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Abstract The two most common shape-optimiza-
tion methods for fluid mechanics problems are based 
on topology modifications and surface modifications. 
When the number of design parameters is large com-
pared to the number of objective functions the most 
efficient way to evaluate the sensitivity derivatives is 
using the solution from adjoint equations. In external 
aerodynamics such as aircraft wings, cars, and trains, 
surface sensitivities are commonly applied since the 
topology remains the same and the surface quality and 
precision are important factors. In internal flows, such 
as ducts and tubes, the choice between topology and 
surface modifications is not trivial. Both methods can 
lead to useful optimal solutions, but either possesses 
its own pros and cons. Changing the topology might 
be admissible, and even adding material (duct thick-
ness) can lead to unexpected topologically different 
solutions. This is also true in many bio-mechanical 

applications such as surgery of the upper airways 
(UA). In this paper, topological and surface sensitivi-
ties are evaluated and compared in OpenFOAM by 
solving the adjoint equations for a simple geometry 
first, and and then for the upper airways. Two differ-
ent geometries of the UA are investigated: the first 
consists of only the nasal cavity and the sensitivity 
analysis is applied to the inner geometry and the sur-
rounding walls. In the second case, a tissue of a cer-
tain thickness is added to the first to simulate a tissue 
removal around the existing airways. The different 
geometries are analyzed and discussed, evidencing 
also pros and cons of the different processes.

Keywords Bio fluid-dynamics · Adjoint equation 
method · Topological sensitivity · Shape sensitivity · 
Human nose

1 Introduction

In many fluid mechanics applications, the design boils 
down to optimising the shape of a certain geometry by 
minimising/maximising one or more metrics. Many 
optimization approaches exist and are usually divided 
into deterministic (gradient based), stochastic and 
robust methods [3]. Parametrisation of the geometry 
can also be made in different ways and we can divide 
the different approaches into two distinct categories: 
surface parametrisation and topological parametrisa-
tion. The first has a long history in aerodynamic shape 
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optimization [6, 8] while the second was developed 
for structural optimization [21]. Lately, also topologi-
cal optimization has been extended to fluid dynamics 
applications [12]. This is for instance accomplished 
by adding a penalty field � proportional to the fluid 
velocity on the right-hand side of the momentum 
equations, the so-called Brinkman term [1]. When 
� → ∞ the velocity tends to zero and the correspond-
ing computational cells behave as solids. A pure 
fluid domain is recovered when � is equal to zero. 
For intermediate values of � the fluid flows through 
a porous-like material. With this approach the topol-
ogy of the domain can be changed, something that 
is impossible with a surface parametrisation. A dis-
advantage, however, with the topological approach is 
the imprecise definition of an interface, for instance, 
the surface between solid and fluid. The reason is that 
� is constant in the computational volume cells and 
does not follow a particular “sharp” interface which 
causes the interface itself to be tiered and its shape 
to be strongly dependent on cells size meaning that 
the smoothest surface, not aligned with the cho-
sen coordinate system, will appear with a roughness 
given by the grid resolution, see Fig. 1. In particular, 
topological and surface parametrisation approaches 
are available in fluid dynamics applications using 
gradient-based methods [9]. The corresponding 
shape derivatives can be efficiently evaluated from 

the solution of adjoint equations [6, 11]. It is however 
not always straightforward to choose which method to 
use. In aeronautical applications such as the optimiza-
tion of an airfoil, surface parametrisation is probably 
the best choice: only small changes in the geometry 
are allowed and the topology would be unchanged. 
What method should instead be used in biofluid 
dynamics applications is less obvious. Such problems 
range from surgery planning of the upper airways to 
facilitate breathing or enhance heat exchange, to stent 
design for vascular repair, etc. Moreover, in several 
applications, it might actually be enough to evaluate 
the sensitivities and then let the skilled end-user (eg. 
a surgeon or designer) make the decision based on the 
sensitivity results. In this paper the two approaches, 
topological and surface sensitivities, are evaluated, 
compared, and discussed. The sensitivities are com-
puted by solving the adjoint equations. Existing meth-
ods, and corresponding theories, are briefly presented 
and discussed. Results from basic applications as well 
as the flow in the upper human airways are shown and 
discussed. The numerical solution of the flow equa-
tions is obtained using the open source finite volume 
solver OpenFOAM [20] and custom solvers for the 
adjoint field and the senstivities; the governing equa-
tions of the problem are the steady state, incompressi-
ble, isothermal Navier–Stokes equations. After a brief 
introduction, in Sect.  2 we describe the theory and 

Fig. 1  a Topological approach: (top) grid resolution, (bottom) surface definition of an arbitrary shape. b deformations using surface 
sensitivities
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numerical methods of the approaches studied. Results 
are presented for basic and applied cases in Sect.  3 
followed by the conclusions.

2  Methods

The goal here is to compute and compare the sensitiv-
ity of a given objective function with respect to cer-
tain control variables using two different approaches: 
topological sensitivity and surface sensitivity, see 
[11]. The power, per unit mass, dissipated across the 
domain [10]

is the objective function, being SI and SO the surfaces 
of the inlet and outlet sections. The sensitivities, i.e. 
gradients of the objective function with respect to 
the control variables, are evaluated from the solu-
tion of adjoint equations. Repeated indices, as in Eq. 
(1), imply summation from here on. We consider an 
incompressible flow where vi are the velocity com-
ponents and p is the pressure divided by the constant 
density, respectively. The formulation briefly pre-
sented here follows that of Papadimitriou and Gianna-
koglou [11] which considers laminar flow. The reason 
is to make equations and expressions more concise 
and clear. The governing equations, in the residual 
form, for the two sensitivity formulations are almost 
identical apart from the Brinkman penalization term, 
used in the topological formulation, here indicated by 
top (which stands for “topological”):

where �ij = �
(

�vi

�xj
+

�vj

�xi

)
 is the viscous stress tensor 

and � being the effective viscosity. The term “top”, in 
Eq. 2, is governed by the porosity �

(
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)
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an optimization problem expressed by the objective 
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function J  to be minimized, controlled by the varia-
bles bn(n = 1, ...,N) and constrained by the state 
equations Ri = 0(i = 1, ...,E) , with E being the num-
ber of equations. The problem can be recast as an 
augmented objective function (or Lagrangian) L , for 
which all variables are considered independent. The 
formulation of the Lagrangian includes an additional 
term which, for clarity, is written as an additional 
integral and not included in residuals and adjoint var-
iables vectors. This constraint, whose details will be 
explained in the following, allows an easier evalua-
tion of the gradients of the grid points with respect to 
the control variables, necessary to evaluate the Leib-
niz term [11] correctly. The Lagrangian is expressed 
as

where Ψi(i = 1, ...,E) are the adjoint variables. Eq. 
(3) imposes constraints on the grid displacement mi 
which is performed by using a Laplacian to diffuse 
the grid points, as shown in Eq. (4)

ma
i
 is the adjoint variable associated to mi . This gov-

erning equation, in the residuals form, is the Lapla-
cian of mi , which is the Cartesian displacement of the 
grid nodes, with respect to grid points. mk is a func-
tion both of xk and bn since, respectively, this addi-
tional governing equation is satisfied on the given 
grid and the design variables directly affect its bound-
ary conditions. The last constraint has been intro-
duced to avoid computing the gradient of nodal dis-
placements with respect to the control variables, in 
the whole domain [11].

We now seek stationary solutions of Eq. (3) by con-
sidering the first variation of L , with respect to each 
variable, equal to zero [4, 11]. From the derivative with 
respect to the adjoint variables we obtain the governing 
equations for the fluid flow, Eq. (2), and grid displace-
ments, Eq. (4). The derivative with respect to the con-
trol variable can now be written
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The variables in Eq. (5) from the governing equations 
are factored out using repeated integration by parts. 
Moreover, the Leibnitz theorem and the Green-Gauss 
theorem are used to expand the resulting terms. A 
single adjoint equation, see Gallorini et  al. [4] for a 
complete derivation, is written for the two sensitivity 
cases.

where �a
ij
= �

(
�ui

�xj
+

�uj

�xi

)
 . The only difference is the 

value of the Brinkman term, here denoted adj-top: for 
the case of surface sensitivity �(x) = 0 . Moreover, the 
adjoint of the grid displacement PDE is given as

where the right-hand side is given by the volume rep-
resentation of the terms from the Leibnitz theorem. 
For a detailed analysis of the adjoint boundary con-
ditions see Papadimitriou and Giannakoglou [11]. 
Fig.  2 illustrates graphically the two approaches to 
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compute the sensitivity: panel a) presents the sur-
face sensitivity approach, where the design variable 
bn is a vector containing the coordinates of each sur-
face node. The sensitivity with respect to the surface 
is computed as a function of the node coordinates 
and the actual displacement is proportional to the 
resulting gradient vector; in panel b) the topology is 

introduced through � , Brinkman’s penalization term, 
which is included as a source term in the momentum 
equations, proportional to the velocity. Since � can 

be arbitrarily large a design variable bn = � is intro-
duced, where 0 ≤ � ≤ 1 , and � = �(�).

The surface derivative [7] of the objective function 
with respect to the control variables can now be writ-
ten as

Fig. 2  Sketch of the two approaches to evaluate sensitivity. 
a presents the surface sensitivity approach where the design 
variable b

n
 is a vector containing the coordinates of each sur-

face node. bthe topology is introduced through � , which is is 
a source term in the momentum equations, proportional to the 
velocity
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where tI
i
 and tII

i
 are the two components of the unit 

vectors tangent to the surface and SW is the wall 
boundary.

The sensitivity with respect to a topological 
change (sometimes denoted “solidification” of vol-
ume’s cells) [4] is simply given by

A significant difference between the topological and 
surface formulations is how the surface of a certain 
geometry is defined. In the surface formulation, a 
solid surface is defined by the initial geometry and 
corresponding boundary conditions (non-slip, imper-
meable, adiabatic,...), and the smoothness (continu-
ous curvature) is usually maintained during the opti-
mization. In topological optimization the formulation 
assumes that the geometry is represented by a certain 
density (or porosity). The lower the porosity, the less 
fluid will penetrate. In the limit of zero porosity the 
geometry will behave as an impermeable solid and 
zero velocity will be implicitly defined on its borders 
(surface). When the porosity varies gradually from 
large to small, there is no clear limit/border where to 
define a solid surface. In certain applications, this is 
an accepted result and it comes down to the designer 
to define a distinct surface between one material and 
another. This can however be made more rigorously 
by introducing certain “transition” functions. One 
such example is the sigmoid function [14] which 
allows for a sharp transition from low to high perme-
ability and this can be achieved by introducing a new 
control variable � which varies from 0 to 1:

(8)

d
dbn

= −∫
SW

(

�aij nj − qni +
�SW ,l

�vi
nl

)

�vi
�xk

dxk
dbn

dS − ∫
SW

�ma
i

�xj
nj

dxi
dbn

dS+

+∫
SW

�SW ,i

�xk
ni
dxk
dbn

dS + ∫
SW

SW ,i
d
(

nidS
)

dbn
+

−∫
SW

[

(

−uknk +
�SW ,k

��lznknlnz

)

(

�ij
d
(

ninj
)

dbn
+

��ij
�xk

dxk
dbn

ninj

)]

dS+

−∫
SW

⎡

⎢

⎢

⎢

⎣

�SW ,k

��lz
nktIl t

I
z

⎛

⎜

⎜

⎜

⎝

�ij
d
(

tIi t
I
j

)

dbn
+

��ij
�xk

dxk
dbn

tIi t
I
j

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

dS+

−∫
SW

⎡

⎢

⎢

⎢

⎣

( �SW ,k

��lz
nk
(

tIIl t
I
z + tIk t

II
z
)

)

⎛

⎜

⎜

⎜

⎝

�ij
d
(

tIIi t
I
j

)

dbn
+

��ij
�xk

dxk
dbn

tIIi t
I
j

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

dS+

−∫
SW

⎡

⎢

⎢

⎢

⎣

�SW ,k

��lz
nktIIl t

II
z

⎛

⎜

⎜

⎜

⎝

�ij
d
(

tIIi t
II
j

)

dbn
+

��ij
�xk

dxk
dbn

tIIi t
II
j

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

dS,

(9)
dJ

dbn
= ∫

V

uivj
��

�bn
dV ,

In Eq.  (10) �S and �F are the upper and lower limit 
values of � , respectively. A value of � between 0 
and the threshold, defined by the user, �0 defines the 
fluid domain while values between �0 and 1 denotes a 
solid; the threshold �0 controls around which value of 
� the transition should take place.

Finally, the transition interval can be controlled 
by the value of the parameter k: the larger the value 
of k, the faster the transition from �F to �S . An 
example is given in Fig. 3.

3  Results

3.1  Numerical implementation

The numerical results presented here are obtained 
from solutions computed with the open-source soft-
ware OpenFOAM [20], version 10. At the present 
time no OpenFOAM version has both topological 
and surface sensitivity approaches implemented. We 
therefore applied the adjoint-based topology approach 
implemented by Gallorini et  al. [4, 5], and the 
adjoint-based surface sensitivity (E-SI) approach by 
Kavvadias et al. [7] as implemented in Pizzolato [13].

In all cases the finite-volume method is used and 
the solvers are second-order accurate. The turbu-
lence model used is k − � and the SIMPLE algo-
rithm solves the direct and adjoint equations. Con-
vergence is considered when the residuals reach an 
asymptotic value, always below 10−2 . The adjoint 

(10)� = �(�) = �S +
(
�F − �S

) 1

1 + e−k(�−�0)
.

Fig. 3  � as a function of �
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equations used here are derived using the “frozen” 
turbulence approach. This means that the variation of 
the turbulent viscosity is assumed zero in the adjoint 
derivation.

3.2  Sensitivity comparison for two ducts

The sensitivity analyses are here applied to two bi-
dimensional ducts, see Fig.  4, shaped as divergent/
convergent elbows. The first is a single duct, while 
the second has an additional bypass channel. Since 
the additional bypass channel introduces a resist-
ance, and a topological difference, it is considered a 
significant test case to observe the solution from the 
two sensitivities of the function defined in Eq. 1 The 
grey box surrounding the duct is active only in the 
topological approach where � is zero in the channel 
while high enough to act as a non-porous solid in the 
grey region. This means that for each duct the fluid 
flows in identical geometries in both approaches. The 
difference might be seen in the sensitivity analysis 
where the topological approach could allow the sensi-
tivity to extend also in the solid (grey) domain. In all 
calculations the volumetric flow rate Q̇ = 2.667 ⋅ 10−4 
[m3∕s] is imposed at the inlet with a zero-gradient 
condition for pressure. A constant static pressure of 
p = 0 [Pa] and zero velocity gradient is applied at the 
outlet. In all the cases a background mesh of hexahe-
dral cells with dimension 1 ⋅ 10−3 [m] is adopted and 
a two-level refinement on the walls, inlet and outlet 

is applied to have a characteristic length of 2.5 ⋅ 10−4 
[m]. In the surface sensitivity case, 6 inflation lay-
ers are added on the wall boundaries. Both meshes 
have non-orthogonality lower than 60◦ and maximum 
skewness below 4.

In Fig. 5 the results of surface and topological sen-
sitivities are presented as vectors normal to the sur-
face, and contours, respectively. The two sensitivity 
analyses indicate similar modifications to the geom-
etry: the inlet should be widened, and so should the 
inner elbow corner and the straight vertical channel 
towards the outlet. Some differences can be noticed: 
a modification of the outer elbow surface is present 
only in the topological case. A sign difference appears 
in the topological sensitivity in the wall-normal direc-
tion of the inner elbow surface. Such a result is not 
obtainable in the surface case since the sensitivity is 
evaluated only along the boundary. Moreover, a shape 
deformation according to the surface sensitivities 
would result in a smooth surface, while the topologi-
cally reshaped geometry will be rougher due to the 
solid-void transition.

Figure 6 presents the results for the duct with an 
additional small bypass channel in the inner elbow 
corner. As can be noticed from the sensitivity maps, 
the main differences are located in the solid region 
between the bypass channel and the main one: in the 
topological sensitivity the red area indicates where 
the solid should be re-inforced while the blue strip 
along the surface should be removed; in between 

Fig. 4  Geometry and overall dimensions (in meters) of the 
two convergent/divergent elbow ducts: a single duct; b duct 
with bypass channel. Fluid domain (light blue), solid domain 
(gray) used in the topological sensitivity analysis. The two duct 

sections, close to inlet and outlet, outside the solid contour, are 
set to symmetry and do not contribute to flow development or 
sensitivity. (Color figure online)
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Fig. 5  Surface (left) and topological (right) sensitivities for 
the simple duct geometry. The surface sensitivity is shown 
as vectors whose direction is normal to the surface, while 
the magnitude is proportional to the gradient value. For the 

topological sensitivities negative gradients (color blue) indi-
cate counterproductive cells (to be removed) while positive 
gradients (color red) indicate productive cells (material to be 
added). (Color figure online)

Fig. 6  Surface (left) and topological (right) sensitivities for the duct with the bypass channel. Color schemes and legends as in 
Fig. 5. (Color figure online)
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there is a thin line where the new geometry will be 
defined. In the case of surface sensitivity, the results 
indicate that the hollow gap should be decreased but 
it is less evident in what way. In the limit of large 
deformations, a thin strip of material will be left, 
since the topology cannot change.

3.3  Sensitivity comparison for the flow in the upper 
airways

The surface and topology-based approaches are com-
pared for the flow in the upper airways. The geometry 
considered in this work is obtained from the STL file 
of Saibene et al. [17] in which a CT scan, segmented 
at constant radiodensity threshold, is reconstructed 
under the supervision of an ENT expert, according 
to a previously described procedure [15]. The choice 
of using such a geometry is determined mainly by 
two reasons: first, the geometry of the upper airways 
is very complex (containing convergent, divergent, 
and narrow sections, high curvature, and surfaces 
with different roughness); these properties make it 
a severe test, able to show the strength and weak-
nesses of the approaches. The second reason is that 
breathing difficulties are widespread and usually dif-
ficult to diagnose [16, 18]; clinicians face the issue of 

understanding if the deformities detected in the medi-
cal examination are the cause of patient’s symptoms 
and many times the answer is not straightforward. 
Surgeons make assumptions based on their experi-
ence, and errors are unavoidable [19]: this promotes 
the search for an objective tool to help them during 
the decision phase, and sensitivity analysis is a prom-
ising method.

The resulting three-dimensional geometry, aug-
mented by a spherical air volume surrounding the 
external nose [2], is shown in Fig.  7a. The latter 
moves the inlet portion of the computational domain 
far from the nostrils, minimizing the computational 
overhead. The full potential of topological sensitivity 
can only be exploited if a solid surrounding the fluid 
volume is included. In the case of the upper airways, 
this means adding the surrounding tissue. We model 
this by adding a “Surgery box” of tissue around a 
part of the geometry shown in Fig. 7a. The resulting 
geometry is presented in Fig. 7b.

From a surgical point of view adding material is 
not standard practice nor feasable but the algorithm, 
at this stage, is not tailored for this specific case 
where material can only be removed. It should be 
noticed tough that the regions where material is added 
are few so the sensitivity gives useful insights. The 

Fig. 7  Geometries of the upper airways used for the two sensi-
tivity formulations. a shows the fluid domain; b shows the con-
figuration in (a) with an additional surgery box (the part with 

lower opacity) used only in the case of topological sensitivity. 
In the surgery box, a high value of � is assigned to model a 
solid
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meshes have max non-orthogonality lower than 65◦ , 
max skewness lower than 4, and there are no inflation 
layers. Dimensions are similar to the simple ducts 
shown previously, with a height of 0.16 [m] a depth 
of 0.14 [m] (in the sagittal plane), and a width of 0.08 
[m] (in the coronal plane).

A constant volumetric flow rate of 
Q̇ = 2.667 ⋅ 10−4 [m3∕s] ∼ 16 [l∕m] is applied at the 
external boundary along with a zero gradient condition 
for the pressure. At the outlet (throat), a zero gradient 
condition for the velocity �ui∕�n = 0 is applied, while 
the pressure is set to a reference value of 0. At the 
walls, which are the inner parts of the nose, a no-slip 
boundary condition holds; the flow is transitional but, 
to simplify calculations, it is made the approxiamtion 
of fully turbulent flow and the turbulence is modeled 
using a standard k − � SST model. This setup guaran-
tees physiological flow conditions for a human at rest 
without breathing pathologies. The boundary condi-
tions applied to the adjoint equations, in the topologi-
cal case for velocity and pressure at the inlet, are:

⎧⎪⎨⎪⎩

vn = −
�J

�p
vt = 0

(n ⋅ ∇)q = 0.

At the outlet, the boundary conditions are:

To couple the normal and the tangential components 
of the velocity, the following relation, obtained from 
the continuity, can be applied:

The meshes presented in this work are constructed 
using snappyHexMesh and are mostly made up of 
hexahedral cells. The grid is around seven million 
cells, non-orthogonality is below 65◦ , and max skew-
ness is below 4◦ . The numerical setup for the cases is 
standard practice for RANS equations with the qual-
ity of the elements.

The surface sensitivity, obtained using the E-SI 
formulation [7] on the standard nasal geometry, 
is presented in  Fig.  8. It indicates how to modify 
the surface to minimize the power drop across the 
domain.

It can be noticed, especially from the bottom view, 
that there are sensitivity oscillations related to the 

⎧
⎪⎨⎪⎩

q = u ⋅ v + unvn + �(n ⋅ ∇)vn +
�J

�un

unvt + �(n ⋅ ∇)vt = −
�J

�ut
.

∇ ⋅ v = (n ⋅ ∇)vn + ∇|| ⋅ vt = 0 → (n ⋅ ∇)vn = −∇|| ⋅ vt

Fig. 8  Surface sensitivity. The red stands for push out while blue means pull in. a is the sagittal view, b the bottom view. (Color 
figure online)
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roughness of the nasal surface: to reduce the power 
drop the sensitivity aims to flatten (smooth) the 
surface.

Figure 9 shows the results of the topological sensi-
tivity evaluated on the surface of the standard geom-
etry of the nose.

Fig. 9  Topological sensitivity. The red means to add material while blue means to remove. a is the sagittal view, b the bottom view. 
(Color figure online)

Fig. 10  Topological sensitivity evaluated on the upper airways 
including a model of the surrounding tissue (“Surgery box”); a 
coronal view; b para-sagittal plane through the left nostril. The 

fluid and solid domains are light gray and black, respectively. 
The shadowed gray contour represents the region where solid 
material should be removed. (Color figure online)
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In general, topological optimization is performed 
by assigning a momentum loss to cells that negatively 
impact the cost function. In this case, blue cells are 
counterproductive (to be removed), while red cells are 
productive (to remain or be added). It can be noticed 
that there are fewer oscillations compared to the pre-
vious case. This can be related to the lower influence 
of the surface shape since the gradient is evaluated in 
the whole cell rather than the faces. Apart from some 
small differences, such as wall roughness, the two 
sensitivity approaches, evaluated on the surface of the 
nose cavity, provide similar indications.

The absence of a region from which to remove 
material limits the potential of topological sensitivity, 
so an external box called “Surgery Box” is added, see 
Fig.  10. Porosity � controls the transition from void 
to solid: in the fluid, its value is 0, while in the box, 
it is high to cause a large momentum loss mimicking 
the characteristics of a solid. Figures 10a and b pre-
sent the results for a coronal and sagittal plane. An 
intuitive solution to decrease the objective function 
exploited here is to increase the cross-section of the 
different cavities. This would be straightforward using 
surface sensitivities. Here instead, with the addition 
of the surrounding tissue, we obtain indications of 
what to modify also in the solid region. Clearly, in 
some parts, the sensitivity suggests increasing the 
cross-section of the air, like in the lower parts of the 
nasal cavity, see Fig. 10b. However, some topological 
changes are visible in the results presented in the cor-
onal plane where some cavities are connected. Such 
changes could be interpreted as tissue being removed 
during surgery and only possible by modeling also 
the surrounding tissue.

4  Conclusions

Two adjoint-based sensitivity analyses are compared, 
namely topology and surface (or shape) sensitivi-
ties, to understand when one performs better than the 
other, scrutinizing their differences. Both approaches 
are evaluated numerically using OpenFOAM 10, with 
the sensitivity routines implemented according to pre-
viously published investigations. The power per unit 
mass is used as the objective function, and different 
geometries are studied: two simple elbow ducts and 
a three-dimensional geometry of the upper airways 
reconstructed from a CT scan of an adult person.

It is shown that surface sensitivities work well when 
the geometrical description must be accurate, and no 
post-processing of the final geometry is necessary. 
However, topological changes can not be accounted 
for, and they amplify existing irregularities in the 
geometry surface. The latter is not easily overcome in 
an optimization loop since the gradient update is lin-
ear and the amplitude of the geometrical modification 
is arbitrary. This behavior was visible in the applica-
tion of the upper airways. Topological sensitivities are 
favorable when topology changes of an initial geom-
etry are admissible and few geometrical constraints 
are used. Moreover, since the sensitivities are also 
evaluated in the solid region, both a decrease and an 
increase in the fluid volume are possible. Compared to 
surface sensitivities, irregularities of the initial geom-
etry are less visible since its values are constant in the 
finite-volume cell, averaging out local variations. With 
topology sensitivity, a scalar value determines the 
geometry (void, porous, or solid) in each finite-volume 
cell: a sharp description of the fluid-solid interface 
is therefore impossible. Without countermeasures, a 
transition between void and solid will appear where 
a variable porosity will substitute the sharp interface. 
There are some techniques to render this transition, 
more or less, sharp. This paper illustrates one based 
on a sigmoid function. In applications such as surgery 
of the upper airways, the approach based on topology 
sensitivities is favorable if the surrounding tissue is 
modeled. In this way, surgery by removing tissue and 
modifying the topology is possible, as in the virtual 
surgery shown in Saibene et al. [17].
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