves for the cases of: minimizing the disturbance kinetic en-
ergy of a TS wave measured as EΩ (solid), Ef (dashed-dotted),
the case of minimizing the shape factor (dashed), and zero
control (dotted). QC =0, 0.01, 0.05, and the arrow indicates
increasing QC .

of the region with negative pressure gradient. The disturbances are measured
at Xf = Xce and in the control domain for ξ equals zero and one respec-
tively. For the comparison, a noticeable reduction in the disturbance growth is
obtained choosing the control effort as QC = 0.01 and 0.05. The correspond-
ing suction distributions can be seen in Fig. 15. For the cases of minimizing
the shape factor, and the disturbance kinetic energy at Xf evenly distributed
suction distributions are obtained for both values of QC . The suction distri-
butions based on minimizing the total disturbance kinetic energy, on the other
hand, concentrates the control effort close to the lower branch of the neutral
curve. The corresponding EoE of the NE-factor curves for TS waves are shown
in Fig. 16 and are compared with the uncontrolled case. In all cases when
control is applied a reduction of the disturbance growth is obtained. When
the lower value of the control effort is used, the difference between the three
approaches is small, see also Fig. 15. As the control effort is increased, the
suction distribution based on minimizing the EΩ completely stabilizes the dist-
urbances upstream of s/c ≈ 0.12. The other two approaches, due to the evenly
distributed suction, produce a continuous thinning of the boundary layer and
consequently larger damping of disturbances downstream.

5. Control using pressure chambers
The most common approach for computing optimal suction distributions is to
use the wall mass flux as the control variable (see Balakumar & Hall 1999;
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Airiau et al. 2003; Pralits et al. 2002). In a realistic setting, such as an ex-
periment or suction systems used on wings, the suction velocity is a function
of the surface porosity, hole geometry and the pressure difference between the
pressure distribution on the surface and static pressure in a number of discrete
chambers (see Reneaux & Blanchard 1992; Ellis & Poll 1996; Preist & Paluch
1996; Bieler & Preist 1992; Joslin 1998). The aim here is to derive the optimal
control problem of Sec. 3 using the static pressures of a number of discrete
chambers, with fixed size and position, as control variables. We will then com-
pare the results with the previously computed continuous suction distribution
to assess the feasibility of the latter approach.

If a porous surface is used, then at least for flows with low free-stream
velocity, the relation between the pressure difference and the suction velocity
is linear, in accordance with Darcy’s law. The relation between the pressure
difference and suction velocity used here is taken from Bieler & Preist (1992). It
is based on measurements carried out in the framework of the ELFIN (European
Laminar Flow INvestigation) program. In dimensionless form this formula is
given as

∆Pj =
C1

ρw

ṁ2
w + C2

µw

ρw

ṁw ∀x1 ∈ [Xcsj
, Xcej

], j = 1, · · · , K (18)

where ∆Pj = Pe−Pcj
, in which Pe is the pressure distribution on the wing and

Pcj
is the static pressure in chamber j. The first term on the right hand side of

Eq. (18) is due to the dynamic pressure loss, and the second term is the pressure
loss due to skin friction. The coefficients C1 and C2 together with a brief
description of Eq. (18) are given in Appendix C. The choice of static pressure
in the chambers is not without restrictions. The Mach number of the flow
through the holes of the porous plate should be limited. If ∆Pj is too small then
blowing instead of suction might occur. Disturbances might be introduced as
an effect of strong suction through discrete holes, which can accelerate instead
of delay laminar-turbulent transition (see Reneaux & Blanchard 1992; Ellis &
Poll 1996). These restrictions are related to the design of the perforated plate
and therefore not considered as constraints in the theory presented here.

5.1. Optimality system

Here a concise description of the derivation of the optimality system including
pressure chambers is given for the case of minimizing the disturbance kinetic
energy. The optimal control problem is now defined as: find controls Pcj

,
and states Q and q̃ which minimize the objective function J0 given by Eq.
(7) with the constraints given by Eqs. (1), (3), (4) and (8). The Lagrange
multiplier technique is also used here to enforce the constraints. The adjoint
variables Q∗,q∗, r∗,χ∗ and λ∗j where j = 1, · · · , K, are introduced and the new
Lagrangian functional is given as

L = J0 − J1, (19)
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where

J1 = 〈Q∗, LB Q〉+
K∑

j=1

∫ Xcej

Xcsj

λ∗j
[
ṁ(x1, 0)− ṁw

]
h1dx1

+ χ∗(EC −
K∑

j=1

∫ Xcej

Xcsj

ṁ2
wh1dx1) + 〈q∗, LP q̂〉+ 〈r∗q̂,

1
h1

∂q̂
∂x1
〉+ c.c.

Compared to the previously described Lagrangian functionals, the wall bound-
ary condition has now been divided into K discrete domains, and the mass
flux at the wall is given by Eq. (18). No additional difficulties appear in the
derivation compared to the one in Sec. 3. The optimality condition is now
obtained by setting the functional derivative with respect to the static pressure
of each chamber to zero. The resulting optimality system can be seen in detail
in Appendix C.

5.2. Results

Here results are given for the case of minimizing the disturbance kinetic energy
using pressure chambers. The parameters in Eq. (18) which specify the porous
surface are taken from Bieler & Preist (1992). The plate thickness L and
hole diameter at the surface d are 0.9 mm and 0.046 mm, respectively. The
porosity π/(4ε2) is calculated given a hole pitch to diameter ratio ε = 13.8. The
coefficients of inertial and viscous pressure loss are A = 1.6 and B = 0.092,
respectively.

Before the calculations are performed, the size, position and number of
pressure chambers must be set. The different sizes are chosen such that the
chambers are smaller where the pressure gradient of the wing is large and vice
verse. This is done to avoid large pressure drops which result in large suction
peaks. The whole control domain Γc = [Xcs, Xce] is used such that the pressure
chamber closest to the leading edge starts at Xcs1

= Xcs and the last pressure
chamber ends at XceK

= Xce.
The results in Sec. 4.2 show that minimizing the shape factor does not

always give an optimal suction distribution which reduces the disturbance
growth. Further, it is seen in Sec. 3.3 that both CF and TS type distur-
bances should be included in the calculations when the disturbance kinetic
energy is minimized. Therefore, we choose to minimize the total disturbance
kinetic energy, ξ = 1 in Eq. (7), including both the CF and TS waves given in
Sec. 3.3. The control effort QC = 0.35 and the calculations are done for the
cases of 5, 6 and 7 pressure chambers.

Results of the optimal static pressures Pcj
of each case are plotted (thick

lines) in Fig. 17. The pressure distribution on the wing Pe is also plotted
(thin lines) for comparison. The region s/c=[0.05,0.175] has been magnified to
enhance the details. As shown, the pressure difference ∆Pj = Pe−Pcj

is larger
close to the leading edge and decreases downstream.
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Figure 17. Pressure distribution on the wing (thin lines) and
optimal static pressure in the chambers (thick lines) for the
cases of (a) 5; (b) 6; and (c) 7 pressure chambers minimizing
the disturbance kinetic energy EΩ of a CF (f∗

1 = 5500 s−1,
β∗

1 = 2500 m−1) and TS wave (f∗
2 = 5750 s−1, β∗

2 = 225 m−1)
when QC = 0.35.

The suction distributions corresponding to the optimal static pressures in
Fig. 17 are plotted in Fig. 18. Note that the uppermost streamwise suction
distribution in each case is due to the stagnation line control and is taken be
fixed. In each case the suction distribution downstream of s/c = 0.05 is rather
constant. Upstream of this streamwise position the suction distributions have
more of a saw-tooth shape. The latter is an effect of the strong pressure gradient
in this region.

For each case in Fig. 17, a comparison is made with the optimal suction
distribution from Fig. 9 (thin lines) for the case when QC = 0.35 . As the
same control effort is used in these calculations, it is interesting to compare
the optimal suction distribution in a continuous control domain with the cases
using pressure chambers. It is seen that the magnitude of both the suction
distribution from Fig. 9 and the suction distributions using pressure chambers
is rather constant downstream of s/c = 0.05 and increases upstream of this
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Figure 18. Suction distributions (thick lines) corresponding
to the optimal pressure drop for the cases of (a) 5; (b) 6; and
(c) 7 pressure chambers in figure 17. A comparison is done
with the optimal suction distribution (thin lines) from figure
9 when QC = 0.35.

position. Further, the distribution using pressure chambers approaches the
continuous one when the number of chambers is increased. This is most evident
downstream of s/c = 0.05.

The effect on the disturbance growth using the optimal pressure differences
for the cases of 5, 6 and 7 pressure chambers is shown in Fig. 19. Here the EoE
of the NE-factor curves for CF and TS waves are plotted for zero and optimal
pressure differences of all cases (solid lines). The arrows mark the direction
of increasing number of pressure chambers. A decrease in the growth of both
CF and TS waves is obtained for all optimal pressure differences calculated
here compared to the case of zero suction. The CF waves are more damped
in the control domain when the number of pressure chambers is increased.
However, the difference between the cases of having 6 and 7 pressure chambers
is small as the additional chamber is placed where the CF waves begin to
decay. The results for the TS waves show that upstream of s/c = 0.1, the EoE
curves increase in magnitude as the number of pressure chambers increases.
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Figure 19. Envelope of envelopes (EoE) of NE-factor curves
for the disturbances given in table 1 for the cases of zero con-
trol (dotted) and the optimal pressure chambers in figure 17
(solid). The arrows mark increasing number of pressure cham-
bers. A comparison is done with the EoE of NE-factor curves
(dashed) from figure 11 with QC = 0.35.

Downstream of this position EoE curves decrease in magnitude. A comparison
is made with the EoE of the NE-factor curves in Fig. 11 which are calculated
using the suction distribution from Fig. 9 with QC = 0.35 (dashed lines). It is
seen that as the number of pressure chambers are increased, the results within
the control domain using pressure chambers approach those using a suction
distribution in a continuous control domain. This is true for the results of both
the CF and TS waves.

6. Discussion and conclusions
A method to control convectively unstable disturbances in boundary layers on
infinite swept wings for compressible fluids has been derived and analyzed. The
method has been developed in the framework of optimal control theory. The
mean of disturbance control is a modification of the mean flow by the mass flow
through a porous surface. The optimization problem is derived using Lagrange
multipliers from which optimality systems are obtained containing the adjoint
of the parabolized stability equations (APSE) and the adjoint of the boundary
layer equations (ABLE).

Two different control variables are considered. The first control variable
is the mass flow at the wall. Here, it is assumed that given a certain control
domain, the suction distribution is not constrained by how it will be imple-
mented on the wing and thus has the optimal distribution with respect to a
certain objective function. The second control variable is the static pressure in
a number of pressure chambers. Here, the suction velocity is a function of the
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surface porosity, hole geometry and the pressure difference between the pres-
sure distribution on the wing and the internal static pressure of the pressure
chambers. In this case, the internal static pressure of each box is optimized.
In both cases, the control effort has not been regularized, but instead enforced
as a constraint.

Different measures of the state (objective functions) have been analyzed.
The first objective function is a measure of the disturbance kinetic energy. A
comparison has been made between minimizing the kinetic energy of a single
disturbance at a fixed streamwise position, and minimizing the streamwise
integral of the kinetic energy of an arbitrary number of disturbances. For
control of a single CF wave, the difference between the two objective functions
is small. The advantage of the latter is that more than one disturbance can
be included in the measure. On the wing studied here, both cross flow and TS
waves are amplified on the upstream part. Results show that both disturbance
types need to be accounted for in the objective function in order for the control
to decrease their growth. Further, it is sufficient to account for one of each
disturbance type in order to control all other disturbances of the same type.

The second measure of the state used here is the streamwise integral of the
shape factor, H12. Airiau et al. (2003) showed that this quantity is successful
for control of two-dimensional disturbances in Blasius flow. In terms of com-
putational effort, the approach of minimizing the shape factor is efficient. The
optimality condition for each iteration in the optimization process is obtained
after solving the boundary layer and corresponding adjoint equation once. The
disadvantage lies in the fact that one does not take into account the disturbance
growth in the optimization process, and consequently the effect of the control
on the disturbance growth needs to be analyzed afterwards. Results here show
that a control based on this objective function amplify instead of damp cross-
flow modes in the region close to the leading edge of the wing. In this region,
the optimal mass-flow distribution has a positive sign i. e. blowing occurs. The
amplification of disturbances mean that the point of laminar-turbulent tran-
sition will move upstream and the laminar portion of the wing will decrease.
Further, as the current way of implementing suction systems relies on pressure
chambers, a region of blowing is not realizable.

Results are also presented for the optimal static pressure in a number of
pressure chambers. These results depend on the choice of size, position and
number of the chambers. However, it can be shown that the corresponding
suction distributions are similar in magnitude compared to the result of the
optimal suction distribution in a continuous control domain. This similarity
increases as the number of pressure chambers is increased.

The magnitudes of the suction distributions presented in this paper are all
of order O(Re−1), which is within the range of validity of the boundary-layer
equations. As Airiau et al. (2003) showed, for the suction rate of this order, the
boundary-layer and Navier-Stokes calculations agreed well though the optimal
mass flux experiences locally large streamwise variation.
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Appendix A. Optimal control using the wall mass flux to
minimize the disturbance kinetic energy

A.1. State equations

The boundary-layer equations for a viscous compressible flow over a swept wing
with an infinite span are

1
h1

∂(ρU)
∂x1

+
∂(ρW )
∂x3

= 0, (20)

ρU

h1

∂U

∂x1
+ ρW

∂U

∂x3
= − 1

h1

dPe

dx1
+

1
Re

∂

∂x3

(
µ
∂U

∂x3

)
, (21)

ρU

h1

∂V

∂x1
+ ρW

∂V

∂x3
=

1
Re

∂

∂x3

(
µ
∂V

∂x3

)
, (22)

cp
ρU

h1

∂T

∂x1
+ cpρW

∂T

∂x3
=

1
RePr

∂

∂x3

(
κ
∂T

∂x3

)
+

(γ − 1)
UM2

h1

dPe

dx1
+ (γ − 1)

µM2

Re

[(
∂U

∂x3

)2

+
(
∂V

∂x3

)2
]

. (23)

The parabolized stability equations are lengthy and here are given in a symbolic
form

Aq̂ + B ∂q̂
∂x3

+ C ∂2q̂
(∂x3)2

+ D 1
h1

∂q̂
∂x1

= 0, (24)

∫ +∞

0
q̂H ∂q̂
∂x1

dx3 = 0, ∀x1 ∈ [X0, X1], (25)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. The coefficients of the 5× 5 matrices A,B, C and D
are found in Pralits et al. (2000). The corresponding boundary conditions are

W (x1, 0) = Ww(x1) ∀x1 ∈ Γc,

W (x1, 0) = 0 ∀x1 /∈ Γc,[
U, V,

∂T

∂x3

]
(x1, 0) = [0, 0, 0] ∀x1 ∈ [XS , X1],

lim
x3→+∞

[U, V, T ] (x1, x3) = [Ue, Ve, Te] (x1) ∀x1 ∈ [XS , X1],
[
û, v̂, ŵ, T̂

]
(x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

lim
x3→+∞

[
û, v̂, ŵ, T̂

]
(x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],
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where variables with subscript w are evaluated at the wall, and subscript e at
the boundary layer edge. The initial conditions are

Q(XS , x3) = QS(x3) ∀x3 ∈ [0, +∞),
q̂(X0, x

3) = q̂0(x3) ∀x3 ∈ [0, +∞),

where the solution of variables with subscript 0 is given by the local stability
analysis, and subscript S by the solution at the stagnation line.

A.2. Adjoint equations

The adjoint of the boundary-layer equations are

ρ
∂(h1W

∗)
∂x3

− h1ρ

(
∂U

∂x3
U∗ +

∂V

∂x3
V ∗ + cp

∂T

∂x3
T ∗
)

= FW h1, (26)

∂(ρUU∗)
∂x1

+
∂(h1ρWU∗)

∂x3
− ρ

(
∂U

∂x1
U∗ +

∂V

∂x1
V ∗ − ∂W ∗

∂x1
+ cp

∂T

∂x1
T ∗
)

+

(γ − 1)M2 dPe

dx1
T ∗ − 2(γ − 1)

Re
M2 ∂

∂x3

(
h1µ

∂U

∂x3
T ∗
)

+

1
Re

∂

∂x3

(
µ
∂(h1U

∗)
∂x3

)
= FU h1, (27)

∂(ρUV ∗)
∂x1

+
∂(h1ρWV ∗)

∂x3
− 2(γ − 1)

Re
M2 ∂

∂x3

(
h1µ

∂V

∂x3
T ∗
)

+

1
Re

∂

∂x3

(
µ
∂(h1V

∗)
∂x3

)
= FV h1, (28)

cp
∂(ρUT ∗)
∂x1

+ cp
∂(h1ρWT ∗)

∂x3
+
ρU

T

(
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T
cp
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RePr
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(∂x3)2

(γ − 1)
Re

M2 dµ

dT

[(
∂U

∂x3

)2

+
(
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∂x3
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T ∗ −

1
Re

dµ

dT

[
∂U

∂x3

∂(h1U
∗)

∂x3
+
∂V

∂x3

∂(h1V
∗)

∂x3

]
= FEh1, (29)

where FE = (FT + FW W/T )h1, and FW , FU , FV , FT are found in Pralits
(2001). The adjoint of the parabolized stability equations can be written as

Ãq∗ + B̃ ∂q
∗

∂x3
+ C̃ ∂2q∗

(∂x3)2
+ D̃ 1

h1

∂q∗

∂x1
= S∗

P, (30)

∂

∂x1

∫ +∞

0
q∗H

(
∂A
∂α

+
∂B
∂α

)
q̂ h1dx3 =






0 ∀x1 /∈ [Xms, Xme],

−i|Θ|2
∫ +∞

0
q̂HM q̂ h1dx3 ∀x1 ∈ [Xms, Xme],

(31)

Jan Pralits
+

Jan Pralits
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where

S∗
P =






−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
∀x1 /∈ [Xms, Xme],

−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
+ ξMHq̂|Θ|2 ∀x1 ∈ [Xms, Xme],

and

Ã = AH − ∂BH

∂x3
− m13 BH +

∂2CH

(∂x3)2
+ 2 m13

∂CH

∂x3
− ∂DH

∂x1
,

B̃ = −BH + 2
∂CH

∂x3
+ 2 m13 CH,

C̃ = CH,

D̃ = −DH.

The vector q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T, and the complete derivation of these
equations is found in Pralits et al. (2000). The above equations are subjected
to the following boundary conditions

[u∗, v∗, w∗, θ∗] (x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],
lim

x3→+∞
[u∗, v∗, w∗, θ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

[U∗, V ∗] (x1, 0) = [0, 0] ∀x1 ∈ [X0, X1],
[

κ

RePr
∂(h1T

∗)
∂x3

+ h1ρcpWT ∗
]

(x1, 0) = 0 ∀x1 ∈ [X0, X1],

lim
x3→+∞

[U∗, V ∗, W ∗, T ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1].

The initial conditions are
q∗(X1, x

3) = (1− ξ)q∗
1(x3) ∀x3 ∈ [0, +∞),

r∗(X1) = (1− ξ)r∗1 ∀x3 ∈ [0, +∞),
Q∗(X1, x

3) = 0 ∀x3 ∈ [0, +∞),

with q∗
1 and r∗1 evaluated at x1 = X1 as

q∗
1 = |Θ|2D+(M − c1I)q̂, r∗1 = |Θ|2 c1,

c̄1 =

∫ ∞

0
(h1q̂HM D+H

(
∂A
∂α

+
∂B
∂α

)
q̂− iq̂HM q̂) dx3

∫ ∞

0
q̂HD+H

(
∂A
∂α

+
∂B
∂α

)
q̂ h1 dx3

,
(32)

where D+ = (DH)−1.

A.3. Optimality condition

The optimality condition is

W ∗
w =

{
−2χ∗ṁw ∀x1 ∈ Γc,

0 ∀x1 /∈ Γc,
(33)
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where

χ∗ =

(
1

4EC

∫ Xce

Xcs

W ∗2
w h1dx1

) 1
2

.

Appendix B. Optimal control using the wall mass flux to
minimize the shape factor

B.1. State equations

The boundary layer equations are given by Eqs. (20), (21), (22) and (23) with
corresponding boundary and initial conditions as given in A.1.

B.2. Adjoint equations

The adjoint boundary layer equations are given by Eqs. (26), (27), (28) and
(29) where the component of the forcing S∗

B = (FW , FU , FV , FE) are now

FW = 0, FU =
1
δ2
ρ cos(φ)(1 + H12(1− 2USL))

Ue0

Qe
,

FV =
1
δ2
ρ sin(φ)(1+H12(1−2USL))

Ue0

Qe
, FE = − 1

δ2

ρ

T
USL(1+H12(1−USL))

Te0

Te
,

The initial and boundary conditions are the ones given in A.2, except for
freestream boundary conditions which are now given as

lim
x3→+∞

[
∂U∗

∂x3
,
∂V ∗

∂x3
, W ∗,

∂T ∗

∂x3

]
(x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1].

B.3. Optimality condition

The optimality condition is given by Eq. (33).

Appendix C. Optimal control using pressure chambers to
minimize the disturbance kinetic energy

C.1. Relation between internal static pressure and mass flux

The relation between the pressure difference and suction velocity used here is
taken from Bieler & Preist (1992). It is based on measurements carried out in
the framework of the ELFIN (European Laminar Flow INvestigation) program.
In dimensionless form this formula is given as

∆Pj = Pe − Pcj
=

C1

ρw

ṁ2
w + C2

µw

ρw

ṁw

where

C1 =
A

2

(
4ε2

π

)2

, C2 =
32B

Re
4ε2

π

L

d2
.

The porous plate has a thickness L and a hole diameter d at the surface.
Due to manufacturing reasons the holes were slightly conical with an inner
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diameter D. The porosity is given as π/(4ε2), where ε is the ratio between the
hole diameter on the surface and the distance between the holes.

It was found in experiments that the relationship between the suction ve-
locity and pressure difference was non-linear and that adding a term due to
dynamic pressure loss with an empirically obtained coefficient A gave a good
agreement with experiments (see Bieler & Preist 1992). The second term on
the right hand side of the formula is based on the Hagen-Poiseuille equation for
pressure loss due to skin friction in a hole with parallel walls. The coefficient
B is a function of the inner and outer hole diameters and serves as a correction
due to the conical shape of the holes.

C.2. State equations

The boundary-layer equations are given by Eqs. (20), (21), (22) and (23) with
corresponding initial conditions as given in A.1. All boundary conditions are
the same as given in A.1, except for the wall normal mean velocity at the wall,
which is now given by

W (x1, 0) =






0 ∀x1 /∈ [Xcsj
, Xcej

],

−1
2

C2

C1

µw

ρw
+

√(
1
2

C2

C1

µw

ρw

)2

+ ∆Pj

ρw

C1

∀x1 ∈ [Xcsj
, Xcej

].

The values used here for A, B, L, d and ε are taken from Bieler & Preist (1992).
The parabolized stability equations are given by Eqs. (24) and (25) with cor-
responding boundary and initial conditions as given in A.1.

C.3. Adjoint equations

The adjoint parabolized stability equations are given by Eqs. (30) and (31) with
corresponding boundary and initial conditions as given in A.1. The adjoint
boundary layer equations are given by Eqs. (26), (27), (28) and (29) with
corresponding initial conditions as given in A.2. All boundary conditions are
the same as given in A.2, except for T ∗ at the wall, which is now given by
[

κ

RePr
∂(h1T

∗)
∂x3

+ h1ρcpWT ∗
]
(x1, 0) =

{
0 ∀x1 /∈ [Xcsj

, Xcej
],

Kj(W ∗+ 2χ∗ṁw) ∀x1∈ [Xcsj
, Xcej

],

where

Kj =
∂Pcj

∂Tw

/
∂Pcj

∂ṁw

,

and
∂Pcj

∂Tw
=

1
ρwTw

C1ṁ
2
w + C2

1
ρw

(
µw

Tw
+

dµw

dTw

)
ṁw

∂Pcj

∂ṁw
=

2C1

ρw
ṁw + C2

µw

ρw





∀x1 ∈ [Xcsj

, Xcej
].
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C.4. Optimality condition

−
∫ Xcej

Xcsj

(W ∗
w + 2χ∗ṁw)

(
∂Pcj

∂ṁw

)−1

h1dx1 = 0, j = 1, · · · , K.

where

χ∗ =



 1
4EC

K∑

j=1

∫ Xcej

Xcsj

W ∗2
w h1dx1





1
2

.
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Optimization of Steady Wall Temperature for
Disturbance Control

By Jan O. Pralits1,2 and Ardeshir Hanifi2

We present a theory for computing the optimal steady wall temperature dis-
tribution to suppress the growth of convectively unstable disturbances in com-
pressible boundary layer flows on flat plates. A gradient based iterative pro-
cedure is used to minimize an objective function measuring the disturbance
kinetic energy. The gradient of interest is obtained from the solution of the
adjoint of the boundary layer and parabolized stability equations, which are
derived using a Lagrange multiplier technique. The study includes a compar-
ison between the cases of minimizing the terminal, and an integrated value of
the disturbance kinetic energy for different freestream Mach numbers and con-
trol magnitudes. A comparison is also made for the cases of zero and non-zero
wall heat transfer outside the control domain.

1. Introduction
Delay of laminar-turbulent transition is desired in a number of applications. It
was early recognized that uniformly distributed cooling has a damping effect
on viscous instabilities for various Mach number flows, see e. g. experiments
by Diaconis et al. (1957) and Jack et al. (1957). Liepmann & Fila (1947),
showed that at low subsonic speeds the transition location moves upstream on
a heated flat plate. The destabilizing effect of heating is due to the increase
of the viscosity of air close to the wall, which creates inflectional velocity pro-
files there. Cooling the wall on the other hand, decreases the viscosity near
the wall which results in a thicker velocity profile and thus a more stable flow.
Lees & Lin (1946) using inviscid theory and Mack (1984) using viscous theory
found that subsonic air boundary layers can be completely stabilized by uni-
formly distributed wall-cooling. Mack also showed that uniformly distributed
wall-cooling has a destabilizing effect on the higher modes (also known as the
Mack modes) which appear at high Mach numbers. His results for supersonic
flows have been experimentally verified by Lysenko & Maslov (1984). Masad
et al. (1992) reported similar results using the spatial stability equations for
compressible flows.

1Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden.
2Swedish Defence Research Agency, FOI, Aeronautics Division, FFA, SE-172 90 Stockholm,
Sweden.
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More recent studies by Masad & Nayfeh (1992) and Lo et al. (1995), have
shown that discrete heating strips located upstream of the first neutral point
decreases the maximum amplification of disturbances in subsonic boundary
layers. As the heating strip is moved downstream, into the unstable region,
the maximum amplification is increased. The opposite was found for discrete
cooling strips which was explained to be due to the fact that the flow which
leaves the cooled domain experiences a relatively hotter surface downstream.
Massad & Nayfeh used also the interactive boundary-layer theory to account for
the pressure gradient induced by thickening/thinning of boundary layer due to
heating/cooling strips. However, they concluded that the differences between
the N -factors using the mean flow obtained from interactive, and non-similar
boundary layer equations are small.

In the most of the works found in the literature, the effects of wall-cooling
or -heating on disturbance growth are studied using a predefined temperature
distribution in either a continuous or discrete domain (strips). However, in
some earlier works by other researchers, the problem of temperature optimiza-
tion has been addressed. In Masad & Nayfeh (1992), a parameter study was
performed in order to find the best location for a heating strip with a given
length and a constant ratio between the wall and adiabatic temperature. In
Gunzburger et al. (1993) an optimal control problem using boundary controls
for the incompressible Navier-Stokes equations was derived. An application of
control by heating and cooling was given with the wall heat flux as the control
parameter and a target wall temperature as the objective. However, in none
of these works an optimal temperature distribution in terms of minimizing a
measure of disturbance amplitude has been derived. In Hill (1997b), an inverse
method to compute the optimal cooling/heating distributions was mentioned
but no details were given there.

In this paper, we present the theory and examples of optimal distribution
of temperature in discrete domains which minimize the growth of connectively
unstable disturbances in a growing boundary layer. The evolution of these
disturbances in a quasi three-dimensional boundary layer is here analyzed using
the Parabolized Stability Equations (PSE) (see Bertolotti et al. 1992; Simen
1992; Malik & Balakumar 1992; Herbert 1997) derived for compressible flows,
see section 2. The control problem is defined in section 3 using optimal control
theory in which a Lagrange multiplier technique is used. The aim is to minimize
some measure of the disturbance amplitude for a given cooling/heating energy.
The optimality systems consists of solving state and corresponding adjoint
equations from which an optimality condition is evaluated. Here, we couple
the adjoint of the PSE with the adjoint of the boundary-layer equations in
order to find the optimality condition.

In section 5 results are presented for optimal temperature distribution to
control disturbance growth in flat plate boundary-layer flows. Here, the effects
of the control magnitude, objective function, Mach number and heat transfer
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outside the control domain are investigated. The summary and conclusions are
given in section 6.

2. State equations
The flow field is given by the solution of the mass, momentum and energy con-
servation equations for a viscous compressible flow. The equations are written
for Cartesian coordinates with streamwise, spanwise and wall-normal coordi-
nates denoted as x1, x2 and x3 respectively. The total flow field, qtot is decom-
posed into a mean, q̄, and a perturbation part, q̃, as

qtot(x
1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t)

where q̄ ∈ [U, V, W, P, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃]. Here U, V, W are the
streamwise, spanwise and wall-normal velocity components of the mean flow
respectively, T is the temperature, ρ the density and P the pressure. The
respective lower case variables correspond to the disturbance quantities. The
mean flow has zero variation in the spanwise direction and the evolution of
convectively unstable disturbances is analyzed in the frame-work of the nonlocal
stability theory. The mean flow and disturbance equations in the following
sections are given in dimensionless form. All flow and material quantities are
made dimensionless with the corresponding reference flow quantities at a fixed
streamwise position x!

0, except the pressure, which is referred to twice the
corresponding dynamic pressure. Here, dimensional quantities are denoted by
the superscript 4.

The reference length scale is taken as l!0 = (ν!
0x!

0/U!
0 ) 1

2 . The Reynolds
and Mach number are defined as Re0 = l!0U

!
0 /ν!

0 and M = U!
0 /(RγT !

0 ) 1
2 re-

spectively where R is the specific gas constant, ν the kinematic viscosity and
γ the ratio of specific heats. The dynamic viscosity is calculated using the
Sutherland law. The coefficient of the specific heat cp and the thermal conduc-
tivity κ are both functions of temperature as 4th order polynomials fitted to
a set of experimental data. The bulk viscosity is calculated using the formula
given by Bertolotti (1998) and the Prandtl number is calculated based on the
reference temperature, see Appendix B.

2.1. Mean Flow equations and control variable

The dimensionless boundary layer equations (BLE) written in the primitive
variables form can be found in Appendix A. These are here written in symbolic
form as

LB Q = 0 (1)
where Q = (U, V, W, T )T. The velocity components are zero at the wall and the
heated or cooled plate is defined by T (x1, 0) = Tw(x1) in a streamwise domain
ΓC = [Xcs, Xce]. Here, subscripts cs and ce refers to the start and end of the
control domain, respectively. As the control Tw(x1) is not applied along the
whole plate, it is necessary to define the boundary condition of the temperature
upstream and downstream of ΓC. Here, two different choices of boundary
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conditions are considered outside of the control domain. In the first, denoted
TW1, the wall temperature is prescribed as T (x1, 0) = Tw0

. Here Tw0
can be for

instance the adiabatic wall temperature for the uncontrolled case. The second
choice for boundary condition, denoted TW2, is to set ∂T (x1, 0)/∂x3 = 0
outside of the control domain. The effects on the mean flow due to the choice
of boundary condition will appear as cooling or heating is applied. However,
due to the parabolic nature of the BLE, only the mean flow in the domain
downstream of ΓC will change. If TW1 is chosen then as the control is applied,
the flow downstream of ΓC will no longer satisfy ∂T (x1, 0)/∂x3 = 0, i. e. the wall
is no longer considered to be adiabatic. If TW2 is chosen then as the control is
applied, the wall temperature will change in order to satisfy the adiabatic wall
boundary condition. Note that we here assume that the freestream velocity
does not change as the control is applied. If the temperature distribution
would result in a large change in the boundary layer thickness, then it may be
necessary to update the freestream velocity in the optimization process.

2.2. Disturbance equations

The perturbations are assumed to be time and spanwise periodic disturbances
as

q̃(xi, t) = q̂(x1, x3)Θ where Θ = exp

(
i
∫ x1

X0

α(x′)dx′ + iβx2 − iωt

)
, (2)

where α is the complex streamwise wavenumber, β the real spanwise wavenum-
ber and ω the real disturbance angular frequency. The initial streamwise po-
sition where the disturbances are superimposed on the mean flow is denoted
X0. We assume a scale separation Re−1 between the weak variation in the
x1-direction and the strong variation in the x3-direction. Further, it is as-
sumed that ∂/∂x1 ∼ O(Re−1) and W ∼ O(Re−1). Introducing Eq. (2) and
the assumptions above in the linearized governing equations, keeping terms
up to order O(Re−1), yield a set of nearly parabolic partial differential equa-
tions (see Bertolotti et al. 1992; Malik & Balakumar 1992; Simen 1992; Herbert
1997). A complete description of the equations and corresponding numerical
schemes used here are given in Hanifi et al. (1994) and Hein et al. (1994). The
system of equations, denoted parabolized stability equations (PSE) are given
in Appendix A and are here written in symbolic form as

LP q̂ = 0 (3)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. The variables û, v̂, ŵ and T̂ are subject to Dirich-
let boundary conditions. To remove the ambiguity of having x1-dependence
of both the amplitude and the wave function in Eq. (2) and to maintain a
slow streamwise variation of the amplitude function q̂, a so called ’auxiliary
condition’ is introduced

∫ +∞

0
q̂H ∂q̂
∂x1

dx3 = 0, (4)
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where superscript H refers to the complex conjugate transpose. Equation (3)
is integrated in the downstream direction with an initial condition given by
the local stability theory at x1 = X0. At each x1-position the streamwise
wavenumber α is iterated such that Eq. (4) is satisfied. When a converged
streamwise wavenumber has been obtained, the growth rate can be calculated
from the following relation

σE = −αi +
∂

∂x1
(ln
√

E)

where

E =
∫ +∞

0
ρ (|û|2 + |v̂|2 + |ŵ|2) dx3,

is the kinetic energy based on the amplitude functions of the disturbance ve-
locity components. The growth rate can then be used to predict the transition
location using the so called eN -method (see van Ingen 1956; Smith & Gam-
beroni 1956). The N -factor based on the disturbance kinetic energy NE is here
defined as

NE =
∫ x1

Xn1

σE dx1,

where Xn1 is the first neutral point (σE = 0).

3. Disturbance control
The approach of the current work is to use optimal control theory to find the
optimal mean wall-temperature distribution in order to suppress the growth of
convectively unstable disturbances. The problem consists of the state variables
Q and q̃; a control variable given by the temperature at the wall; constraints on
the state variables given by the BLE and PSE; and a cost function, a measure
of the state, to be minimized.

The final goal of cooling or heating the plate is to increase the laminar
portion i. e. to move the location of the laminar-turbulent transition further
downstream, and thus decrease the viscous drag. It is therefore important that
the chosen cost function can be related to the transition process. One choice is
to measure the kinetic energy of a certain disturbance at a given downstream
position, say Xf . This can be written as

Ef =
1
2

∫ Z1

Z0

∫ +∞

0
q̃HM q̃ dx2dx3

∣∣∣∣∣
x1=Xf

, (5)

where M = diag(0, 1, 1, 1, 0) which means that the disturbance kinetic energy
is calculated from the disturbance velocity components. If the position Xf
is chosen as the upper branch of the neutral curve, then the measure can be
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related to the maximum value of the N -factor of a given disturbance as

Nmax = ln

√
Ef

E0

, (6)

where E0 is the disturbance kinetic energy at the first neutral point. If in
addition the measured disturbance is the one which first (with zero control)
reaches the transition N -factor, then Xf can be related to the onset of the
laminar-turbulent transition. It is however not clear, a priori, that minimizing
such a measure will damp the chosen disturbance in the whole unstable region.
If the optimal control only acts close to the position of the measurement then
a situation might occur where the amplification of the disturbance upstream of
this position is still large enough to cause transition. We also have to consider
that many different instability waves simultaneously exist inside the boundary
layer. Even though the one which first causes transition in the uncontrolled case
is chosen to compute Ef , it is not certain that the resulting optimal temperature
distribution will have a damping effect also on other waves. For computation
of optimal suction distributions in Blasius flow, it has been shown that a cost
function based on a single TS wave is sufficient to successfully damp the growth
of other TS waves (see Pralits et al. 2002; Airiau et al. 2003). There are however
other situations, such as the boundary layer flow on infinite swept wings, where
it is common that both TS and cross-flow waves are present. As these waves
are amplified in different streamwise regions due to the streamwise variation of
the mean flow pressure gradient, an optimal control based on minimizing e. g.
a TS wave does not necessarily have a damping effect on the cross flow waves.
See Pralits & Hanifi (2003) for such results regarding optimization of mean flow
suction distributions. An alternative is therefore to measure the kinetic energy
as the streamwise integral over a defined domain. Using such an approach,
several different disturbances having their maximum growth rate at different
positions, can be accounted for in one and the same optimization. Here, the
size of K disturbances superimposed on the mean flow at an upstream position
X0, is measured by their total kinetic energy as

EΩ =
K∑

k=1

1
2

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
q̃H

kM q̃k dx1dx2dx3, (7)

where Xms and Xme refer to start and end positions of the measuring domain.
We now define the objective function based on the disturbance growth as

J0 = ξEΩ + (1− ξ)Ef , (8)

where the parameter ξ can have values between zero or one, depending on the
quantity one wants to minimize.

If no restriction is given on the magnitude of the wall temperature then
the cooling level is bounded by T (x1, 0) = 0 and in terms of heating, the wall
temperature is unbounded. We therefore define a dimensionless measure of the
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control effort as

EC =
E∗

C

T ∗2
0

=
∫ Xce

Xcs

(
Tw − Tad0

(x1, 0)
)2

dx1, (9)

where E∗
C is the dimensional value of the control effort. With expression (9) we

can compare control at different Mach numbers for a fixed value of E∗
C. Equa-

tion (9) expresses the deviation of the control from the zero control state. Here,
the zero control case corresponds to adiabatic wall temperature, Tad0

(x1, 0), i.
e. the wall temperature satisfying ∂T/∂x3(x1, 0) = 0 when no cooling or heat-
ing is applied. At each streamwise position, the amplitude of the control can
be expressed as ∆T = Tw − Tad0

(x1, 0). In order to account for both cooling
and heating, we take the square of ∆T .

A concise description of the objective can now be made: find the control
Tw, and corresponding states Q and q̃ which minimizes the objective function
J0 with the constraints given by Eqs. (1), (3), (4) and (9). We now use
a Lagrange multiplier technique to replace the original constrained problem
with an unconstrained one, see e. g. Gunzburger (1997). In order to enforce
the constraints we introduce the adjoint variables Q∗,q∗, r∗,λ∗,χ∗ and the
Lagrangian functional

L = J0 − J1 (10)
where

J1 = 〈Q∗, LB Q〉+
∫ Xce

Xcs

λ∗
[
T (x1, 0)− Tw

]
dx1

+ χ∗(EC −
∫ Xce

Xcs

(
Tw − Tad0

(x1, 0)
)2

dx1)

+ 〈q∗, LP q̂〉+ 〈r∗q̂,
∂q̂
∂x1
〉+ c.c.

and c.c. denotes the complex conjugate. The inner products 〈·, ·〉 appearing
above are defined as

〈ψ,φ〉 =
∫ X1

X0

∫ Z1

Z0

∫ +∞

0
ψHφ dx1dx2dx3, (11)

for complex valued vectors ψ and φ. We can now define the problem as: find
the control Tw, state variables Q, q̃ and adjoint variables λ∗,χ∗,Q∗,q∗ and
r∗ such that L is rendered stationary according to the first-order necessary
condition for an extremal point. This is done by setting the first variation
of L with respect to the variables considered here to zero, while each of L’s
arguments are considered to be independent variables. This requirement comes
from the fact that at an extremal point the first variation of L with respect to
each variable vanishes. We start by setting the first variation of L with respect
to each of the adjoint variables to zero, which gives the state equations (1),
(3) and (4), and the constraint on the control effort, Eq. (9). We continue by
setting the first variation of L with respect to the state variables q̂, α and Q
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to zero. After a procedure which involves successive integrations by parts (see
Pralits et al. 2002), this yields the adjoint equations

L∗
P q∗ = S∗

P, (12)

∂

∂x1

∫ +∞

0
q∗H ∂LP

∂α
q̂h1dx3 =






0 ∀x1 /∈ [Xms, Xme]

−i|Θ|2
∫ +∞

0
q̂HM q̂h1dx3 ∀x1 ∈ [Xms, Xme],

(13)
L∗

B Q∗ = S∗
B, (14)

where q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T and Q∗ = (U∗, V ∗, W ∗,T ∗)T. Equation (12) is
the adjoint of the PSE (APSE) where u∗, v∗, w∗ and θ∗ are subject to Dirichlet
boundary conditions. The right hand side S∗

P is due to the auxiliary condition of
the PSE and the objective function. Equation (13) is a closure relation obtained
by setting the first variation of L with respect to the streamwise wavenumber
α to zero. At each streamwise position, r∗ is solved iteratively such that Eq.
(13) is satisfied. Equation (14) is the adjoint of the BLE (ABLE) and the right
hand side S∗

B is the sensitivity of the PSE with respect to the mean flow. Both
the APSE and ABLE are parabolic equations which are solved by backward
integration in the streamwise direction. Finally, we set the first variation of L
with respect to Tw to zero which gives the so called optimality condition as

κ

RePr
∂T ∗(x1, 0)

∂x3
+ 2χ∗

(
Tw − Tad0

(x1, 0)
)

= 0 (15)

The left hand side of the above expression is the gradient of the Lagrangian
functional with respect to the mean flow temperature at the wall. As shown
in Eq. (10), χ∗ is the adjoint variable used to enforce the constraint on the
control effort and can be solved iteratively in the optimization by substituting
Eq. (15) into Eq. (9) as

χ∗ =

(
1

4EC

∫ Xce

Xcs

(
κ

RePr
∂T ∗(x1, 0)

∂x3

)2

dx1

) 1
2

. (16)

The complete optimality system, Eqs. (1), (3), (4) and (12)–(16), is found
in Appendix A.

4. Numerical implementation
The results presented here are obtained by numerically integrating the dis-
cretized state and adjoint equations. The x1-derivatives of both state and
corresponding adjoint equations are approximated by a second order accurate
backward Euler scheme. The x3-derivatives of the PSE and APSE are approx-
imated by a fourth order accurate compact finite difference scheme (see Hanifi
et al. 1994), and a second order accurate finite difference scheme for the BLE
and ABLE.
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The procedure of solving the optimization problem derived in Sec. 3 is
described here. We first consider the problem of minimizing a single distur-
bance, K = 1 in (7). The optimal temperature distribution is found through
an iterative procedure. During each iteration step, we perform successive cal-
culations of boundary-layer and stability equations from X0 to X1; and adjoint
boundary-layer and stability equations from X1 to X0. Then, a new tempera-
ture distribution is computed using the gradient information given by ∂L/∂Tw

which is evaluated from the solution of the adjoint equations. Here we use the
L-BFGS-B optimization routine, see Zhu et al. (1994); Byrd et al. (1995). The
calculations are repeated until the relative change in the objective function is
less than a prescribed value. If K > 1 then instead of solving both state and
adjoint equations K times, we can utilize the fact that the ABLE are linear
equations. In this case the optimality condition is evaluated as follows: the
BLE is solved once; the PSE and APSE are solved K times; the forcing of the
ABLE, S∗

B, is calculated as

S∗
B =

K∑

k=1

S∗
Bk

.

Finally, the optimality condition is evaluated from a single calculation of the
ABLE.

The convergence criteria is (J j+1
0 − J j

0 )/J j
0 < 10−4, where j denotes the

iteration number in the optimization procedure. Further, in all calculations
the initial guess on the temperature profile, Tw, has been varied to make sure
that the optimal solution does not depend on the initial state.

5. Results
In the problem formulation presented in the previous section we considered two
different measures of the disturbance growth, cost functions, to be minimized
when disturbances are superimposed on a given boundary layer flow. It was
also discussed that the boundary layer flow outside of the control domain will
depend on whether the wall is considered to be adiabatic or not. In order to
investigate the latter, the optimal control problem has been formulated both
for the case of having a fixed temperature outside the control domain, and
for the case of using an adiabatic wall condition. Obviously keeping the wall
at a specified temperature downstream of the control domain requires extra
energy. However, we have chosen to investigate this case in order to explain
the stabilizing effect of the heating strip upstream of the first neutral point
reported by Masad & Nayfeh (1992). Our investigations showed that this
stabilizing effect is found only when the wall-temperature downstream of the
strip is set to the adiabatic temperature in the uncontrolled case, Tad0 . If the
wall is insulated also downstream of the heating strip, the wall-temperature
will be larger than Tad0 . That is due to the fact that extra heat has been
added to the flow as it passes the heating strip. This higher wall-temperature
will increase the instability of the flow.
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Figure 1. Disturbance control on a flat plate boundary layer
using a heating strip with a temperature of 1.5 times the
adiabatic temperature when no control is applied, located at
720 ≤ Re ≤ 900. (a) Streamwise variation of the local growth
rate of a 2D disturbance with F = 15× 10−6, for the cases of
zero control (solid), compared to the cases when the heating
strip is used and the plate downstream of the heating strip is
assumed insulated (dash-dot), and heat transfer occurs (dash),
M = 0.8, T∞ = 300 K, Pr = 0.72. (b) corresponding N -
factors.

Here we have reproduced Masad & Nayfeh (1992)’s results based on the
non-similar boundary-layer profiles shown in Fig. 16 of their article. The case
is a flat plate boundary layer with a free stream Mach number of 0.8. A two-
dimensional wave with reduced frequency F = 2πf!ν!

e/U!2
e = 15 × 10−6 is
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Figure 2. comparison between the gradient obtained from
solution of the adjoint equations (o) and the finite-difference
method (+). J0 = EΩ for a two-dimensional wave with F =
90× 10−6.

superimposed on the boundary layer. Here, f!, is the dimensional frequency
and the subscript e denotes values evaluated at the edge of the boundary layer.
The heating strip, which has a temperature of 1.5 times the temperature corre-
sponding to an adiabatic wall when no control is applied, is placed upstream of
the first neutral point. For the comparison, the stability analysis is computed
using linear local theory. The results for thermal boundary conditions TW1
and TW2 are given in Fig. 1. The growth rates for both cases are given in
Fig. 1a which are compared with the uncontrolled case. When the plate is not
insulated downstream of the heating strip, the heated fluid at the strip encoun-
ters relatively cooler fluid downstream which is stabilizing the boundary layer.
The magnitude of the growth rate downstream of the strip is lower compared
to the case of no control. If on the other hand, the wall downstream of the
heating strip is assumed to be insulated, the decay of growth rate is less and
the magnitude of the growth rate is larger than that of uncontrolled case. The
corresponding N -factors are plotted in Fig. 1b. It is clear that the heating
strip which is stabilizing when the wall-temperature downstream of the control
domain is kept fixed to Tad0 , is in fact destabilizing when the wall is assumed
adiabatic.

Before we proceed with presentation of optimization results, we demon-
strate the accuracy of the gradient obtained from the solutions of the adjoint
equations. In Fig. 2 the adjoint-based gradient, ∇J0(Tw), is compared to
that given by the finite-difference calculations. Here, the objective function is
J0 = EΩ (integrated between Re = 370 and Re = 760). The disturbance is
a two-dimensional wave with F = 90 × 10−6. The control domain is between
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Figure 3. Optimal temperature distributions obtained by
minimizing J0 = Ef (solid), J0 = EΩ (dashed) for a two-
dimensional disturbance with F = 2πf∗ν∗e /U∗2

e = 50 × 10−6

in a flat plate boundary layer where M = 0.7. The control
magnitudes are E∗

c × 10−4= 6, 10, 14 and 18, the arrow shows
the direction of increasing E∗

c . A comparison is made with
case of zero control (thick solid).

Re = 370 and Re = 650. The wall downstream of the control domain is as-
sumed to be adiabatic. As can be seen there, the agreement is very good. Note
that the computation costs are much higher for the finite-difference method
(two calculations of BLE and PSE for each streamwise position).

Below, we present results for a comparison between the two cost functions
discussed in Sec. 3. We consider a two-dimensional flat plate boundary layer
with free stream Mach number M = 0.7 and zero pressure gradient. The mean
flow in the results presented here is calculated using a stagnation temperature
of 311 K if not stated otherwise. This temperature is chosen as the one used
by Mack (1984), if comparisons are desired. A two-dimensional disturbance
with reduced frequency F = 2πf∗ν∗e /U∗2

e = 50× 10−6 is superimposed on the
mean flow at Re = 500. When J0 = Ef , then the energy is measured at the
second neutral point, Re = 1130, of the considered disturbance. This position
is the natural choice for the considered cost function as it corresponds to the
position where the N -factor has its maximum value. The disturbance kinetic
energy in the second cost function J0 = EΩ is integrated between Re = 500
and the second neutral point. We assume having a control domain available
between the first and second neutral point and the temperature outside the
control domain corresponds to ∂T (x1, 0)/∂x3 = 0 when no control is applied
(TW1). Calculations are performed for minimization of respective cost function
for a number of different magnitudes of the control effort E∗

c . The control
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Figure 4. Growth rates corresponding to the temperature
distributions in Fig. 3. The arrow shows the direction of in-
creasing E∗

c .
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Figure 5. N-factor curves corresponding to the temperature
distributions in Fig. 3. The arrow shows the direction of in-
creasing E∗

c .

magnitudes are chosen such that a noticeable effect is obtained on the reduction
of the disturbance growth.

In Fig. 3 the optimal temperature distributions computed by minimizing
respective cost functions are shown for different values of E∗

c in comparison
with the case of zero control. In all cases of control, the wall temperature
is decreased with respect to the uncontrolled case. This is in accordance with
previous studies for control of viscous instabilities when cooling is applied along
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Figure 6. Shape factor H12, ratio between displacement and
momentum thickness, for the cases presented in Fig. 3.

the whole plate (see Mack 1984). The temperature distributions are however
different depending on the cost function used in the optimization. Minimization
of J0 = Ef clearly results in a cooling peak close to the second neutral point
and this is more pronounced as E∗

c is increased. Minimization of J0 = EΩ

on the other hand produces temperature distributions which are more equally
distributed in the control domain. The corresponding growth rates are shown
in Fig. 4. The effect of the cooling peak in the results obtained by minimizing
J0 = Ef , gives a significant damping close to the second neutral point and
less in the rest of the unstable domain. As a consequence of the more equally
distributed cooling obtained by minimizing J0 = EΩ , also the damping of the
growth rate is distributed over the whole unstable domain. Downstream of the
control domain, i. e. where the control is turned off, the growth rates for all
optimized cases increase above the value of the uncontrolled case. The reason
is that as the flow leaves the cooling domain it experiences a relatively hotter
surface which is destabilizing. A similar effect is seen for the growth rates just
upstream of the second neutral point for the cases of minimizing J0 = EΩ . Here
the effect is weaker but nevertheless due to the decrease in cooling magnitude
downstream of Re ≈ 950. The differences in damping of the growth rate seen
in Fig. 4 is also seen in the corresponding N -factors found in Fig. 5. For the
cases of minimizing J0 = Ef the value of the N -factors are larger upstream
of the second neutral point, i. e. where Ef is evaluated. Minimizing J0 = EΩ

on the other hand gives a more evenly distributed stabilizing effect on the
disturbances in the unstable domain. In comparison with zero control, the
peak N -factors using the optimal temperature distributions move upstream
when J0 = Ef is minimized, and downstream for the case of minimizing J0 =
EΩ . An assumption made in the analysis here, is that the control does not
have a large effect on the flow at the boundary layer edge. A comparison is
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Figure 7. Effects of temperature boundary conditions for
x1 > Xce: (a) T (x1, 0) = Tw0

(b) ∂T (x1, 0)/∂x3 = 0. The
wall temperature distributions are: zero control (thick solid)
, optimal for J0 = Ef (solid), optimal for J0 = EΩ (dash),
Tw/Tw0=constant (dash-dot). In all cases E∗

c × 10−4 = 14.

therefore made between the shape factors (displacement/momentum thickness)
computed for the cases of optimized suction distribution, and zero control. In
Fig. 6 it is shown that the maximum difference is about 3.5%.

The development of the mean flow downstream of the control domain and
consequently the disturbance amplification, varies depending on the assump-
tions made regarding the heat transfer at the wall. The results shown so far
are computed assuming that the flow which is cooled at the wall in the control
domain does not change the wall temperature downstream of the control do-
main. If on the other hand the wall is assumed to be insulated, then the wall
downstream of the control domain will change in temperature, satisfying the
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Figure 8. ∂T (x1, 0)/∂x3 as a function of the Reynolds num-
ber corresponding to the cases in Fig 7.

adiabatic wall condition. In the calculations this is accomplished using wall
boundary condition TW2. As the cost functions used to compute the optimal
temperature distributions shown in Fig. 3 are not evaluated downstream of the
control domain, we can directly change the temperature boundary condition,
from TW1 to TW2, in that region and recompute the mean flow. This is made
for a given value of E∗

c and temperature distributions obtained by minimizing
respective cost function. A comparison is also made with a constant cooling
distribution which has the same value of E∗

c as the optimal ones. The tempera-
ture distribution subject to different temperature boundary conditions outside
of the control domain are plotted in Fig. 7. The cooling of the plate down-
stream of the control domain when the plate is assumed to be insulated can
be seen in Fig. 7b. As the flow moves downstream, the cooling decreases in
all cases. However, for the optimal distribution for J0 = EΩ , a short region
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Figure 9. Growth rate as a function of the Reynolds number
corresponding the cases in Fig 7.

of increased cooling first occurs immediately after the control domain. This
appears as the temperature gradient at the wall in the end of the control do-
main actually is negative. This can be seen in Fig. 8 where ∂T (x1, 0)/∂x3,
which is proportional to the wall heat transfer, has been plotted for all cases
corresponding to Fig. 7. We can note that inside the control domain, the con-
stant temperature control has a decrease in wall heat transfer downstream,
while the optimal controls have an increase. In Fig. 8a, the effect of the cold
fluid from the control domain entering a region of relatively hotter surface is
seen in the rapid change of sign of ∂T (x1, 0)/∂x3. This is most pronounced
for the temperature distribution based on minimizing J0 = Ef . The effect on
the growth rate of the disturbance is shown in Fig. 9. The increase in growth
above the value corresponding to zero control almost disappear as adiabatic
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Figure 10. Comparison of optimal temperature distributions
when E∗

c ×10−4 = 18 for different Mach numbers. M=0.1, 0.7
and 1.6 and the arrow shows the direction of increasing M .
The wall temperature distributions are: zero control (thick
solid) , optimal based on minimizing: J0 = Ef (solid), J0 =
EΩ (dash). The disturbances used in the cost functions are
two-dimensional with F = 28.5 × 10−6 and F = 18.5 × 10−6

for M = 0.1 and M = 0.7, respectively, and three-dimensional
with a reduced frequency of F = 5.7× 10−6 and wave angle of
ψ = 64◦ at Re = 1275 for M = 1.6.

wall conditions (TW2) is applied. As a result the N -factors downstream of the
control domain will have a lower magnitude when the plate is assumed to be
insulated.

It has been shown in earlier studies by e. g. Masad & Nayfeh (1991), that
the cooling is much less effective in stabilizing first-mode disturbances at high
Mach number flows. We investigate this by comparing the disturbance growth
for optimal temperature distributions at different Mach numbers for a given
value of E∗

c . The temperature distributions are computed by minimizing the
two different cost functions, J0 = Ef and J0 = EΩ , respectively. The dis-
turbance used to compute respective cost function is chosen as the one which
first reach an N -factor value of 9, as this is commonly used as a transition
prediction criterion. They are sometimes denoted as the most dangerous dist-
urbances. Computations are performed for two-dimensional flat plate boundary
layers with free stream Mach numbers of M = 0.1, 0.7 and 1.6. At the lower
Mach numbers, the most dangerous disturbances are two-dimensional and the
reduced frequencies are F = 28.5 × 10−6 and F = 18.5 × 10−6 for M = 0.1
and M = 0.7, respectively. At M = 1.6, the most dangerous disturbance is
three-dimensional with a reduced frequency of about F = 5.7 × 10−6 and a
wave angle ψ of about 64◦ at Re = 1275. The wall temperature is optimized
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Figure 11. N -factors corresponding to the optimal temper-
ature distributions in Fig. 10. The arrow shows the direction
of increasing Mach number.

in a streamwise domain corresponding to the unstable region of respective dis-
turbance. Outside of the control domain the plate is assumed to be insulated
(TW2). The disturbances are superimposed on the mean flow upstream of the
first neutral point at X0 corresponding to Re=800, 935 and 1275 for M = 0.1,
0.7 and 1.6, respectively. For J0 = EΩ , the disturbance kinetic energy is inte-
grated from X0 to the second neutral point, and J0 = Ef is evaluated at the
second neutral point. Results of the optimal temperature distributions com-
pared to the case of zero control for all Mach numbers are shown in Fig. 10.
As the Mach number is increased, the wall temperature increases too. In all
optimal temperature distributions, the magnitude of temperature is lower com-
pared to the uncontrolled case, i. e. cooling occurs. For all Mach numbers the
optimal temperature distributions for J0 = Ef has its minimum located close
to the second neutral point. This is more pronounced as the Mach number is
decreased. As shown before, the optimal temperature distributions computed
by minimizing the streamwise integral of the disturbance kinetic energy gives a
more even cooling distribution in the control domain. The stabilizing effect on
the disturbances for different Mach numbers and cost functions are shown in
Fig. 11 comparing the N -factors for the uncontrolled and optimal temperature
distributions. As the Mach number is increased the stabilizing effect of the op-
timal temperature distributions is decreased. This is independent of the choice
of the cost functions used here. We further note that for all Mach numbers, the
streamwise position of the maximum N -factor for J0 = Ef moves upstream
compared to the uncontrolled case. The opposite occurs in the cases where
J0 = EΩ is minimized.
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6. Discussion and conclusions
A theory has been presented for computation of the optimal steady wall tem-
perature distribution to suppress the growth of convectively unstable distur-
bances in compressible boundary layer flows on flat plates. A gradient based
iterative procedure is used to minimize an objective function measuring the dis-
turbance kinetic energy. The gradient of interest are obtained from the solution
of the adjoint of the boundary layer and parabolized stability equations. These
adjoint equations are derived using a Lagrange multiplier technique. The op-
timizations are performed for a given magnitude of the control effort, which is
evaluated from the deviation of the control temperature from the adiabatic wall
temperature in the case of zero control. Two different cost functions based on
the disturbance kinetic energy are compared. The first is evaluated at a given
streamwise position, here corresponding to the position of maximum kinetic
energy of a given unstable wave. The second is a streamwise integral of the
kinetic energy of a given wave. In addition, both the cases of zero and non-zero
heat transfer outside of the control domain have been included in the formula-
tion of the optimization problem. Results have been presented for the optimal
temperature distributions obtained by minimizing the different cost functions,
for different freestream Mach numbers and control magnitudes. A comparison
has also been made for the cases of zero and non-zero heat transfer downstream
of the control domain. In all cases, the wall temperature has been optimized
in a streamwise region corresponding to that of the unstable domain of the
disturbance considered in the cost function. The results show that an opti-
mal temperature distribution obtained by minimizing the kinetic energy at the
second neutral point, concentrates most of its effort close to where the energy
is measured. As a result, the growth rate, and resulting N -factors are locally
larger upstream of this position. Minimizing the integrated disturbance kinetic
energy on the other hand produces more evenly distributed temperature dis-
tributions. The resulting maximum value of the N -factors move downstream
with respect to the uncontrolled case. Even though the temperature distribu-
tions obtained from both of these cases result in a damping of the disturbance
growth, the latter appears favorable in terms of transition delay. An attempt
has been made to compare the effect of optimal temperature distributions on
the disturbance growth for different Mach numbers. Here, a dimensional value
of the control effort has been kept fixed for a given cost function, and the
disturbance considered in each case correspond to that which first reaches an
N -factor value of 9. The results show that independent of the choice of cost
function, the stabilizing effect on the disturbance growth decreases with in-
creasing Mach number. We have also demonstrated that the stabilizing effect
of a heating strip located upstream of the first neutral point (see Masad &
Nayfeh 1992) diminishes if the wall downstream of the strip is assumed to
be insulated. For a given Mach number and control effort, results have been
shown for a comparison between different thermal wall boundary conditions
downstream of the control domain. In case of non-insulated wall, the cooler
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flow from the control domain is destabilized as it enters a region of relatively
hotter surface. The destabilizing effect is seen by an increase in growth rate
of the disturbances above the value obtained without control. This is more
pronounced for the case of minimizing the terminal kinetic energy. If the wall
is assumed to be insulated, the wall temperature downstream of the control
domain adjusts itself to the adiabatic wall condition. In the cases shown here,
this means that the wall downstream of the control domain, relative to uncon-
trolled case, is cooled. As the flow is convected downstream, further away from
the control domain, the cooling decreases.
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Appendix A. Optimality system
A.1. State equations

The boundary-layer equations for a quasi three dimensional viscous compress-
ible flow are

∂(ρU)
∂x1

+
∂(ρW )
∂x3

= 0,

ρU
∂U

∂x1
+ ρW

∂U

∂x3
= −dPe

dx1
+

1
Re

∂

∂x3

(
µ
∂U

∂x3

)
,

ρU
∂V

∂x1
+ ρW

∂V

∂x3
=

1
Re

∂

∂x3

(
µ
∂V

∂x3

)
,

cpρU
∂T

∂x1
+ cpρW

∂T

∂x3
=

1
RePr

∂

∂x3

(
κ
∂T

∂x3

)
+

(γ − 1)UM2 dPe

dx1
+ (γ − 1)

µM2

Re

[(
∂U

∂x3

)2

+
(
∂V

∂x3

)2
]

.

The parabolized stability equations are lengthy and here are given in a symbolic
form

Aq̂ + B ∂q̂
∂x3

+ C ∂2q̂
(∂x3)2

+ D ∂q̂
∂x1

= 0,

∫ +∞

0
q̂H ∂q̂
∂x1

dx3 = 0, ∀x1 ∈ [X0, X1],

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. The above parabolized stability equations are found
in Pralits et al. (2000) derived for orthogonal curvlinear coordinates. The
coefficients of the 5 × 5 matrices A,B, C and D are the ones found in Pralits
et al. (2000) when the scale factors are h1 = h2 = h3 = 1. The corresponding
boundary conditions are at the wall

T (x1, 0) = Tw(x1) ∀x1 ∈ [Xcs, Xce],

T (x1, 0) = Tw0
(x1) ∀x1 ∈ [X0, Xcs) and ∀x1 ∈ (Xce, X1] TW1,

∂T

∂x3
(x1, 0) = 0 ∀x1 ∈ [X0, Xcs) and ∀x1 ∈ (Xce, X1] TW2,

[U, V, W ] (x1, 0) = [0, 0, 0] ∀x1 ∈ [X0, X1],
[
û, v̂, ŵ, T̂

]
(x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

and in the free stream
lim

x3→+∞
[U, V, T ] (x1, x3) = [Ue, Ve, Te] (x1) ∀x1 ∈ [X0, X1],

lim
x3→+∞

[
û, v̂, ŵ, T̂

]
(x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

where variables with subscript w are evaluated at the wall, and subscript e
at the boundary layer edge. TW1 and TW2 denote two choices of boundary
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conditions outside the control domain. The initial conditions are
Q(X0, x

3) = Q0(x3) ∀x3 ∈ [0, +∞),
q̂(X0, x

3) = q̂0(x3) ∀x3 ∈ [0, +∞),

A.2. Adjoint equations

The adjoint of the boundary-layer equations are

ρ
∂(h1W

∗)
∂x3

− h1ρ

(
∂U

∂x3
U∗ +

∂V

∂x3
V ∗ + cp

∂T

∂x3
T ∗
)

= FW ,

∂(ρUU∗)
∂x1

+
∂(h1ρWU∗)

∂x3
− ρ

(
∂U

∂x1
U∗ +

∂V

∂x1
V ∗ − ∂W ∗

∂x1
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∂T

∂x1
T ∗
)

+

(γ − 1)M2 dPe

dx1
T ∗ − 2(γ − 1)

Re
M2 ∂

∂x3

(
h1µ

∂U

∂x3
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)

+

1
Re

∂

∂x3

(
µ
∂(h1U

∗)
∂x3

)
= FU ,

∂(ρUV ∗)
∂x1

+
∂(h1ρWV ∗)

∂x3
− 2(γ − 1)

Re
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)

+

1
Re

∂
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µ
∂(h1V
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∂x3

)
= FV ,
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∂x1

+ cp
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∂x3
+
ρU

T

(
∂U
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T
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κ

RePr
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Re

M2 dµ
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∂U

∂x3
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+
(
∂V
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T ∗ −

1
Re

dµ

dT

[
∂U

∂x3

∂(h1U
∗)

∂x3
+
∂V

∂x3

∂(h1V
∗)

∂x3

]
= FE ,

where FE = (FT + FW W/T ), and FW , FU , FV , FT are found in Pralits (2001).
The adjoint of the parabolized stability equations can be written as

Ãq∗ + B̃∂q
∗

∂x3
+ C̃ ∂2q∗

(∂x3)2
+ D̃∂q

∗

∂x1
= S∗

P,

∂

∂x1

∫ +∞

0
q∗H

(
∂A
∂α

+
∂B
∂α

)
q̂ dx3 =






0 ∀x1 /∈ [Xms, Xme],

−i|Θ|2
∫ +∞

0
q̂HM q̂ dx3 ∀x1 ∈ [Xms, Xme],

where

S∗
P =






−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
∀x1 /∈ [Xms, Xme],

−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
+ ξMHq̂|Θ|2 ∀x1 ∈ [Xms, Xme],
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and

Ã = AH − ∂BH

∂x3
+

∂2CH

(∂x3)2
− ∂DH

∂x1
,

B̃ = −BH + 2
∂CH

∂x3
,

C̃ = CH,

D̃ = −DH.

and the vector q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T. The complete derivation of these
equations is found in Pralits et al. (2000). The above equations are subjected
to the following boundary conditions at the wall

[u∗, v∗, w∗, θ∗] (x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],
[U∗, V ∗] (x1, 0) = [0, 0] ∀x1 ∈ [X0, X1],

T ∗(x1, 0) = 0 ∀x1 ∈ [Xcs, Xce],

T ∗(x1, 0) = 0 ∀x1 ∈ [X0, Xcs) and ∀x1 ∈ (Xce, X1] TW1,

∂T ∗

∂x3
(x1, 0) = 0 ∀x1 ∈ [X0, Xcs) and ∀x1 ∈ (Xce, X1] TW2,

and in the free stream
lim

x3→+∞
[u∗, v∗, w∗, θ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

lim
x3→+∞

[U∗, V ∗, W ∗, T ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1].

The initial conditions are
q∗(X1, x

3) = (1− ξ)q∗
1(x3) ∀x3 ∈ [0, +∞),

r∗(X1) = (1− ξ)r∗1 ∀x3 ∈ [0, +∞),
Q∗(X1, x

3) = 0 ∀x3 ∈ [0, +∞),

with q∗
1 and r∗1 evaluated at x1 = X1 as

q∗
1 = |Θ|2D+(M − c1I)q̂, r∗1 = |Θ|2 c1,

c̄1 =

∫ ∞

0

(
q̂HM D+H

(
∂A
∂α

+
∂B
∂α

)
q̂− iq̂HM q̂

)
dx3

∫ ∞

0
q̂HD+H

(
∂A
∂α

+
∂B
∂α

)
q̂ dx3

,

where D+ = (DH)−1.

A.3. Optimality condition

The optimality condition is

κ

RePr
∂T ∗(x1, 0)

∂x3
=

{
−2χ∗

(
Tw − Tad0

(x1, 0)
)
∀x1 ∈ Γc,

0 ∀x1 /∈ Γc,
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where

χ∗ =

(
1

4EC

∫ Xce

Xcs

(
κ

RePr
∂T ∗(x1, 0)

∂x3

)2

dx1

) 1
2

.

Appendix B. Thermodynamic properties
The thermodynamic properties are calculated assuming that the fluid is a ther-
mally ideal gas. The dynamic viscosity µ, heat conductivity κ, and specific heat
cp are therefore given as functions of temperature only.

• Dynamic viscosity µ:
(a) Two part Sutherland law

for T > 110.4 K

µ(T ) = 1.458 · 10−6 T 3/2

T + 110.4
[kg/(m · s)]

for T ≤ 110.4 K

µ(T ) = 0.0693873 · 10−6 T [kg/(m · s)]
(b) A 4th degree polynomial fit to experimental data, see table 1.

• Heat conductivity κ:
(a) Keye’s formula

for T > 80 K

κ(T ) = 2.648151 · 10−3 T 1/2

1 +
245.4

T
10−12/T

[W/(m · K)]

for T ≤ 80 K

κ(T ) = 9.335056752 · 10−5 T [W/(m · K)]

(b) A 4th degree polynomial fit to experimental data, see table 1.

• Specific heat cp:
A 4th degree polynomial fit to experimental data, see table 1.

• Bulk viscosity µv:
Formula from Bertolotti (1998)

µv(T )
µ(T )

=
(

µv

µ

)

T=293.3K

exp
[
T − 293.3

1940

]
,

with µv/µ = 0.8 at 1000 K. Valid within the temperature range of 200
to 1400 K.
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expr = a0 + a1 T + a2 T 2 + a3 T 3 + a4 T 4

µ cp κ

ai [kg/(m · s)] [J/(kg · K)] [W/(m · K)]
0 −1.561632014 · 10−7 1.058183878 · 103 −1.305884703 · 10−3

1 7.957989891 · 10−8 −4.52457049 · 10−1 1.099134492 · 10−4

2 −6.930149679 · 10−11 1.141345135 · 10−3 −6.84697087 · 10−8

3 4.068157752 · 10−14 −7.957390422 · 10−7 3.327083322 · 10−11

4 −9.182486030 · 10−18 1.910858151 · 10−10 −5.397866355 · 10−15

Table 1. Values of the coefficients used in the polynomial fit
to the experimental data, see Bertolotti (1991).
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Shape optimization for delay of
laminar-turbulent transition

By Olivier Amoignon3, Jan O. Pralits1,2, Ardeshir Hanifi2,
Martin Berggren2,3, and Dan S. Henningson1,2

Theory and results are presented for an approach to perform aerodynamic
shape optimization with the aim of transition delay, and thus a decrease of
the viscous drag. Linear stability theory is used to calculate the growth rate
of perturbations with infinitely small amplitude, superimposed on the laminar
mean flow. The location of laminar-turbulent transition is assumed to occur
at the location where the total amplification of disturbances, with respect to
the first streamwise position where the disturbance starts to grow, attains an
empirically determined value, whose logarithm is generally denoted N . In the
present approach, an iterative gradient-based optimization procedure is used
with the aim of minimizing an objective function based on the disturbance
kinetic energy. Here, the gradients of interest are efficiently evaluated using
adjoint equations. The inviscid flow is obtained by solving the Euler equations
for compressible flows, and the viscous mean flow is obtained from the solution
of the boundary layer equations for compressible flows on infinite swept wings.
The evolution of convectively unstable disturbances is analyzed using the linear
parabolized stability equations (PSE). Large effort is used here to explain the
state and adjoint equations involved, gradient evaluation, and validity tests of
the gradient computed using the solution of the adjoint equations. Some first
results are presented of shape optimization for transition delay. Numerical
tests are carried out on the RAE 2822 airfoil and are formulated to reduce the
disturbance kinetic energy while maintaining a fixed volume, angle of attack,
leading edge radius and trailing edge position. Tests are also carried out to
simultaneously reduce the wave drag and the disturbance kinetic energy while
maintaining lift and pitch moment coefficients near their values at initial design.

1. Introduction
In the aeronautics industry, reducing the viscous drag on a wing while main-
taining operational properties such as lift is of great interest, and the research

1Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden.
2Swedish Defence Research Agency, FOI, Aeronautics Division, FFA, SE-172 90 Stockholm,
Sweden.
3Department of Scientific Computing, Uppsala University, SE-751 05 Uppsala, Sweden
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in this area regarding active flow control is vast, see Joslin (1998) for a thor-
ough review on the topic of Laminar Flow Control (LFC). It is known that the
viscous drag increases dramatically as the boundary layer flow changes from a
laminar to a turbulent state. Therefore, an increase of the laminar portion of
the wing, that is, moving downstream the point of laminar-turbulent transition,
may decrease the viscous drag. Design of a geometry such that the laminar
portion is increased or maximized is commonly denoted Natural Laminar Flow
(NLF) design, which is a simpler and more robust technique than the ones
devised in the area of active flow control. Once a feasible geometry is found,
no additional devices such as suction systems, sensors, or actuators need to be
mounted.

Transition in the boundary layer on aircraft wings is usually caused by
breakdown of small disturbances that grow as they propagate downstream.
The growth of these disturbances can be analyzed using linear stability theory,
in which it is assumed that perturbations with infinitely small amplitude are
superimposed on the laminar mean flow. The growth rate can then be used to
predict the transition location using the so called eN method, see van Ingen
(1956); Smith & Gamberoni (1956); Arnal (1993). In this method it is assumed
that transition will occur at the location where the total amplification of the
disturbance, with respect to the first streamwise position where the disturbance
starts to grow, attains an empirically determined value, whose logarithm is
generally denoted by N .

A distinctive feature of any flow design process is its computational cost.
Despite that the complete flow field can in principle be obtained by solving the
complete Navier-Stokes equations numerically, the computation is often very
costly, or even totally out of reach for any existing computer when transitional
and turbulent flow in complex geometries are involved. It is therefore common
practice to introduce approximations. One approach, appropriate for flow over
slender bodies, is to divide the flow into an inviscid outer flow field, and a
viscous part describing the boundary layer at the surface. In this way, the
growth rate of a disturbance superimposed on the boundary layer of a given
geometry can be calculated as follows:

1 the solution of the equations describing the inviscid flow provides a
pressure distribution on the surface of a given body,

2 the viscous mean flow is obtained by solving the boundary layer equa-
tions given the pressure distribution on the surface of the body and the
geometry,

3 the linear stability equations are solved for a given mean flow and ge-
ometry, providing the growth rate.

Using this approach, three state equations must be solved (inviscid, boundary
layer, linear stability), for any variation of the geometry in order to accurately
predict the growth rate. However, if we consider the inviscid flow being the
solution of the Euler equations, such a computation might be completed in
minutes.
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Independently from the strategy that enables to predict the growth rate
of propagating disturbances for given geometry and flight data (Mach num-
ber, angle of attack, and Reynolds number), there are several approaches to
the NLF design problem. Based on the knowledge how the growth rate of
convectively unstable disturbances change due to variations of the pressure
distribution, see for instance Schubauer & Skramstad (1948); Malik (1989);
Zurigat et al. (1990), an existing pressure distribution for a given wing can be
altered manually followed by an analysis of the growth rate. Other approaches
exist, where approximative relations have been derived between variations in
the pressure distribution and N -factors, see Green & Whitesides (1996). Once
a pressure distribution has been obtained that meets a given criteria regarding
transition delay, a geometry must be designed which meets this “target” pres-
sure distribution. Such an analysis is sometimes denoted inverse design, and
was first studied by Lighthill (1945) who solved it for the case of incompressible
two-dimensional flow by conformal mapping. A review of different techniques
to perform inverse design can be found in Jameson (1988).

In this presentation, we investigate an optimal-control approach of a shape
optimization problem that is formulated to perform NLF design. Optimal
control theory concerns optimization problems ’constrained’ by ordinary or
partial differential equations (PDEs). The inverse design problem, mentioned
above, may be attacked using an optimal-control approach: Given a flow model
to compute the pressure distribution p on a surface Γ, that is, a system of PDEs
with boundary conditions on Γ, find the shape Γ̂ that minimizes a measure of
the difference between the target pressure pt and p. A relevant measure, called
objective function in the context of optimization, is

J (p, Γ) =
1
2

∫

Γ
|p (x)− pt (x) |2dx . (1)

The target pressure could, for example, be such that it damps the growth of
disturbances as mentioned above. Let us denote

A (p, Γ) = 0 (2)

the relation between the shape Γ, the system of PDEs with boundary conditions
(on Γ), and its solution p. The optimization problem is summarized as

min
Γ ∈ F

J (p, Γ) subject to A (p, Γ) = 0 , (3)

where F is a set of admissible shapes. The system of PDEs, denoted A, imposes
constraints between the pressure distribution and the subject of optimization,
the shape Γ. The objective function J depends on the shape Γ as well as on
the solution p of a PDE. Moreover, the pressure p is a function of Γ if it is the
unique solution of the system (2). We denote by J̃ (Γ) the function defined by

J̃ (Γ) = J (p (Γ) , Γ) , (4)
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where p (Γ) is solution of the PDE (2). The problem (3) may then be reformu-
lated in the nested form

min
Γ ∈ F

J̃ (Γ) . (5)

Gradient-based methods prove to be the most efficient for solving problems
like (5), assumed that J̃ (4) is continuous and differentiable. These methods
are explained in details in text books on optimization, for example Nocedal
& Wright (1999). Meanwhile, the computation of the gradient of an objec-
tive function like J̃ (4) is not trivial as J (1) depends explicitly on the design
variable, here the shape Γ, as well as implicitly through the pressure, which is
uniquely defined by the shape through the state equation (2). This is often a
major difficulty in optimal-control problems. However, a practical method con-
sists in approximating each component of the gradient ∇J̃ by finite difference
(each is a partial derivative). The cost is prohibitive for large scale problems,
that is, for a large number of design parameters, due to expensive solutions of
the PDEs (a 3D RANS solution may take days of computation). The cure is
the solution of an additional PDE, called the adjoint problem, as it provides
a means to calculate ∇J̃ at a cost that is independent of the number of pa-
rameters. The use of adjoint equations in design optimization may be viewed
as an off-spring of the theory of optimal control for PDE developed by Lions
(1971) in the 60’s. Based on this approach, the optimal shape of a body in
viscous flow at very low Reynolds number, called Stokes flows, could be derived
by Pironneau (1973) in 1973. In 1988, Jameson (1988) formulated the adjoints
of the full potential flow equations and of the Euler equations in order to solve
inverse problems. Thereafter, research teams have developed adjoint codes for
industrial applications to improve the design of aircrafts in which CFD codes
are used for the flow computation (see Anderson & Bonhaus 1999; Baysal &
Ghayour 2001; Burgreen 1994; Elliot 1998; Enoksson 2000; Jameson 1997; Mo-
hammadi 1997; Reuther 1999; Soemarwoto 1996; Sung & Kwon 2000). The
reader will find an introduction to the method of adjoints, applied to aerody-
namic design, in Giles & Pierce (2000). In our approach of NLF design, three
systems of PDEs are solved sequentially, in order to calculate the objective
function J , which is a function of the disturbance kinetic energy. The present
work emphasizes the relation between the three adjoint problems that need to
be solved for the calculation of the gradient ∇J .

Linear stability analysis has been used in the context of optimal NLF de-
sign in a number of investigations. In Green & Whitesides (1996), an iterative
approach uses a target pressure-N-factor relationship to compute the desired
pressure distribution, and an inverse method to find the geometry which sat-
isfies the computed pressure distribution. The N -factor method has also been
used in multidisciplinary optimization problems of whole aircraft configura-
tions, where aerodynamics is considered as one discipline. In Lee et al. (1998),
it was used to predict the onset of transition in order to determine where to turn
on a chosen turbulence model in the Reynolds-Averaged-Navier-Stokes equa-
tions, enabling calculation of the friction drag. In Manning & Kroo (1999), a
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surface panel method was coupled with an approximative boundary layer cal-
culation, and stability analysis. Note however, that none of these investigations
explicitly calculated the sensitivities of a quantity obtained from the linear sta-
bility analysis such as the N -factor or disturbance kinetic energy, with respect
to the geometry.

In the approach taken here, we use an iterative gradient-based optimization
procedure (see Byrd 1994) with the aim of minimizing an objective function,
based on the disturbance kinetic energy, by changing the geometry of an airfoil.
The inviscid flow is obtained by solving the Euler equations for compressible
flows, and the viscous mean flow is obtained from the solution of the boundary
layer equations for compressible flows on infinite swept wings. The evolution of
convectively unstable disturbances is analyzed in the framework of nonlocal sta-
bility theory, which means that the growth of the boundary layer is taken into
account, as opposed to the commonly used linear local stability theory. Indi-
rectly, through minimization of the quadratic form associated with the Poisson
equation, the design variables control the displacements of the nodes that are
situated on the airfoil. Linear constraints on the displacements are accounted
for in this parameterization so that they are fulfilled independently from the
design variable. In this way we fix the volume, or cross section area, a limited
region of the airfoil (around the leading edge) and the position of the trailing
edge. The resulting quadratic programming formulation of the displacements
is comparable to the formulation of the obstacle problems in mechanics. This
technique generates smooth shapes at each optimization step without reducing
the set of possible shapes, within the limit of the constraints and the size of the
discretization. A simple mesh movement algorithm is used to propagate the
nodal displacements from the airfoil to the rest of the computation domain of
the inviscid flow. The gradient of the objective function is obtained from the
solution of adjoint state equations, mesh sensitivities, and sensitivities of the
parameterization.

The current report is an introduction and gives the status of an ongoing
project on shape optimization for transition delay. Therefore a large effort is
made to present the state and adjoint equations involved, gradient evaluation,
and validity tests of the gradient computed using the solution of the adjoint
equations. As this work is a joint project between one regarding shape opti-
mization using the Euler equations, and another using the boundary layer and
parabolized stability equations (PSE) for disturbance control, differences occur
in the numerical schemes and methods used to derive the adjoint equations.
Issues related to the latter is also discussed herein. Finally, some first results
are presented of shape optimization for transition delay.

2. Theory
The aim of the current work is to perform gradient-based shape optimization in
order to delay transition, and thus decrease the viscous drag, possibly in con-
junction with wave-drag minimization. The objective function to be minimized
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is a measure of the disturbance growth. Its value is obtained by computing con-
secutively the inviscid flow for a given geometry, the viscous mean flow given the
pressure distribution from the inviscid solution, and finally the linear growth
rate for a given mean flow. In this section a concise description is given of the
state equations involved, objective function based on the disturbance growth,
gradient derivation, and resulting adjoint equations.

2.1. State equation for the inviscid flow

The system of Euler equations governs the flow of an inviscid compressible
fluid and expresses the conservation of mass, momentum and energy. In steady
state, the following integral form holds for any fixed region V with boundary
∂V ∫

∂V
f · n̂dS = 0 , (6)

where n̂ is the unit normal, outward oriented, of the control volume V , and f
is the 3-by-1 matrix of tensors

f =




ρu

ρu⊗ u + Ip
u (E + p)



 , (7)

where E, the total energy per unit volume, is related to the pressure p, the
density ρ and the velocity u. In the framework of ideal fluids, assuming the
law of perfect gas applies, E is given by

E =
p

γ − 1
+

1
2
ρu2 . (8)

In the case of an inviscid fluid, the condition

u · n̂ = 0 (9)

applies at the walls. The fluid state in conservative variables is denoted w and
is the 3-by-1 matrix

w =




ρ
m
E



 , (10)

where m = ρu. Primitive variables are also used at some parts of the imple-
mentation and are denoted v, the 3-by-1 matrix

v =




ρ
u
p



 . (11)

In order to solve (6)-(9) for the flow around an airfoil, a finite sub-domain Ω
is defined. Artificial boundary conditions are thus needed, and in the case of
an airfoil, these are usually farfield conditions. We use the program Edge (see
Eliasson 2001), a node-centered and edge-based finite-volume solver for Euler
and the Reynolds Averaged Navier–Stokes equations (RANS). It is used here
to solve equations (6)-(9) plus boundary conditions at the farfield.
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nij

ji

Figure 1. Dual grid (dashed lines) for inviscid flow computation.

Given a triangulation Th of the discrete domain Ω, we will denote by V(Ω)
the set of all node indexes, Vi the dual control volume at node i, and nij

the surface normal vector associated with edge ij (see Figure 1). For an
introduction to this type of discretization, we refer to Barth (1991). The set of
edges is denoted E(Ω). The steady state equations are solved by explicit time
integration of the system

Vi
dwi

dt
+ Ri = 0, ∀i ∈ V(Ω), (12)

until the residuals Ri vanish within some tolerance. Convergence is acceler-
ated by local time stepping, multigrid, and implicit residual smoothing. The
residuals Ri are

Ri =
∑

j∈Ni

(nij · fij + dij) ∀i ∈ V(Ω) ,

Ri =
∑

j∈Ni

(
nij · fij + dij + ni · fbc

i

)
∀i ∈ V(∂Ω) .

(13)

where Ni is the set of indexes of nodes that are connected to node i with an
edge. The residuals may be assembled by a single loop over all edges and all
boundary nodes (see Eliasson 2001). The fluxes f on a control surface associated
with nij is approximated by fij which in this study is

fij =
1
2

(fi + fj) with fi = f (wi) , (14)

which gives a central scheme. An artificial dissipation flux dij , a blend of
second and fourth-order differences of Jameson type is used,

dij = εij2 (wi −wj) + (εi4∇2wi − εj4∇2wj) , (15)

with
∇2wi =

∑

k∈Ni

(wk −wi) ∀i ∈ V(Ω) . (16)

The second-order dissipation is active where pressure gradients are large to
prevent oscillations in the vicinity of shocks. The fourth-order dissipation is
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meant to remove oscillating solutions from grid point to grid point while pre-
serving the second-order accuracy of the central scheme away from the shocks.
The fluxes f at the boundary are computed using a weak formulation of the
boundary conditions (see Eliasson 2001) here denoted fbc. At node i on a wall,
applying (9) for computing fi · ni amounts to taking

fbc
i =




0

Ipi

0



 . (17)

At node i on a farfield boundary the fluxes (7) are computed using either the
primitive farfield data v∞, for incoming characteristics, or an extrapolation of
the primitive variables vi for characteristics leaving the domain of computation:

fbc
i = f (vc

i (n̂i)) ,

vc
i (n̂i) = L (n̂i,v∞)H (λi)L−1 (n̂i,v∞)vi

+ L (n̂i,v∞) (I−H (λi))L−1 (n̂i,v∞)v∞ ,

(18)

where L (n̂i,v∞) is a matrix of left eigenvectors that diagonalizes the Jacobian
matrix of the flux in primitive variables along the outward-directed unit normal
n̂i, H (λi) is a diagonal matrix whose diagonal is 0 for negative eigenvalues and
1 for positive ones, and I is the identity matrix.

2.2. State equations for the viscous flow

The flow field considered here is the boundary layer on a swept wing with
infinite span, which is obtained by solving the mass, momentum, and energy
conservation equations for a viscous compressible fluid. The equations are writ-
ten in an orthogonal curvilinear coordinate system with streamwise, spanwise,
and wall-normal coordinates denoted as x1, x2 and x3 respectively. A length
element is defined as ds2 = (h1dx1)2 + (h2dx2)2 + (h3dx3)2 where hi is the
scale factor. The total flow field, qtot is decomposed into a mean, q̄, and a
perturbation part, q̃, as

qtot(x
1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t)

where q̄ ∈ [U, V, W, P, T, ρ] and q̃ ∈ [ũ, ṽ, w̃, p̃, T̃ , ρ̃]. Here U, V, W are the
streamwise, spanwise and wall-normal velocity components of the mean flow,
respectively, T is the temperature, ρ the density, and P the pressure. The
lower case variables correspond to the disturbance quantities. The equations
are derived for a quasi three-dimensional mean flow with zero variation in
the spanwise direction. The evolution of convectively unstable disturbances
is analyzed in the framework of the nonlocal stability theory. All flow and
material quantities are made dimensionless with the corresponding reference
flow quantities at a fixed streamwise position x!

0, except the pressure, which
is made dimensionless with twice the corresponding dynamic pressure. Here,
dimensional quantities are indicated by the superscript 4. The reference length
scale is taken as l!0 = (ν!

0x!
0/U!

0 ) 1
2 . The Reynolds and Mach number are defined
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as Re = l!0U
!
0 /ν!

0 and M = U!
0 /(RγT !

0 ) 1
2 respectively where R is the specific

gas constant, ν the kinematic viscosity and γ the ratio of the specific heats. In
the proceeding sections the scale factors h2 = h3 = 1 are due to the infinite
swept wing assumption.

2.2.1. Mean-flow equations

The dimensionless boundary-layer equations describing the steady viscous com-
pressible mean flow on a swept wing with infinite span written on primitive
variable form are given as

1
h1

∂(ρU)
∂x1

+
∂(ρW )
∂x3

= 0, (19)

ρU

h1

∂U

∂x1
+ ρW

∂U

∂x3
− 1

h1

dPe

dx1
+

1
Re

∂

∂x3

(
µ
∂U

∂x3

)
= 0, (20)

ρU

h1

∂V

∂x1
+ ρW

∂V

∂x3

1
Re

∂

∂x3

(
µ
∂V

∂x3

)
= 0, (21)

cp
ρU

h1

∂T

∂x1
+ cpρW

∂T

∂x3
+

1
RePr

∂

∂x3

(
κ
∂T

∂x3

)
+

(γ − 1)
UM2

h1

dPe

dx1
+ (γ − 1)

µM2

Re

[(
∂U

∂x3

)2

+
(
∂V

∂x3

)2
]

= 0, (22)

where the dynamic viscosity is given by µ, specific heat at constant pressure
cp, and heat conductivity by κ. Under the boundary layer assumptions, the
pressure is constant in the direction normal to the boundary layer, i. e. P =
Pe(x1). The equation of state can then be expressed as

γM2Pe = ρT,

and the streamwise derivative of the pressure is given as
dPe

dx1
= −ρeUe

dUe

dx1

Here variables with subscript e are evaluated at the boundary layer edge. For
a given pressure distribution given by the pressure coefficient

Cp =
P ! − P !

∞
1
2ρ

!
∞Q!

∞
,

where Q!
∞ is the dimensional free stream velocity, and the sweep angle given

by ψ, the values at the boundary layer edge are given as

Pe =
P

P∞

1
γM2

, Te =
(

P

P∞

) γ−1
γ

, ρe =
(

P

P∞

) 1
γ

, Ue =
√

Q2
e − V 2

e ,

where
P

P∞
= 1 +

1
2
CpγM

2, Q2
e = 1 +

1− Tecp∞

(γ − 1)1
2M2

, and Ve = sinψ.
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Here, we have used the assumptions that for an inviscid, steady, and adiabatic
flow the total enthalpy is constant along a streamline, and the isentropic re-
lations are used to obtain the relation between total and static quantities.
A domain ΩB is defined for equations (19)–(22) such that x1 ∈ [XS , X1],
x2 ∈ [Z0, Z1] and x3 ∈ [0,∞). The no-slip condition is used for the veloc-
ity components and the adiabatic wall condition for the temperature. In the
free stream, the streamwise and spanwise velocity components, and the tem-
perature takes the corresponding values at the boundary layer edge. This can
be written as[

U, V, W,
∂T

∂x3

]
(x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [XS , X1],

lim
x3→+∞

[U, V, T ] (x1, x3) = [Ue, Ve, Te] (x1) ∀x1 ∈ [XS , X1],
(23)

These non-linear equations are solved in an iterative way. From (20)–(22) we
obtain the solution of Q̃ = (U, V, T ) using the boundary condition above for a
given value of W . Equation (19) is then integrated in the wall normal direction
to obtain W . The solution is considered converged when the relative change in
the wall-normal derivative of the streamwise velocity component at the wall is
below a specified value. In the proceeding sections we consider Q = (U, V, W, T )
to be the solution of the boundary layer state. This is made to simplify the
presentation.

2.2.2. Disturbance equations

The perturbations are assumed to be time- and spanwise periodic waves as

q̃(xi, t) = q̂(x1, x3)Θ, where Θ = exp

(
i
∫ x1

X0

α(x′)dx′ + iβx2 − iωt

)
.

(24)
Here α is the complex streamwise wavenumber, β the real spanwise wavenum-
ber, and ω the real disturbance angular frequency. Disturbances are superim-
posed on the mean flow at a streamwise position denoted X0. We assume a scale
separation Re−1 between the weak variation in the x1-direction and the strong
variation in the x3-direction. Further, it is assumed that ∂/∂x1 ∼ O(Re−1)
and W ∼ O(Re−1). Introducing the ansatz given by equation (24) and the
assumptions above in the linearized governing equations, keeping terms up to
order O(Re−1), yields a set of nearly parabolic partial differential equations
(see Bertolotti et al. 1992; Malik & Balakumar 1992; Simen 1992; Herbert
1997). The system of equations, called Parabolized Stability Equations (PSE),
are lengthy and therefore written here as

Aq̂ + B ∂q̂
∂x3

+ C ∂2q̂
(∂x3)2

+ D 1
h1

∂q̂
∂x1

= 0, (25)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )T. The coefficients of the 5× 5 matrices A,B, C and D
are found in Pralits et al. (2000). A domain ΩP for equation (25) is defined such
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that x1 ∈ [X0, X1], x2 ∈ [Z0, Z1] and x3 ∈ [0,∞). The boundary conditions
corresponding to equation (25) are given as

[
û, v̂, ŵ, T̂

]
(x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

lim
x3→+∞

[
û, v̂, ŵ, T̂

]
(x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],

To remove the ambiguity of having x1-dependence of both the amplitude and
wave function in the ansatz, and to maintain a slow streamwise variation of
the amplitude function q̂, a so called ’auxiliary condition’ is introduced

∫ +∞

0
q̂H ∂q̂
∂x1

dx3 = 0, (26)

where superscript H denotes the complex conjugate transpose. Equation (25)
is integrated in the downstream direction normal to the leading edge with
an initial condition given by local stability theory. At each x1-position the
streamwise wavenumber α is iterated such that the condition given by equation
(26) is satisfied. After a converged streamwise wavenumber has been obtained,
the growth rate of the disturbance kinetic energy can be calculated from the
relation

σ = −αi +
∂

∂x1
(ln
√

E),

where

E =
∫ +∞

0
ρ (|û|2 + |v̂|2 + |ŵ|2) dx3.

The growth rate can then be used to predict the transition location using the
so called eN -method. The N -factor based on the disturbance kinetic energy is
given as

NE =
∫ X

Xn1

σ dx1,

where Xn1 is the lower branch of the neutral curve. A complete description of
equation (25) is found in Pralits et al. (2000), and the numerical schemes used
here are given in Hanifi et al. (1994).

2.3. Objective function related to viscous drag

The objective here is to use shape optimization to reduce the viscous drag
on a wing. A reduction of the viscous drag can be seen as an increase of
the laminar portion of the wing, that is, to move the location of laminar-
turbulent transition further downstream. It is therefore important that the
chosen objective function can be related to the transition process. One choice
is to measure the kinetic energy of a certain disturbance at a downstream
position, say Xf . This can be written as

Ef =
1
2

∫ Z1

Z0

∫ +∞

0
q̃HM q̃ h1dx2dx3

∣∣∣∣∣
x1=Xf

, (27)
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where M = diag(0, 1, 1, 1, 0) which means that the disturbance kinetic energy
is calculated from the disturbance velocity components. If the position Xf
is chosen as the upper branch of the neutral curve, then the measure can be
related to the maximum value of the N -factor of a given disturbance as

Nmax = ln

√
Ef

E0

, (28)

where E0 is the disturbance kinetic energy at the first neutral point. If in
addition, the value of the N -factor of the measured disturbance is the one
which first reaches the transition N -factor, then the position can be related to
the onset of laminar-turbulent transition. It is however not clear, a priori, that
minimizing such a measure will damp the chosen or other disturbances in the
whole unstable region, especially if different types of disturbances are present,
such as TS and cross-flow waves. For Blasius flow, it has been shown that an
objective function based on a single TS wave is sufficient to successfully damp
the growth of other TS waves (see Pralits et al. 2002; Airiau et al. 2003). On
a wing however, it is common that both TS and cross-flow waves are present
simultaneously. An alternative is therefore to measure the kinetic energy as
the streamwise integral over a defined domain. Using such an approach, several
different disturbances can be accounted for, with respective maximum growth
rate at different positions. Here, the size of K disturbances superimposed on
the mean flow at an upstream position X0, is measured by their total kinetic
energy as

EK =
1
2

K∑

k=1

∫ Xme

Xms

∫ Z1

Z0

∫ +∞

0
q̃H

k M q̃kh1dx1dx2dx3. (29)

Here Xms and Xme are the first and last streamwise position between which the
disturbance kinetic energy is integrated, and adds the possibility to evaluate EK
in a streamwise domain within [X0, X1]. For a measure of a single disturbance,
expression (29) is denoted E1.

2.4. Derivation of the gradient

The objective function evaluated for a single disturbance J ≡ E1, expres-
sion (29), depends explicitly on q̃ and on the (Euler) mesh1, here defined by
the vector of nodal coordinates X, that is

J ≡ J(q̃,X) . (30)

The aim of our investigation is to minimize J (30), where q̃ is the solution of
the PSE (25). The latter is here given as

Aq (q̃,Q,X) = 0 , (31)

1The nodes on the airfoil are common to the three discretized equations: Euler, BLE and
PSE.
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Objective function: Vq × VX

{q̃,X} −→ R
J (q̃,X)

subject to (31): VQ × VX

{Q,X} −→ R
JQ (Q,X) ≡ J (q̃ (Q,X) ,X)

subject to (31)-(32): Vw × VX

{w,X} −→ R
Jw (w,X) ≡ JQ (Q (w,X) ,X)

subject to (31)-(33): VX

X −→ R
JX (X) ≡ Jw (w (X) ,X)

Table 1. Functionals defined by the objective function J and
the state equations (31)-(33).

where (31) is defined for given X and Q. The mean flow Q is solution of the
BLE (19)-(22), here denoted

AQ (Q,w,X) = 0 , (32)

which is defined for a given X and w. Finally, the inviscid flow w is solution
of the Euler equations (6)-(9), denoted

Aw (w,X) = 0 . (33)

In the presentation of the adjoint problems it will be convenient to introduce
the functions JX , JQ and Jw, defined in Table 1. These are just objective func-
tion (30) in which various intermediate quantities are regarded as independent
variables.

The mesh nodes X are calculated from the displacements y of the nodes
on the airfoil, by a mesh movement algorithm. This can be written X ≡ X (y),
and is described in §3. The displacements are controlled by the parameters a,
that is y ≡ y (a), see §3. Given a function JX of the variable X, for example
defined as in Table 1, it will also be convenient to define Jy and Ja, as

Jy (y) = JX (X (y)) ,

Ja (a) = Jy (y (a)) .
(34)

To summarize our approach, the aim is to minimize J , subject to (31)-(33)
with respect to the design parameters a, using a gradient-based method. This
requires the computation of the gradient ∇Ja which is computed from ∇JX

in §3. The aim of this section is to show that ∇JX can be computed at an
efficient cost using an optimal control approach.

In the following it is assumed that q̃ ∈ Vq , Q ∈ VQ, w ∈ Vw, and X ∈ VX ,
and that Vq , VQ, Vw and VX are vector spaces equipped with the inner products
〈·, ·〉q, 〈·, ·〉Q, 〈·, ·〉w and 〈·, ·〉X , respectively. Furthermore, it is assumed that
all mappings are differentiable and, for example, ∂Aq/∂q̃ denotes linearization



210 O. Amoignon, J. Pralits, A. Hanifi, M. Berggren & D. S. Henningson

with respect to variable q̃ of the mapping Aq, at the given state {q̃,Q,w,X}.
The notations (∂Aq/∂q̃)−1, and (∂Aq/∂q̃)∗, denote the inverse, and the ad-
joint of the linearized mapping ∂Aq/∂q̃, respectively. Finally, the notation
(∂Aq/∂q̃) δq̃ denotes the application of ∂Aq/∂q̃ on δq̃.

2.4.1. Sensitivity of the PSE

For arbitrary variations {δQ, δX} ∈ VQ × VX , of {Q,X} in the PSE (31), the
first variation of the solution of the PSE is denoted δq̃ ∈ Vq, and is defined by
the sensitivity equations

∂Aq

∂q̃
δq̃ = −∂Aq

∂Q
δQ− ∂Aq

∂X
δX . (35)

Furthermore, for any variations {δq̃, δX} in Vq×VX we define the first variation
of the objective function J as

δJ =
〈
∂J

∂q̃
, δq̃
〉

q

+
〈
∂J

∂X
, δX

〉

X

(36)

In the remaining, δq̃ is solution of the sensitivity equations (35), which yields
a new expression for (36)

δJ =

〈
∂J

∂q̃
,

(
∂Aq

∂q̃

)−1(
−∂Aq

∂Q
δQ− ∂Aq

∂X
δX
)〉

q

+
〈
∂J

∂X
, δX

〉

X

, (37)

and, for q̃ solution of (31) and δq̃ solution of (35) , the definition of JQ (Table 1)
yields

δJQ = δJ . (38)

The gradient of the functional JQ is ∇JQ = {∂JQ/∂Q, ∂JQ/∂X} and is a
vector of the product space VQ×VX such that for all {δQ, δX} in VQ×VX we
have

δJQ =
〈
∂JQ

∂Q
, δQ

〉

Q

+
〈
∂JQ

∂X
, δX

〉

X

. (39)

Using the definition of the adjoint of the operator ∂Aq/∂q̃ in expression (37)
and using (38), we obtain

δJQ =

〈((
∂Aq

∂q̃

)−1
)∗

∂J

∂q̃
,−∂Aq

∂Q
δQ− ∂Aq

∂X
δX

〉

q

+
〈
∂J

∂X
, δX

〉

X

,

(40)
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which is in turn rewritten using the definition of the adjoint of ∂Aq/∂Q, and
∂Aq/∂X, respectively, as

δJQ = −
〈(

∂Aq

∂Q

)∗
((

∂Aq

∂q̃

)−1
)∗

∂J

∂q̃
, δQ

〉

Q

−
〈(

∂Aq

∂X

)∗
((

∂Aq

∂q̃

)−1
)∗

∂J

∂q̃
, δX

〉

X

+
〈
∂J

∂X
, δX

〉

X

.

(41)

Therefore, by introducing the adjoint state q∗, solution of the system
(
∂Aq

∂q̃

)∗
q∗ =

∂J

∂q̃
, (42)

we obtain that

∂JQ

∂Q
= −

(
∂Aq

∂Q

)∗
q∗ and

∂JQ

∂X
=
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ . (43)

The cost for obtaining gradient of JQ is reduced to one solution of the system
(42) and two matrix–vector products as shown in (43).

2.4.2. Sensitivity of the BLE

For arbitrary variations {δw, δX} ∈ Vw × VX , of {w,X} in the BLE (32), the
first variation of the solution of the BLE is denoted δQ ∈ VQ, and is defined
by the sensitivity equations

∂AQ

∂Q
δQ = −∂AQ

∂w
δw − ∂AQ

∂X
δX . (44)

Furthermore, from the definition (39) and the expression of the gradient (43),
for arbitrary variations {δQ, δX} in VQ × VX , the variation δJQ is

δJQ =
〈
−
(
∂Aq

∂Q

)∗
q∗, δQ

〉

Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗, δX

〉

X

. (45)

In the following, δQ is solution of the sensitivity equation (44). The variation
δJQ is expressed, making use of (45) and (44), as

δJQ =

〈
−
(
∂Aq

∂Q

)∗
q∗,

(
∂AQ

∂Q

)−1(
−∂AQ

∂w
δw − ∂AQ

∂X
δX
)〉

Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗, δX

〉

X

,

(46)

and, for Q solution of (32) and δQ solution of (44) , the definition of Jw

(Table 1) yields
δJw = δJQ . (47)
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The gradient of Jw is the vector {∂Jw/∂w, ∂Jw/∂X} in the product space
Vw × VX such that for all {δw, δX} in Vw × VX we have

δJw =
〈
∂Jw

∂w
, δw

〉

w

+
〈
∂Jw

∂X
, δX

〉

X

. (48)

Using the adjoint of the inverse linearized BLE operator (∂AQ/∂Q)−1 in (46),
δJw (47) is expressed as

δJw =

〈
−
((

∂AQ

∂Q

)−1
)∗(

∂Aq

∂Q

)∗
q∗,−∂AQ

∂w
δw− ∂AQ

∂X
δX

〉

Q

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗, δX

〉

X

.

(49)

Using the adjoints of ∂AQ/∂w and ∂AQ/∂X enables us to rewrite relation (49)
as

δJw =

〈(
∂AQ

∂w

)∗
((

∂AQ

∂Q

)−1
)∗(

∂Aq

∂Q

)∗
q∗, δw

〉

w

+

〈(
∂AQ

∂X

)∗
((

∂AQ

∂Q

)−1
)∗(

∂Aq

∂Q

)∗
q∗, δX

〉

X

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗, δX

〉

X

.

(50)

It suggests, as previously, to define an adjoint state Q∗ as
(
∂AQ

∂Q

)∗
Q∗ =

(
∂Aq

∂Q

)∗
q∗ . (51)

Setting Q∗ in (50) and identifying the new expression with (48) we obtain

∂Jw

∂w
=
(
∂AQ

∂w

)∗
Q∗ and

∂Jw

∂X
=
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗ . (52)

The use of adjoint equations limits cost for obtaining the gradient of Jw to
solving the systems (42) and (51), as well as four matrix–vector products: one
to ’assemble’ the right-hand side of the adjoint system (51) and three to obtain
the final expression (52).

2.4.3. Sensitivity of the Euler equations

For arbitrary variations δX ∈ VX , of X in the Euler equation (33), the first
variation of solution of the Euler equation is denoted δw ∈ Vw, and is defined
by the sensitivity equation

∂Aw

∂w
δw = −∂Aw

∂X
δX . (53)
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Furthermore, for arbitrary variations {δw, δX} in Vw × VX the first variation
of the functional Jw is expressed, from the gradient (52)

δJw =
〈(

∂AQ

∂w

)∗
Q∗, δw

〉

w

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗, δX

〉

X

(54)

In the following, δw is the solution of the sensitivity equation (53), which
enables us to rewrite expression (54) as

δJw =

〈(
∂AQ

∂w

)∗
Q∗,−

(
∂Aw

∂w

)−1 ∂Aw

∂X
δX

〉

w

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗, δX

〉

X

,

(55)

and, for w solution of (33) and δw solution of (53), the definition of JX (Ta-
ble 1) yields

δJX = δJw . (56)
The gradient of JX is the vector ∇JX in the space VX such that for all δX in
VX we have

δJX = 〈∇JX , δX〉X . (57)
The adjoint of the linearized Euler operator is used in (55) to express δJX (56)
as

δJX =

〈((
∂Aw

∂w

)−1
)∗(

∂AQ

∂w

)∗
Q∗,−∂Aw

∂X
δX

〉

w

+
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗, δX

〉

X

.

(58)

The adjoint instead of the linear operator ∂Aw/∂X is used in (58) and leads
to

δJX =
〈
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗, δX

〉

X

−
〈(

∂Aw

∂X

)∗
((

∂Aw

∂w

)−1
)∗(

∂AQ

∂w

)∗
Q∗, δX

〉

X

,

(59)

The method of adjoint is again applied as we define an adjoint state w∗, here
solution of the system

(
∂Aw

∂w

)∗
w∗ =

(
∂AQ

∂w

)∗
Q∗ , (60)

which enables us to give expression for the gradient (57)

∇JX =
∂J

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗ −

(
∂Aw

∂X

)∗
w∗ . (61)
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The total cost of this gradient evaluation is three adjoint systems (42),
(51) and (60), and five matrix–vector products: two for the assembly of the
right-hand-sides of the systems (51) and (60), and three for the final expression
(61).

2.5. Adjoint equations

The concise description given in §2.4 gives an expression of the gradient ∇JX

(61), which is a function of three adjoint states q∗, Q∗ and w∗. These states
are the solutions of the adjoint of the parabolized stability equations (42), ad-
joint of the boundary layer equations (51) and adjoint of the Euler equations
(60), respectively. There are in principle two different approaches on how to
derive these adjoint equations. In the first, sometimes denoted the “discrete
approach” or “discretize-then-differentiate”, the adjoint equations are derived
from the discretized set of state equations. In the second approach, sometimes
denoted the “continuous approach” or “differentiate-then-discretize”, the ad-
joint equations are derived from the continuous state equations. The continuous
adjoint equations are then discretized, commonly in a similar way as the cor-
responding state equations, in which the original code written for solving the
state is reused with some modifications.

2.5.1. Adjoint of the Parabolized Stability Equations

The adjoint of the parabolized stability equations (42) are derived using a
continuous approach. The complete derivation is found in Pralits et al. (2000)
and they are here given as

Ãq∗ + B̃∂q
∗

∂x3
+ C̃ ∂2q∗

(∂x3)2
+ D̃ 1

h1

∂q∗

∂x1
= S∗

P, (62)

∂

∂x1

∫ +∞

0
q∗H

(
∂A
∂α

+
∂B
∂α

)
q̂ h1dx3 =






0 ∀x1 /∈ [Xms, Xme],

−i|Θ|2
∫ +∞

0
q̂HM q̂ h1dx3 ∀x1 ∈ [Xms, Xme],

(63)

where

S∗
P =






−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
∀x1 /∈ [Xms, Xme],

−r̄∗
∂q̂
∂x1
− ∂(r∗q̂)

∂x1
+ ξMHq̂|Θ|2 ∀x1 ∈ [Xms, Xme],
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and

Ã = AH − ∂BH

∂x3
− m13 BH +

∂2CH

(∂x3)2
+ 2 m13

∂CH

∂x3
− ∂DH

∂x1
,

B̃ = −BH + 2
∂CH

∂x3
+ 2 m13 CH,

C̃ = CH,

D̃ = −DH.

Here, q∗ = (ρ∗, u∗, v∗, w∗, θ∗)T, and the above equations are subject to the
following boundary conditions

[u∗, v∗, w∗, θ∗] (x1, 0) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1],
lim

x3→+∞
[u∗, v∗, w∗, θ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1].

The initial conditions are

q∗(X1, x
3) = (1 − ξ)q∗

1(x3) ∀x3 ∈ [0, +∞),
r∗(X1) = (1 − ξ)r∗1 ∀x3 ∈ [0, +∞),

with q∗
1 and r∗1 evaluated at x1 = X1 as

q∗
1 = |Θ|2D+(M − c1I)q̂, r∗1 = |Θ|2 c1,

c̄1 =

∫ ∞

0
(h1q̂HM D+H

(
∂A
∂α

+
∂B
∂α

)
q̂− iq̂HM q̂) dx3

∫ ∞

0
q̂HD+H

(
∂A
∂α

+
∂B
∂α

)
q̂ h1 dx3

,
(64)

where D+ = (DH)−1. Equation (62) is solved by backward integration in space.
Even though it is a linear equation, in order to reuse the code developed to
solve the PSE iteratively to satisfy the auxiliary condition, at each streamwise
position r∗ is solved iteratively such that expression (63) is satisfied. The right
hand side of equation (62) and the initial condition depend on the choice of
objective function, i. e. the value of ξ.

2.5.2. Adjoint of the Boundary Layer Equations

The adjoint of the boundary-layer equations are derived using a continuous
approach. Details regarding the derivation is found in Pralits (2001) and Pralits
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& Hanifi (2003) and they are here given as

ρ
∂(h1W

∗)
∂x3

− h1ρ

(
∂U

∂x3
U∗ +

∂V

∂x3
V ∗ + cp

∂T

∂x3
T ∗
)

= S∗
W , (65)

∂(ρUU∗)
∂x1

+
∂(h1ρWU∗)

∂x3
− ρ

(
∂U

∂x1
U∗ +

∂V

∂x1
V ∗ − ∂W ∗

∂x1
+ cp

∂T

∂x1
T ∗
)

+

(γ − 1)M2 dPe

dx1
T ∗ − 2(γ − 1)

Re
M2 ∂

∂x3

(
h1µ

∂U

∂x3
T ∗
)

+

1
Re

∂

∂x3

(
µ
∂(h1U

∗)
∂x3

)
= S∗

U , (66)

∂(ρUV ∗)
∂x1

+
∂(h1ρWV ∗)

∂x3
− 2(γ − 1)

Re
M2 ∂

∂x3

(
h1µ

∂V

∂x3
T ∗
)

+

1
Re

∂

∂x3

(
µ
∂(h1V

∗)
∂x3

)
= S∗

V , (67)

cp
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∂x3
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∂(h1V
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∂x3
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= S∗
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where the right hand side S∗
B = (S∗

W , S∗
U , S∗

V , S∗
E)T is given as

S∗
B =

{
(FW , FU , FV , FT + FW W/T )T h1 ∀x1 ∈ (X0, X1),

0 ∀x1 ∈ (XS , X0],
(69)

The non-zero right hand side is the coupling between the APSE and the ABLE
and express the sensitivity of the PSE with respect the variations in W , U ,
V and T respectively. A detailed description is found in Pralits (2001). The
above equations are subjected to the following boundary conditions

[
U∗, V ∗,

∂(h1T
∗)

∂x3

]
(x1, 0) = [0, 0, 0] ∀x1 ∈ [X0, X1],

lim
x3→+∞

[U∗, V ∗, W ∗, T ∗] (x1, x3) = [0, 0, 0, 0] ∀x1 ∈ [X0, X1].

The initial condition at x1 = X1 is given as

Q∗(X1, x
3) = 0. ∀x3 ∈ [0, +∞),
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These equations are linear oppose to the BLE but are however solved in a
similar iterative way as was outlined in §2.2.1 in order to reuse the existing
solver for the boundary layer equations. The ABLE are solved by backward
integration in the streamwise direction. At each streamwise position we obtain
the solution of Q̃∗ = (U∗, V,∗ T ∗) from equations (66)–(68) using the boundary
conditions above for a given value of W ∗. Equation (65) is integrated in the
wall-normal direction in order to obtain W ∗. The solution at each streamwise
position is considered converged when the relative variation of W ∗ is below a
specified value.

The coupling between the Euler and the boundary-layer equations is the
pressure distribution Pe and the mesh given by the nodal coordinates X. A
variation of the geometry which affects the Euler solution, will therefore ap-
pear as variations of the pressure distribution in the boundary layer equations,
which consequently will affect the solution of the stability equations. In Pralits
et al. (2002), the possibility of an optimal control problem using the pressure
distribution as control variables and the total disturbance kinetic energy as the
objective function, was considered. From the coupled APSE and ABLE for in-
compressible flows, an expression was derived for the gradient of the objective
function with respect to the pressure distribution. From the present APSE and
ABLE a similar expression can be evaluated and is here given as

∇JP =
∫ +∞

0

(
−∂U∗

∂x1
+ (γ − 1)M2∂(T ∗U)

∂x1

)
dx3 ∀x1 ∈ (XS , X1). (70)

Setting the Mach number equal to zero in expression (70), we find exactly the
same expression as the one derived in Pralits et al. (2002). Note that a variation
of X will also affect the nodal coordinates of the BLE and PSE. This can be
seen in expression (61).

2.5.3. Adjoint of the Euler equations

The adjoint equations (60) are solved following the same technique used for
solving the Euler equations (§2.1), by explicit time integration of the system

Vi
dw∗

i

dt
+ R∗

i = 0, ∀i ∈ V(Ω) (71)

until the residuals R∗
i vanish within some tolerance. Derivation of the adjoint

of the Euler equations can be found in Amoignon (2003). The following gives
expression for the adjoint residuals
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(72)

where V(∂Ωo) is the set of nodes at which the pressure Pe is measured, accord-
ing to the definition of the BLE (19)–(22). The right-hand-side of equation (60),
is included in the residuals

g∗
i =

((
∂AQ

∂w

)∗
Q∗
)

i

(73)

The adjoint d∗ of the artificial dissipation fluxes d (15) are obtained by freezing
the artificial viscosities (see Amoignon 2003), that is, the differentiation of εij2
and εi4 with respect to wh is assumed to give terms which can be neglected.
This assumption yields that

d∗
ij = εij2 (w∗

i −w∗
j ) + (εi∇2w∗

i − εj∇2w∗
j ) . (74)

However, the resulting truncation error may not be negligible in the computa-
tion of the gradient ∇J . This is studied later in this report through numerical
tests. A similar freezing of the coefficients in the farfield boundary conditions
yields the following expression for the Jacobian of the farfield flux:

∂(fbc
i · ni)
∂wi

=
∂ (f · ni)
∂vi

L (n̂i,v∞)H (λi)L−1 (n̂i,v∞)
dvi

dwi
. (75)

The Jacobian of the Euler wall flux function is expressed as follows

∂
(
fbc
i · ni

)

∂wi
= (γ − 1)




1
2 |ui|2
−ui

1



 . (76)

3. Implementation issues
3.1. Mesh displacements

In the current study an explicit affine mapping is used to smoothly propagate
changes in the geometry to the entire mesh. It is formulated as

Xk = X0 + Lyk . (77)
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where yk ∈ Rn is the vector of node displacements on the airfoil, for the design
number k, Xk ∈ R2N is the vector of all nodal coordinates (N is the total
number of nodes in the grid), L ∈ R2N×n is a constant coefficients matrix, and,
X0 is the reference mesh, defined by its vector of nodal coordinates. Given the
gradient ∇JX , of a functional JX such as defined in Table 1, the gradient of
the functional Jy (y) ≡ JX (X (y)) is obtained by a matrix–vector product

∇Jy = LT∇JX . (78)

The definition of L was possible because the meshes we used here are issued
from structured grids. More general schemes are needed when using general
unstructured meshes (see Berggren 2003).

3.2. Parameterization of displacements and constraints

In shape optimization, the combination of gradient-methods and piecewise
polynomial interpolations, such as B-splines, may induce oscillations in the
shapes, as investigated in Frank & Shubin (1992). In the current approach,
smooth shapes are obtained, together with geometric constraints, by taking
the vectors of displacements y that are solution of a minimization problem (see
Amoignon 2003) of the form

y =

{
min
v∈Rn

1
2
vT Asv − vT Msa ,

CTy = b
, (79)

where As is the stiffness matrix associated with the Laplace operator, Ms is a
mass matrix, C is a matrix whose rows are the gradients of constraints imposed
on the displacements (in Rn×m) and b is the vector of values imposed to the
constraints (in Rm). The solution y to the above system is the vector of
displacements, which, according to the norm defined by the stiffness matrix
As, is the closest to the solution of the discretized Laplace equation defined by

Asỹ = Msa , (80)

and that fulfills exactly the constraints

CTy = b . (81)

Such a parameterization implies that the controls are the vector a, right side
of the Laplace equation (80), and the vector b, right side of the constraints
relations (81). Therefore, from the gradient with respect to the displacements
∇Jy, that is eventually obtained by (78) it is needed to calculate a gradient with
respect to {a,b}, the control variables in our method. This can be achieved
by solving an adjoint problem of the form (see Amoignon 2003)

(
AT

s −C
−CT 0

)(
y∗

λ∗

)
=
(
∇Jy

0

)
, (82)

from which it holds that

∇Ja = MT
s y∗ and ∇Jb = −λ∗ . (83)
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3.3. Optimization algorithm

All numerical tests carried out here are formulated so that aerodynamic con-
straints (lift and pitch) are integrated to the objective function via a simple
penalization technique. Geometrical constraints (volume and fixed domain)
can be treated as simple bounds constraints via the parameterization previ-
ously discussed (see §3.2). However, the geometrical constraints are equality
constraints, so that the the right hand side, b in (79), will be a constant vector.
The only control parameter used in our applications is therefore the vector a,
expression (79).

The optimization algorithm is the limited memory quasi-Newton method
developed by Byrd et al. (1995). It is based on a limited memory BFGS approx-
imation of the Hessian matrix of the functional f , and a gradient projection
method is used to account for bounds on the data which makes it suitable for
large scale problems where only the gradient of f is available.

3.4. Solution procedure

A simple chart of the order in which the state and adjoint equations are solved
and gradients are evaluated in order to perform optimal NLF is given in figure 2.
There, k denotes the iteration number and the procedure is as follows:

1. For k = 1, we start with an initial Euler mesh X0

2. The Euler, BLE and PSE are solved in the given order
3. The objective function Jk is evaluated
4. The adjoint equations, APSE, ABLE and AEuler are solved
5. The gradients ∇Jk

X , ∇Jk
y and ∇Jk

a are evaluated in the given order
6. A new control parameter ak+1 is calculated2 using the gradient ∇Jk

a

7. If k > 1, check convergence: If |(Jk+1 − Jk)/Jk| < ε, else3 continue
8. A new mesh Xk+1 is calculated from the new control parameter ak+1

9. Goto 2.

4. Numerical tests
The accuracy of the gradient ∇Ja (83) of the objective function is a critical
issue in optimization. The first order necessary optimality condition is that the
gradient of the objective function or, of the Lagrangian, is zero at an optimal
design. Difficulties related to low accuracy, such as difficulty to find descent
directions even far from the optimal design, are quite common. There are two
possible causes of inaccuracies in our calculation of the gradient. As mentioned
previously, the derivation of the adjoint of the discretized Euler equations makes
use of an approximation as it does not linearize the coefficients of the 2nd or-
der artificial dissipation. Effects of this approximation are investigated in §4.1.
The adjoint equations of the BLE and PSE are derived from the continuous

2In the computations shown here, the L-BFGS-B routine was used, normally requiring several
functional and gradient evaluations in order to build up the approximative Hessian matrix.
3Several convergence criteria exist in the L-BFGS-B routine, (see Zhu et al. 1994)



Shape optimization for delay of transition 221

↑
Euler BLE PSE

APSEABLEAEuler

ak+1→ yk+1→ Xk+1

∇Jk
a ← ∇Jk

y ← ∇Jk
X

Figure 2. Flow chart for the case of minimizing the distur-
bance kinetic energy using the parameter a to control the
shape of geometry.

state equations. The effects of this method on the accuracy of the gradients of
the type ∇Jw (for JX defined as in Table 1) is investigated in §4.2.1. The cal-
culation of ∇Ja is obtained by coupling the three systems of adjoint equations,
and the accuracy is investigated in §4.2.2.

The accuracy of the gradient at a design point a can be analyzed, compar-
ing the value obtained from the solution of the adjoint equations, with the one
estimated by finite differences as

(∇Ja)k ≈
Ja(a + εaek)− Ja(a− εaek)

2εa
, (84)

where ek is the vector having component k equal to 1 and all other components
being 0. Several calculations of (∇Ja)k is commonly performed, using different
values of εa in order to find the best compromise between accuracy and rounding
errors, the last being inherent to the finite difference method. The relative
error between the gradient obtained by adjoint method ∇ADJa and the one
approximated by finite-differences ∇Ja can be calculated as

err∇Ja =
‖∇ADJa −∇Ja‖

‖∇Ja‖
, (85)

where ‖.‖ denotes the norm in Rn defined by the dot product.
These tests are performed on different C-type meshes of the RAE 2822.

They are here denoted coarse, medium and fine, and the sizes are:

• Coarse: 3412 nodes with 112 nodes on the airfoil.
• Medium: 13352 nodes with 224 nodes on the airfoil.
• Fine: 52816 nodes with 448 nodes on the airfoil.

4.1. The inviscid case

Possible inaccuracies, due to the approximation made in the Euler adjoint
equations, are expected to be independent from the forcing of the these equa-
tions. In our investigation the right-hand-side of the adjoint equation (60) is
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M∞ err∇CL err∇CD err∇CM

0.754 1.9× 10−2 2.6× 10−2 1.6× 10−2

0.734 2.8× 10−2 3.8× 10−2 2.2× 10−2

0.68 5.5× 10−3 4.9× 10−2 4.6× 10−3

Table 2. Effect of the Mach number on the relative errors be-
tween the gradients calculated based on the adjoint equations
and the ones calculated by finite differences, defined by (85),
of the drag, lift and pitch moment coefficients.

M∞ ‖∇CL‖ ‖∇CD‖ ‖∇CM‖
0.754 3.3× 10−1 3.0× 10−2 2.2× 10−1

0.734 3.2× 10−1 2.3× 10−2 2.0× 10−1

0.68 3.0× 10−1 2.4× 10−3 1.5× 10−1

Table 3. Effect of the Mach number on the norm of the gra-
dient of the coefficients of lift (CL), drag (CD) and pitch (CM ).
The gradients are calculated from the adjoint equations.

(∂AQ/∂w∗)Q∗ (see §2.4), identically equal to ∂Jw/∂w, according to the def-
inition of Jw given in Table 1. It is therefore the same as usual aerodynamic
optimization problems based on Euler flow analysis where Jw is usually one
the functions defined by the wave drag, the lift or the moments coefficients. In
order to avoid influences of possible errors when solving the BLE, the PSE and
their adjoint equations, we investigate here the accuracy of the gradient of the
wave drag (CD), the lift (CL) and the pitch moment coefficients (CM ).

The tests are carried out on the coarse grid, at three different design points
(different Mach number and angle of attack). In the results shown here, the
value of εa in the finite difference approximation of the gradient (∇J)k, is
equal to 10−6. However, various values in the interval

[
10−4, 10−8

]
were tested

without significant influence on the relative error. A summary of the results is
given in Table 2. The relative error varies between 0.5% and 5% and clearly
depends on the design point. Quite unexpected is that the error associated
with the gradient of the drag coefficient (CD) increases when reducing the
Mach number whereas the influence of the 2nd order artificial dissipation would
be expected to decrease as the influence of the shock decreases. Indeed, the
influence of the shock on the flow solution is measured by the sensitivity of
the wave drag and given in Table 3. Additional tests were carried out at
Mach number 0.68 without the second artificial dissipation showing that the
approximation in the derivation of the adjoint of these fluxes are causing the
errors as, seen in Table 4.
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VIS2 err∇CL err∇CD err∇CM

1. 5.5× 10−3 4.9× 10−2 4.6× 10−3

0. 4.5× 10−4 3.4× 10−3 3.8× 10−4

Table 4. Effect of the 2nd order artificial viscosity fluxes on
the relative errors between the gradients calculated from the
adjoint equations and the ones calculated by finite differences
for the drag, lift and pitch moment coefficients. The 2nd or-
der artificial viscosity is active for V IS2 = 1 and inactive for
V IS2 = 0.

4.2. The coupled inviscid-viscous case

The solutions of the adjoint of the stability and boundary layer equations are
used as input to the adjoint of the Euler equations as well as the gradient
assembly. From the adjoint of the boundary layer equations an expression for
the gradient of the objective function with respect to the pressure distribution
is obtained, expression (70). This is the coupling between the adjoint of the
boundary layer equations and the adjoint of the Euler equations and is used
to evaluate expression (73). The variation of the boundary layer and stability
equations with respect to the node coordinates are additional terms in the
assembly of the gradient, 61.

4.2.1. Gradient of objective function w.r.t. the pressure distribution

In the coupling between the inviscid and viscous solution, there are two issues
which make a large impact on the accuracy of the gradients. The first is that
a grid resolution commonly used to obtain results with the Euler equations, is
too coarse to obtain converged results using the stability equations. A second
issue is how the adjoint equations are derived. The adjoint Euler equations
are derived from the discretized Euler equations, and its solution should not
depend on the grid resolution. The adjoint of the boundary layer and stability
equations on the other hand, are derived using the continuous approach, and the
solution might therefore depend more on the grid resolution. As a consequence
difficulties appear when increasing the accuracy.

Tests have been performed using the coarse, medium and fine grid when
the free stream Mach number M∞ = 0.73, Reynolds number Re = 6.7 × 106,
temperature T∞ = 300 K and zero sweep angle. From the Euler solutions,
the pressure distributions and coordinates of the upper side starting from the
stagnation point have been used as input to the boundary layer and stability
equations. The disturbance used in the stability calculations is a two dimen-
sional wave with dimensional frequency f! = 15.5 kHz. The objective function
is evaluated as the disturbance kinetic energy, E1, integrated in a streamwise
domain which is kept the same for the different grids used here.
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Figure 3. Gradient of objective function with respect to pres-
sure distribution. Comparison between finite-difference ap-
proximation (solid-stars) and adjoint solution (solid-plus) com-
puted on (a) coarse, (b) medium, and (c) fine grid.

In figure 3 results are shown for a comparison between expression (70) and
a finite difference approximation of the gradient of the objective function with
respect to the pressure distribution. The latter is evaluated in the same way
as expression (84), where the design a has been replaced by the pressure P .
Computations have been performed for different values of the finite-difference
step εp, and these values are 10−4, 10−5, 10−6, 10−7. Only the results for
εp = 10−5 are shown. A first thing to note is that the gradient evaluated using
the finite-difference approximation appears to converge as the grid resolution
increases. This is due both to the solution of the pressure distribution con-
verging in the Euler computation, and the solution of the stability equations
converging as the grid is refined. Secondly it can be seen that the difference
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Figure 4. Local Reynolds number as a function of the control
parameter k (a) coarse grid, (b), medium grid, (c) fine grid.

between gradients obtained from the finite-difference approximation and those
obtained from the solution of the adjoint equations, decreases as the grid is
refined. This is due to the continuous approach used to derive the adjoint
equations.

The adjoint of the boundary layer and stability equations used here have
been used in other problems concerning gradient evaluations for the purpose of
optimal control problems (see Pralits et al. 2000; Pralits & Hanifi 2003; Pralits
et al. 2002). There, different grid resolutions expressed as a step length in
the local Reynolds number ∆Re, where Re =

√
Uex/νe, were tested to see the

effect on the gradient accuracy. In Pralits et al. (2000), it was shown that a step
length of ∆Re = 20 was needed to converge the physical result for a flat plate
boundary layer with zero pressure gradient. Further, it was shown that a value
of ∆Re = 10 was needed to obtain a relative difference of 10−3 between the
approximative finite difference calculation and the adjoint calculation, in the
major part of the computational domain. In figure 4, the step length expressed
as local Reynolds number has been plotted for the different grids used here.
It can be seen that the step length is almost constant through out respective
domain and the values are ∆Re = 50, 25 and 13 for the coarse, medium and fine
grids, respectively. Due to the variation of the pressure gradient along wing
profiles, the step lengths found in the previous study of flat-plate boundary
layers, might not be small enough to obtain the same convergence in the results
and accuracy of the gradients in the case studied here. It should further be
noted that the finest grid shown in figures 3 and 4, is computationally heavy for
the Euler solver, and might not be reasonable to use in the case of optimization.

One option to increase the accuracy of the gradients is to use some in-
terpolation technique for the calculation of the boundary layer, stability and
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Figure 5. Comparison of Ue and ∂Ue/∂x1 between original
medium grid (solid), and interpolated values using quadratic
polynomial on half grid (dot), cubic splines on half grid (dash),
and cubic splines on whole grid (dash-dot). The refined grids
are obtained by inserting one additional point in between old
grid points.

corresponding adjoint equations, given the solution of the pressure distribution
computed on a ’coarse’ grid. Such an approach could also be favorable when
three-dimensional flows are considered, and thus the computational effort in-
crease considerably for the Euler equations. The outline of an interpolation
approach can be made as follows: the pressure distribution from the Euler
solution is interpolated on a grid with higher resolution, the boundary layer,
stability and corresponding adjoint equations are solved on the new grid, the
gradient ∇JP is evaluated and then interpolated back on the original grid.
Here, decisions need to be made on how to produce the new grid distribution,
i. e. the distribution of the coordinate x/c describing the geometry, and fur-
ther which interpolation scheme to use, in order to obtain y/c and Pe. One
approach to refine the grid is to insert additional node points in between the
old ones. An advantage of inserting additional nodes in between the old ones,
is that the function values of the original nodes can be used in the chosen in-
terpolation scheme. Here, we have chosen to interpolate Ue instead of Pe. In
figure 5, results of Ue and ∂Ue/∂x1 can be seen using different interpolation
schemes. We have used the medium grid shown earlier and the new grid is
obtained by inserting an additional point in between the old grid points, i. e.
the new grid has twice as many points as the original one. Two calculations
have been performed when interpolation has been made using only the upper
part of the wing, i. e. from the stagnation point to the trailing edge. The
interpolation schemes are a piecewise quadratic polynomial and cubic splines.
In addition a cubic spline interpolation has been made when the whole grid
was used. In figure 5a, results are shown of Ue close to the leading edge. A



Shape optimization for delay of transition 227

120 125 130 135 140
−1

−0.5

0

0.5

1
x 10−5

dJ
/d

P

k (index of control parameter)

Figure 6. Comparison of the gradient ∂J/∂Pe computed
from the solution of the adjoint equations using the mean flows
corresponding to the cases in figure 5. A comparison is made
with the finite difference approximation of the gradient (solid-
circle).

close up around the leading edge show that the magnitude of Ue of both cases
where only the upper part of the wing was used in the interpolation, is larger
at the first interpolation point. The streamwise derivative of the free stream
velocity corresponding to the cases in figure 5a are shown in figure 5b. The
respective interpolated mean flows were then used to compute gradient ∇JP
by solving the PSE, APSE and ABLE. In figure 6 a comparison is made be-
tween gradient computed using the finite difference approximation, and those
obtained using the adjoint solutions. The gradient computed by solving the
adjoint equations on the original grid is included for comparison. There, it
is seen that the gradient computed using the piecewise quadratic polynomial
interpolation technique oscillates and deviates most from the finite difference
approximation. The cases of using the cubic splines cannot be distinguished
from one another, and in comparison with the gradient computed on the orig-
inal grid using the adjoint equations, a small improvement has been obtained.
In the results of shape optimization for transition delay shown in this report,
no interpolation technique has been used.

4.2.2. Gradient of objective function w.r.t. the shape parameterization

In the previous sections, tests have been performed to assess the accuracies of
the inviscid (§4.1), and viscous parts (§4.2.1) separately. In this section, we
investigate the accuracy of the gradient ∇Ja (83) which will be used in the op-
timization procedure, when the objective function is based on a measure of the
disturbance kinetic energy. The reference case, denoted FD, is computed using



228 O. Amoignon, J. Pralits, A. Hanifi, M. Berggren & D. S. Henningson

0 30 60 90 120 150 180 210 240
−6

−4

−2

0

2

4

6

8

G
ra

d 
J k

k (index of control parameter)

Gradients

Figure 7. M∞ = 0.734 - Gradients of the objective function
(Disturbance kinetic energy) with respect to the optimization
parameters (parameters that control the shape of the airfoil).
The curves show FD (solid), ADJ1 (dot), ADJ2 (dash). The
error between the FD and respective adjoint solution are: FD–
ADJ1 (17.2%), FD–ADJ2 (4.95%), and FD–ADJ3 (4.85%, not
shown).

the finite difference approximation of the gradient given by expression (84),
which is evaluated solving consecutively the Euler, BLE and PSE. The ob-
jective function in all tests performed here is given as the disturbance kinetic
energy of a single disturbance integrated in a defined streamwise region, ex-
pression (29) with K=1. The gradient ∇Ja is calculated from the gradient
∇JX (61) by variables transformations, from the nodal coordinates X to the
displacements of the shape y, according to (78), and, from the displacements
of the shape y to the right side of the Laplace equation a, which requires to
solve (82) and to apply (83). The gradient ∇JX is given by expression (61)

∇JX =
∂Jq

∂X
−
(
∂Aq

∂X

)∗
q∗ +

(
∂AQ

∂X

)∗
Q∗

︸ ︷︷ ︸
cont.

−
(
∂Aw

∂X

)∗
w∗ .

︸ ︷︷ ︸
discr.

As outlined in §3, it is evaluated from three systems of adjoint equations which
are solved in the following order

APSE → ABLE︸ ︷︷ ︸
cont.

→ adjoint Euler,︸ ︷︷ ︸
discr.

where each calculation depends on the solution of the previous one. The APSE
and ABLE are derived using the continuous approach, while the adjoint Euler



Shape optimization for delay of transition 229

0 30 60 90 120 150 180 210 240
−10

−8

−6

−4

−2

0

2

4

6
x 10−5

G
ra

d 
J k

k (index of control parameter)

Gradients

Figure 8. M = 0.68 - Gradients of the objective function
(Disturbance kinetic energy) with respect to the optimization
parameters (parameters that control the shape of the airfoil).
The curves show FD (solid), ADJ2 (dash). The error is: FD–
ADJ2 (0.02%)

is derived using the discrete approach. This is above denoted cont., and discr.,
respectively. The latter has in the previous sections shown to be more accurate
on the grids used here. In this section we therefore investigate the influence of
the solution of the adjoint Euler, and the solution of the APSE and ABLE, on
the accuracy of the gradient which will be used in the optimization. This is
made by comparing the accuracy of the gradient computed from the solution
of all adjoint equations with the one evaluated from the solution of the adjoint
Euler in which the right hand side, see expression (60), is approximated by finite
differences. The right hand side is evaluated from expression (70) (∂J/∂P )
when the solution of the APSE and ABLE are used. The finite difference
approximation used here is the same that was used in §4.2.1. In addition, the
influence of including the geometrical terms in the gradient evaluation from the
solution of the PSE, APSE and ABLE (denoted cont.) is investigated.

The different cases are summarized below:

• FD: finite difference approximation of the gradient given by expres-
sion (84), computed solving the Euler, BLE and PSE.

• ADJ1: gradient evaluated from the solution of the adjoint Euler, ABLE,
and APSE

• ADJ2: gradient evaluated from the solution of the adjoint Euler. The
right hand side of the adjoint Euler, evaluated from ∂J/∂P , is approxi-
mated by finite differences computed by BLE and PSE.
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• ADJ3: gradient evaluated from the solution of the adjoint Euler, and
by a finite difference approximation of the terms from the BLE and
PSE. The right hand side of the adjoint Euler, evaluated from ∂J/∂P ,
is approximated by finite differences computed by BLE and PSE.

The relative difference between the FD and respective gradient evaluated from
the solution of the adjoint equations, is calculated using expression (85). In the
first test we consider the medium grid when the Mach number M∞ = 0.734. A
part of the geometry around the leading edge is kept fixed, and a comparison is
made between the FD and respective adjoint solution outlined in the summary
above. The gradients are plotted as functions of the index of the surface nodes,
where index 224 denote the trailing edge. The fixed region around the leading
edge is given between indexes 80 and 119. The largest error, 17.2%, is found
in the comparison between the FD and the complete adjoint solution, ADJ1.
When the right hand side of the adjoint Euler equations is approximated by
finite differences, the error is reduced to 4.95%. Including the geometrical
terms obtained from the BLE and PSE in the gradient evaluation (ADJ3) only
reduces the error by 0.1% compared to the previous case (ADJ2).

The influence of including the second artificial viscosity on the gradient
accuracy was shown in (§4.1) for the inviscid flow equations. As the influence
is expected to decrease in the absence of a shock, a test was performed also
here. We consider the flow at Mach number 0.68, and the surface is kept fixed
everywhere, except for the region where the objective function is evaluated. In
figure 8, a comparison is made between the FD and ADJ2. The error in this
case is 0.02%.

5. Optimization results
5.1. Description of the cases

Following the study performed on the accuracy of the sensitivities obtained
using the continuous adjoint, §4.2, we chose to perform the optimization on the
medium grid. Viscous calculations (RANS) are also carried out with EDGE4

by Eliasson (2001) prior to and after some of the optimization tests in order
to compare the N-factors based on the pressure distribution obtained from
the viscous calculation with those that are computed using the Euler pressure
distribution. These calculations are also used to compare the viscous drag
between the initial and the final optimized design. The C-type grid for RANS
calculations has the size:

• Medium ’RANS’ mesh: 22088 nodes with 224 nodes on the airfoil.

In a first series of tests the objective is to reduce the disturbances kinetic energy.
The only constraints are geometrical and imposed using the parameterization
given in §3.2. The objective function to minimize is the total disturbance
kinetic energy of a single disturbance, E1 from expression (29). There are

4The turbulence model used is the EARSM by Wallin & Johansson (2000) and the k − ω
model.
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several reasons for imposing geometrical constraints. A constant volume is
intuitively a way to account for other industrial constraints such as having a
minimum fuel tank capacity in the wings or a maximum weight of the material
structure. The displacements of the nodes should not be allowed to be constant
over all nodes, which would mean a translation of the wing. To remove this
singularity one point should remain fixed, and our choice is the trailing edge.
In addition, we chose to fix a region of the airfoil around the leading edge in
order to prevent changes in the position of the stagnation point.

To summarize, the geometrical constraints are:

• Constant volume,
• Constant position of the trailing edge,
• Fixed region around the leading edge (between 0 of the chord length

and Xms given in Table 5).

In order to test if the optimization can account for the usual aerodynamic
requirements, two additional tests are carried out with a modified objective
function, denoted JC . The aim is to simultaneously reduce the disturbance
kinetic energy and the wave drag, and in addition penalize changes in the coef-
ficients of lift, and pitch-moment. The geometrical constraints are identical to
the first type of optimization which is described above. The modified objective
function is given as

JC = λUE1 + λDCD +
1
2
λL

(
CL − C0

L

)2 +
1
2
λM

(
CM − C0

M

)2
, (86)

where E1 is the functional from expression (29), CD, CL and CM are the drag,
lift, and pitch moment coefficients, respectively

CD =
∑

i ∈ V(∂Ωw)

pini · dD
1
2ρ∞v2

∞Sref
,

CL =
∑

i ∈ V(∂Ωw)

pini · dL
1
2ρ∞v2

∞Sref
,

CM =
∑

i ∈ V(∂Ωw)

pidM ·
(
xi −Oref.

)
× ni

1
2ρ∞v2

∞SrefLref
.

(87)

were dD is a unit vector in the direction of the farfield velocity, dD = −v∞/|v2
∞|,

dL is a unit vector orthogonal to dD and, dM is a unit vector orthogonal to
dD and dL.

The values C0
L and C0

M are the lift and pitch-moment coefficients for the
initial design. In expression (86), we take the square of the deviation of lift and
pitch with respect to the initial design in order to penalize both an increase
and decrease during the optimization. The real numbers {λU ,λD,λL,λM} are
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Case Objective M∞ Re∞ f∗ [kHz] β∗ [m−1
]

Xms Xme

T11 E1 0.734 1.7 107 15.5 0 0.043 0.45
T12 E1 0.734 6.5 106 11 500 0.043 0.45
T21 E1 0.68 1.6 107 16.5 0 0.039 0.45
T31 JC 0.734 1.7 107 15.5 0 0.043 0.45
T32 JC 0.734 6.5 106 11 500 0.043 0.45

Table 5. Optimization tests description.

scaling factors calculated as

λU =
1

10E0
1

, λD =
1

10C0
D

, λL =
10

(
C0

L

)2 , λM =
10

(
C0

M

)2 . (88)

The tests are summarized in Table 5. For the case T21, without second
order artificial viscosity (VIS2=0) was used in order to get better accuracy (see
Figure 8). The thermodynamical properties for the different cases correspond
to two different altitudes such that the TX1-cases are given at 0 meter ASL,
and the TX2-cases are given at 9600 meter ASL.

5.2. Analysis of the disturbance growth

The objective function in the results shown here, is given as the total distur-
bance kinetic energy of a single disturbance, expression (29) in which K = 1.
A stability analysis of a large number of modes with different frequencies f!,
and spanwise wave numbers β∗ corresponding to different wave angles, is per-
formed prior to each optimization case, on the original design and the chosen
flow conditions. The wave angle is defined as the angle between the wave
number vector k and the inviscid streamline. The corresponding N -factors are
calculated from these results, and the mode chosen to be used in the optimiza-
tion which has the largest N -factor value with respect to all other modes, in
the computational domain. The reason of this particular choice is that it has
been shown in previous studies on optimal control, see Pralits et al. (2002) and
Pralits & Hanifi (2003), that a control that successfully decrease the growth of
a single disturbance also have a damping effect on other instability waves of the
same type. It is common in transition prediction, to compute the envelope or
envelopes (EoE) of the N -factor curves (i. e. envelope over both frequency and
spanwise wave number). Transition is then assumed to occur at the position
where the EoE curve first attains an empirically determined value. This curve
also serves as a measure of the efficiency of a control or design, computed by
minimizing a single disturbance, on a large number of disturbances.

Results of the analysis discussed here is shown in figure 9. The design is the
medium mesh with a free stream Mach number M∞ = 0.734, Reynolds number
Re∞ = 6.5 106, and angle of attack α = 2.1875 degrees. A total of 165 modes
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Figure 9. N-factor values for 165 modes (dots) with dimen-
sional frequency f∗ = [5, 20] kHz (∆f! = 1 kHz), spanwise
wavenumber β∗ = [0, 2500] m−1 (∆β! = 250 m−1). From
these values is the mode used in the optimization (solid) cho-
sen, and the envelope of envelopes (EoE) (dash) calculated.
The flow in this case is characterized by Re∞ = 6.5 106,
M∞ = 0.734, α = 2.1875 degrees.

have been analyzed with dimensional frequency f! = [5, 20] kHz (∆f! = 1
kHz), and spanwise wave number β! = [0, 2500] m−1 (∆β! = 250 m−1). This
choice of spanwise wave number corresponds to wave angles between zero and
85 degrees. The corresponding N -factor values of all modes are given by dots.
The mode chosen to be used in the optimization is given by the solid line and
the EoE curve by the dash line. The values of f! and β! given here are used
for all EoE analysis made in this report.

5.3. Reduction of disturbance kinetic energy under volume constraints

5.3.1. M∞ = 0.734, cases T11 and T12

Results are shown here for the case of minimizing the disturbance kinetic energy
of a single disturbance with the initial volume of the airfoil kept constant.
Computations are performed for a given Mach number M∞ = 0.734 and two
different Reynolds numbers. The latter two correspond to 0, and 9600 meter
ASL, and the cases are denoted T11 and T12, respectively. The convergence
history is given in figure 10 for the T11 case. The objective function and
gradient norm is given as a function of the iteration number. The optimization
was stopped because the BLE could not converge for the design after the last
iteration. This occurred as the changes in the geometry caused the shock
wave to move upstream x/c ≈ 0.42, into the domain in which the objective
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Figure 10. T11 - Objective function and norm of its gradient.
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Figure 11. T11 - Pressure coefficients and shapes at initial
(solid) and final design (dash).

function is evaluated (between x/c = 0.043 and x/c = 0.45). This can be seen
in figure 11, where the pressure coefficient and geometry for the initial and
final design are plotted. At final design, the central upper part of the wing
is thinner, measuring the thickness as the distance of a point on the airfoil to
the chord. Therefore, because of the fixed region around the leading edge, the
region between 4.3% of the chord length, from the leading edge, up to about
30% of the chord length, situated on the upper part, has a higher curvature at
final design than at initial design.

An increase of the curvature of a wall boundary is known to reduce the
pressure in the fluid flow. This may be the effect that can be observed in



Shape optimization for delay of transition 235

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

NE

s/c

Envelope of envelope of N−factor curves

Figure 12. T11 - Envelope of envelopes of N -factor curves.
Comparison between initial (solid) and final design (dash).

figure 11 where the pressure coefficient at final design has decreased (−Cp is
increased) in the region between 10% of the chord length, from the leading edge,
up to about 30% of the chord length, in comparison to the initial design. In
this way a pressure gradient is obtained that damps the growth of disturbances
as it is explained below. However, the faster decrease of the pressure may be
responsible for the shock moving upstream. Note that the deformation of the
lower part of the wing is only due to the constraint that imposes a constant
volume.

The effect on the disturbance growth can be seen in figure 12 where the EoE
curves have been plotted for the initial and final design. A large damping of
all modes has been achieved. This can be explained by the change in pressure
gradient from adverse to favorable, in a large part of the region where the
disturbances are amplified. The disturbance growth increases in this region
due to the zero or weak adverse pressure gradient just upstream of the shock
wave in the case of the final design.

The convergence history is given in figure 13 for the lower Reynolds number
case (T12). The decrease of the objective function is of two orders of magnitude,
smaller than it is for the case T11, figure 10, but the norm of the gradient is
decreased by four order of magnitude, which is larger than the decrease achieve
in case T11. The computation is here terminated as no further descent direction
could be found. The magnitudes of the deformations of the airfoil are smaller
compared to the case T11, shown in figure 11, but a similar trend is observed.
The favorable pressure gradient, which can cause a decrease of the energy of
the disturbances, may be caused by a local increase of the curvature on the
upper part of the wing, between 4.3% and 30% of the chord length from the
leading edge. As a consequence, the shock is moved upstream. The effect on
the disturbance growth can be seen in figure 15 where the EoE curves have
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Figure 13. T12 - Objective function and norm of its gradient.
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Figure 14. T12 - Pressure coefficients and shapes at initial
design for Euler (solid) and RANS (dash-dot), and final design
for Euler (dash) and RANS (dot).

been plotted for the initial and final design. A large decrease in disturbance
growth is obtained using the optimized design, similar to the one found for the
high Reynolds number case (T11). Also this is due to the change in pressure
gradient from an adverse to favorable in the upstream part of the domain
where the disturbances become unstable. The shock wave has not moved as far
upstream and the boundary layer and stability analysis can therefore be made
further downstream, also on the optimized airfoil.

An attempt has been made to use the N -factor results of the initial and
final design in order to determine the respective transition location. These
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Figure 15. T12 - Envelope of envelopes of N -factor curves.
Comparison between initial (solid) and final design (dash). A
comparison is also made between the initial (dash-dot) and
final (dot) design, when the pressure distribution is given by
the solution of the Reynolds Averaged Navier Stokes equa-
tions.

results have been used as input to RANS calculations of the initial and final
design in order to evaluate the change in the viscous drag. Values of the drag,
lift and pitch coefficients for the initial and optimized designs are summarized
in Table 6. The viscous drag is reduced by 13 drag counts, and, as it could be
expected from previous observations about the position of the shock, the wave
drag is also decreased, by 40 drag counts5. However, this is a byproduct of the
reduction of the disturbance energy. Large changes in the lift and the pitch are
also observed. These by-effects are controlled by imposing constraints in the
cases T31 and T32, see (§5.4).

The results from the RANS calculations are in addition used to see the dif-
ference in N -factors computed using the pressure distributions from the Euler-,
and RANS solutions. The transition position on the upper side of the initial
design was taken as the streamwise position corresponding to the maximum
value of the EoE curve of the N -factors computed using the pressure distribu-
tion from the Euler solution. The value is s/c ≈ 0.26, see figure 15. As the EoE
curve of the final design was lower in magnitude compared to the initial one,
the transition location of the final design was set as the downstream position
of the computational domain of the boundary layer and stability analysis. The
same transition position was used on the lower side, both for the initial and fi-
nal design. It should be noted that the transition location for the initial design
is not based on experimental results. A common reference for the RAE2822

5One drag count is 10−4
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RANS Euler
Coeff. Case total viscous pressure pressure

Initial 2.3× 10−2 4.8× 10−3 1.8× 10−2 1.3× 10−2

CD T12 (Final) 1.6× 10−2 3.5× 10−3 1.3× 10−2 7.9× 10−3

T32 (Final) 1.8× 10−2 3.7× 10−3 1.4× 10−2 8.3× 10−3

Initial 8.4× 10−1 −7.9× 10−5 8.4× 10−1 8.4× 10−1

CL T12 (Final) 7.0× 10−1 −5× 10−5 7.0× 10−1 7.0× 10−1

T32 (Final) 8.5× 10−1 −7× 10−5 8.5× 10−1 8.5× 10−1

Initial 3.2× 10−1 − − 3.4× 10−1

CM T12 (Final) 2.4× 10−1 − − 2.6× 10−1

T32 (Final) 3.1× 10−1 − − 3.4× 10−1

Table 6. Summary of aerodynamic coefficients at initial and
final design for T12 and T32, using Euler and RANS flow
analysis.

airfoil is Cook & McDonald (1979), in which the boundary layer was tripped at
3% chord in the experiments in order to have a well defined turbulent portion.

The pressure coefficients obtained from the solution of the RANS for the
initial and final design is found in figure 14. The largest difference compared
to the Euler solution occur at the position of the shock wave. Upstream of
this position however, the difference between the Euler and RANS solution is
smaller, which can also be seen in figure 15, where the EoE curves of the two
cases are compared. In the comparison of the pressure coefficients between the
Euler and RANS computations of the final design, one can note the difference
in the region between x/c ≈ 0.4 and x/c ≈ 0.5. Results of the velocity field
from the RANS calculation (not shown here), show that separation occurs in
this region. As this can not be accounted for in the boundary layer equations
used here, the EoE curve computed using the pressure distribution from the
RANS calculation is not performed downstream of x/c ≈ 0.4, see figure 15.

5.3.2. M∞ = 0.68, case T21

Results are shown here for the case of minimizing the disturbance kinetic energy
of a single disturbance with the initial volume of the RAE2822 airfoil kept
constant. Computations are performed for Mach number M∞ = 0.68 at 0
meter ASL. The shock wave shown in the T11-, and T12 cases is not present
in this case, see figure 17. The convergence history is given in figure 16. The
objective function and the norm of the gradient are reduced of about three
orders of magnitude. The pressure coefficients, and the geometries, at initial
and final design, are found in figure 17. Alike the previous cases, the changes in
the geometry of the upper part of the airfoil influence the pressure distribution
in a way that is favorable to decrease the disturbance energy. However, the
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Figure 16. T21 - Objective function and norm of its gradient.
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Figure 17. T21 - Pressure coefficients and shapes at initial
(solid) and final design (dash).

deformation of the airfoil is of a different nature. Compared to the cases T11
and T12, the upper part of the airfoil is thicker at final design than at initial
design, which creates a region of higher curvature at about 40% of the chord
length away from the leading edge. This is further downstream compared to
where it appeared in the cases T11 and T12. The effects of these deformations
can be observed in changes of the pressure coefficient.

The difference between the test cases is better understood looking at the
envelope of envelopes (EoE) curves of the N -factors. In case T11, the dist-
urbances grow fastest in a region between x/c = 0.2 and x/c = 0.3, as seen
in figure 12. In the case T21, the growth of disturbances continues increasing
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Figure 18. T21 - Envelope of envelopes of N -factor curves.
Comparison between initial (solid) and final design (dash).

outside of the domain of integration of the objective function (29), that is for
x/c > 0.45, figure 18. As a consequence, in case T11, damping the growth of
disturbances in the near region of the leading edge has a major effect, but in
case T21 the damping may be favored as far downstream as x/c = 0.45. A
decrease in disturbance amplification has been achieved for all modes in the
major part of the computational domain. This is due to change in the pressure
distribution from a weak adverse to a zero or weakly favorable in the region
where the disturbances become unstable, see figure 17. Note however, that in
the upper most streamwise region, first an increase in the adverse pressure gra-
dient occur. This is seen in the EoE curves which are actually larger between
x/c ≈ 0.05 and x/c ≈ 0.1 compared to the initial design. Another thing to
note is the “smoothing” of the pressure distribution in the region where the
disturbances are amplified. The vanishing of these wiggles is also seen in the
EoE curve plotted for the final design.

5.4. Reduction of disturbance kinetic energy and wave drag under volume
constraints while penalizing lift and pitch

Results are shown here for the case of simultaneously minimizing the distur-
bance kinetic energy of a single disturbance, and the wave drag. The ini-
tial volume is kept constant during the optimization and changes in the lift,
and pitch-moment coefficients with respect to the initial design are penalized,
see expression (86). Computations are performed for a given Mach number
M∞ = 0.734 and two different Reynolds numbers. The latter two correspond
to 0, and 9600 meter ASL, and the cases are denoted T31 and T32, respectively.
The objective function and gradient norm of case T31 are given as functions
of the iteration number in figure 19. The different components of the objective
function are plotted in figures 20, and 21. The objective function is decreased
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Figure 19. T31 - Objective function and norm of its gradient.

in each step of the optimization even though the component of the wave drag
is increased between iteration number 2 and 4, compared to iteration number
1. The reason is that in this interval, the deviation of lift-, and pitch moment
coefficients is decreased. A reduction has been obtained at the last iteration,
in both disturbance kinetic energy and wave drag, while the lift-, and pitch
moment coefficients are kept within a few percent. Comparisons between the
pressure coefficients, and geometries of the initial and final design are given in
figure 22. The change in pressure distribution occurs mainly on the upper side
of the airfoil, where the shock wave has moved upstream and weakened. In
comparison with T11, which has the same initial conditions, the displacement
of the shock in T31 is smaller, but, the changes in T31 reflect the conserva-
tion of the pitch moment and lift coefficients. The effect on the disturbance
growth can be seen in figure 23 where the EoE curves have been plotted for
the initial and final design. A damping of the disturbance growth is obtained
in a large part of the computational domain using the final design. It is clear
looking at figure 22, that the adverse pressure gradient of the initial design in
the upstream region where the disturbances become unstable, has changed into
a zero or weakly favorable in the final design. Close to the shock wave of the
final design, which has now moved further upstream, the flow is decelerated.
This can be seen in the EoE curve where the value increases rapidly above that
of the initial design.

The convergence history for the lower Reynolds number case (T32) is found
in figures 24–26, and is similar to the one found for the case T31. The wave
drag experiences an increase during a few optimization steps also here, while
the deviation of lift, and pitch-moment coefficients decreases. In figure 27, a
comparison is made between the pressure coefficient and geometry of the initial
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and final design. In comparison with case T12, which has the same initial con-
ditions, the displacement of the shock is smaller but the pressure distribution in
T32 minimizes changes in the coefficients of lift and pitch moment. The EoE
curves computed using the pressure distribution from the Euler solution are
used, as in case T12, to set the transition locations in two RANS calculations.
The transition position on the upper side of the initial design was taken as the
streamwise position of the maximum value of the EoE curve of the N -factors
computed using the pressure distribution from the Euler solution (s/c ≈ 0.26,
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Figure 22. T31 - Pressure coefficients and shapes at initial
(solid) and final design (dash).
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Figure 23. T31 - Envelope of envelopes of N -factor curves.
Comparison between initial (solid) and final design (dash).

see figure 28). The maximum value of the EoE curve computed for the final de-
sign is below the value found for the initial one. The transition location on the
upper side of the final design is therefore set as the downstream position of the
computational domain of the boundary layer equations. The same transition
position was used both for the initial and final design on the lower side. The
major differences in the pressure distribution between the Euler and RANS
calculation occur in the region around the shock wave. Upstream of the shock
the difference is smaller, both for the initial and final design. This can also
be seen in the comparison of the EoE curves found in figure 28. A decrease
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Figure 24. T32 - Objective function and norm of its gradient.

occur in the N -factor values in both results showing the EoE curves of the final
design. This can be explained by the change in pressure gradient from adverse
to zero or favorable, in a large part of the region where the disturbances are
amplified.
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Figure 25. T32 - Disturbance kinetic energy and wave drag.
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Figure 26. T32 - Lift (triangle-solid) and pitch moment
(circle-solid) coefficients. The values at initial design are indi-
cated at each step (solid).
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Figure 27. T32 - Pressure coefficients and shapes at initial
design for Euler (solid) and RANS (dash-dot), and final design
for Euler (dash) and RANS (dot).

6. Summary and discussion
Theory and results have been presented for an approach to perform shape
optimization with the aim of transition delay, and thus a decrease of the viscous
drag. The location of laminar-turbulent transition is analyzed using linear
stability theory, in which perturbations with infinitely small amplitude are
superimposed on the laminar mean flow. It is then assumed that transition will
occur at the location where the total amplification of disturbances, with respect
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Figure 28. T32 - Envelope of envelopes of N -factor curves.
Comparison between initial (solid) and final design (dash). A
comparison is also made between the initial (dash-dot) and
final (dot) design, when the pressure distribution is given by
the solution of the Reynolds Averaged Navier Stokes equa-
tions.

to the first streamwise position where the disturbance starts to grow, attains
an empirically determined value, whose logarithm is generally denoted by N .
The inviscid flow is obtained by solving the Euler equations for compressible
flows, and the viscous mean flow is obtained from the solution of the boundary
layer equations for compressible flows on infinite swept wings. The evolution
of convectively unstable disturbances is analyzed using the linear parabolized
stability equations (PSE).

In the present approach, an iterative gradient based optimization proce-
dure is used with the aim of minimizing an objective function based on the
disturbance kinetic energy. Tests are carried out starting from the RAE2822
airfoil and are formulated to produce a reduction of the disturbance kinetic
energy while maintaining a fixed volume, angle of attack, region around the
leading edge and trailing edge position. Flow conditions include transonic and
subsonic cases, with Reynolds number of 6.5, and 17 millions. In some cases
the objective function is formulated to simultaneously reduce the wave drag
and the disturbance kinetic energy while maintaining lift and pitch moment
coefficients near their values at initial design. The normal displacements of the
nodes on the airfoil are solution of a quadratic programming problem minimiz-
ing the variational form of the discrete Poisson problem and including linear
constraints. Such a parameterization ensures smoothness of the geometries for
each design generated by the quasi-Newton optimization algorithm (see Byrd
1994) and enables to define complex sets of admissible shapes as needed when
coupling the three state equations. It has been shown that the gradient of the
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objective function with respect to the design variables can be evaluated from
the solution of adjoint of the Euler, boundary layer and parabolized stabil-
ity equations. Using the adjoint equations, as opposed to other perturbation
techniques, constitutes an efficient way to evaluate functional gradients when
the number of design variables is large compared to the number of objective
functions.

The work presented here is an ongoing project with improvements to be
made in order to increase the existing computational efficiency and accuracy. It
is further possible to include additional physical modeling in order to generalize
the technique for more complex flow situations. As discussed herein, there are
issues related to grid resolution and the approach taken to derive the adjoint
equations. From a physical point of view, in order to obtain a converged result,
different grid resolutions might be required for the Euler, boundary layer and
stability equations. As shown here, the medium RAE2822 grid has a resolution
which is fine with respect to what is needed for the Euler solution and coarse
with respect to the stability solution. However, further refinement would not
give large improvements in the physical results. For the evaluation of the gra-
dient of the disturbance kinetic energy with respect to the pressure distribution
on the other hand, the resolution plays an important role, as the ABLE and
APSE are derived using the continuous approach. For this reason effort must
be put into either deriving these equations using the discrete approach or to
improve on the interpolation technique shown here.

There are modifications which can be made in order to approach a more
realistic situation. One is to include the disturbance growth also on the lower
side of the wing in the objective function, as transition occurs on both sides
of the wing. As the objective function of the total disturbance kinetic energy
is given as the sum of K convectively unstable disturbances, test can also be
made in order to evaluate this effect. Another extension, which can include
both of the above, is to use multiple design points in the optimization. In such
case the objective function is the sum of a chosen cost function at e. g. different
Mach numbers and/or different disturbances.

With the approach taken here there are some limitations which could be
overcome using additional physical modeling. As no iterative coupling exist
between the pressure distribution and the thickness of the boundary layer, this
constitutes an approximation. In addition, the boundary layer calculated here
is assumed laminar, and the effect of the increased thickness of the turbulent
boundary layer due to transition is not accounted for. Separation is another
issue which is not taken into account, and can be important especially for
applications with large angle of attack. Several studies have been made on
this topic for the boundary layer and stability analysis and might be possible
to include in the current project. Another option that should be tested in
order to avoid large adverse pressure gradients which might cause separation
in the downstream domain, is to minimize an objective function including both
EK and Ef . The idea to include also the disturbance kinetic energy at a
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downstream position (Ef ), is based on the knowledge that an adverse pressure
gradient has a destabilizing effect on the disturbance growth. Instead of using
the Euler equations an extension is to use the Reynolds Averaged Navier-Stokes
equations (RANS). This development should include the adjoint of the RANS
equations.

Even though the Euler and adjoint Euler equations can be derived and
solved for complete three-dimensional flows, the boundary layer and stability
equations used here are given for, at most, infinite swept wing flows. The ab-
sence of variation of the viscous mean flow in the spanwise direction in the BLE
and PSE means that e. g. tapered wings can not be analyzed without further
approximations. To proceed to fully three-dimensional cases, it therefore has
to be decided what approximations to make, or if effort should be spent on
solving the BLE and PSE for complete three-dimensional flows.

The delay of transition is a benefit if accounting for all other aerodynamic
properties of the wing, which are the wave drag, lift and moments coefficients.
Reducing the wave drag is as important as the delay of transition when opti-
mizing the airfoil at cruise speed. The latter can be achieved by formulating
the objective function as a weighted sum of the wave drag and the disturbance
kinetic energy. Lift and pitch moment can also be maintained near to their
value for the initial design by adding terms to the objective function that pe-
nalize variations of these coefficients. However, in real life applications the
interest is to maintain the lift above a minimum level while fixing the moments
to their value at the original design. Imposing bound constraints in this non
linear optimization problem would require to use more advanced method than
the penalization technique that has been use in this study.
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